
Bachelor Thesis

Hierarchical Path-Finding Theta*
Combining HPA* and Theta*

21st August 2013

Author:
Linus van Elswijk
s0710261
linusvanelswijk@student.ru.nl

Supervisor:
dr. I.G. Sprinkhuizen-Kuyper

Second Reader:
dr. F. Wiedijk

Abstract

Pathfinding is a common problem in computer games. Pathfinding
problems are often solved by running A* on a grid representation
of the terrain. This leads to problems if the terrain is large an-
d/or continuous. Although A* is able to produce the optimal path
on a grid, this path is often unrealistically angular and notice-
ably suboptimal on the continuous terrain. Since the number of
expansions A* needs to do are exponential in the length of the
returned path, the run time and memory usage becomes an is-
sue for large terrains. In this paper we present a new algorithm,
Hierarchical Path-Finding Theta*, that combines techniques of ex-
isiting algorithms Theta* and HPA*. We show that this new al-
gorithm is able to solve the problems we identified with A*.

Contents

1 Introduction 2

2 Description of the Algorithms 3
2.1 A* . 3
2.2 Theta* . 4
2.3 HPA* . 4
2.4 HPT* . 5

3 Research Questions 6
3.1 Research Question . 7
3.2 Subquestions . 8

4 Strategy 8
4.1 Pathfinding Problems Used . 9
4.2 Algorithm and Map Parameters 10

5 Results 10
5.1 Path Lengths . 10
5.2 Node Visits . 11
5.3 Nodes in Memory . 12

6 Conclusion 13
6.1 Discussion . 14
6.2 Future Work . 14

7 Bibliography 15

A A* and Theta* pseudocode 16

B HPA* and HPT* pseudocode 17

1

1 Introduction

In this paper we will be investigating pathfinding in computer games,
with a focus on large, two-dimensional continuous terrains, represen-
ted as maps of square cells. These cells are either blocked or walk-
able.

Pathfinding problems have to be solved in many computer games.
In games, there are a lot of demands for the pathfinding algorithms:

� The algorithms, must be able to return a path fast, because you
do not want the system to slow down when a path is being com-
puted.

� The paths returned by the algorithm should be near optimal.
Agents in the system should not take obvious detours.

� The algorithm must be mild with memory usage, because this
memory could very well be required elsewhere in the system.

A common solution to pathfinding is to represent the game maps
with grids and compute paths on these grids using the A* algorithm
(Hart et al., 1968). This approach leads to problems1 when applied
large, continuous terrain:

1. Since A* runs on grid representation of the terrain, all returned
paths will be bound to the nodes and edges of the grid. In many
cases this lead to unrealistically angular paths, which are notice-
ably suboptimal on the continuous terrain. An example of this is
shown on figure 1.

2. In practice, the number of expansions of A* will almost always
be exponential in the length of the resulting path(Russel and
Norvig, 2003). This will pose a problem for pathfinding on large
maps where long paths are required to traverse the map.

3. For the same reason, the memory usage of A* will start to be a
problem on large maps.

From now on we will refer to problem 1 as the grid constraint
problem, problem 2 as the runtime problem, and problem 3 as the
memory problem.

A recent variant of A*, Theta* (Nash et al., 2007), is specifically
designed to solve the grid constraint problem, but still suffers from
both the runtime and memory problem. Theta* is able to produce the
dotted path on figure 1.

The paper that introduced Theta*, describes two flavours of Theta*.
Basic Theta*, which uses line of sight checks, and Angle Propagation
Theta*, which adds extra data over the visited nodes during propaga-
tion.

1The triad of problems (path length, computation time, memory usage) will be a
recurring theme throughout this paper.

2

Figure 1: The grid constraint of A*. The thick black line shows a
typical A* path from red to blue. The dotted line shows the optimal
path on the continuous terrain.

Another variant, Hierarchical Path-Planning A*(Botea et al., 2004),
solves runtime problem and the memory problem, but still suffers
from the grid constraint problem.

