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Chapter 1

Introduction

One of the interesting studies in neuroscience is the ability to reconstruct images based on recorded
brain activity. Though we are still in the early phase, this technique can offer us a lot of practical
and useful applications. Some applications you can think of are reading out someones thoughts or
even dreams. Another more useful application of this technique is found in the field of crime fight-
ing. Imagine a victim that is able to memorize the face of a perpatrator, but is not able to describe
him (or her) in an accurate way. Reconstructing an image based on the victims brain activity can
offer the police some useful clues for finding the criminal. Unfortunately, this application is still far
from being brought into reality.

In general, images can be reconstructed (or identified) by using a systematic mapping between
visual stimuli and brain activity. In this process, a difference can be made to the type of the
reconstruction process: the reconstructions can be reconstructed from visual stimuli to the brain,
or from the brain to the visual stimuli. In the first case decoding is achieved by evaluating the
mapping. In the second case decoding is achieved via an inversion procedure [9].

Previous fMRI studies have shown that visual features, such as orientation and motion direction
[7, 8], and visual object categories [3, 5] can be decoded from fMRI activity patterns by a statistical
decoder, which learns the mapping between a brain activity pattern and a stimulus category from
a training data set [13]. Details about what fMRI exactly is, will be explained later.

A recent study from Kay et al. [10] has demonstrated that it is possible to identify a presented
image among a large number of candidate images using a ’receptive field model’. A receptive field
is that region of visual space to which individual neurons or voxels in the brain will respond. This
’receptive field model’ predicts the fMRI activity for the visual image that a person has seen. By
comparing this predicted fMRI activity with the real fMRI activities as measured during training
sessions, it is possible to accurately find the correct image that the person has seen. But image
identification is constrained by the candidate image set. It would be much more interesting if it
would be possible to reconstruct images without restricting oneself to a predetermined set.

A study by Thirion et al. [17] showed that it is possible to reconstruct the actual image that
was seen, but the reconstructions were not very accurate and the resolution was low. A study
by Miyawaki et al. is more promising [13]. They used several decoding techniques to produce
high-quality image reconstructions.

They started their experiment by constructing 10 by 10 pixel contrast images. These contrast
images were gray (zero contrast) or filled with a flickering checkerboard pattern (full contrast) [9].
The subjects were presented with numerous images (rectangles, crosses and other shapes). While
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watching the images, fMRI activity was collected from the visual areas V1, V2, V3 (early visual
areas) and V4 (higher visual area). They then developed a reconstruction model and trained it on
their data. The first stage consisted of predicting local contrast based on linear combinations of
voxel responses. A voxel is a contraction of volume and pixel and corresponds with a volume cell
in three dimensional space. So, in this case a voxel is a cell in the visual area of the brain. The
results were reasonably good and the reason for this is that voxels in early visual areas reliably
signal the amount of contrast in their spatial receptive field [10]. The second stage consisted of
combining the predicted local contrast into a single image that estimates the pattern of contrast
the subject saw [9]. They then tested their reconstruction model using data that was separated
from the training data.

This thesis uses the data collected by Miyawaki et al [13]. This data will be used for the same
task as they used it for. The difference is that in this thesis elastic net will be used as algorithm
to predict the contrast. Also Miyawaki et al. predicted the contrast per local region and combined
these regions into a single image. In this experiment the reconstruction image will be generated
pixel by pixel. The reconstructions from Miyawaki’s reconstructor and the elastic net reconstructor
tested in this study can not be compared. This is because Miyawaki et al. used flickering checker-
board patterns and homogeneous gray areas in their training images. This study uses structured
images both for training and testing.

The central question in this study is: what is the contribution of the visual cortex and the
point in time to the reconstructions made using elastic net? In other words: the reconstructions,
produced by elastic net, from several visual areas and time samples are compared with one another.
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Chapter 2

Regression

2.1 Introduction to regression

Regression is a technique which tries to estimate the value of a target variable based on a set of
known values corresponding to one or more predictor variables. Examples of regression include
predicting the fuel usage based on someone’s driving style, the unemployment rate given economic
factors, the amount of sold ice creams based on weather conditions and estimating the age of a
fossil according to the amount of carbon-14 left in the original material [16].

Observations and their corresponding target values can be denoted in a dataset D,

D = {(xi, yi) | i = 1, 2, . . . , N}. (2.1)

Here N denotes the number of observations, xi corresponds to the set of attributes of the ith
observation (also called the explanatory variables) and yi corresponds to the target (or response)
variable of the ith observation. The goal of regression is to find a target function f that best
matches the target variable given the input data. To establish an understanding of a best match
there has to be a way of telling how good (or bad) a target function maps to the target variable
given the set of attributes. This is done by introducing an error function. A commonly used error
function is the sum of squared error.

Sum Squared Error (SSE) =
∑
i

(yi − f(xi))
2 (2.2)

The best matching target function is the one that minimizes the error function. In this thesis
the sum of squared error function is used to compute the error between the predicted and original
data. Also is it used as a measure for image reconstruction (see section 3.5).

