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Abstract

Can a hierarchy of semantic information of a social graph be used to effec-
tively estimated shortest paths within that graph? The need to compute the
shortest paths in social graphs has increased with the rise of social media
and the internet before that. This paper attempts to find a way to lower
computation cost of the all pairs shortest path problem within social net-
works. Showing that a hierarchical structure of information on the social
graph provides a good basis for path estimation.
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Chapter 1

Introduction

How fast do rumors or diseases spread around the world. How long does it
take to send packets from one PC to another across the Internet? Similar
questions have been asked for decades and since the 1960s have been corre-
lated with the term small-world. It all depends on the connectivity in the
network involved [3]. If it only takes a few steps to be able to reach any
node in a network of people a rumor will spread much faster.

To estimate how fast a rumor or a killer-disease will spread, you would
have to know something about the average distance between all of the people
worldwide. If we look at Facebook friendships, this can be calculated using
simple breadth-first search in O(|V | ∗ (|V | ∗ |E|)) time, with |V | the number
of vertices and |E| the number of edges in the graph. For each node all
shortest paths from that node can be obtained by traversing through the
whole graph. Visiting |V | vertices across |E| edges. For very large networks
this could take a long time and even using faster algorithms for networks
with millions of nodes there is still much room to improve on. Is there a way
to do it faster? The solution might lie in attempting to find the path using
real world knowledge. When looking for a path from one person to another,
using Facebook friendships for instance, we could first attempt to find a
path to the right continent, then city and so on. This should reduce the
search space drastically. The real world knowledge mentioned is in the form
of a taxonomy, a hierarchy of information about the graph we are searching
in.
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In this paper we will be attempting to use this technique to estimate
shortest paths between Wikipedia articles, using a taxonomy of the cate-
gories. This thesis will look into:

• What is a small-world network?

• Why is the All Pairs Shortest Path (APSP) problem important when
classifying a network as a small-world?

• How can a taxonomy of Wikipedia categories be used to estimate the
shortest path between Wikipedia articles?

• How does shortest path estimation, using a taxonomy, compare to con-
ventional shortest path computation in terms of efficiency and time?
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Chapter 2

Preliminaries

2.1 Overview

The main question posed in this paper is whether or not a taxonomy will
decrease the time needed to find APSP. Instead if finding the shortest path
between two nodes by using breadth-first search, i.e. try all possible paths
until the goal is reached, you could always try to guess what the shortest path
is in one go. Obviously this could lead to disastrous mistakes when guessing
randomly, so an educated guess is needed. This is where the taxonomy comes
in. Below in section 2.4 a detailed description is given of what a taxonomy
is and more importantly how it will be used to compute APSP. In short it
is explained best by the example given in the introduction. ”When looking
for a path from one person to another, using Facebook friendships, we could
first attempt to find a path to the right continent, then city and so on.” It
makes sense that if I would want to know what the shortest path from me to
someone in China is, I will most likely find that path through other people
in China. Once ”in China” I will take a path that brings me to the right
city. For this shortest path problem you could say I used a geographical
taxonomy as shown by the figure below.
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Figure 2.1: Taxonomy example.

Figure 2.1 shows a hierarchy between cities which are geographically
in certain provinces, countries and on certain continents. This is a simple
example of a part of the taxonomy that could be used to find the shortest
path from me to someone in Beijing. It should show for cities and provinces
how far, measured in km, it is to Beijing. If we would have a worldwide list
of these distances to Beijing from each city or province, when attempting to
find the shortest path via friends of friends I could always make sure I am
moving closer geographically. Presuming that I am most likely to find an
acquaintance of my Chinese goal the closer geographically I get.

The question is, by only attempting to move closer to my goal by choos-
ing a path through nodes that are closer to my goal in the taxonomy, will
the chosen path be a ”good guess” in terms of the estimated distance and
time needed?.

2.2 Small-world networks

Why small-world networks? To define a small-world we must first take a
look into social studies. In the late 70’s Pool and Kochen published an
article in the first issue of Social Networks. The meeting of two strangers
who later find out they have a common acquaintance, would lead them to
reflect on how ”small” the world really is. Pool and Kochen wanted to show
that ”people are not only linked to their immediate friends and family, but
they are embedded in a larger structure” [12].