We developed a new algorithm, Hierarchical Path-Planning Theta*
(HPT*), that combines Theta* with HPA*. Our hypothesis is that HPT*
solves all 3 problems and the purpose of our research is to test this
hypothesis.

2 Description of the Algorithms

In this section we will discussing the different algorithms. The ap-
pendix of this paper contains pseudocode for all algorithms described
here.

2.1 A*

The classic A*, as described by Hart et al. (1968), is a form of best-
first search(Russel and Norvig, 2003). Best-first-search algorithms
try to expand the nodes that are closest to the goal first. A heuristic
function is used to make an estimation of how close a node is to it’s
goal before the node is expanded. A* also keeps track of the cost of
the path to reach a node. Instead of just expanding the node that is
closest to the goal, A* tries to expand the node for which the sum of
the estimated distance to the goal and the cost to reach that node is
the smallest. You could say that A* tries to expand the nodes with the
smallest estimated solution cost first. Hart et al. (1968) proved that
A* always finds the optimal path when the heuristic function never
overestimates the distance of a node to the goal. The thick black line
in figure 1 shows a typical A* path.

3

2.2 Theta*

Theta*(Nash et al., 2007) is variant of A* that makes use of the fact
that the grid on which the search is performed is superimposes a
continuous space. Theta* follows the exact same steps as A*, except
when expanding. During an expansion, it will check if new node has
line of sight with it’s grandparent. If this is true, than the parent can
be skipped, and a straight path can be drawn to the grandparent.
Because the path from the new node to it’s grandparent is a straight
line, it can never be longer than the path via the parent. The dotted
line in figure 1 shows a typical Theta* path. The paper that first de-
scribed Theta*(Nash et al., 2007), actually describes 2 variants of it: a
basic variant that uses line of sight checks and an Angle-Propagation
variant, that propagates additional data along the nodes it visits. In
our research we will only be looking at the basic variant. Whenever
we talk about Theta*, we will implicitly be refering to the basic vari-
ant.

2.3 HPA*

Hierarchical Path-Finding A* was first described by Botea et al. (2004).
HPA* can provide a large performance boost on large search spaces/-
graphs when compared to classic A*. HPA* uses one or more levels
of abstraction to reduce the complexity of a problem. In our research
we will limit ourselves to a single abstraction level. The abstraction
of the search-space is done in three steps:

1. First the graphs is divided in square clusters of user specified
size.

2. Then for all neighbouring clusters, the maximal sized entrances
are determined.

3. The entrances of neighbouring clusters are connected with an
edge cost of 1. Diagonal neighbors are not connected.

4. All nodes that are within the same cluster are connected to ea-
chother, if an A* path exists between them within the cluster.
The cost of these edges is set to the cost of the A* path.

In order to calculate a path using the abstract graph, first the goal
and start node need to be inserted into the graph. After the start and
goal have been inserted on the graph, a normal A* run can be used
to compute an abstract solution on the abstract graph. This abstract
solution can then be refined into a concrete solution, by connecting
the nodes in the abstract solution with each other. The connections
are made by doing A* searches on the concrete graph. Since the ab-
stract graph is a lot smaller than the original graph, search problems
can be greatly simplified by using the abstract-graph instead of the
original graph.

4

(a) Original graph

(b) Clusters defined

(c) Entrances defined

(d) Abstract graph

Figure 2: Process of building an abstract graph. Applies to both HPA*
and HPT*.

2.4 HPT*

Hierarchical Path-Finding Theta* is created by combining HPA* with
Theta*. The abstraction of the search-space is done in three steps,
similar to those of HPA*. However, instead of using A* as a sub-
routine, HPT* uses Theta* as a subroutine:

1. First the graphs is divided in square clusters of user specified

5

size.

2. Then for all neighbouring clusters, the maximal sized entrances
are determined.

3. The entrances of neighbouring clusters are connected with an
edge cost of 1. Diagonal neighbors are not connected.

4. All nodes that are within the same cluster are connected to
eachother, if an Theta* path exists between them within the
cluster. The cost of these edges is set to the cost of the Theta*
path.