2.2 Linear regression

Linear regression is a specific form of regression in which the task is to learn a linear target function
f that best matches the target variable given the set of predictor variables. In this chapter I will
explain how linear regression problems can be solved by first explaining it for a single predictor
variable and then for the general case with more predictor variables, also called multivariate linear
regression.
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2.2.1 Linear regression with a single predictor variable

Suppose there is just one predictor variable x. The linear target function f is then a function with
two parameters β0 and β1, also called regression coefficients.

f(x) = β0 + β1x (2.3)

The β0 is the offset and β1 is the rate of change. Given a set of values for the predictor variable
x and their corresponding values for the target variable y, the task of linear regression is to find a
value for β0 and β1 so that f minimizes the the sum of squared error.

SSE =
N∑
i=1

[yi − f(xi)]
2 =

N∑
i=1

[yi − β1x− β0]2 (2.4)

To find the corresponding values of β0 and β1, take the the partial derivatives of SSE, set them
to zero and solve the resulting set of linear equations.

∂SSE

∂β0
= −2

N∑
i=1

[yi − β0 − β1xi] = 0

⇒ β0 ·N + β1

N∑
i=1

xi =

N∑
i=1

yi

∂SSE

∂β1
= −2

N∑
i=1

[yi − β0 − β1xi]xi = 0

⇒ β0xi + β1

N∑
i=1

x2i =
N∑
i=1

xiyi

These equations can be summarized in a matrix equation, known as the normal equation:(
N

∑
i xi∑

i xi
∑

i x
2
i

)(
β0
β1

)
=

( ∑
i yi∑
i xiyi

)
(2.5)

The regression coefficients can now easily be computed by multiplying both sides of the equation
with the inverse matrix: (

β0
β1

)
=

(
N

∑
i xi∑

i xi
∑

i x
2
i

)−1( ∑
i yi∑
i xiyi

)
(2.6)

In the next section an example will be presented to show that solving linear equations with one
predictor variable is very straight forward.

An example

Based on Tan’s example [16], suppose we want to predict the skin temperature of a person during
sleep based on the heat flux measurements generated by a heat sensor. By measuring these variables
in examples in the real world, we may end up with the data set shown in Table 2.1 and Figure 2.1.
Here the skin temperature value is shown corresponding with the amount of heat flux.

The task is now to find a linear target function that best matches the input data given a specific
error function. In this case the sum of squared error is chosen to be the error function.
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Heat flux Skin Temperature Heat flux Skin Temperature

3.1290 32.3611 3.2782 32.7444
3.6665 32.1991 3.6772 32.1355
3.9895 32.4804 4.0984 31.9924
4.3886 32.3370 4.5158 32.2604
4.7156 32.1000 5.3427 31.9219
5.6559 32.3326 5.7720 31.8205
5.9347 31.8215 6.0629 31.6435
6.2397 31.6295 6.2914 31.6640
6.9193 31.9840 7.0379 31.5379
7.0889 31.4667 7.1230 31.5075
7.1595 31.7320 7.1979 31.3175
7.3562 31.6711 7.6015 31.2252
7.8497 31.4105 7.8515 31.0709
8.1032 31.4879 8.5590 31.4186
8.8710 31.0737 8.9158 31.2648
9.0835 31.1968 9.4115 31.3237
9.4362 31.1121 9.5353 31.2724
9.5680 31.0339 9.7180 30.8945
9.8428 30.9890 10.1676 30.8850
10.3430 31.0625 10.9135 30.7490

Table 2.1: Measurements from examples in the real world

By representing the data as a matrix and using Equation 2.6, the regression coefficients can be
computed very easily. In the following equation the resulting regression coefficients are calculated:(

β0
β1

)
=

(
40 282.4117

282.4117 2183.6

)−1(
1264.1
8884.6

)
=

(
33.1031
−0.2125

)
(2.7)

Now that we have the regression coefficients, the best matching target function is f(x) =
33.1031 − 0.2125x . Here f(x) is representing the skin temperature given a heat flux value x.
Figure 2.2 shows the target function together with the data set.

2.2.2 Extending linear regression to multivariate linear regression

The previous example showed that solving a linear regression problem with one predictor variable
is reasonably straight forward. In reality there are often more predictor variables and that is why
we need a way to extend linear regression with a single predictor variable to the multivariate case.
Assume for now that we still have one predictor variable. The normal equation shown before (in
Equation 2.5) can be constructed easily with just two matrices. One for the predictor variables and
one for the target variable.
Let X = (1,x), where 1 = (1, 1, . . . )T is a vector of ones and x = ( x1, x2, . . . , xN )T a vector
with the values of the predictor variable. The T means that the corresponding matrix should be
transposed. The left-hand side of the normal equation can now be constructed.

XTX =

(
N

∑
i xi∑

i xi
∑

i x
2
i

)
(2.8)
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Figure 2.1: Measured skin temperatures given specific heat fluxes

Now let y = ( y1, y2, . . . , yN ) be the vector containing the values for the target variable. The
right-hand side of the normal equation can now be constructed too.

