
From Java to mCRL2
Bachelor Thesis

Allan van Hulst
Computer Science

November 23, 2007

Chapter 1

Introduction

The importance of software quality, especially when this software when is used
in critical applications, cannot be overestimated. Software correctness is con-
sidered an important contributor to software quality [1]. However, numerous
difficulties exist in guaranteeing software to be correct [8]. The mCRL2 tool [4]
provides a framework for the analysis and visualisation of concurrent systems
and protocols. It can therefore be used as a means to model, validate and verify
software. This can be done from a pure theoretical point of view but also in
industrial applications (see for example [9]).

The basic workflow when using mCRL2 is the following: (part of) a certain
system is (conceptually) isolated and a model is created using the mCRL2 spec-
ification language [5] (see for example [7] for an overview of this process). The
resulting model can now be used for validation and verification using tools in
the mCRL2 toolset. The most difficult, time-consuming and error-prone part of
this process is the creation of the model. Therefore, it seems worthwhile to ex-
plore the possibilities of an automated conversion from the programs that make
up the system to the mCRL2 specification language. Such a conversion, in a
very restricted context, is the subject of this thesis. The research focus is on:
Exploring the possibilities of a (semi-)automated conversion from a subset of the
Java programming language to the mCRL2 specification language. The automa-
tion of a conversion from Java to mCRL2 would provide a distinct advantage
over the current workflow. The resulting time-benefit and fault-tolerance would
allow people to completely focus on the task of developing a certain system,
instead of having to spend time on converting it to mCRL2.

In this research, only software-based systems are considered. A further restric-
tion is made by focussing on a conversion from a subset of the Java programming
language to mCRL2-input. This conversion is formalized to a certain extent but
a complete proof of its correctness is omitted as this would be outside the scope
of this research.

1

The reader is assumed to be familiar with the Java programming language.
A short summary of process algebra, the formal base of the mCRL2 specifi-
cation language, is provided in chapter 2. Chapter 3 describes the basics of
the conversion from Java code to mCRL2 input. Chapter 4 extends this basic
conversion by showing how to handle multiple threads and communication be-
tween simulated processes. Chapter 5 presents a short case study: a well-known
algorithm is implemented in Java and an equivalent mCRL2 model is derived
using the conversion steps presented in chapters 3 and 4. Chapter 6 contains a
general roadmap section describing the conversion from Java to mCRL2 from
a ’howto’-perspective. In chapter 7 the approach of this thesis is discussed and
possible future work is suggested. This thesis is illustrated by code examples.
For each example the programming language of the code listing is noted in ital-
ics.

I would like to thank Marko van Eekelen for supervising this thesis and keeping
me on track. Jan Friso Groote and Yaroslav S. Usenko, both from the Eind-
hoven University of Technology, provided many useful tips and directions.

Allan van Hulst
November, 2007

2

Chapter 2

Process Algebra and
mCRL2

This chapter provides a short introduction into process algebra. Process algebra
is a formalism that can be used to describe systems in terms of their constituent
operations and interactions. This introduction summarizes parts of[3]. Exam-
ples of corresponding mCRL2-input are given to illustrate the usage of process
algebra as a practical process description tool.

2.1 Basic Process Algebra

Basic process algebra is a small framework that can be used to describe indi-
vidual processes. The framework is based on the following definitions:

• The non-empty set A contains a set of atomic (indivisible) actions of the
system. Examples of atomic actions include: reading a byte from input,
incrementing an integer etc. The contents of A depends both on the sys-
tem to be modeled and the chosen abstraction level. Each atomic action
can be executed and it will terminate by definition. The label of this
atomic action is used to describe the action as a process term.

Some atomic actions have a specific predefined meaning, such as the action
δ representing deadlock or stagnation, and the action τ which represents a
silent action (abstract actions that have no specific identity). Intuitively,
the action τ represents zero or more actions that can be ignored.

• A binary operator + for alternative composition of processes. Assume
process terms t1 and t2 represent processes p1 and p2 respectively, then
the term t1 + t2 represents a single process that either executes p1 or
p2. Intuitively, the operator + can be seen as a non-deterministic choice
between p1 and p2.

3

• A binary operator · for sequential composition of processes. Assume pro-
cess terms t1 and t2 represent processes p1 and p2 respectively, then the
term t1 · t2 represents a single process that first executes p1 followed by p2

(if p1 terminates).

Each finite process can be represented by a closed term that is build from the
set A of atomic actions using the + and · operators. Such terms are called basic
process terms and the collection of all basic process terms is called the basic
process algebra or BPA.

2.2 Algebra of Communicating Processes

The basic process algebra can be used to describe individual processes. However,
most practical systems consist of multiple processes or can be modeled more
precisely by assuming they are built out of more than one process. To describe
such parallel behaviour, where the separate entities may influence each other’s
execution, the algebra of communicating processes is used. The basic process
algebra is therefore extended by the following definitions:

• A binary operator ‖ (called merge) which represents the parallel composi-
tion of two processes. Assume process terms t1 and t2 represent processes
p1 and p2 respectively, then the term t1 ‖ t2 represents a single process
which executes the individual actions of t1 en t2 interleaved. For example,
(a · b) ‖ (c · d) might be executed as abcd, acbd, acdb, cabd, cadb, cdab but
not as bacd i.e. the inner sequence of process actions is preserved.

• A binary operator T (called left merge) which behaves just like the merge
operator except that it takes the first action from the left argument always.
For example, (a · b) ‖ (c · d) might be executed as abcd, acbd, acdb but not
as cabd.

2.3 The mCRL2 specification language

There exists a simple correspondence between basic constructs in process algebra
and mCRL2-input. The mCRL2 specification language consists of statements
ended by a semi-colon. Below is a short summary of the mCRL2 specification
language and its correspondence with process algebra:

• Atomic actions are declared using the act keyword. For example:

act a, b, c, d;

denoting atomic actions a, b, c and d. In mCRL2 atomic actions can
be parameterised by data types referred to as sorts. Sorts, like Bool and
Nat are explained in more detail later on. The parametrisation of actions
makes it possible to define actions like setswitch:Bool and write:Nat.

4

The predefined actions δ and τ are denoted in mCRL2 as delta and
tau respectively.

• Processes are declared using the proc keyword. For example:

proc start = (a+b).c.d;

Just like atomic actions, processes can be parameterised using sorts. Mul-
tiple data-parameters are allowed, so

proc writeNumber(num:Nat,update:Bool) = tau;

is a legitimate process definition.

• The operators + and · are converted into their mCRL2-equivalents + and
. respectively. Their semantics is exactly the same as in a process algebra
contexts. However, with respect to the parallel operators, there are some
differences between mCRL2 and the algebra of communicating processes.
The mCRL2 syntax introduces a new operator | expressing true parallism,
i.e. actions are executed in a real parallel fashion at the same time. The
semantics of the process algebraic operator || is slightly modified and now
includes both interleaving of individual actions and paralellism, therefore
in mCRL2:

a||b = a.b + b.a + a|b

• The initial process is denoted by the init keyword. For example:

init start;

Using appropriate parameters if this is required by the initial process.

Comments start with a percentage-sign (%) and extent to the end of the line.

Altough they are very similar concepts, it is important to distinguish between
process algebra and the mCRL2 specification language. Process algebra serves
as a theoretical framework while the mCRL2 specification language is used to
implement actual models in process algebra. Because this research focusses on
a conversion from Java to mCRL2, the process algebra syntax is not used here-
after and only mCRL2 syntax is used to avoid any confusion.
A few examples are given below to illustrate the syntax and semantics of the
mCRL2 specification language. Further examples are given in the rest of this
thesis. There is quite some material available on the mCRL2 toolset: research
papers, technical guides and tutorials. See for example [6] for a more compre-
hensive introduction to mCRL2.