In order to calculate a path using the abstract graph, first the goal and
start node need to be inserted into the graph. After the start and goal
have been inserted on the graph, a normal Theta* run can be used
to compute an abstract solution on the abstract graph. This abstract
solution can then be refined into a concrete solution, by connecting
the nodes in the abstract solution with eachother. The connections
are made by doing Theta* searches on the concrete graph only if the
nodes do not have line of sight with eachother. If the nodes have line
of sight with eachoter, the concrete path between the nodes is just
a straight line. This last observation could allow HPT* to skip a lot of
work on the path refinement phase.

(a) HPA* path (b) HPT* path

Figure 3: HPT* versus HPA*. During path refinement, HPA* needs to
connect all nodes on the blue path by doing A* searches. HPT* only
needs to do a Theta* search on the light blue line, because this is the
only time the two subsequent nodes do not have line of sight.

3 Research Questions

We want HPT* to be a solution to the triad of problems we identified
with A* (on page 2). HPT* will only be succesfull in this if it inherits
the correct properties from it’s parent algorithms, Theta* and HPA*.

6

What this means is that, on average, for large ammounts of realistic
pathfinding problems:

1. HPT* paths should be of roughly the same or better quality as
Theta* paths.

2. The computation times of HPT* should be roughly the same or
less than the computation times of HPA*.

3. The memory requirements of HPT* should be roughly the same
or less than the memory requirements of HPA*.

Notice that on all these points we demand HPT* to be only roughly
as good as one of it’s parent algorithms, never better. So even if
HPT* performs a little bit worse than the corresponding parent on all
3 points, we will still consider HPT* to be a success. This might seem
strange, but it can be explained.

Our goal with HPT* is not to outperform Theta* on path quality and
neither to outperform HPA* on computation time or memory require-
ments. Instead, the goal of HPT* is to be the middle ground between
it’s parent algorithms. In comparison to Theta*, HPT* should be able
to produce paths of near equal quality, in significantly less time, while
using significantly less memory. In comparison to HPA*, HPT* should
be able to produce paths, of a significantly better quality, but use a
bit more time and memory.

3.1 Research Question

This leads us to the following research question:

Does Hierarchical Path-Finding Theta* succesfully combine the be-
nefits of Theta* with the benefits of HPA*?

Before we can answer this question, we first need to be clear about
what it’s meaning:

� "The benefits of Theta*" refers to the average solution path qual-
ity of Theta*.

� "The benefits of HPA*" refers to both the average computation
time of HPA* and the average memory requirements of HPA*.

� A succesfull combination of the benefits requires the following
to be true:

1. HPT* produces paths that are not more than 10% longer, on
average, when compared to Theta*.

2. HPT* requires not more than 10% more node visits, on av-
erage, to compute paths when compared to HPA*.

3. HPT* requires not more than 10% more memory, on aver-
age to, compute paths when compared to HPA*.

7

In our research we will use the length of the returned path as the
measure of quality. We will use the number of node visits to measure
the computation time of the algorithms. By measuring the number
of visits, instead of the real time in seconds, we can rule out any
outside influence affecting the data. The memory usage is measured
by counting the maximum number of nodes in the open and closed
list combined. Again, to rule out any outside influence affecting the
data.

3.2 Subquestions

The research question can be answered after we know the answer to
the following subquestions:

1. What is the average path length of HPT* in comparison relative
to Theta*?

2. What is the average number of visits required by HPT* relative
to HPA*?

3. What is the average of the maximum number of nodes in the
open and closed list combined, relative to HPA*?

4 Strategy

To answer our questions, we will let Theta*, HPA* and HPT* algorithms
compute a large number of paths on a set of maps. For each al-
gorithm we will record for all problems

1. the length of the path produced by the algorithm,

2. the number of node visits the algorithm had to do to produce
the path and

3. the maximum number of nodes in the open and closed list com-
bined during the computation.