What type of small-world networks are we using and how is it different
from any other network? The term was first used to describe social networks,
i.e. networks of people. These networks seem to have a very high inter
connectivity, but this could not be proven [12]. Due to the millions of
nodes and high level of randomness in connectivity between these nodes,
logistically it is nearly impossible in the real world. Recently the term has
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been used to describe large networks like Facebook and Wikipedia who have
the same properties as the real world social networks [12]. Because these
networks are stored on databases it is now possible to research into the
characteristics of small-world networks. In social networks, like Facebook
for instance, this is used to create a socially sensitive search [8]. When a user
is searching for other people, first results will be the people closest within
the network to that user. In this method the shortest path distance is used
as a simple ranking function [8].

Why use a small-world network for this paper? Because of the small-
world properties, the node selection process might have even greater advan-
tages than a conventional shortest path algorithm compared to searching in
non small-world networks [Section 3.2.1].

A small-world network is characterized by the two following properties:
the local neighborhood is preserved and the diameter of the network, quan-
tified by the average shortest distance between two vertices, increases log-
arithmically with the number of vertices [5]. The last property gives the
small-world network its name, because any two vertices in the network are
connected with just a few links. The diameter of a network is equal to the
maximum of the shortest path lengths of all pairs of nodes in the graph
[15]. Research shows that the largest Wikipedias, i.e. the languages with
the most articles. are indeed small-world networks [16]. However the paper
states that this property might not hold for all Wikipedias. The reason our
research prefers a small-world network is simple. Besides the fact that the
small-world network phenomenon arose when Milgram wondered how many
acquaintances were needed to connect any two people in the world [10]. To
answer the problem stated by Milgram you would have to know APSP or
at least compute the shortest distance between a single pair of people. We
already established that for a lot of social networks knowing APSP is bene-
ficial [8], but besides that a small-world has one defining characteristic that
comes in handy when computing APSP. Because of the low average shortest
path distance in a small-world we hope to keep the computation time for
our shortest path estimation to a minimum.

2.3 The All Pairs Shortest Path (APSP) problem

Attempts to find the cost of the lowest cost path from v to w. Given a
directed graph G = (V,E), where each edge (v, w) has a non-negative cost,
for all pairs of vertices (v, w). The problem above can be solved by several
algorithms, for instance Floyd’s algorithm and Johnson’s algorithm [2] [9].
But how efficient are these algorithms when trying to find APSP for a graph
containing several millions of nodes? Worst case most algorithms are able to
compute the APSP somewhere around O(n2), with n the number of nodes.
So for extremely large graphs it could take a very long time. Potamias
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points out that for some large networks(4 M nodes and 50 M edges) a BFS
traversal would need roughly a minute in on a standard desktop computer
[8]. This is an estimation using the BFS routine of the C++ boost library.
Note that in all cases C++ will run faster than JAVA, which is used in
this research. This makes it clear that the APSP problem for this type of
network is impossible to compute using BFS, at least within a large network.

So might there be a way to improve on this for very large networks,
i.e. networks with millions of nodes? In some cases there might yet be a
simple intuitive way to do so! In this paper we will confine ourselves to using
small-world networks. Two examples of small-world networks are Facebook
and Wikipedia. So how would we go about finding APSP in these networks
faster than O(n2)? By attempting to use real world information perhaps we
can find the shortest path between nodes much faster. All Facebook users
are linked to each other through friendship relations. When looking for a
path from one random user to another we could first attempt to find a path
to the right content, then city and so on. This should reduce the search
space drastically, by using a so called taxonomy.

2.4 Taxonomy tree

When attempting to find the shortest path between two nodes we will use a
node selection process that uses a taxonomy tree. This tree is a hierarchy of
all the categories of the articles in our graph. Like the Facebook example we
will assume that the shortest path is through nodes that are ”closer” to each
other in regards to their categories. To do this we would first have to know
the distance between each category. This means our solution for the tedious
computation of the APSP problem contains another APSP computation.
But in this case we will be using a much smaller graph in terms of vertices
and edges [Section 3.2.2]. The shortest paths within the taxonomy then gives
us insight on how to estimate the shortest path in the ”larger” network. How
the taxonomy is obtained is explained in the next chapter. Why can the
taxonomy be used to estimate the shortest path?