5

The first example introduces the actions read and write and a single pro-
cess P. It also shows how to define recursive processes:

mCRL2 code

act read;
act write;

proc P = read.write.P;

init P;

The semantics of this example are very straightforward. A process P first per-
forms a read, followed by a write action and calls itself again to repeat these
actions indefinitely. The next example shows the choice operator (+) and the
parallel operator (||) as well as parametrised actions. It also shows how pa-
rameters can be used in processes.

mCRL2 code

act output:Bool;
act answer:Int;

proc TrueOrFalseAndAnswer(b:Bool) =
(output(true)+output(false))||answer(42);

init TrueOrFalseAndAnswer(true);

In this example the action output is either called with the value true or false
and the action answer is called (in parallel) with the value 42. Upon calling the
initial process (TrueOrFalseAndAnswer) the parameter b is passed having the
value true. The next example shows a specific mCRL2 construct called choice,
denoted by B -> P <> Q. Its semantics is rather straightforward: if B is true,
then P is executed, otherwise Q. The tau and delta constructs are also shown:

mCRL2 code

proc A(b:Bool) = b -> delta <> tau;

init A(true);

6

In this example, when process A is started with the value true, the process
enters deadlock (denoted by delta). If A is called with the value false, the
tau is executed (having no effect at all). Another extensively used concept are
the comm and allow constructs (used almost exclusively inside the init con-
struct). The set denoted by comm contains actions that should be paired together
and replaced by a third action. The intuition behind this is the following: Two
actions are executed at the same time (because they are silently replaced by a
third action) and these two actions are therefore allowed to communicate by ex-
changing zero or more parameters. Communicating actions should be explicitly
allowed by the allow construct. This is shown in the following example:

mCRL2 code

act communicate:Nat;
act send:Nat;
act read:Nat;

init allow({communicate},comm({send|read->communicate},
send(3) || sum m:Nat.read(m)));

In this example, the action communicate replaces paired send and read oc-
curences and allows them to communicate a natural number. In the actual
process (shown in the last line of the example), the natural number 3 is com-
municated. This example also shows the mCRL2 sum operator. Using this
operator, all elements of a particular sort (in this case the natural numbers) can
be enumerated and for each matching value (in this case 3) the right hand side
of the sum operator (in this case read(m)) is executed.

2.4 Summary

In this short chapter, an introduction to process algebra was given covering both
the basic process algebra and the algebra of communicating processes. The cor-
respondence between the process algebra and the mCRL2 specification language
was illustrated by examples. In the next chapter, a simple correspondence be-
tween Java and mCRL2 is defined. This correspondence is gradually extended
in the following chapters.

7

Chapter 3

Basic Conversion

This chapter describes a conversion from Java to mCRL2 in its simplest form. A
very basic subset of Java is described first. A correspondence between elements
in this subset and mCRL2 constructs is defined. At first, this correspondence
is only partial as several language elements are ignored. However, throughout
the rest of this thesis, these elements are included in the language as well. The
reason for using this approach is that this is a very illustrative way to show how
the conversion is build up. The description of the Java-subset (called miniJava
here) is followed by a simple correspondence between miniJava-constructs and
mCRL2 in section 3.2. A conversion for functions which is safe for recursion is
the subject of section 3.3. This section is followed by sections describing how
various forms of variables such as function parameters can be converted as well.

3.1 Starting point of the conversion: miniJava

This chapter details a basic conversion from a subset of Java (called miniJava)
to mCRL2 code. A grammar describing the subset of Java that is used as the
source of the conversion is shown below. Some elements in this grammar (like
using the class keyword) might seem unnecessary in this context but as this
is a subset of Java they are not. The print statement is included here as an
example of an atomic action.

<program> => "public" "class" "Main" "{" <functionlist> "}"
<functionlist> => <function><functionlist> | <null>
<function> => "public" "boolean" <identifier> "(" ")" "{"

<statementlist> "}"
<statementlist> => <statementlist><statement> | <null>
<statement> => <declaration> | <assignment> | <return> | <if> |

<print>
<declaration> => "boolean" <identifier> ";"
<assignment> => <identifier> "=" <expression> ";"
<return> => "return" <identifier> ";"

8

<if> => "if" "(" <identifier> ")" "{" <statementlist> "}"
<else>

<else> => "else" "{" <statementlist> "}" | <null>
<print> => "System.out.println" "(" <identifier> ")" ";"
<expression> => <primary> | "!" <expression> |

<expression> && <expression> |
<expression> "||" <expression>

<primary> => <identifier> | <identifier> "(" ")" | "true" |
"false"

<identifer> => CHARACTER-SEQUENCE
<null> => ""

The grammar above is a very restricted Java grammar. Apart from a few other
constructs that will be added in chapter 4, this grammar defines the scope of
this research. Boolean is the only variable type in miniJava because it is the
simplest Java variable type. If other types were also used, the conversion would
be too focused on the variables only and other important concepts would have
to be discarded because of the narrow scope of this research. This restricted
grammar describes Java programs only containing one class called Main. This
class may contain any number of functions of return type boolean. Functions
consist of any number of statements. A statement can be one of the following:

• A declaration of a boolean variable.

• An assignment of the resulting value of an expression to a variable.

• A conditional clause if only executing a list of statements if the value of a
given variable is true. An if-clause may be followed optionally by an else
clause which is executed when the variable in the corresponding if-clause
evaluates to false.

• A return statement returning the value of a boolean variable.

For the purpose of simplification this is a very small subset of Java. Therefore,
programs may be more lengthy when compared to their equivalents in full Java
(i.e. the language is less rich in expressibility).

3.2 Converting miniJava statements to process
algebra

Intuitively, the basic conversion from miniJava to process algebra to be described
here ignores variable values. Later versions will include variable values but as
a first step it is reasonable to ignore them. The result of the conversion is a
process term describing all possible paths through the code. At first sight, such
a conversion might be of little use, but consider the following example:

public class Main

9

{
public static boolean f1 ()
{
boolean b1 = f2 ();

if (b1)
{
boolean b2 = f3 ();

f4 ();
}
else
{
boolean b3 = f5 ();

f6 ();
}

}
}

When variable values are ignored, it can still be proven from this example that f4
() is only executed after f3 () is executed and that f1 () will always preceed
both f3 () and f5 (). Using such an approach the conversion function conv
from miniJava to process algebra can be defined as follows, where Bn, Sn, En

and Fn are used as meta-variables for booleans, statement groups, expressions
and functions respectively. The fbody function denotes the body of a function.

1. A statement group refers to one or more statements meant to be executed
sequentially (e.g. some part of the body of a function can be considered
a statement group, this is not a very formal definition and it might be
more suitable to define statements recursively but using statement group
proves to be sufficient).

2. Only print statements are considered atomic actions in miniJava. Every
print statement is converted to a suitable (i.e. more descriptive) process
term. For example, "System.out.println (b1);" is used as printb1 in
process terms.

3. Let t1 and t2 be process terms representing statement groups S1 and S2

respectively. Then t1 · t2 is the process term representing S1S2. In terms
of the conversion function:

conv [S1S2] = conv [S1] · conv [S2]

4. Let t1 and t2 be process terms representing statement groups S1 and S2 re-
spectively. Then t1+t2 is the process term representing if(..){S1}else{S2}.

conv [if(..){S1}else{S2}] = conv [S1] + conv [S2]

10

5. The process term describing an assignment is the same as the process term
describing the expression on the right hand side in the assignment.

conv [B = E] = conv [E]

6. The results of the conversion function on expressions are:

conv [!E] = conv [E]

conv [E1 && E2] = conv [E1] · (conv [E2] + τ)

conv [E1 || E2] = conv [E1] · (conv [E2] + τ)

conv [F ()] = conv [fbody (F)]

conv [B] = τ

7. Because declarations cannot be combined with assignments in miniJava,
the process term corresponding to a declaration is the silent action τ .

conv [boolean B;] = τ

8. The same holds for return statements.

conv [return B;] = τ

It is important to note that this is is not the final conversion from Java to
mCRL2. This is only a first step to a proposed conversion function. The
miniJava grammar and the conversion will be modified later on. The steps
leading to the final definition of the Java to mCRL2 conversion are shown here
to illustrate the way the final result was established.