For each algorithm  we calculate

1.  the average path length over all problems

2.  the average number of node visits over all problems

3. m the average, over all problems, of the maximum number of
nodes in the open and closed list combined

8

This absolute data can then be used to calculate the required rel-
ative data:

L =
HPT*

Theta*
(1)

V =
HPT*

HPA*
(2)

M =
mHPT*

mHPA*
(3)

L, V and M answer subquestion 1,2 and 3 respectively. To answer
the research question and determine if HPT* is a succesful combina-
tion of Theta* and HPA*, we need to check if either L, V or M is larger
then 1.1. Only if neither L, V nor M are larger than 1.1, then we may
conclude that HPT* is a succesful combination.

4.1 Pathfinding Problems Used

It is important that the maps and problems are realistic and provide a
proper representation of pathfinding problems the algorithms might
face in practice. We will therefore use the maps from "Dragon Age:
Origins", which can found on http://www.aiide.org/benchmarks/maps
(Sturtevant, 2011) and corresponding pathfinding problems of these
maps. All maps in this repository are maps from real games and made
discrete by using square tiles. The tile map file format describes mul-
tiple types of tiles, but we only distinguish blocked tiles from walkable
tiles. Table 1 shows the conversion we used.

ASCII in map file description converted to
. passable terrain walkable
G passable terrain walkable
@ out of bounds blocked
O out of bounds blocked
T trees blocked
S swamp walkable
W water blocked

Table 1: Conversion table from .map file format to binary tile maps

From this repository we chose the maps from "Dragon Age: Ori-
gins", because the corresponding problems often require the algorithms
to compute long paths (length of 250 or more). Instead of comput-
ing the paths for all problems on the "Dragon Age: Origins" maps,
we chose to randomly pick 10 maps out of the repository and then
compute the paths for these particular maps. This to speed up the
process of benchmarking the algorithms.

9

To pick 10 random maps at random, we generated a random set
of 10 (unique) numbers, between 1 and the number of maps avail-
able. Each number n would then correspond to the nth map after the
maps where ordered alphabetically. We ended up with the following
10 maps: brc505d, den408d, den600d, lak100c, lak105d, lak110d,
lak503d, lak511d, lgt604d and orz300d. We also ommited all prob-
lems for which no solution exists, to keep the computation of the
averages straightforward. Considering all this, we end up with 9937
path planning problems spread over 10 maps.

4.2 Algorithm and Map Parameters

We interpreted the maps as octile grids, where agents can move to
any of the 8 neighboring tiles in a single step.(Yap, 2002). The cost of
a horizontal or vertical step is 1, any diagonal step has a cost of

p
2.

Both A* and HPA* will use the octile distance heuristic, since this
heuristic correctly predicts the path length when no obstacles are en-
countered. Theta* and HPT* use the euclidean distance heuristic, be-
cause for these algorithms, the euclidean distance correctly predicts
the path cost when no obstacles are encountered.

The ammount of visits needed by HPA* and HPT* are measured as
the sum of the number of visits on the abstract graph, the visits on
the concrete graph during path refinement and the number of visits
needed to connect the initial and goal node to the abstract graph.
The ammount of nodes in memory needed by HPA* and HPT* are
measured as the maximum of the nodes in memory during the ab-
stract search, during the searches on the concrete graph and during
the process of connecting the start and goal node.

5 Results

In this section we will show data we recorded with the benchmark
test. All graphs in this section were made by plotting the recorded
values of individual pathfinding problems. The x-axis is always the
A* path length, which gives a good indication of the difficulty of the
problem. The y-axis of the graph is always the measured data for the
same problem.

The tables present the averages over pathfinding problems, both
absolute and relative to the goal algorithm.

5.1 Path Lengths

The graphs on figure 4 show that HPT* often returns better resulting
paths than both HPA* and A*. The difference between the algorithms
seems to be more pronounced for problems with an A* path length
longer than 600. When we compare the average path lengths of HPT*
with the average path lengths of Theta* (table 2), we see that HPT*
produces path that are only 4.34% longer on average than Theta*

10

Figure 4: Length of the paths returned by each algorithm.