In figure 2.2 the relationship between the Wikipedia articles and cate-
gories is shown. On the left is the Wikipedia Category graph (WCG) with
each node CI a category in the WCG and nodes AI articles in the article
graph. The categories can be seen as semantic tags for the articles and have
a clear hierarchy. Research has shown that the categories are good semantic
tags for the articles [15] [13]. In an empirical study on how to search social
graphs several strategies where tested on there ability to find shortest paths
within social networks. In this study email traffic within a large organiza-
tion was monitored. The research showed that when attempting to send
an message to the right person, with only the mailing information of their
direct contacts. The research showed that attempting to direct the mail

7



Figure 2.2: Relations between Wiki articles graph and category graph [15].

traffic through people who are closer to the goal within the hierarchy of the
organization was a good tactic [4]. These papers support our claim that
the taxonomic structure of the Wikipedia category graph could be used to
estimate the shortest paths between Wikipedia articles.

2.5 The data set

In order to attempt to find an efficient way of solving the APSP problem we
need a data set large enough to show that conventional techniques are slower
[Chapter 3]. Wikipedia seemed to be the best option because of the fact that
the this large network is easily downloaded off the Internet. Wikipedia con-
sists of several different projects, i.e. different languages, with several graphs
such as the article and category graphs. The smaller projects however con-
sist of less articles than categories which makes computing APSP for the
category graph redundant, because the APSP for the article graph could
always be computed faster. In this case using the categories for a node se-
lection process will not improve in any way.
First the APSP problem will attempted to be solved for to the Simple En-
glish Wikipedia articles. Because of the fact that Simple Wikipedia ”only”
has about 160.000 articles, it is easier to work with than English Wikipedia.
However, for testing reasons even this is too much. Because of the fact that
the solution to the APSP problem is a N ×N matrix, with N = number of
nodes, the amount of memory needed is very high [Section 3.2.2].

Wikipedia can be downloaded through several dumps consisting of one
table, some of these dumps then have to be combined in order to retrieve
the full article and category graphs. Throughout the Wikipedia dumps a lot
of data is duplicated because of the fact that each table is linked through a
few primary keys. Each dump can be downloaded as a large SQL file that
should be able to reconstruct the original tables. However, due to the size
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of the dumps the only way to access the data inside is to split the file and
edit each chunk as a text file, due to the fact that database management
tools are not able to import large SQL databases. This is achieved with
the binary split operation in Linux. The tables are structured and used as
followed:

Field Type Null Key Default

cl from int(10) unsigned NO PRI 0

cl to varbinary(255) NO PRI

cl sortkey varbinary(230) NO

cl sortkey prefix varbinary(255) NO

cl timestamp timestamp NO CURRENT TIMES

cl collation varbinary(32) NO MUL

cl type enum(’page’,’subcat’,’file’) NO page

Table 2.1: Category database table.

This database table is used to obtain the id of an article, the categories
the article link to and the name of the article. The first three fields are used
for this data in that order. In essence only the first three fields are necessary
for our algorithm. In short the file is parsed by using a regular expression
to obtain one row. Then a check is done to see if the last obtained row has
the same id. If so that means that only the category needs to be added to
the node created earlier. Otherwise all categories found in the last rows are
added to the previous node and a new node is created.

Field Type Null Key Default

cl from int(10) unsigned NO PRI 0

cl namespace int(11) NO PRI 0

cl title varbinary(255) NO PRI

Table 2.2: Pagelink database table.

A row in this table contains the id of a certain page, the namespace of
that page and title of a page it links to. The namespace indicates if the page
is an article, category or one of the other types of Wikipedia pages. Just
as the previous table the data here is extracted with a regular expression
resulting in a list of tuples containing (Id, Name). So the page with id =
cl from links to a page with name = cl title.

9



The next two tables are use to construct the taxonomy of all the English
Wikipedia categories, these tables were not provided by Wikipedia but by
an independent source. The taxonomy tree was constructed in 2010, since
then the category graph has changed however [14]. Because there is no
further documentation to how the taxonomy was derived we will presume it
is correct. The two tables used to construct the taxonomy tree are:

Field Type

Id int(11)

name varchar(255)

Table 2.3: Taxonomy Category database table.