3.3 The conversion of functions: enabling recur-
sion

The section above dealt with the conversion of miniJava-statements into pro-
cess algebra constructs. However, miniJava has, like any realistic programming
language, a function mechanism which enables recursion. In the previous def-
inition of conv for functions, the contents of the function was expanded. Now
the conversion of functions is modified to include recursion. The most straight-
forward conversion from these functions to process algebra would be to convert
each function into a (callable) process:

conv [public static boolean F () {S}] = proc F = conv [S]

Now functions (converted into processes) can be referenced. The most obvious
conversion for function-calls now becomes the direct execution of the process.
This replaces the conversion by code-expansion as it was defined before.

conv [F ()] = F

11

Because functions are now handled as processes, they can be referenced and
recursive expressions can be defined. This is shown in the following simple
example which can be shown to always print true:

Java code

public static void
main (String [] argv) {

f1 ();
}
public static boolean f1 () {
System.out.println (true);
f2 ();
System.out.println (false);
return false;

}

public static boolean f2 () {
System.out.println (true);
f1 ();
return false;

}

mCRL2 code

act print:Bool;

proc f1 = print(true).f2.
print(false);

proc f2 = print(true).f1;

init f1;

Because each Java function is now converted into a separate mCRL2 process,
functions are callable and need not be translated into mCRL2 by expanding
their contents. This replaces the previous definition of function conversion.
This step enables recursion because processes can be referenced.

3.4 Next step: Adding decisiveness

The conversion as defined above ignores variable values. A process algebra ex-
pression in this context was meant to describe all possible paths through the
code. However, this non-deterministic interpretation of Java code has little cor-
respondence to reality. It is therefore obvious that a completely deterministic
mapping from miniJava to process algebra has to be defined because it would
not be very useful in practice otherwise.

Intuitively, the conversion of the if-statement was defined in the previous sec-
tion as: discard the boolean expression, either the if-part or the else-part might
be executed now. But to change this into a deterministic interpretation, the
boolean expression is now incorporated into the conversion. The if-part is exe-
cuted when the boolean expression evaluates to true and the else-part is executed

12

otherwise. This results in the following conversion:

conv [if (E){S1}else{S2}] = conv [E] -> conv [S1] <> conv [S2]

In the previous section, the conversion of the boolean expression itself was de-
fined to capture all possible ways the expression could be executed (e.g. in
the execution of A && B, the execution of B might be omitted if A evaluates to
false etc.). However, in the deterministic conversion there is only one correct
way these boolean expressions can be interpreted. Therefore, the now following
modifications to the conversion function are made, where E and En are boolean
expression and B stands for a boolean variable.

conv [!E] = !conv [E]

conv [E1 && E2] = conv [E1] && conv [E2]

conv [E1 || E2] = conv [E1] || conv [E2]

conv [B] = B

The following listing illustrates the application of the new conversion to a simple
example. Assume the software in the control unit of a printer contains a function
userFeedBack. The purpose of this function is to indicate a low level of ink or
a small amount of paper using an orange warning LED. When both the level
of ink and amount of paper are low, a red warning LED is used while a green
LED indicates normal operation.

13

Java code

public static boolean
userFeedBack (
boolean inklow,
boolean paperlow) {

setGreenLED (false);
setRedLED (false);
setOrangeLED (false);

if (inklow && paperlow) {
setRedLED (true);

} else {
if (inklow) {
setOrangeLED (true);

} else {
if (paperlow) {
setOrangeLED (true);

} else {
setGreenLED (true);

}
}

}

}

mCRL2 code

act setRedLED:Bool;
setOrangeLED:Bool;
setGreenLED:Bool;

proc userFeedBack
(inklow:Bool,paperlow:Bool) =

setGreenLED(false).
setOrangeLED(false).
setRedLED(false).
(inklow && paperlow ->
setRedLed(true)
<>
(inklow ->

setOrangeLED(true)
<>
(paperlow ->

setOrangeLED(true)
<>
setGreenLED(true))));

% Example usage: low on ink
init userFeedBack(true,false);

This example shows a direct conversion from Java to mCRL2 code. The con-
version is in fact very straightforward because it can be achieved by repeated
and recursive application of the conversion function conv as explained before.
One thing not mentioned in the text but shown in the example is the conver-
sion of function parameters. This specific conversion and the modeling of the
return-values of functions is the subject of the next section.

To summarize up until this point: the conversion of simple Java constructs has
been defined. In a very simple way first: ignore all variable values. The next
step was to enable recursion: the conversion function was modified to include
recursion by converting each Java function into a separate mCRL2 process. In
the following step, the conversion for boolean expressions in if-statements was
defined, thereby introducing decisiveness. The now following section explains
how to convert parameters and return values in functions.

14

3.5 Extending the conversion of functions: pa-
rameters and return values

Modeling functions as separate processes allows a relatively easy conversion of
function parameters. The list of parameters in the Java-function is directly
converted into the mCRL2-syntax using the appropriate data types. In this
stage, only variables of type boolean are allowed so these can be mapped directly
to the Bool sort in mCRL2 syntax:

conv [public static boolean F (boolean B1, ...,boolean Bn) {S}] =

proc F(B1:Bool, ..., Bn:Bool) =1conv [S]

However, such a straightforward conversion does not exist when it comes to
return values of functions. In both process algebra and mCRL2 there is no such
thing as a ’resulting value’ defined for a process. The intuitive approach when
function F calls function G (and uses its return value) is the following:

1. Convert both the contents of F and G into mCRL2 expressions.

2. Set up a process algebraic communication function that communicates the
return value of G back to F .

3. Assure such communication functions are properly set up and ’allowed’ to
communicate. This can be done by appropriate use of the mCRL2 allow
and comm constructs as shown below.

With respect to (1): the conversion of a function into a callable process and
the conversion of individual statements inside a function into their equivalent
process algebraic constructs has been described before. For setting up the com-
munication function mentioned in (2), the following actions are created:

act return:Bool;
act obtain:Bool;
act transfer:Bool;

And the init construct is extended with the following code:

init allow({transfer},comm({return|obtain->transfer},main));

Where main refers to the initial process. Returning the value of a function
now becomes particularly easy. The action return can be used, using the ex-
pression that makes up the return value as an argument. The situation at the
calling context is more complicated: the function is called using the process
name and the return value is obtained using the mCRL2 sum operator and the
action obtain. For example:

1Part of syntax

15

f || sum r:Bool.obtain(r)

Which allows the value returned by the process f to be used as r at the right
side of the || operator.

The next step is the formalisation of the steps described before by modifica-
tion of the conversion function conv. Besides this, other modifications to the
resulting output have to be made including the modification of the init con-
struct and the addition of the actions return, obtain and transfer. The
precise description and formalisation of these are omitted here because they
have been described before. What remains are the instances of the conversion
function for returning and obtaining values respectively:

conv [return E;] = return(conv [E])

conv [F ()] = F || sum r:Bool.obtain(r)

Note that the conversion on the side of the called function is remarkably easy
as the Java and mCRL2 code are very similar.

The mCRL2 implementation of Java return values, as it is defined here, might
seem to involve a lot of overhead in lines of resulting mCRL2 code. Other ap-
proaches are very well possible. For instance, not to convert Java functions into
mCRL2 processes but to use the possibility of defining mathematical functions
in mCRL2. Return values are defined for these kinds of functions but they do
not allow any side effects. Processes do allow side effects so the difficulty of
converting return values is taken for granted here.

Here is an example of the conversion of Java code including function calls,
parameters and return values.

16

Java code

public static void main
(String [] argv) {

if (f (false)) {
System.out.println (true);

}
}

public static boolean f
(boolean p) {

System.out.println (false);
if (p) {
System.out.println (true);

} else {
System.out.println (false);

}
return true;

}

mCRL2 code

act return:Bool;
act obtain:Bool;
act transfer:Bool;
act print:Bool;

proc main =
(f(false) ||
sum r:Bool.obtain(r).r ->
f(true)) ||

sum s:Bool.obtain(s).print(s);

proc f(p:Bool) =
print(false).
(p -> print(true) <>
print (false)).
return(true);

init allow({print,transfer},
comm(
{return|obtain->transfer},
main));

As this example shows, the conversion of function parameters and return values
adds some significant complexity. To make some of the other examples in this
thesis more clear, return values of functions are omitted sometimes. When this
is the case, it is explicitly stated.

3.6 Summary

At the start of this chapter, a grammar of a very restricted subset of Java was
presented and explained. The chapter continued by showing how a very simple
conversion from these grammar elements to corresponding mCRL2 constructs
could be defined. This simple conversion was later extended to allow functions
to be used recursively (by converting Java functions into mCRL2 processes).
In the next step, variable values are no longer ignored and a proper conversion
was defined for them too. The last section completed the coverage of functions
by defining a conversion for function parameters and return values. The next
chapter describes how to convert simple multi-threaded Java-programs into their
mCRL2-equivalents.