Algorithm Average Path Length Relative to Theta*
A* 282.81 1.0632

Theta* 265.99 1
HPA* 296.16 1.1134
HPT* 277.54 1.0434

Table 2: Average lengths of paths returned by each algorithm.

paths. HPA* produces paths that are 11.34% longer, so we gained 7%
in this regard. HPT* also manages to outperform A* on path lengths.

Note: In some cases, our results showed HPA* to outperform A*
on the path. HPA* should never be able to outperform A*, since A*
produces the optimal paths on the grid. This can only be explained as
being the result of a fault in the code we used to do our benchmarks.
This is further expanded on in the discussion.

5.2 Node Visits

The graph makes clear why the hierarchical algorithms HPA* and
HPT* are needed. As the problems become more complex, the num-
ber of node visits for both A* and Theta* start to rise quickly. At about
an A* path length of 200, both A* and Theta* begin to surpass 10000
node visits. HPA* only just starts to reach this point at A* lengths of
800. HPT* never reached 10000 node visits during the benchmarks.

Table 3 shows us, that on average, HPT* only requires about 53%

11

the ammount of node visits of HPA*. This while A* and Theta* require
more than 2.5 times the ammount of node visits of HPA*.

Figure 5: Number of visits done by each algorithm.

Algorithm Nr of visits Relative to HPA*
A* 8638.2 2.6091

Theta* 8825.1 2.6655
HPA* 3310.8 1
HPT* 1752.9 0.52944

Table 3: Average number of visits done by each algorithm.

5.3 Nodes in Memory

As can be expected, the memory usage shows a strong relation to
the number of nodes visited. A high number of nodes visited, results
in a high number of nodes in memory. The shapes of the graphs in
figure 6 look very similar to those in figure 5. Again, A* and Theta*
break the 10000 node line at around an A* path length of 200. HPT*
is more similar in to HPA* with memory usage, than it is in node vis-
its. As table 4 shows, HPT* only needs to store about 7% less nodes
in memory than HPA*. The difference between the hierarchical al-
gorithms and the non-hierarchical algorithms is greater with memory
usage, than with node visits.

12

Figure 6: Maximum of nodes in memory with each algorithm.

Algorithm Nodes in memory Relative to HPA*
A* 9378.3 11.470

Theta* 9462.9 11.573
HPA* 817.64 1
HPT* 760.18 0.92972

Table 4: Average maximum of nodes in memory for each algorithm.

6 Conclusion

In section 3, we established our research question:

Does Hierarchical Path-Finding Theta* succesfully combine the be-
nefits of Theta* with the benefits of HPA*?

We also imposed the following requirements on the HPT*, to call it a
successful combination:

1. HPT* produces paths that are not more than 10% longer, on
average, when compared to Theta*.

2. HPT* requires not more than 10% more node visits, on average,
to compute paths when compared to HPA*.

3. HPT* requires not more than 10% more memory, on average to,
compute paths when compared to HPA*.

13

Test results showed us that HPT* paths are only 4.34% longer than
Theta* paths on average. The number of visits required by HPT*
turned out to be 52.9% of the visits required by HPA*. This can be
explained by the path refinement process of HPT* in comparison to
the path refinement process of HPA*. HPA* needs to run A* for every
subsequent point in the abstract solution. HPT* skips the refinement
process for points in the abstract solution that have line of sight with
eachother. On large open maps, where distant nodes often have line
of sight with eachother, HPT* will be able to skip a large ammount of
visits, that would otherwise be required. Since the memory required
by HPT* is also 7% less than with HPA*, we can conclude that HPT*
indeed successfully combines the benefits of both Theta* and HPA*.

6.1 Discussion

As noticed in the results section. We noticed HPA* outperforming A*
in some benchmarked problems. This should be impossible since A*
produces the optimal results on the grid. This can only be explained
as being the result of a fault in the code we used to do our bench-
marks. We have not been able to find the cause for these strange
results, partly because of the late stage in which the data errors were
discovered. This does ofcourse impact the reliability of our test res-
ults and thus conclussions.