This table contains every category (id, name) used in the taxonomy
which was created in 2010. Because of that fact there might be newer cat-
egories today, the taxonomy does not match up completely. Even worse
the categories used in Simple English Wikipedia only match about 66% of
the English Wikipedia. However this is due to the fact that the English
Wikipedia category graph is larger then the Simple English Wikipedia cate-
gory graph, explaining why most of the English Wikipedia taxonomy is not
used when matching with Simple English Wikipedia. Unfortunately there
was no trivial way to subtract the Simple English Wikipedia category graph.

Field Type

from int(10)

to int(11)

Table 2.4: Taxonomy link database table.

The last table is a simple list of tuples of ids of categories that link to
each other in the taxonomy tree.
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Chapter 3

Research

3.1 Research

To classify a network as a small-world one would have to calculate the di-
ameter of the network, i.e. compute the average distance between all pairs
of nodes. All small-world networks have such a high connectivity that this
average distance is surprisingly low. The table below shows some statistics
for a few small-world networks [7].

network type n m z d

social film actors undirected 449 913 25 516 482 113.43 3.48

company directors undirected 7 673 55 392 14.44 4.60

math coauthorship undirected 253 339 496 489 3.92 7.57

technological Internet undirected 10 697 31 992 5.98 3.31

train routes undirected 587 19 603 66.79 2.16

Table 3.1: Basic statistics for a number of published net-
works. The properties measured are: type of graph, directed
or undirected; total number of vertices n; total number of
edges m; mean degree z; mean vertex–vertex distance d.

Currently most shortest path algorithms do not attempt to get around
using every node to calculate the distance between all node pairs. Which
causes a problem in very large networks [8]. A path estimation algorithm,
specifically one using a taxonomy, could be used to drastically lower the
time needed. This would avoid searching through all elements of the original
network. This solution is very close to the intuitive way a human would do
it. For instance if you have to use Facebook friends lists to find your way
from one random user to another. It makes sense to try and find your way
to the right content, then the right country and so on.
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Because this, depending on the categorization used, potentially drasti-
cally lowers the search space it is much easier the find all shortest paths
between nodes. Or at least find a close estimation of the shortest paths.
Simply because the number of vertices and edges in the taxonomy is noth-
ing compared to the original network. Computing the shortest distances in
your taxonomy leaves you with an easy way to decide which nodes to expand
when searching in the original network.

3.2 The algorithm

This thesis is centered around the all pairs shortest path problem, specifically
with the estimation of the shortest path by using a taxonomy. Up until now
the only explanation on why this would work was the intuitive approach
used in the introduction and preliminary chapters. A deeper look into the
usage of a taxonomy in comparison to a breadth-first search is given below.

3.2.1 Breadth first search in a small-world

As seen in the preliminaries a small-world network is a network with a high
connectivity between nodes. For Simple English Wikipedia each node has an
average of 45 links, for Facebook this is 338 [1]. The high number of edges
is in line with what you would expect from a small-world and is exactly
why the path estimation in small-world networks could be much faster than
breadth first search (BFS).

Why would a BFS suffice in this complicated graph? Because all edges
are weighted 1, the APSP problem for Wikipedia or Facebook is just a
question of counting nodes in a potential shortest path. The BFS algorithm
need only check which nodes have been visited. In the image below a graph
is illustrated where each node has N children, with N the average amount
of children in the network. When attempting to find a path from node A
to node G, first the algorithm expands the N nodes at distance 1 from A
and adds them to a queue. If the goal is not reached all children of the first
N nodes are expanded and added. This is done until the goal is reached at
which point the algorithm can stop when the depth of the search exceeds
the length of the shortest path, due to the fact that no shorter path will be
found.

Because of the fact that nodes in a small-world network have a relatively
high amount of edges the longer the average shortest distance between nodes
within that network the more you could benefit from an accurate path es-
timation. In the graph above the shortest distance from A to G is three
steps. With breadth-first search this would mean worst case N × N × N
nodes are visited, with N the average number of edges for each node. This
happens when G is located at depth 3 on the far right of the graph. When
using node selection, if the correct node is chosen with a single attempt, this
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Figure 3.1: BFS example.

could be reduced to N + N + N nodes visited in the worst case. Because
at each level one node is expanded and has an average amount of N nodes.
The question is how good of a selection process can the taxonomy provide
us?