17

Chapter 4

Multithreading

In this chapter, the conversion defined in chapter 3 is extended. The Java
threading model is explained by examples in section 4.1. It is explained how a
very straightforward conversion for threads can be defined by using transforma-
tions on both the Java and mCRL2 side. Global boolean variables are used as a
communication primitive between threads. The proposed conversion for boolean
variables can be used in other cases as well. In the last section, the conversion
function is applied on a short example to illustrate how multithreaded Java code
is converted into mCRL2.

4.1 Adapting the Java threading model

From its early design on, the Java programming language was designed to be
multi-threaded. It offers a clearly specified and relatively easy way to create
multi-threaded programs by using inheritence in the class system. Code that
needs to run as a separate thread is encapsulated inside a class that inherits
from (i.e. is a subclass of) the Thread class. The latter also contains platform-
independent code to create, start, stop and otherwise manipulate threads. Below
is a short example of multi-threaded Java code.

Java code

public class ThreadTest extends Thread {
public static void main (String [] argv) {
ThreadTest tt = new ThreadTest ();
tt.start ();

}

public void run () {
System.out.println ("Code in thread is now running");

}

18

}

As the example shows, a class ThreadTest is made a subclass of the system
class Thread. The method run is overloaded and redefined. The run method
is the starting point of the thread. That is, if the new thread is created and
started, the code in the run method is the first to be executed.

In the previous chapter, a subset of Java called miniJava was defined. It con-
tained only the basic constructs in the Java language and did not include any
language features related to multithreading. However, the Java threading sys-
tem depends on multiple more advanced elements in the Java language such
as classes, inheritence and non-boolean functions. One possible solution would
be to support these constructs and to define a conversion function for a more
broader version of miniJava including classes, inheritence etc. But this so-
lution would lead to a vast amount of overhead and it does not capture the
essence of converting multi-threaded Java-programs into equivalent process al-
gebra. Therefore, another solution seems to be more appropriate. Consider the
following Java code which starts two threads.

Java code

public class Main {
public static void main (String [] argv) {
(new Thread(){public void run(){Main.runThreadCode1();}}).start ();
(new Thread(){public void run(){Main.runThreadCode2();}}).start ();

}

public static boolean runThreadCode1 () {
System.out.println ("Code in thread 1 is now running");
return true;

}

public static boolean runThreadCode2 () {
System.out.println ("Code in thread 2 is now running");
return true;

}
}

As the example shows, for each thread, it takes only one line of code to start
it. This is shown in the 3rd and 4th line of the example. This specific pat-
tern is included as a new statement in an extended version of miniJava. This
approach overcomes the obvious difficulties that occur when classes, memory

19

allocation etc. need to be converted into mCRL2 code. A possible drawback is
that the Java code before the conversion can be applied has to be rewritten to
this specific format. However, this should not be a major obstacle since Java
conversions are far simpler than conversion from Java to mCRL2. Another ad-
vantage of this approach is that miniJava remains a valid subset of Java but now
includes multithreading. Note that the function run in the anonymous class is
interpreted as part of the syntax of the statement that starts the thread. It
is not interpreted as a method when converting these statements into mCRL2
code; only public static boolean methods are allowed. Threads are have to be
included in the miniJava grammar. Therefore, a number of elements in the
grammar have to be changed. The modified grammar now becomes (unchanged
elements not shown):

<statement> => <declaration> | <assignment> | <return> | <if> |
<print> | <threadstart>

<threadstart> => "(new Thread(){public void run(){Main."
<identifier> "();}}).start ();"

Threads occur often in both Java and concurrent systems. Java threads can be
started using only one line of code. To avoid the conversion of very complex
constructs (e.g. memory management) this line is taken as if it were part of the
Java syntax. Note that the new version of miniJava remains a subset of Java
(from a syntactical point of view).

4.2 Converting multi-threaded code into mCRL2

The concept of a thread in miniJava resembles the concept of a process in
mCRL2 which seems a good argument to convert miniJava threads into separate
processes. Because functions are also converted into processes (as explained
in the previous chapter) this is precisely what is required because miniJava
threads also require the starting point of a thread to be a function. To convert
the <threadstart> statement (see miniJava grammar) into mCRL2 code, the
conversion function is extended in the following way:

conv [(new Thread(){public void run(){Main. F ();}})).start()] = F ||

Where F refers to the function that contains the code that needs to be run
in a separate thread. The purpose of the converted mCRL2 code is to make F
(converted into a callable process) run parallel to any statements that follow the
<threadstart> statement. Please note that this statement will never be the last
statement in a function. Because only boolean functions are allowed, the last
statement in a function will always be a return statement. If this was not the
case, the conversion into F || would not have made much sense because there
would be no trailing statement. A simple example of multi-threaded miniJava-
code and its mCRL2 equivalent is provided below:

20

Java code

public static void main
(String [] argv) {

m ();
}

public static boolean m () {
(new Thread(){public void
run(){t1();}}).start ();

(new Thread(){public void
run(){t2();}}).start ();

return true;
}

public static boolean t1 () {
System.out.println (true);
System.out.println (true);
System.out.println (true);
return true;

}

public static boolean t2 () {
System.out.println (false);
System.out.println (false);
System.out.println (false);
return false;

}

mCRL2 code

act print:Bool;
act return:Bool;

proc m = t1 || t2 ||
return(true);

proc t1 = print(true).
print(true).
print(true).
return(false);

proc t2 = print(false).
print(false).
print(false).
return(false);

init m;

For the purpose of clearity, some of the overhead involving returning the value
from a function and obtaining the result is omitted in the example above. The
complete example is included in section A.1 in the Appendix.

4.3 Communication between threads

In any realistic example, there is always some form of communication between
threads. A number of communication primitives exist, for example: memory
mappings, semaphores or even more sophisticated constructs. However, any of
these can be expressed in terms of shared variables. Programs in the miniJava
language are allowed to contain only one class (Main) so any shared variable
should be accessible from within this class. Therefore, the most obvious exten-
sion of the miniJava language would be to allow public static boolean vari-
ables in the Main class and to model them as global variables. These variables

21

are accessible within every function in Main and therefore they are accessible
within every thread. The miniJava grammar is extended in the following way
(omitting unchanged elements):

<declaration> => <function> | <shared>
<shared> => "public" "static" "boolean" <identifier> ";"

The grammar is extended with a <shared> keyword, introducing a shared vari-
able. To model such shared variables in mCRL2 is far from easy. The most naive
and simplistic approach might be to ignore each statement where a shared vari-
able is set and to define two expressions when a shared variable is read (one for
reading a false value and one for reading a true value). It is obvious that such
a conversion does not add any value and is equivalent to handle shared variables
as having random values. The purpose of this section is to model communica-
tion between threads, the variable values are therefore important to achieve a
deterministic solution.

Altough boolean variables are introduced here as a means to achieve communi-
cation between threads, variables of course have many other uses in Java and
the same conversion can be applied when boolean variables are not used for
passing values between threads.

The mCRL2 syntax does not allow any global variables (or a similar construct).
Shared variables therefore need to be modelled using processes. The idea is to
define a process for each shared variable. The purpose of this process is to keep
hold of the variable value during the evaluation of the process model. By means
of process communication, the shared boolean variable can be set, reset and its
value can be obtained. The following mCRL2 example illustrates this (Note:
this model is not derived from any corresponding miniJava code but only serves
to illustrate a possible mCRL2 approach for modeling boolean variables).

mCRL2 code

act setVarside;
act setCallside;
act setOperation;

act resetVarside;
act resetCallside;
act resetOperation;

act getVarside:Bool;
act getCallside:Bool;
act getOperation:Bool;

act print:Bool;

22

proc BoolVariable(value:Bool) =
setVarside.BoolVariable(true) +
resetVarside.BoolVariable(false) +
getVarside(value).BoolVariable(value);

proc Thread1 = (sum b:Bool.getCallside(b).print(b)).
setCallside.
(sum b:Bool.getCallside(b).print(b));

proc Thread2 = (sum b:Bool.getCallside(b).print(b)).
resetCallside.
(sum b:Bool.getCallside(b).print(b));

init allow ({setOperation, resetOperation, getOperation, print},
comm({setVarside | setCallside -> setOperation,

resetVarside | resetCallside -> resetOperation,
getVarside | getCallside -> getOperation},

Thread1 || Thread2 || BoolVariable(false)));

The xxx Varside actions are only used within the process that simulates the
boolean variable (called BoolVariable in the example) while the xxx Callside
actions are meant to be used outside this process. The setXXX , and resetXXX
actions are coupled in communication functions xxx Operation using the comm
operator. The BoolVariable process is started parallel to the other processes.