XT y =

( ∑
i yi∑
i xiyi

)
(2.9)

Given the weight vector β = (β0, β1)
T and Equation 2.5, the regression coefficients can be

computed with the following formula.

β = (XTX)−1XT y (2.10)

The nice thing about this matrix multiplication is that it generalizes to multiple predictor
variables, and thus, to multivariate linear regression. To deal with the multivariate case, the
predictor matrix X needs to contain the other predictor variables as well. This is done by adjusting
X so that each column (except the first one) contains the values for a different predictor variable.
Suppose we have d predictor variables, in which a predictor variable is denoted by a vector xd. Each
predictor variable xd contains measurements corresponding with the d-th predictor variable. Then
X is adjusted so that X = ( 1, x1, . . . , xd ) contains all the predictor variables. As a consequence,
the number of regression coefficients have increased too, so that β = ( β0, β1, . . . , βd+1 ) in which
d is the number of predictor variables.

With this extension, it is now possible to compute the weight vector for any number of predictor
variables. The only thing that needs to be done is performing the matrix computation as shown in
Equation 2.10. With this knowledge it is possible to start reasoning about the simple pixel-based
image reconstructor using fMRI data as predictor variables and the pixel color of the seen image
as target variable.
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Figure 2.2: Best matching target function using SSE as error function

2.3 Ridge regression (L2)

2.3.1 The problem of collinearity

A major flaw in Equation 2.10 is the problem that occurs when two columns (or vectors) in matrix
X are linearly dependent. This problem is called collinearity. When collinearity occurs within a
matrix X the inverse, X−1 can not be computed. Think about this for a minute. When a matrix is
multiplied by it’s inverse, the result is the identity matrix I. But an identity matrix doesn’t have
columns that are linearly dependent on each other. In fact, it’s the perfect example of a matrix
that doesn’t have linear relationships between columns. So, it’s not possible to construct an inverse
matrix of a matrix in which collinearity occurs. Because of this, (XTX)−1 can not be computed
so that the weight vector result in invalid values.

2.3.2 Ridge regression as a solution against collinearity

Ridge regression tries to solve the problem of collinearity by introducing a (regression) matrix
Γ = λI that is added to XTX, where I denotes the identity matrix and λ the regularization
parameter that is used to regulate the amount of offset. The goal is to get a matrix with columns
that are less linearly dependent so that the inverse can be computed. As a result, ridge regression
produces weight parameters with a small bias, whereas ordinary linear regression produces unbiased
estimators. But according to [1], the variances of these new parameters (using ridge regression)
are smaller than those of the ordinary linear regression. They might even outperform the unbiased
parameters.

You could see the regression matrix as a (linearly independent) offset that is added to XTX
to produce a matrix with linearly independent columns. As said before, the identity matrix is the
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perfect example of a matrix with independent columns. Therefore, this matrix is often chosen to
be added to the regression matrix1. Let βL2 be the set of regression coefficients corresponding with
the coefficients produced by ridge regression. These regression coefficients can then be computed
as follows.

βL2 = (XTX + λ · I)−1XT y (2.11)

The scalar variable λ, called the regularization parameter, is multiplied with the identity matrix
to regulate the amount of offset being added: too small and it can not fight collinearity, too large and
the bias of the parameters becomes too large to be able to compute reasonable weights. According
to [1] the optimal value for λ can not be calculated and the best way to achieve this optimal value
is trying it out and stick with the best result.

2.4 Lasso regression (L1)

Lasso regression is a regression method that stands for least absolute shrinkage and selection opera-
tor and enjoys some of the favourable properties of both subset selection and ridge regression [18].
The effect of lasso regression is that some regression coefficients will be pushed to zero and others
will be shrinked. With this approach the bias increases a bit, but the variance will be smaller. And
so it results in a more stable reconstruction model. Additionally it is possible to get an insight in
the most important coefficients, and in the field of image reconstruction using fMRI data, also in
the most important brain regions used to represent the seen image in the brain.

Lasso regression minimizes the sum of squared error with a bound on the sum of the absolute
regression coefficients. Let βL1 be the set of regression coefficients that are computed with lasso
regression. These lasso regression weights can then be characterized as follows.

βL1 = {β0, β1, . . . , βd} where
d∑
i=0

|βi| ≤ b (2.12)

Here b is corresponding with the bounds on the sum of the absolute regression coefficients
(i.e. the sum of the absolute regression coefficients must not exceed bounds b). The algorithm
to compute the lasso regression coefficients is explained clearly in the articles by Tibshirani and
others [18, 4].

2.5 Elastic net algorithm

Ridge regression is known to shrink the coefficients of correlated predictors to each other while
lasso regression selects a subset of predictors and assumes that a lot of predictors have a coefficient
close to zero [4]. Elastic net is designed to combine these two measures as the elastic net penalty
P. The entire family of Pα creates a useful compromise between ridge and lasso regression [4].