3.2.2 Taxonomy

In order to have an accurate node selection a taxonomy tree of the Wikipedia
categories is used [14]. Using figure 3.1 as a reference, when attempting to
find the shortest path from node A to node G. We start of by selecting one
of A’s children, c in this example, to expand. This is done by looking at the
average distance between C’s categories and G’s categories. Which ideally
would be obtained from a distance matrix created at the beginning of the
computation. However for the APSP problem of the Wikipedia categories a
matrix of M ×M is needed, with M the number of categories. This would
mean that 474168×474168 elements would have to be stored. In JAVA, the
language used during the research, the matrix would be represented by a
two dimensional array which commonly uses between 16 bits and 32 bits to
store integer values. The memory usage comes from the fact that primitive
integers use 16 bits and the array uses headers to store the elements. If we
assume that the headers are not needed to store all of the categories, we
would need (474168 × 474168) × 16 bits = 418.78GB of data. The servers
at the university have 256GB at most, which make creating the category
APSP matrix impossible.

3.2.3 Memory problem

The large data sets used cause several memory problems when attempting to
pre-compute APSP for the category graph. Since it is not possible to create
a APSP table for the categories, when attempting to estimate the shortest
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path between articles we must dynamical calculate the average distance
between the categories. Similar research on other large networks have come
to the same conclusion regarding the pre-computation of APSP in even
larger networks [8]. Unfortunately for our relatively smaller category graph
the same holds. This greatly increases the time needed to find which article
should be expanded to next. For the Simple English Wikipedia problems
only occur when attempting to make an APSP matrix for the categories.
But the English Wikipedia articles graph is even greater than that of the
Simple Wikipedia articles graph and this increases problems when handling
the SQL tables.

When testing the time efficiency of the proposed node estimation algo-
rithm the Simple English Wikipedia will not suffice. Even though the Simple
English Wikipedia articles graph has more vertices and edges than the Cat-
egory graph, the algorithm has to dynamical calculate shortest distances
for categories. So often even that the time needed to calculate a path is
extremely high. Most articles in the Simple English Wikipedia have around
3 categories. Finding the average category distance from one article to the
goal then results in 9 shortest path computations in the category graph.
Each category of the article being evaluated is matched with all of the goal
categories. If an APSP table for the categories could be constructed this
lengthy computation would be done only once. The inability to use a APSP
table for the categories, significantly lowers the speed of the algorithm.

Graph |V | |E|
Simple English Wiki articles 163,103 6.942.262

Simple English Wiki categories 474,168 995,860

English Wiki articles 4,577,364 78,300,000

English Wiki categories 474,168 995,860

Table 3.2: Wikipedia graph statistics [17].

3.2.4 Pseudo code

In order to find APSP for the Simple English Wikipedia articles we would
first have to find a path between a pair of articles. The algorithm used to
estimate the distance between nodes is described in pseudo code below.
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1: procedure ExpandNode(Node Start, Node Goal)
2: Start.SetPointer(”Done”);
3: while !GoalFound do
4: if GoalFound then
5: GetPath(Goal);
6: end if
7: list.clear;
8: list.add(Start);
9: Start = FillQueue(Start, Goal);

10: end while
11: end procedure

Annotation to ExpandNode(Node Start, Node Goal)

2: Set a pointer for the goal which the GetPath method will look for;
8: The queue contains all the children of the current node after fillQueue();
9: Start is set to the current node after each node selection;

This method loops until the goal node is reached. In essence it sets the
variable Start to the next node that the algorithm will expand. Then a
queue will be filled with al the children the node points to. This queue will
be used to determine which node, out of all nodes seen, has a combination
of categories that is closest to that of the goal.
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1: procedure Fillqueue(Node Start, Node Goal)
2: Node Current = Start;
3: Current.visited = true;
4: for Each ChildNode N in Current.Childs do
5: Node Child = N
6: if !Child.visited then
7: if (Child == Goal) then
8: GoalFound = true;
9: Goal.Setpointer(Current);