To convert shared variables in miniJava code into mCRL2 syntax similar to
the example above, the conversion function conv has to be extended in the
following way:

conv [public static boolean Identifier;] =

act setIdentifierVarside;
act setIdentifierCallside;
act setIdentifierOperation;
act resetIdentifierVarside;
act resetIdentifierCallside;
act resetIdentifierOperation;
act getIdentifierVarside:Bool;
act getIdentifierCallside:Bool;
act getIdentifierOperation:Bool;

proc Identifier(value:Bool) =
setIdentifierVarside.Identifier(true) +

23

resetIdentifierVarside.Identifier(false) +
getIdentifierVarside(value).Identifier(value);

The xxx Operation actions are added to the allow set specified in init. The
set specified in comm is united with the following set:

{setIdentifierVarside|setIdentifierCallside->setIdentifierOperation,
resetIdentifierVarside|resetIdentifierCallside->resetIdentifierOperation,
getIdentifierVarside|getIdentifierCallside->getIdentifierOperation}

What remains is the conversion of the assignment: a value can be assigned to
a shared boolean variable. The conversion function conv is therefore extended
in the following way:

conv [Identifier = true] = setIdentifierCallside

conv [Identifier = false] = resetIdentifierCallside

This completes the definition of the conversion for boolean variables. A process
is defined for each boolean variable to keep hold of the value of the variable.
Actions are defined to set, reset and read the value of the variable. Using the
appropriate get-action, variable values can be read and used inside the code.

4.4 Result of the conversion function on a short
example

A larger case study on the miniJava to mCRL2 conversion is the subject of the
next chapter. Here is a shorter example of an imaginative printer driver system.
Assume there are two threads in the printer driver system. The first thread
continuously prints the next page, if there is a next page available. The second
thread continuously monitors the paper and ink levels in the printer. If paper
and ink are below certain levels, a warning light is shown and the printer is
not allowed to print the next page until paper and ink levels are readjusted to
normal. The Java code for this example is shown below. Please note that this
program can only be used for illustrative purposes because it uses unguarded
recursion.

miniJava code

public class Main {
public static boolean inklow; // true if ink low
public static boolean paperlow; // true if paper low
public static boolean warning; // true if warning issued

public static void main (String [] argv) {

24

m ();
}

public static boolean m () {
(new Thread(){public void run(){printer();}}).start ();
(new Thread(){public void run(){checker();}}).start ();
return true;

}

public static boolean printer () {
if (!warning) {
printNextPage ();

}
printer ();
return true;

}

public static boolean checker () {
if (inklow || paperlow) {
warning = true;

} else {
warning = false;

}
checker ();
return true;

}

public static boolean printNextPage () {
// print the next page..

return true;
}

}

The corresponding mCRL2 code is shown below. As was done in previous
examples, unused return values were not converted to help make this example
more clear.

mCRL2 code

% printPage action
act printPage;

% boolean variable InkLow

25

act setInkLowVarside;
act setInkLowCallside;
act setInkLowOperation;

act resetInkLowVarside;
act resetInkLowCallside;
act resetInkLowOperation;

act getInkLowVarside:Bool;
act getInkLowCallside:Bool;
act getInkLowOperation:Bool;

proc InkLow(value:Bool) =
setInkLowVarside.InkLow(true) +
resetInkLowVarside.InkLow(false) +
getInkLowVarside(value).InkLow(value);

% boolean variable PaperLow
act setPaperLowVarside;
act setPaperLowCallside;
act setPaperLowOperation;

act resetPaperLowVarside;
act resetPaperLowCallside;
act resetPaperLowOperation;

act getPaperLowVarside:Bool;
act getPaperLowCallside:Bool;
act getPaperLowOperation:Bool;

proc PaperLow(value:Bool) =
setPaperLowVarside.PaperLow(true) +
resetPaperLowVarside.PaperLow(false) +
getPaperLowVarside(value).PaperLow(value);

% boolean variable Warning
act setWarningVarside;
act setWarningCallside;
act setWarningOperation;

act resetWarningVarside;
act resetWarningCallside;
act resetWarningOperation;

act getWarningVarside:Bool;
act getWarningCallside:Bool;

26

act getWarningOperation:Bool;

proc Warning(value:Bool) =
setWarningVarside.Warning(true) +
resetWarningVarside.Warning(false) +
getWarningVarside(value).Warning(value);

% start two threads
proc m = printer || checker;

% printer thread
proc printer = getWarningCallside(warning).

(warning -> tau <> printNextPage).printer;

% checker thread
proc checker = getInkLowCallside(inklow).

getPaperLowCallside(paperlow).
((inklow || paperlow) ->
setWarningCallside <> resetWarningCallside).

checker;

proc printNextPage = printPage;

% initialization
init allow({setInkLowOperation,resetInkLowOperation,

getInkLowOperation,setPaperLowOperation,
resetPaperLowOperation, getPaperLowOperation,
setWarningOperation, resetWarningOperation,
getWarningOperation, printPage},

comm({setInkLowVarside|setInkLowCallside->
setInkLowOperation,

resetInkLowVarside|resetInkLowCallside->
resetInkLowOperation,

getInkLowVarside|getInkLowCallside->
getInkLowOperation,

setPaperLowVarside|setPaperLowCallside->
setPaperLowOperation,

resetPaperLowVarside|resetPaperLowCallside->
resetPaperLowOperation,

getPaperLowVarside|getPaperLowCallside->
getPaperLowOperation,

setWarningVarside|setWarningCallside->
setWarningOperation,

resetWarningVarside|resetWarningCallside->
resetWarningOperation,

getWarningVarside|getWarningCallside->

27

getWarningOperation},
m || InkLow(false) || PaperLow(false) ||
Warning(false)));

4.5 Summary

In this chapter, the miniJava grammer was extended by adding new constructs
for multithreading and shared variables. Using these constructs, it is now pos-
sible to convert simple - yet complete - multithreaded Java programs into cor-
responding mCRL2 code because both multiple threads and communication
functions can be handled now. However, more than in the previous chapter
it might be necessary to rewrite the Java code before the conversion can be
applied. When ready for conversion, each thread is converted into a separate
mCRL2 process. For each shared boolean variable, a process is defined including
operations to set, reset and get the value of this variable. In the last section of
this chapter, a short example was given to illustrate the result of the conversion
function.

28

Chapter 5

Case study

Using the definitions in the previous chapters, the conversion function is now
applied on a real example to convert an algorithm implemented in Java to a
suitable mCRL2 model. For clearity, the complete process from Java to mCRL2
code is illustrated. The example used in this case study is a well-known mutual
exclusion algorithm designed by the Dutch mathematician Dekker. After the
application of the conversion function, it is shown how properties in the resulting
mCRL2 model can be verified.

5.1 Dekker’s algorithm

The algorithm, often referred to as ”Dekker’s algorithm”, can be expressed in
pseudo-code as follows:

bool f0 := false,f1 := false
int turn := 0

f0 := true
while f1 {
if turn != 0 {
f0 := false
while turn != 0 { }
f0 := true

}
}

/* critical section */

turn := 1
f0 := false

f1 := true
while f0 {
if turn != 1 {
f1 := false
while turn != 1 { }
f1 := true

}
}

/* critical section */

turn := 0
f1 := false

29

This algorithm is implemented in Java using one class and two threads to
model the processes. The Java code is shown below. Because of the obvi-
ous similarities between the pseudo-code and Java, it is assumed that the Java
code implements the same algorithm. Extensive testing confirms this. The Java
code only uses boolean variables and a critical section is modelled by printing a
number of boolean values sequentially. The first thread prints three times the
value true while the second thread prints three times the value false. Due
to Dekker’s algorithm, these print statements cannot interleave with each other
(e.g. true true true false false false is correct while true false true
false false true is an example of wrong output). This property will later be
used in mCRL2 to prove that the critical section is valid.