The elastic net solves the following problem:

min
(β0,β)∈Rp+1

[
1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λPα(β)

]
(2.13)

where β0 and β are the regression coefficients and Pα(β) is:

1The assumption here is that all variables are treated as being independant of each other. And in the case of
reconstructing images from fMRI data, we assume that the explanatory variables of the fMRI data are independent.
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Pα(β) =

p∑
j=1

[
1

2
(1− α)β2j + α|βj |

]
with j = 1, . . . , p (2.14)

As has been said before, Pα is the elastic net penalty and α can be used to get a compromise
between the ridge regression penalty (α = 0) and the lasso regression penalty (α = 1). If you
choose α = 1− ε for some small ε > 0, then the elastic net results in lasso regression but removes
degeneracies caused by extreme correlations [4]. Note that the ridge and lasso regression parameter
do not necessarily have to be expressed with α. It’s perfectly legal to choose two different values
that do not sum up to one. This is what is done in this thesis. More on this later in Chapter 4.

The idea behind computing the regression coefficients using elastic net is that the regression
coefficients are set to an initial value of zero. Elastic net then continually tries to optimize the
coefficients until the change of the coefficients is smaller than a predetermined toleration value.
Choosing a small toleration value causes the algorithm to take longer to find the best values for
the coefficients. A detailed explanation of this algorithm is explained in [4].
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Chapter 3

Data used for this Research

3.1 What is fMRI and how is it measured?

fMRI stands for functional Magnetic Resonance Imaging and is a specialized type of MRI scan.
It measures the change in blood flow related to neural activity in the brain. fMRI scans are
performed with a Magnetic Resonance (MR) scanner. The technique to detect changes in blood flow
using magnetic resonance imaging is called blood oxygenation level dependent (BOLD) imaging.
Changes in blood flow and blood oxygenation in the brain are closely linked to neural activity [15].
Active neurons lead to a regional increase in oxygenated blood but this is not accompanied with
a corresponding increase in oxygen utilization. This difference in oxygen supply and consumption
underlies the BOLD signal (blood-oxygen-level dependence) [14, 11]. Since blood oxygenation varies
according to the levels of neural activity, these differences can be used to detect brain activity [2].
This effect will occur approximately one to five seconds after the subject has seen the image and it
will remain at it’s peak for four to five seconds, before falling back to the baseline blood flow. This
effect of increased blood flow leads to local changes in the relative concentration of oxyhemoglobin
and deoxyhemoglobin and changes in local blood volume and local blood flow to the brain. This
process is called hemodynamic response. In Figure 3.1 the hemodynamic response function is
shown.

3.2 The visual cortex (V1, V2, V3 and V4)

The term visual cortex is referring to the primary visual cortex (also known as V1) and extrastriate
visual cortex areas such as V2, V3 and V4. There is a visual cortex for each hemisphere of the brain
where the left hemisphere visual cortex receives from the right visual field and the right hemisphere
visual cortex from the left visual field. The visual cortex is sensitive to visual stimuli. In this paper,
these stimuli are constrast-defined images.

Nearly all visual information enters the cortex via area V1 [12]. This area is located in the back
of the brain. V1 contains cells that react to stimuli that are localized in space, orientation and
frequency. Therefore, V1 is good in processing lines, rectangles and edges. When looking at this
study, V1 is particularly good in reacting to contrast. So this is very useful for the contrast defined
images.

Visual area V2 receives input from visual area V1. According to Hegdé et al. [6], V2 cells respond
well to some complex stimuli. These stimuli consist of grating and contour stimuli. Approximately
one-third of the V2 cells showed significant differential responsiveness to various complex shape
characteristics and many were also selective for the orientation, size and spatial frequency of the
shape [6]. These results indicate that V2 cells explicitly represent complex shape information [6].
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Figure 3.1: The hemodynamic response function. It shows the BOLD response of a certain region
in the brains over time when a subject sees an image.

Visual area V3 receives part of its input from area V2 and from a layer in area V1 [12]. The
function of visual area V3 is not really clear, Most cells in V3 are selective for orientation and many
are also reactive to motion and to depth. Just a small set of cells are color sensitive.

Also visual area V4 is still reasonably unexplored. This area receives input from regions of area
V2, but also from areas V1 and V3 [12]. V4 contains many cells that are color sensitive. This can
indicate that it is used to distinguish colors in images. In this study, contrast images are used that
contain no colors other than black and white. In visual area V4, there are also cells with complex
spatial and orientation tuning, suggesting that the area is also important for spatial vision.

3.3 Data used in this research

In this research fMRI data is used from Miyawaki et al. [13]. This data is retrieved by rear-projecting
visual stimuli onto a screen placed in the scanner bore using a gamma-corrected LCD projector.
The subjects used to gather fMRI responses were male adults with normal or corrected-to-normal
visual acuity. Four of these subjects were screened for head motion in preliminary scans and two of
them that showed the least head motion underwent the full experimental procedure. The subjects
gave written informed consent [13].

3.3.1 Collection of data

The fMRI responses of the visual cortex are measured using three types of experiments:

• The random image session (see Section 3.3.2),
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• The figure image session (see Section 3.3.3),

• The conventional retinotopy mapping session.