10: Break;
11: end if
12: Child.DistanceFromGoal = GetAvgCategoryDistance(Child,

Goal)
13: OrderdNodes.insertChild . queue sorted by

DistanceFromGoal
14: Child.SetPointer(Current)
15: end if
16: end for
17: Node next = FindNext(OrderdNodes);
18: return next
19: end procedure

Annotation to Fillqueue(Node Start, Node Goal)

9/14: The path from Node Start to Node Goal will be retraced through the
pointers. When a child is visited the first time the pointer is set to the cur-
rent node. After the goal is reached the pointers are followed until ”done”
is reached;
13: Each child is entered in a list ordered by the value of DistanceFromGoal.
The nodes with an average category distance closest to the goal first;
17: Node next = the first node in the OrderdNodes queue that has not been
visited.

All of the child nodes of the current node are reviewed and checked to
see if there is a match with the goal node. If the child has not been visited
yet it is added to the queue. This queue is sorted by the DistanceFromGoal,
this has to be computed using the GetAvgCategoryDistance(Child, Goal)
method. Finally a pointer is set in order to remember the path in which
the child was visited. Note that these pointers are used to avoid having to
create a matrix containing this information.
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1: procedure GetAvgCategoryDistance(Node Child, Node Goal)
2: double sum = 0;
3: double total = -1;
4: for Each Goalcategory G in Goal.Categories do
5: for Each Childcategory C in Child.Categories do
6: double temp = GetCategoryDistance(C , G);
7: if G != C then
8: sum = sum + temp;
9: else

10: sum = 0;
11: break;
12: end if
13: end for
14: total = total + (sum / Child.NumbOfChildcategories) ;
15: end for
16: return total Goal.NumbOfGoalcategories;
17: end procedure

To find the average category distance between two nodes, the distance
between all pairs of categories is computed using the GetCategoryDistance
method. For each goal category the distance to all of the child category
is added and an average value is calculated by dividing the amount by the
number of child categories. The average distance of one goal category to
all the child categories is obtained. This value is set to zero however if the
goal category matches one of the child categories. This is done in order to
lower the average category distance between nodes in the case of a category
match. Finally this sum is divided by the number of goal categories. This
is done to make sure that a node with less categories will not have a greater
chance of being selected. The table below explains.

Goal categories Child Categories sum total

A B 1 0

C 3 0

D 6 6

Returned avg category distance 2

A D 3 3

B 2 5

C 1 6

Returned avg category distance 2
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1: procedure GetCategoryDistance(Category C, Category G)
2: int [ ] left , int [ ] right; . filled with −1
3: q.add(C)
4: while !GoalFound && ! q.isEmpty do
5: for Each ParentCategory p ε q.first.Parents do
6: SetParentLeft(p, q, left);
7: end for
8: q.remove(first);
9: end while

10: q.clear();
11: if !GoalFound1 then
12: q.add(G);
13: while !GoalFound2 do
14: for Each ParentCategory r ε q.first.Parents do
15: SetParentRight(r, q, right);
16: end for
17: q.remove(first);
18: end while
19: end if
20: GetPath(left, right, GoalFound, GoalFound2)
21: end procedure

Annotation to GetCategoryDistance

To find the distance between two categories the taxonomic structure is used.
The parent relationship is used to find the distance between categories. The
path is split into two sections, left and right. First the childCategory is
added to a list. After each pass of the for loop in lines 5-7 all of the parents
of the categories currently in the list are added. The SetParent method adds
the parents to the list and sets a pointer in order to remember the shortest
path in the taxonomy tree. This is done until the top of the tree is reached.
Then for the goal category the same is done until a category is reached
that was visited on the left side. Finally the GetPath method finds the
distance between the categories using the pointers in the left/right arrays.
This methods works similarly to the GetPath method.
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1: procedure SetParentLeft(Category P, List l, int[ ] left)
2: if P == Goal then
3: GoalFound1 = true ;
4: P.visitedBFS = true ;
5: left[indexOf(P)] = indexOf(l.first);
6: end if
7: if !P.visitedBFS then
8: l.add(P) ;
9: P.visitedBFS = true ;