Java code

/**
* Dekker.java
*
* Implementation in Java of the algorithm derived by Dutch
* mathematician Dekker for mutual exclusion.
*
* @author Allan van Hulst
*/

public class Dekker
{
private static boolean f0 = false;
private static boolean f1 = false;
private static boolean turn = false;

public static void main (String [] argv)
{
(new Thread(){public void run(){processA();}}).start ();
(new Thread(){public void run(){processB();}}).start ();

}

public static boolean processA ()
{
f0 = true;

while (f1)
{
if (turn != false)
{

30

f0 = false;

while (turn != false)
{

}

f0 = true;
}

}

// Start of critical section
System.out.println (true);
System.out.println (true);
System.out.println (true);

turn = true;
f0 = false;

return true;
}

public static boolean processB ()
{
f1 = true;

while (f0)
{
if (turn != true)
{
f1 = false;

while (turn != true)
{

}

f1 = true;
}

}

// Start of critical section
System.out.println (false);
System.out.println (false);
System.out.println (false);

31

turn = false;
f1 = false;

return true;
}

}

5.2 Converting Java to miniJava

For the conversion function to be applied on the example, a number of changes
have to be made to the code. The conversion function conv defined in the pre-
vious chapters can only be applied to a subset of Java: miniJava. No conversion
for while loops was defined in the previous chapters. So an equivalent miniJava
program based only on recursion is derived from the original code. This con-
verted program is shown below.

Java code

public class Main {
public static boolean f0 = false;
public static boolean f1 = false;
public static boolean turn = false;

public static void main (String [] argv) {
m ();

}

public static boolean m () {
(new Thread(){public void run(){processA();}}).start ();
(new Thread(){public void run(){processB();}}).start ();

return true;
}

public static boolean processA () {
f0 = true;

outerLoopProcessA ();

System.out.println (true);
System.out.println (true);

32

System.out.println (true);

turn = true;
f0 = false;

return true;
}

public static boolean processB () {
f1 = true;

outerLoopProcessB ();

System.out.println (false);
System.out.println (false);
System.out.println (false);

turn = false;
f1 = false;

return true;
}

public static boolean outerLoopProcessA ()
{
if (f1) {
if (turn != false) {
f0 = false;
innerLoopProcessA ();
f0 = true;

}
outerLoopProcessA ();

}
return true;

}

public static boolean outerLoopProcessB ()
{
if (f0) {
if (turn != true) {
f1 = false;
innerLoopProcessB ();
f1 = true;

}
outerLoopProcessB ();

}

33

return true;
}

public static boolean innerLoopProcessA () {
if (turn != false) {
innerLoopProcessA ();

}
return true;

}

public static boolean innerLoopProcessB () {
if (turn != true) {
innerLoopProcessB ();

}
return true;

}
}

Again it is assumed that this program implements Dekker’s algorithm in the cor-
rect way. A number of changes is made to prepare the Java code for conversion
to mCRL2: A new method m () is introduced which is directly called by main,
the two while loops are replaced by outerLoopProcessA / outerLoopProcessB
and innerLoopProcessA / innerLoopProcessB respectively. The name of the
class is changed into Main.

Rewriting Java into basic constructs is unavoidable when converting Java to
mCRL2 using the approach described in this thesis. As described before, this
is a two step approach: the first step is to convert Java into miniJava and the
second step is to convert miniJava into mCRL2. Only the second step is the
subject of this thesis. The miniJava grammar can be used as a guide to con-
vert Java into miniJava. A certain fragment of Java code may have multiple
equivalent miniJava translations resulting in different mCRL2 models. How-
ever, such models should be equivalent because they all originate from the same
Java source and only semantics preserving transformations are applied.

5.3 Converting Dekker’s algorithm from Java to
mCRL2

The application of the conversion function is now outlined step by step. The
Java source code file is traversed from top to bottom and each section is con-
verted into mCRL2-code using the conversion function conv as defined in the
previous chapters. This conversion includes the following steps:

34

1. The Main class is discarded because the conversion function in its current
form is only defined for a single class (which should be called Main) but
no further conversions at the class-level need to be applied except for the
definition of a single action act print:Bool;.

2. Next step is to convert boolean variables f0, f1 and turn into correspond-
ing mCRL2-code. This is explained here for the boolean variable f0. The
cases f1 and turn proceed accordingly. First step in the conversion of
boolean variables is to set up three times three actions; for the operations
set, reset and get respectively:

act setf0Varside;
act setf0Callside;
act setf0Operation;

act resetf0Varside;
act resetf0Callside;
act restef0Operation;

act getf0Varside:Bool
act getf0Callside:Bool
act getf0Operation:Bool

The essential part of the mCRL2-realisation of this boolean variable is
a process named f0 defined as follows:

proc f0(value:Bool) =
setf0Varside.f0(true) +
resetf0Varside.f0(false) +
getf0Varside(value).f0(value);

The last step in the conversion of this boolean variable is to extend the
definition of the mCRL2 init construct. In the definition of init:

init allow (Allow, comm (Comm, Start))

The set Allow has to be united with {setf0Operation, resetf0Operation,
getf0Operation} and the set Comm has to be united with {setf0Varside
| setf0Callside -> setf0Operation, resetf0Varside | resetf0Callside
-> resetf0Operation, getf0Varside | getf0Callside -> getf0Operation}.
The process Start is extended with a parallel statement and the process
name of the variable. Assuming no previous variables were converted, this
results in: m || f0. The very same techniques can be used to convert the
boolean variables f1 and turn into mCRL2 code.

35

3. The conversion of the main function is very straightforward because it is
only allowed to contain one method call m ();. If such a main function is
present in the program, no further conversions need to be applied.

4. The first boolean function to be converted is the function m. It contains
two statements in which a thread is started and one return-statement.
Therefore, the function m () is converted into the following mCRL2 code:

proc m = (processA || processB);

5. The next functions to be converted are similar for processes A and B. How-
ever, they are not exactly the same. The conversion steps are explained in
detail for process A, and summarized for process B. The function processA
() does not need much explanation. Its conversion is relatively straight-
forward:

proc processA = setf0Callside.outerLoopProcessA.
print(true).print(true).print(true).
setturnCallside.resetf0Callside;

The difficult parts in the conversion of outerLoopProcessA are the two
if-statements. The general rule for converting these if-constructs where a
boolean variable is tested is the following:

sum b:Bool.getIdentifierCallside(b).(b -> IfPart <> ElsePart)
Where ElsePart is replaced by tau because no such else-part is present in
the function outerLoopProcessA. The resulting conversion becomes the
following:

proc outerLoopProcessA = sum b:Bool.getf1Callside(b).
(
b -> (sum c:Bool.getturnCallside(c).

(c -> resetf0Callside.innerLoopProcessA.
setf0Callside <>

tau).
outerLoopProcessA) <>
tau

);

where innerLoopProcessA is converted in the following way:

proc innerLoopProcessA = sum b:Bool.getturnCallside(b).
(b -> innerLoopProcessA <> tau);

The conversion steps of process B are similar to those of A except for
variable names and values.

36

The last step in the conversion process is to assemble the pieces of mCRL2 code
together into suitable process algebra expressions. The resulting mCRL2 code
is shown below:

mCRL2 code

act print:Bool;

act setf0Varside;
act setf0Callside;
act setf0Operation;

act resetf0Varside;
act resetf0Callside;
act resetf0Operation;

act getf0Varside:Bool;
act getf0Callside:Bool;
act getf0Operation:Bool;

proc f0(value:Bool) =
setf0Varside.f0(true) +
resetf0Varside.f0(false) +
getf0Varside(value).f0(value);

act setf1Varside;
act setf1Callside;
act setf1Operation;

act resetf1Varside;
act resetf1Callside;
act resetf1Operation;

act getf1Varside:Bool;
act getf1Callside:Bool;
act getf1Operation:Bool;

proc f1(value:Bool) =
setf1Varside.f1(true) +
resetf1Varside.f1(false) +
getf1Varside(value).f1(value);

act setturnVarside;
act setturnCallside;
act setturnOperation;

37

act resetturnVarside;
act resetturnCallside;
act resetturnOperation;

act getturnVarside:Bool;
act getturnCallside:Bool;
act getturnOperation:Bool;

proc turn(value:Bool) =
setturnVarside.turn(true) +
resetturnVarside.turn(false) +
getturnVarside(value).turn(value);

proc processA = setf0Callside.outerLoopProcessA.
print(true).print(true).print(true).
setturnCallside.resetf0Callside;

proc processB = setf1Callside.outerLoopProcessB.
print(false).print(false).print(false).
resetturnCallside.resetf1Callside;

proc outerLoopProcessA = (
sum b:Bool.getf1Callside(b).
(
b -> (sum c:Bool.getturnCallside(c).