In these sessions, subjects viewed the stimulus sequence while maintaining fixation. To prevent
subjects from losing fixation, the color of the fixation spot changed from white to red 2 seconds
before each stimulus block started. To ensure alertness, subjects were instructed to detect the color
change of the fixation spot that occurred after a random interval of 3-5 seconds from the beginning
of each stimulus block.

The conventional retinotopic mapping is used to determine to which visual area the voxels
belong. The retinotopy mapping session followed the conventional procedure using a rotating
wedge and an expanding ring of flickering checkerboard. The data were used to delineate the
borders between visual cortical areas and to identify the retinotopy map on the flattened cortical
surfaces. The retinotopic mapping was only used to relate the conventional retinotopy and the
location of voxels selected by our method.

In this thesis, only the data from the figure image session is used in the experiments. For
completeness, the other experiments performed by Miyawaki et al. [13] are described as well.

3.3.2 The random image session

In the random image session, each run contained 22 stimulus blocks. These were shown for 6
seconds followed by 6 seconds of rest. Extra rest is added before the first stimulus block (28
seconds) and at the end of each run (12 seconds). Each stimulus block is an image consisting of
12 by 12 small square patches. These images were presented on a gray background with a fixation
spot to prevent subjects from moving their eyes away from the image. Each patch was either a
flickering checkerboard or a homogeneous gray area, with equal probability. Each stimulus block
had a different arrangement of random patches. To avoid the effect of the border frames of each
stimuli, the central 10 x 10 area is used for analysis. This random image session consisted of 20
runs, so 440 different random patterns were presented to each subject.

3.3.3 The figure image session

In the figure image session, each run contained 10 stimulus blocks. Each stimulus block was showed
for 12 seconds followed by 12 seconds of rest. Extra rest periods were added, as in the random
image session. Stimulus images consisted of flickering checkerboard patches, as in the random
image session, but formed geometric shapes (squares, small frames, large frames, plus and ’X’) or
alphabetic symbols (’n’, ’e’, ’u’, ’r’, ’o’, ’n’).

In each run five geometric shapes or five alphabets were presented, and each image was repeated
twice. Subject S1 performed four geometric-shape runs and four alphabet runs, while S2 performed
four geometric-shape runs and three alphabet runs.

3.4 Experiments

In this thesis a couple of experiments will be performed:

• Comparing reconstructions of contrast defined images looking at the difference in the used
visual areas V1, V2, V3 and V4.

• Comparing reconstructions of contrast defined images looking at the difference in used time
samples.
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• Use elastic net to find the most important regression coefficients (and thus the most important
regions in the brain).

3.5 Evaluation

Evaluation is the key point in almost any research and therefore this research is no exception.
When images are reconstructed, it is important to be able to compare and evaluate reconstructions
with each other. Here images are evaluated using the sum of squared error (SSE, see Equation 2.2)
using cross validation. This measure is chosen because it is the same measure as the error function
we used before in linear regression. And because we are trying to minimize the sum of squared
error, it is logical to use the same measure when evaluating reconstructed images.
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Chapter 4

Simple Pixel-Based Image
Reconstructor

The simple pixel-based image reconstructor is a simple way of reconstructing images from fMRI
data. It is simple because it consists solely of basic multivariate linear regression techniques. The
idea behind this reconstructor is that images are reconstructed pixel by pixel. This is done by
computing the regression coefficients for every pixel using the fMRI data as the predictor variables
and the pixel color of all the samples as target variable. The algorithm used for reconstructing the
images is elastic net. For the experiments a specific small constant value of 1e−3 is chosen for ridge
regression parameter λ. This value is used for ridge regression and will stay the same during all
experiments1.

Because elastic net tries to find regression coefficients by computing β over and over again until
the changes are smaller than a specific threshold, the reconstruction process is very slow. To address
this issue, the threshold is chosen to be 1e−2, which is quite large. As a result, the reconstructions
are not optimal, but they are still reasonably good.

4.1 Determining the appropriate ν value

The first step in this research was finding out the appropriate ν value to use with the image re-
constructions. As is explained in Section 2.5, the elastic net algorithm has two input parameters.
These are λ and ν. The first one is used in ridge regression to solve the problem of collinearity that
can occur in the training data whereas ν is used for lasso regression. This value determines the
number of predictor variables that will be used in the reconstruction process. In other words, the
most important regression coefficients get a weight different than zero. This opens the possibility
to pinpoint the areas in the brain that are used to see the images. In Table 4.1 an overview is
presented with the number of predictor variables that are nonzero and the sum of squared error
for the image, given their corresponding visual cortex. If the SSE is 1.0, this is equivalent with a
single black pixel that is supposed to be white, and vice versa. The values are corresponding with
twenty different images in the set that are trained using leave one out2. The values in the table are
averaged over these images.

1The purpose for choosing a specific λ is to prevent the problem of collinearity. The only thing needed to prevent
this is a small offset. So in this case a constant value of 1e−3 will suffice.