However, we can argue that it is unlikely that the fault has had a
drastic effect on our results. If the fault only produced incorrect path
lengths, while HPA* still produced correct paths, then our analysis is
still valid, since we didn’t need to compare to HPA* path lengths in
our conclusion. Even with the fault, HPA* still seems to behave as
expected on most cases and produce a path that is on average 4.7%
longer than the equivalent A* path. In the original HPA* paper (Botea
et al., 2004), HPA* produces paths that are 4% to 6% longer than
A*, for paths with a length larger than 100, before they apply path
smoothing. So it seems likely that, with the large ammount of paths
benchmarked, the effect of the programming error diminished.

6.2 Future Work

It would be interesting to change the HPT* algorithm, to use a variant
of Theta* and see how this effects the search results. Two candidates
for this are AP-Theta* (instead of Basic Theta*)(Nash et al., 2007) or
the newer variant, Lazy Theta*(Nash et al., 2010).

It would also be interesting to see how well HPT* would work in
highly dynamic maps, where paths can become invallid over time.
HPT* like HPA*, is able to postpone the path refinement of sections
of the abstract solution. However, since HPT* simplifies the abstract
path by removing nodes from it, HPT* would have less fine grained
control over which parts of the solution to refine.

14

7 Bibliography

A. Botea, M. Müller, and J. Schaeffer. Near optimal hierarchical path-
finding. Journal of game development, 2004.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transac-
tions of System Science and Cybernetics, SCC-4(2):100–107, 1968.

A. Nash, K. Daniel, S. Koenig, and A. Felner. Theta*: Any-angle path
planning on grids. the AAAI Conference on Artificial Intelligence,
pages 1177–1183, 2007.

Alex Nash, Sven Koenig, and Craig Tovey. Lazy theta*: Any-angle path
planning and path length analysis in 3d. In Third Annual Symposium
on Combinatorial Search, 2010.

Stuart Russel and Peter Norvig. Artificial intelligence : a modern ap-
proach. Prentice Hall/Pearson Education, Upper Saddle River, N.J,
second edition, 2003. ISBN 0130803022.

Nathan Sturtevant. Nathan sturtevant’s moving ai
lab: Pathfinding benchmarks, April 2011. URL
http://www.aiide.org/benchmarks/.

Peter Yap. Grid-based path-finding. In Robin Cohen and Bruce Spen-
cer, editors, Advances in Artificial Intelligence, volume 2338 of
Lecture Notes in Computer Science, pages 44–55. Springer Berlin
Heidelberg, 2002. ISBN 978-3-540-43724-6. doi: 10.1007/3-540-
47922-8_4. URL http://dx.doi.org/10.1007/3-540-47922-8_4.

15

A A* and Theta* pseudocode

The following pseudocode describes the A* and the Theta* algorithm.

1 / / A* algorithm :
2 / / Returns a solution (path) to the problem i f a solution exists ,
3 / / returns nul l otherwise .
4 Solution aStar (Problem problem)
5 {
6 fringe = empty pr ior i ty queue;
7 closedList = empty l i s t ;
8
9 solution = null ;

10 initialStateNode = createNode(problem. in i t ia lS ta te ()) ;
11
12 fringe .push(initialStateNode) ;
13
14 while(solution == null && fringe . size () > 0)
15 {
16 currentNode = fringe .pop() ;
17 i f (problem. isGoal (currentNode . state))
18 {
19 solution = toSolution (currentNode) ;
20 }
21 else
22 {
23 closedList .push(currentNode) ;
24 successors = expand(currentNode , problem) ;
25
26 foreach node in successors
27 {
28 / / For A*: this l ine of code is skipped .
29 / / For Theta*: do a l ine of sight check with grandparent
30 / / to see i f i t i s possible to skip the parent .
31 skipParentIfPossible (node, problem) ;
32
33 / / check open and closed l i s t to see i f node can be placed into fringe
34 replaceIfPossible (node) ;
35 }
36 }
37 }
38
39 return solution ;
40 }

16

B HPA* and HPT* pseudocode

The following pseudocode describes both HPA* and HPT*. For A* the
searchAlgorithm parameter would always be an instance of A*. For
Theta* the searchAlgorithm parameter would always be an instance
of Theta*.
Note: Trivial paths are straight line paths that are possible when
nodes have line of sight.