10: left[indexOf(P)] = indexOf(l.first) ;
11: end if
12: end procedure

Annotation to SetParentLeft

In lines 5 and 11 a pointer is set at the position of the indexOf(category).
The indexOf method gets the index of the given category in a list of all
categories. The value is set to the index of the corresponding Child. The
GetPath method retraces the pointer array to a −1 value and counts the
number of steps. This is done to avoid using an matrix which stores the
parent-child relationship, which again is not possible due to lack of memory.
This method could however return an incorrect distance if implemented as
above as illustrated below. The problem occurs due to the fact that the
Wikipedia category graph could contain cycles [15]. In a research done in
2006 six only few cycles where found, however since then the category graph
has surely grown an which could increase this amount.

Figure 3.2: GetPath method example.
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In figure 3.2 an example is given to show how the distance between Node
A and Node B is found. The nodes visited by the left part of the algorithm
are striped, the nodes visited by the right part of the algorithm are crossed.
Node B has two parents which each have a parent that is visited by the left
side of the algorithm. However the distance only on path will result in the
shortest distance. To make sure the shortest path is a check is done making
sure the depth of the Breadth First search is ultimately equal to the length
of the shortest path. This check is not displayed in the GetCategoryDistance
method.

3.3 Results

Several attempts where made to get around the problems faced due to the
high memory usage. The first being the use of a subset of the data. The
category taxonomy was used to subtract a subset of categories. The articles
used for a shortest path estimation were located within this subset.

3.3.1 Category subset

A subset was created using a tool which can subtract a subset of categories
from the taxonomy. For the subset the root chosen was the category ”Com-
puter Science” and a subset of depth six was created. This resulted in the
largest possible subset the tool could generate from that root. The language
chosen for the categories was English and not Simple English due to the
fact that the taxonomy used is that of English Wikipedia categories. These
categories however only match the Simple English categories about 75%.
Unfortunately the Simple English Wikipedia does not have a taxonomy tree
that is easily obtained. An article has at least one category that is in the
category subset.

Subset Size percentage of total

Categories 12,125 2,56%

Articles 3,010 1,85%

Table 3.4: Category subset statistics [6].

The subset was used to attempt to estimate the shortest path between
two nodes. A table was created to store the shortest paths between the sub-
set categories. This however created more problems. Because a taxonomy
based subset of categories is used, all categories in the subset are relatively
close to each other. Each node in the subset could only be compared by
categories that were located within the subset. Because of this the node se-
lection process was not precise enough. Every node had an average category
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distance to the goal that was very low. Most nodes only had 1 category
within the subset. This resulted in the algorithm expanding almost every
node it encountered, because it seemed as though it was close to the goal.
Mostly this resulted in expanding all nodes of categories that where close to
that of the goal without ever reaching a goal category.

This resulted in the conclusion that all, or at least more, categories are
needed to compare nodes. When a taxonomic subset is used the distance
between categories is limited to the depth of the subset. The distance be-
tween the categories outside the subset are needed to widen the range of the
average distance. When all categories are used each node will have a more
unique combination of categories and thus a low average category distance
would also be more unique. However we already established that creating
an APSP table for the categories was not possible. If JAVA byte integers
are used it is likely that all distances can be stored within the range of -128
to 127. Assuming that all distances are smaller than 256 steps. At best this
means that an APSP table could be made using 8 bits for each pair. This
would mean that the table could be created using 209GB of data. The al-
gorithm however would not be able to copy that table during computation.
Besides that the time needed to construct this table was estimated at 30+
days using Johnson’s algorithm, after short testing. To long to attempt in
the remaining time to complete this paper.

3.3.2 Dynamic category distance computation

Because a static computation of category distances was not an option the
choice was made to compute the distance between categories dynamical us-
ing a BFS [Section 3.2.4]. We found that due to the fact that the category
distance has to be computed so often the time needed to select the next
node to expand is very high. Efficiency was improved by saving all category
distances of category pairs with one goal category. Because the pairs (Goal-
Category, OtherCategory) might return often. These pairs would then only
have to be computed once. Also the use of more efficient data structures
in the JAVA code greatly improved efficiency. Still an average computation
would take over a 100 hours to expand to roughly 18% of the nodes. Be-
cause of this not enough data could be collected to analyses the algorithms
efficiency in terms of the estimated shortest path distance compared to the
actual distance. But the data collected did show that the algorithm could
often easily find a path to the right category. The problem was finding a
path to the goal from there, because so many articles would be evaluated in
the process.