2These results were obtained using leave one out on twenty different images. Reconstructing the images using
elastic net takes a considerable amount of time. Therefore, only twenty images are tested using leave one out and
the resulting values are averaged over these images. Twenty images are tested because the set of images consist of
twenty unique images.
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ν-value v1 v2 v3 v4

1e0 # of nonzeros: 1 (0%) 1 (0%) 1 (0%) 1 (0%)
sse per image: 11.22 11.22 11.22 11.22

1e−1 # of nonzeros: 7 (1%) 9 (1%) 5 (0%) 6 (1%)
sse per imagel: 7.46 7.74 8.26 8.30

1e−2 # of nonzeros: 46 (4%) 50 (5%) 47 (4%) 56 (10%)
sse per image: 3.62 3.67 4.18 5.10

1e−3 # of nonzeros: 208 (20%) 196 (19%) 210 (17%) 187 (33%)
sse per image: 1.72 1.87 2.05 3.44

1e−4 # of nonzeros: 544 (53%) 543 (52%) 598 (48%) 422 (76%)
sse per image: 1.23 1.27 1.50 2.99

1e−5 # of nonzeros: 982 (96%) 1002 (96%) 1163 (94%) 554 (99%)
sse per image: 1.29 1.44 1.45 3.06

1e−6 # of nonzeros: 1018 (100%) 1046 (100%) 1237 (100%) 558 (100%)
sse per image: 1.34 1.55 1.47 3.09

# of predictors: 1018 1046 1238 558

Table 4.1: The SSE and number of predictor variables set to nonzero based upon the value of ν. λ
is chosen the same (1e−3). All brain volumes were used. The SSE values are corresponding with
the averaged sum of SSE values for each pixel in 20 different unique images.

As can be seen from the analysis of the regression coefficients, the value of ν can be set to 1e−3

for the best results. These best results are dependent on how many of the predictor variables are
used. The best thing is to have just a few coefficients set to nonzero, because this gives insight in
the important coefficients and thus the important regions in the brain. A ν-value greater than 1e−3

causes too few predictor variables to be used in the reconstruction process. Choosing a ν-value
smaller than 1e−3 causes too many predictor variables to be used. This reduces the effect of the
lasso regression because lasso regression is used to find sparse solutions. So the best value for ν
is 1e−3. A value of 1e−4 is also reasonable but not really favorable because then approximately
half of the coefficients are used in the reconstruction process. Due to this amount of coefficients,
it is difficult to find the most important coefficients. It would be very unlikely that half of the
coefficients are important because it then includes noise and overestimates the importance of some
coefficients.

4.2 Comparing reconstructions between the visual cortices and
points in time

One important question to ask is which visual area contributes the most to the reconstructed image
and in what amount. It is known that visual area V1 contains data for space, left/right orientation,
et cetera. Visual areas V2, V3 and V4 are less understood and it would be great to see if these
areas contribute to the reconstructions in a positive (or negative) way. To gain an insight into
these visual areas, the SSE values of the reconstructions are calculated and shown in Table 4.2. In
Figure 4.1 some sample reconstructions are shown.
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time samples/visual cortex V1 V2 V3 V4

t1 (after 2 sec) 3.55 4.13 7.59 9.91

t2 (after 4 sec) 3.68 4.61 6.33 10.49

t3 (after 6 sec) 4.00 4.55 6.88 10.73

t4 (after 8 sec) 6.26 5.83 9.42 11.84

t5 (after 10 sec) 11.16 11.28 10.25 14.14

t6 (after 12 sec) 11.62 11.42 10.57 13.58

Table 4.2: SSE values for the visual areas V1, V2, V3 and V4 for each specific sample in time.
The SSE values are generated by averaging the SSE values over 20 different images and correspond
to the SSE value for the whole image. Here a ν-value of 1e−3 is used, like has been found in
Section 4.1.

4.3 Finding the important regression coefficients

Another interesting thing to see is what coefficients contribute the most to the reconstructed image.
To gain an insight, six points are chosen out of the 100 pixels of which the images consist. These
points are called A, B, C, D, E and F and are shown in Figure 4.2. The image shown in this figure
is the average image of all the images which are used during the training session. The average
image is useful to see what value the pixels have on average. And by looking at these pixels, we
could expect that the pixels denoted by points ’A and F’, ’B and E’ and ’C and D’ would have
similar values for the regression coefficients. In Figure 4.3 the coefficients for each of these points
are shown in a plot.

17



V1 V2 V3 V4

t1
(2 sec)

t3
(6 sec)

t4
(8 sec)

t5
(10 sec)

t2
(4 sec)

t6
(12 sec)

Figure 4.1: Reconstructions of a specific image based on a visual area and time sample. The
visual areas are shown horizontally and the time samples vertically. For example, the upper right
reconstruction corresponds with the reconstruction in which the algorithm only uses data from
visual area V4 and only uses data from the first time sample.
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A FEDCB

Figure 4.2: The average reconstruction of all samples in the training set. This image contains six
points corresponding with a particular pixel. These points are compared against each other in
Section 5.3.
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Figure 4.3: The plots of the coefficients corresponding with each point shown in Figure 4.2. The
image that is reconstructed is the same as the reconstructed image in Figure 4.1. Here visual area
V1 is used using all time samples.
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Chapter 5

Discussion

In this chapter conclusions will be presented accompanied with discussions about the data shown
in Chapter 4.