1 AbstractGraph buildAbstractGraph (GridGraph concreteGraph , int clusterSize ,
2 SearchAlgorithm searchAlgorithm
3)
4 {
5 AbstractGraph abstractGraph = empty graph ;
6
7 / / divide the concrete graph into square clusters
8 int clusterArrayWidth = cei l ing (concreteGraph . width / clusterSize) ;
9 int clusterArrayHeight = cei l ing (concreteGraph . width / clusterSize) ;

10 abstractGraph . clusters =
11 Cluster [clusterArrayWidth] [clusterArrayHeight] ;
12
13 / / connect neighboring clusters via entrances
14 buildNodes(abstractGraph , searchAlgorithm) ;
15
16 / / connect nodes in same cluster
17 buildIntraEdges (abstractGraph , searchAlgorithm) ;
18
19 return hMap;
20 }

1 void buildNodes(AbstractGraph abstractGraph , SearchAlgorithm searchAlgorithm)
2 {
3 foreach (A,B) in (abstractGraph . clusters x abstractGraph . clusters)
4 {
5 i f (A neighbors B) {
6 / / Maximal obstacle free entrances on border
7 Entrance [] entrances = findEntrances (A,B) ;
8
9 for each entrance in entrances

10 {
11 / / either two nodes or a square of nodes
12 / / connecting A to B.
13 Node[] nodes = toNodes(entrance) ;
14
15 / / Connect a l l nodes to eachother ,
16 / with path cost as edge costs .
17 / / For Theta* , also mark t r i v i a l paths .
18 connectAll (nodes , searchAlgorithm) ;
19
20 abstractGraph .add(nodes) ;
21 }
22 }
23 }
24 }

17

1 void buildIntraEdges (AbstractGraph abstractGraph ,
2 SearchAlgorithm searchAlgorithm
3)
4 {
5 foreach Cluster cluster in abstractGraph . clusters
6 {
7 foreach (A,B) in (abstractGraph . clusters .nodes x abstractGraph . clusters .nodes)
8 {
9 / / I f a path from A to B exists within the boundaries of the cluster

10 / / add an edge with the path cost as edge cost .
11 / / For Theta* also mark t r i v i a l paths .
12 connect (A,B, searchAlgorithm) ;
13 }
14 }
15 }

1 void hierarchicalSearch (Node start , node goal ,
2 AbstractGraph abstractGraph ,
3 SearchAlgorithm searchAlgorithm
4)
5 {
6 / / insert start and goal into correct cluster and connect to a l l other nodes in

same cluster
7 abstractGraph . insertAndConnect (start , searchAlgorithm) ;
8 abstractGraph . insertAndConnect (goal , searchAlgorithm) ;
9

10 Solution abstractSolution = searchAlgorithm(start , goal , abstractGraph) ;
11
12 / / clean up
13 abstractGraph .remove(start) ;
14 abstractGraph .remove(goal) ;
15 }

1 void refinePath (Solution abstractSolution ,
2 int fromIndex , int toIndex ,
3 SearchAlgorithm searchAlgorithm
4)
5 {
6 Node start = abstractSolution . at (fromIndex) ;
7
8 Solution refinement = start ;
9

10 for (int previous = fromIndex , next = fromIndex + 1; next <= toIndex ; next++,
previous++)

11 {
12 / / Only abstract solutions from Theta* have t r i v i a l paths
13 i f (t r i v i a l (abstractSolution . at (next)))
14 {
15 refinement .addToPath(abstractSolution . next ()) ;
16 }
17 else {
18 Solution subRefinement = searchAlgorithm(abstractSolution . at (previous) ,

abstractSolution . at (next)) ;
19 refinement .addToPath(subRefinement) ;
20 }
21 }
22 }

18