Finally an attempt was made to once again use a category subset to
reduce the time needed to estimate a shortest path. Instead of using the
taxonomy to find a category subset, 50% of the categories where chosen at
random and nodes where selected with the same criteria as with the first
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subset. This time the category distances where computed dynamical. This
however often resulted in the algorithm reaching a dead end with nodes
that did not contain children with any category in the subset.Still the time
needed to compute shortest paths between categories had not decreased
either. Because these distances needed to be computed in the full graph.

3.4 Possible solutions

3.4.1 Extended BFS

Besides obtaining more memory and computing the category APSP stati-
cally, which still would be a lengthy computation. There might be ways to
work around the problems faced. Throughout the research done it seemed
clear that it is not hard to find a path to nodes which have a low average
category distance. After that however finding the goal takes significantly
longer. To reduce the number of category breadth first searches the algo-
rithm could be adapted to first find a path to nodes that have a certain
minimum average category distance and then switch to a BFS starting from
the current node. Perhaps the BFS will have improved as it always start
from a category which is closely related to the goal.

3.4.2 Extended selection process

Another solution might be to once again first move to a node with a low
average category distance. Then instead of further using category distances
select nodes by only expanding to nodes that share one or more of the goal
categories. Selecting nodes with the most matches first. Assuming that the
goal node is most likely to be linked to by a node in the same category. Less
nodes have to be visited then with a BFS. Furthermore this experiment fully
relies on the effectiveness of the categorization of articles. Compared to the
extended BFS proposal.
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Chapter 4

Related Work

4.1 Social networks

Social networks have been a target for many empirical studies for a long
time, however recently there has been an increase in studies on small-world
networks due to the applications in social search [8]. The question of how
to find the shortest path between nodes in a small-world network is tackled
in different ways [8] [4] [11], but mostly the problems faced are the same.
In the first empirical studies by Milgram for instances participants had to
send a letter to an individual either directly, if they knew the individual, or
indirectly by sending it to someone who might know where to send the letter
[11] [10]. With these so called letter chains an estimation of the shortest
distance between the participating population could be made. However this
could only be done in a small subset of the population. The network of
people was just to big. A problem that in modern small-world research,
including our research, still occurs.

4.2 Shortest path in social networks

Several other papers propose a way of efficiently searching for shortest dis-
tances in a small-world network. The landmark selection process proposed
by Potamias has found a way to lower run time computations significantly
[8]. This is done by computing the needed landmarks beforehand and do-
ing it only once. Our solution to this problem, based on the idea that the
category hierarchy can be used to obtained information pre-run time, sim-
ply can not be used in the same way. We can assume the the information
provided by the categories is useful in estimating the shortest path [15] [13]
and that using a hierarchy proved to be a good strategy in simulations [4].
However because of the fact that this information can not be stored because
the APSP of the category graph can not be stored [8], it currently does
not decrease the time needed to compute shortest paths in a large network
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enough to prove that our assumptions are correct.
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Chapter 5

Conclusions

The inability to store the APSP of the Wikipedia category graph has made
it impossible to show that the Wikipedia categories can be used to efficiently
estimate the shortest distances between Simple English Wikipedia articles.
However this thesis has shown that the category graph is likely to contain
information that can used for a node selection process. Research has shown
that the inability to store the APSP table of the Wikipedia category graph,
has caused the proposed solution to significantly lose efficiency when search-
ing in the Simple English Wikipedia articles graph. Because the Wikipedia
category graph > Simple English Wikipedia articles graph in terms of the
number of vertices and edges.

This however does not mean that the same will hold for the English
Wikipedia articles, which in turn is larger then the Wikipedia category graph
in terms of the number of vertices and edges. This perhaps could negate the
time lost having to dynamically computing the shortest distances between
categories. In order to fully show that an Wikipedia category taxonomy
could be used to estimate the shortest paths between Wikipedia articles
either the APSP table for the category needs to be created, i.e. more memory
needs to be obtained, or the hypotheses should be tested within the English
Wikipedia.
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