5.1 Comparing the reconstructions for the visual cortex

What you can also see in Table 4.1 is that when the value of ν is equal or greater than 1e0, only
one predictor variable is nonzero and this is the offset. As a result the reconstructed image is equal
to the reconstruction which gives the least error. Even greater values of ν will not decrease nor
improve the reconstructions, because only the offset is left for the reconstruction and it is not really
surprising that the image reconstructor can not perform better.

Values of ν equal or smaller than 1e−5 generally use all the available coefficients. This does not
result in bad reconstructions. They often reconstruct better, because all coefficients are used so that
the model has a lot of information that can be used to carefully reconstruct the images. This is also
what can be seen by looking at the SSE values for small ν-values in Table 4.1. The reconstruction
quality tends to reach it’s optimum for ν-values from 1e−4 and smaller. For the purpose of finding
the most important brain regions, a subset of all coefficients is needed. Additionally, a drawback of
using all coefficients is that too much detail is stored in the model which can result in overfitting.
Also lasso regression is used and it would be redundant if there was no need to reduce the number
of coefficients used during the reconstruction process. Lasso regression shrinks all coefficients and
pushes them to zero if they do not contribute enough to the reconstructions. This results in less
coefficients being used for the reconstructions. This is more efficient and gives interpretable models.
A drawback is the risk of underfitting.

A thing to note is that in Table 4.1 the coefficients for visual cortices V1, V2 and V3 are
getting sparse faster than the coefficients for visual cortex V4. The reason for this may be that
V4 reacts less strong to contrast differences and therefore needs more coefficients to produce good
reconstructions.

5.2 Comparing the reconstructions for different time samples

Given the hemodynamic response function (shown in Figure 3.1), the oxygen level should be at
its peak between time sample t2 and t3. And because the contrast defined images are shown to
the subjects for a continuous period of 12 seconds, the reconstruction quality should not drop
significantly after time sample t3. However, this is not what can be seen in Table 4.2. The results
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show that time sample t1 has the best reconstruction quality. Also the example reconstructions in
Figure 4.1 show different results than expected. In these reconstructions, the best reconstructions
are at time sample t3, but the reconstructions will not stay the same for later time samples. On
the contrary, reconstructions for time sample t4 and later all show a decrease in quality. However,
this is just one example out of 480 samples.

What also can be seen in Table 4.2 and in the reconstructed images in Figure 4.1 is that visual
area V1 (together with area V2) is performing a lot better than the visual areas V3 and V4. This is
what is expected, because Miyawaki concluded that V1 contains the most reliable information [13].
Additionally, higher visual areas are less well understood. However, the reconstructions from visual
area V3 and V4 are not really bad: it is still possible to recognize the image that is supposed to be
reconstructed. The potential reason for this is that the reconstruction process is not that difficult,
because the regression coefficients are trained on 20 different contrast defined images. If they were
trained on thousands of different images, chances are higher that the reconstructions are a lot worse.
An important thing to note, is that the reconstructed images are all seen in the training set. So
the reconstruction task essentially becomes a classification task. When fMRI data is shown for an
image that has not been seen in the training set, the reconstruction would probably not even look
like it.

5.3 Comparing the values for the regression coefficients for various
points

In Figure 4.3 it is clear to see that the beta values are different for the selected pixels. This is
what is expected because elastic net tries to compute a particular model for each pixel. Point A
and F are similar, because they both are pixels that remain black for all samples in the data set.
Accordingly, one would expect that the regression coefficients are (nearly) the same. This is indeed
what can be seen in the plots for pixel A and F. The line remains zero for all regression coefficients.

For the other pixels, the model changes accordingly to find the best values for the regression
coefficients given the restrictions from lasso regression. Looking at points B and E. These pixels
get a color different than black in some (or all) of the samples, but the points are similar because
they are mostly symmetrical. This also holds for points C and D. Therefore, you would expect that
these symmetrical points have nearly the same regression coefficients. As can be seen in Figure 4.3,
the plots indeed show some similarity. This can be seen by looking at some of the eye catching
properties of the pattern and by looking at the correlation values shown in Table 5.1. The pixel
based image reconstructor really computes a different model for different pixels. An exception to
this are points C and D, which happen to be very similar.