(c -> resetf0Callside.
innerLoopProcessA.
setf0Callside <>

tau).
outerLoopProcessA) <>
tau

)
);

proc outerLoopProcessB = (
sum b:Bool.getf0Callside(b).
(
b -> (sum c:Bool.getturnCallside(c).

(c -> tau <> resetf1Callside.
innerLoopProcessB.
setf1Callside).

outerLoopProcessB) <>
tau

)
);

38

proc innerLoopProcessA = (sum b:Bool.getturnCallside(b).
(b -> innerLoopProcessA <> tau));

proc innerLoopProcessB = (sum b:Bool.getturnCallside(b).
(b -> tau <> innerLoopProcessB));

proc m = processA || processB;

init allow ({print,setf0Operation,resetf0Operation,getf0Operation,
setf1Operation, resetf1Operation, getf1Operation,
setturnOperation, resetturnOperation, getturnOperation},

comm({setf0Varside | setf0Callside -> setf0Operation,
resetf0Varside | resetf0Callside -> resetf0Operation,
getf0Varside | getf0Callside -> getf0Operation,
setf1Varside | setf1Callside -> setf1Operation,
resetf1Varside | resetf1Callside -> resetf1Operation,
getf1Varside | getf1Callside -> getf1Operation,
setturnVarside | setturnCallside -> setturnOperation,
resetturnVarside | resetturnCallside -> resetturnOperation,
getturnVarside | getturnCallside -> getturnOperation},
m || f0(false) || f1(false) || turn(false)));

5.4 Model checking the resulting mCRL2 code

The subject of this thesis is a proposed conversion from Java to mCRL2. The
resulting mCRL2 code is equivalent to the original Java code. However, very
often additional constructs are modelled in the mCRL2 code to help check cer-
tain properties. These properties are of course not included in the original Java
code (they need to be specified at a meta level) so there is no possibility to
convert them automatically. It is also very well possible to take the mCRL2
code resulting from the conversion and to check it for certain properties with-
out modification. This is done here to prove that the critical section in Dekker’s
algorithm is valid. To achieve this, the following steps can be taken:

1. Convert the Java code into mCRL2 as outlined before. It is assumed here
that the the resulting mCRL2 code is stored as Main.mcrl2.

2. Linearize the mCRL2 code using the mcrl22lps tool from the mCRL2
toolset. This can be done in the following way:

%> mcrl22lps Main.mcrl2 > Main.lps

39

3. The output of the previous tool can be used to generate a state space using
the lps2lts tool. This can be done by executing the following command:

%> lps2lts Main.lps Main.aut

The resulting .aut file contains the complete state space of the mCRL2
model.

4. In most cases the state model can be optimized. Optimization is based
on trace equivalence, bisimulation equivalences or one of the other equiv-
alence relations defined over process algebra expressions. Because this
is not a very complex model, no optimization is required. The resulting
state model is shown below (print(true) actions are indicated by T and
print(false) actions by F, other actions are not shown here):

40

5. By careful inspection of the state diagram, it is already clear that no
interleaving of print(true) and print(false) can ever occur. However,
this is of course not a very useful way to prove such properties as the state
diagrams of a realistic model is often several orders of magnitude larger.

6. As a reminder for the original proof of the validity of the critical section:
process A executed the action print(true) three times while process B
exectued the action print(false) three times. If there is any interleav-
ing of these print actions (e.g. print(false) followed by print(true)
followed by print(false)) this would indicate that the critical section
is invalid. This can be checked in the following way. The first step is to
generate the traces to each print action:

%> lps2lts --trace=1000000 --action=print Main.lps

The --trace option ensures that all traces are stored (in separate files).
Using the tracepp the binary trace files can be converted into a more
readable format (every action in the trace is printed on a new line). After
removal of these newlines, the command line tool grep can be used to
search for invalid traces:

%> grep ".*print(false).*print(true).*print(false).*" output

and

%> grep ".*print(true).*print(false).*print(true).*" output

both of which show no results. This completes the proof of a valid critical
section. An algorithm was written in Java, this algorithm was converted
into mCRL2 using the conversion function defined in this thesis. The
resulting mCRL2 code was linearized and relevant traces were extracted
from the model. These traces were checked for invalid sequences of action.
No such invalid traces were found, so the model is proved to implement a
valid critical section.

5.5 Summary

In this chapter a case study was presented to show how the conversion function
can be applied on a real-world example. A certain algorithm was implemented
in Java. This algorithm was converted into a subset of Java and it was explained
how this can be done and why such a step is neccesary. The conversion was
applied on the rewritten Java code to obtain an mCRL2 model. A property
was defined for the algorithm and this property was checked against mCRL2
model using tools in the mCRL2 toolset. No modifications to the model had
to be made after converting it from Java. The next chapter presents a general

41

roadmap section for converting Java programs into mCRL2 code.

42

Chapter 6

Java to mCRL2: A
roadmap

This section is part of a bachelor’s thesis describing a possible conversion from
Java code to the mCRL2 specification language. In this roadmap section, a
short summary of steps is given to convert Java code into mCRL2. A detailed
description of a (partially) formalized conversion can be found in the thesis itself.

Step 1: Converting Java into a subset of Java

The first step is to rewrite the Java code in such a way that it conforms to
the following grammar:

<program> => "public" "class" "Main" "{" <declarationlist>
"}"

<declarationlist> => <declaration><declarationlist> | <null>
<declaration> => <function> | <shared>
<function> => "public" "static" "boolean" <identifier> "("

<parameterlist> ")" "{" <statementlist> "}" |
"public" "static" "void" "main" "(" "String"
"[" "]" "argv" ")" "{" "m" "(" ")" ";" "}"

<shared> => "public" "static" "boolean" <identifier> ";"
<statementlist> => <statementlist><statement> | <null>
<statement> => <assignment> | <return> | <if> | <print> |

<threadstart> | <functioncall>
<assignment> => <identifier> "=" <expression> ";"
<return> => "return" <identifier> ";"
<if> => "if" "(" <identifier> ")" "{" <statementlist>

"}" <else>
<else> => "else" "{" <statementlist> "}" | <null>
<print> => "System.out.println" "(" <identifier> ")" ";"
<threadstart> => "(new Thread(){public void run(){Main."

43

<identifier> "();}}).start ();"
<expression> => <primary> | "!" <expression> |

<expression> && <expression> |
<expression> "||" <expression>

<primary> => <identifier> | <functioncall> | "true" |
"false"

<functioncall> => <identifier> "(" <parameterlist> ")"
<parameterlist> => <parameter><parameterlistend> | <null>
<parameterlistend> => "," <parameter><parameterlistend> | <null>
<parameter> => "boolean" <identifier>
<identifer> => CHARACTER-SEQUENCE
<null> => ""

This grammar is in fact a very restricted subset of Java, mainly because the
only allowed variable type is boolean, the code is limited to one class, which
should be called Main and no looping constructs are allowed. If the Java code
can be rewritten in such a way that it conforms to this grammar (preserving
semantics) the next step (conversion) can be applied. Programs that cannot be
rewritten are beyond the scope of this research.

A few other steps are needed to prepare the code for conversion. The first step
is to create a new public static boolean function called m () containing the
contents of the previous main function (where the new main function contains
only a call to m ()). Another important step is to rewrite any thread starting
functionality in such a way that it fits into one statement. The <threadstart>
rule in the grammar shows how to do this (where <identifier> is a public
static boolean function that should be called when the thread starts its exe-
cution). Other restrictions imposed by this grammar may seem very stringent
but it is definitely not within the scope of this research to define a broader set
of supported Java constructs.

Step 2: Converting to mCRL2

The next step is to convert the Java constructs into their mCRL2 equivalents.
How this can be done is shown in the following table:

Language construct Conversion strategy

44

public class Main { Variables Func-
tions }

Set up three actions used for handling
return values:

act return:Bool;
act obtain:Bool;
act transfer:Bool;

Set up the basic init statement
(the sets Allow and Comm will very
probably be modified later)

init allow ({ Allow }, comm
({ Comm }, m))

And convert Variables and Func-
tions according to the definitions
elsewhere in this table.