B C D E

B 1.0000 0.3770 0.3770 0.6661
C - 1.0000 1.0000 0.3254
D - - 1.0000 0.3254
E - - - 1.0000

Table 5.1: The correlation values between the points B, C, D and E shown in Figure 4.2. The
correlation between points A and F are not shown, because the correlation with these coefficients
can’t be computed because these coefficients consist solely of zeros. Half of the table is filled with
dashes to keep the table easy to read. The values for the empty part are the same as the filled in
part, because the table is symmetrical.
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5.4 Final conclusions

The reconstructions from V1, V2, V3 and V4 were all reasonably good. In all reconstructions it
was possible to identify the original image. However, what can be seen in the tables with SSE
values (Table 4.1 and Table 4.2) is that reconstructions from visual areas V1 and area V2 generally
have the same SSE values. Visual area V3 has a slightly higher SSE and visual area V4 performs
the worst by having significantly higher SSE values. This is also what can be seen for the 24
example reconstructions in Figure 4.1. By using visual areas V1 and V2 for the reconstructions,
the reconstructed images resemble each other significantly. The reconstructions from V3 are slightly
worse and V4 performs the worst. So for reconstructing contrast defined images, visual areas V1
and V2 should be used.

The comparison of the time samples versus reconstruction quality in Table 4.2 showed that the
SSE values increase per time sample. Time sample t1 has the best reconstructions and time sample
t6 the worst. This is not what is expected, because the subjects are shown the contrast defined
images for a continuous period of 12 seconds, which should result in stable SSE values after time
sample t3, because this is were the peak for the hemodynamic response function is.

What is also shown in Section 4.3 is a way to find the most relevant regression coefficients.
This is illustrated by first determining the best ν-value by selecting the ν-value that results in
reconstructions that only use a few regression coefficients. These regression coefficients correspond
to a particular voxel in the brain. By analyzing these voxels, it is possible to find the relevant spots
in the brain that are used for seeing images.

5.5 Future research

In this study elastic net was used to reconstruct fairly simple images. There were only 20 contrast
defined images. For future research, this can be extended to using more images, or using random
images to train and use the contrast defined images to test. By having enough random images, it
should be possible to find relationships between brain activity and the pixels from an image. Other
ways to extend this research is using something different than simple contrast defined images. It
would be great to use real world pictures with color, though we are not at that point right now.
Somewhere in between would be more realistic.

What can be studied as well are the precise differences between the visual areas or what a
visual area exactly responds to. In this study, the visual areas were only used to to generate
reconstructions. A thorough study of a particular visual area can be useful to gain insight in the
reason why this visual area is good or bad for reconstructions.
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Chapter 6

Appendix

c lear a l l ;

lambda = 1e-3;

nu = 1e-3;

5

%which visual area to use
v1 = true;

v2 = false;

v3 = false;

10 v4 = false;

%walk over all time samples
for t=1:6

timesamples = [t];

15

read_neurondata;

ninput = s i ze (testdata ,2);
npixels = s i ze ( testdesign , 2 );

20

%get unique indices for images
[a,unique_indices ,c] = unique(testdesign , ’rows’);

nsamples = s i ze (unique_indices );

25 initial_beta0 = 0;

initial_beta = zeros(ninput ,1);

options = struct(’offset ’, 1, ’maxiter ’, [100000] , ’tol’, [1e -2]);

30 normalizeData;

reconstructedImage = zeros(nsamples (1) ,100);
storedBetas = zeros(nsamples (1), 100);

sse_image = zeros (1, nsamples (1));

35

%walk over all unique indices
for i=1:20

%retrieve position of unique index
n = unique_indices(i);
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40

for pixelNr =1: npixels

X = testdata ’;

X(:,n) = []; %leave one out

45 Y = testdesign (:,pixelNr)’;

Y(n) = []; %leave one out

%compute weights using elastic net
[beta , beta0] = elastic(X,Y,nu,lambda ,options ,initial_beta , ...

50 initial_beta0 );

storedBetas(i,pixelNr) = ninput - sum([ beta0 beta ’] == 0) + 1;

mriData = testdata(n,:);

reconstructedImage(i,pixelNr) = beta0 + mriData * beta;
55 end

%adjust values to fit between 0 and 1
minimum = min(reconstructedImage(i,:));
maximum = max(reconstructedImage(i ,:));

60 spread = maximum -minimum;

reconstructedImage(i,:) = ...

(reconstructedImage(i,:)- minimum )./ spread;

%reconstruct image for all figures
65 %draw reconstructed image to the screen

c l f , subplot (121), imagesc( reshape( testdesign(n,:),10,10), ...

[min( testdesign(n,:) ), max( testdesign(n,:) )] ); ...

t i t l e (’origineel ’);

colormap gray; axis square; axis off; drawnow
70 subplot (122) , imagesc( reshape(reconstructedImage(i,:),10,10), ...

[min(reconstructedImage(i,:)), ...

max(reconstructedImage(i ,:))]); t i t l e (’reconstructed ’);

colormap gray; axis square; axis off; drawnow

75 %compute SSE for single pixels and for the nth image
sse_per_pixel = (testdesign(n,:) - reconstructedImage(i ,:)).^2;

sse_image(i) = sum(sse_per_pixel );

end

80 avg_zeros = mean(storedBetas (: ,45));
avg_zeros_perc = round(100 * avg_zeros / (ninput +1));

avg_sse = mean(sse_image (:));
f p r in t f (’average sse per image: %f\n\n’, avg_sse );

end
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