45

public static boolean Variable; Define nine actions (where Variable is
replaced by the variable name):

act setVariableCallside;
act resetVariableCallside;
act getVariableCallside:Bool;

act setVariableVarside;
act resetVariableVarside;
act getVariableVarside:Bool;

act setVariableOperation;
act resetVariableOperation;
act getVariableOperation:Bool;

And define a new process with
the same name as the Variable:

proc Variable(value:Bool) =
setVariableVarside.
Warning(true) +
resetVariableVarside.
Warning(false) +
getVariableVarside(value).
Warning(value);

Again replacing Variable by the
variable name.

public static void main (String
[] argv) { m (); }

No conversion for the main function is
neccesary because the init construct
itself already calls the m () function.

public static boolean Function (
ParameterList) { Statements}

Convert each function into a separate
process. This process has the same
name as the corresponding Function
and the parameters can be defined
using the standard boolean data type
(sort) in mCRL2. The next step is to
convert Statements to complete the
resulting process equation:

proc Function (Parameter1:Bool,
Parameter2:Bool ..) = .. ;

Variable = Expression; setVariableCallside(Expression)

46

return Expression; Direct usage of the return action:

return(Expression)
if (Expression) { ThenPart} else
{ ElsePart }

Expression->ThenPart<>ElsePart

(new Thread (){ public void run
(){ Main.Function (); } }).start
();

This statement starts a new thread. If
Process is the current process (under
translation) the resulting process be-
comes:

((Process) || Function)
Function (); A function call can be translated

directly into a call of the corresponding
process. The return value has to be
obtained:

Function || sum r:Bool.obtain(r)
!Expression
Expression && Expression
Expression || Expression

Fortunately, the syntax for expression
in mCRL2 resembles the Java expres-
sion style:

!Expression
Expression && Expression
Expression || Expression

Variable (function parameter usage) Variable
Variable (global variable usage) sum b:Bool.getVariableCallside(b)

47

Chapter 7

Conclusion

7.1 The next step in this research

The introduction starts by stating a very challenging problem in software de-
velopment: assessing the quality of software. Altough software correctness is
not the only variable in software quality (it is perfectly possible to imagine a
completely correct but very unusable program), it is certainly of the greatest
importance. Incorrect software will definetely not be of the highest quality.

Correctness can be tested by verifying whether certain properties hold. In the
previous chapters a very specific technique was described as a means to achieve
this correctness: converting a subset of Java into mCRL2 code and testing it us-
ing the mCRL2 toolset. However, the approach of this research is not complete
yet. Quite a few steps have to be taken to make this setup usable in testing:

• Implementing the conversion function conv as an executable program.
The conversion in the case study (see chapter 5) was done by hand. This
is not a very realistic situation because any program of reasonable size
might be orders of magnitude larger than the example programs used in
this research. Furthermore, doing the conversion by hand introduces the
possiblity of error. Given enough time, it should not be very complicated
to implement the conversion function as a Java to mCRL2 compiler. Such
a tool should contain the following components:

– A Java parser: various Java parsers are available in many program-
ming languages so this part of the tool should not be very hard to
realize.

– A Java simplifier: converting Java to miniJava preserving the original
Java semantics. Such a tool can take the parse tree generated in the
previous step as input.

– An implementation of the conversion function, deriving suitable mCRL2
constructs from parts of the parse tree.

48

– An mCRL2 writer to format the output in such a way that it is
readable by the mCRL2 toolset.

Of course the second and third component will be the greatest amount of
work.

• Fixing several detailed problems of the miniJava to mCRL2 conversion,
for instance, there are several minor problems involving braces and the
mCRL2 sum operator. For an automated conversion, it is important that
these issues are solved. However, this should be rather straightforward.

• Extending the conversion to include mCRL2 data types. In this thesis,
the conversion function was only defined for the data type boolean but
mCRL2 also contains other basic data types as well as user defined data
types. One can imagine a conversion from Java to mCRL2 where such
data types are preserved (like the current conversion translates boolean
variables).

• Applying the conversion on more examples. The conversion as it is defined
in this thesis is only applied on relatively small examples. If larger frag-
ments or even complete Java programs are converted into mCRL2 (and
tested using the mCRL2 toolset) more results will come up. Based on new
results, the conversion function can be modified and re-applied to improve
it.

• A possible last step might be to prove the conversion to be correct. Such
a prove might be quite a lot of work but is definitely not impossible. An
operational semantics of mCRL2 has already been defined [5] and several
descriptions of Java at a semantic level are also available (see for example
[2]). A proof might be constructed based on equivalence of operational
semantics or in a similar way.

7.2 Is this the right way to go?

The approach of converting software code into a formal specification that can
be checked is not a new approach. It has been used in the past with varying
results, ranging from average to very good. The key element of this research was
not to define the formal specification itself but to show how such a conversion
might be done (semi-)automatically (in a very strict sense). To verify whether
such an approach is useful, the following questions will have to be answered:

1. To what extent is it possible to automatically convert Java code into
mCRL2 code?

2. Is the generated mCRL2 model a good representation of the actual soft-
ware?

3. Will this approach ever be used in practice?

49

With respect to question 1, quite a lot of research will have to be done to answer
this question completely. The two-step model suggested in this thesis (first con-
vert the Java code into miniJava or a similar subset, followed by a conversion
into mCRL2 code) will have to be extended. It should be very clear which sub-
set of Java will have to be used and how to convert existing Java code into such
a subset of the language. It should also be well-defined how external dependen-
cies have to be handled. For instance, when using libraries written in another
programming language. The only way to formulate a complete and convincing
answer to question 1 is to define and implement the conversion function as best
as possible and to evaluate such an implementation in practice.

There are two rather different answers possible with respect to question 2. The
first answer is from a very theoretical point of view: if the Java to mCRL2
conversion function can be proven to be correct, then the generated mCRL2
model can be considered a ’good’ representation of the actual software. But
from another point of view, a very compact or a very readable model might
be considered a ’good’ representation. If defects in the mCRL2 model can be
mapped back to the original source code, the model can be considered ’good’.
This is again something that will have to be tested in practice.

A positive answer to question 3 depends on the outcome of questions 1 and
2. In general: creating a model based on software code and verifying such a
model will definitely be used in practice. Java is used more frequently in real-
time and embedded applications. Such software is usually more critical and
therefore needs to be tested more thoroughly. mCRL2 has proved its usefulness
for finding defects in software in the past so it seems worthwhile to attempt
to check Java programs using mCRL2. If the conversion function proposed in
this research will be completed and implemented it might be a very useful tool
in finding defects in Java code. But there is a long way to go, the conver-
sion function is not yet complete and there is no implementation to test with.
Nevertheless, this research might be a first step.

50

Bibliography

[1] J. Bowen. Formal methods in safety-critical standards. In Proc. Software
Engineering Standards Symposium, 1993., pages 168–177. IEEE, 1993.

[2] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based struc-
tural operational semantics of multi-threaded Java. Formal Syntax and Se-
mantics of Java, pages 157–200, 1999.

[3] W. Fokkink. Introduction to Process Algebra. Springer, 1999.

[4] J.F. Groote, A. Mathijssen, B. Ploeger, M. Reniers, M. van Weerdenburg,
and J. van der Wulp. Process algebra and mcrl2. In IPA Basic Course on
Formal Methods 2006, pages 1–26, 1997.

[5] J.F. Groote, A. Mathijssen, and M. Reniers. The formal specification lan-
guage mcrl2. In Methods for Modelling Software Systems, Dagstuhl Seminar
Proceedings 06351, 2007.

[6] A. Mathijssen. Mcrl2 primer. Technical report, Technische Universiteit
Eindhoven, 2007.

[7] A. Mathijssen and A.J. Pretorius. Specification, Analysis and Verification of
an Automated Parking Garage. Technical report, Technical Report 05/25,
Eindhoven University of Technology, ISSN 0926-4515, 2005.

[8] M. Schenke. Development of correct real-time systems by refinement. Tech-
nical report, Universitaet Oldenburg, 1997.

[9] Marko van Eekelen, Stefan ten Hoedt, René Schreurs, and Yaroslav S.
Usenko. Analysis of a session-layer protocol in mcrl2. verification of a real-life
industrial implementation. In Proc. 12th Int’l Workshop on Formal Meth-
ods for Industrial Critical Systems (FMICS 2007), Lecture Notes Computer
Science. Springer, 2007. To appear.

51

