BACHELOR THESIS
COMPUTER SCIENCE

Fia:

a
é\9 Ny
S
orrer

MiNe €

RADBOUD UNIVERSITY

Introduction to YARMIS, a
dynamic alternative to RMI

Author: First supervisor/assessor:
Maurice Knoop Dr. Sjaak Smetsers
54122461 s.smetsers@cs.ru.nl

Second assessor:
Dr. Pieter Koopman
pieter@cs.ru.nl

January 13, 2015

Abstract

In this thesis we will introduce a new system called YARMIS. YARMIS
allows methods to be invoked on java objects that are stored on a Host. This
system has been developed to allow for dynamic Host - Client connection
where every device can easily switch between being a host or a client. We
will compare this new system to the existing RMI system, that also allows
for methods to be invoked on remote objects. The systems will be compared
based on execution time, implementation and limitations. Finally we will
discuss how aspects of YARMIS can be improved to have the advantages of
RMI like faster execution time, without losing the flexibility that YARMIS
offers.

Contents

1 Introduction

2 Preliminaries

2.1 Reflection
2.2 Distributed Object Applications
2.3 Test application L Lo
24 Java RMI System oL
3 Implementation
3.1 Structure
3.2 Communication,
3.3 Method invocation
3.4 Test application in YARMIS
4 Research
4.1 Measurement setupo
4.2 Performance comparison
421 Host e
422 Client
4.3 Limitations comparison

5 Related Work
6 Conclusions

A Measurements
A1 RMI
A2 YARMIS . . . s

B UML

11
12
13
17
19

23
24
25
25
33
40

43

44

46
46
47

51

Chapter 1

Introduction

This system needed to be able to provide functionality locally, but also let
the same functionality be invoked on a different machine. This to let one
application become a remote control to another instance of the same appli-
cation, without cluttering the code with calls required for communication.
So YARMIS was developed to provide this functionality. YARMIS makes
it possible to switch between performing functionality locally or remotely.
RMI is an existing system that provides similar functionality. To decide
whether YARMIS has any added value over RMI is is required that these
systems are compared.

Chapter 2

Preliminaries

Within this Thesis, methods and classes that are part of specific systems
such as YARMIS are displayed as ClassOfInstance.method(...). Methods and
classes that are part of the JDK! will be displayed as ClassOfInstance.method(...).

2.1 Reflection

Java provides access to meta data of classes. Fields and methods of a class
can be obtained at runtime. Within Object Oriented Programming, this
is known as type introspection. Fields and methods can be obtained as
instances of Field and Method respectively. These classes provide access to
properties such as access modifiers and Annotations.

Through Field and Method Java also allows for modifications to these
instances at runtime. This is known as reflection. This allows for more
dynamic interaction with classes and instances.For example, one can dy-
namically look up and invoke methods at runtime.

2.2 Distributed Object Applications

Distributed Object Applications (DOA) are applications that allow the in-
vocation of methods on objects that are on a different machine than the
calling objects. This is achieved through communication between the two
machines. Invoking methods that are not on the same machine is also known
as Remote Procedure Calls (RPC). For this thesis we will be looking only
at DOA’s that can be set up between two Java Virtual Machines.

Multiple systems exist for invoking methods on remote objects. Three
well known systems are SOAP?, CORBA? and RMI*.

Lexcluding RMI

2Simple Object Access Protocol

3Common Object Request Broker Architecture
4Remote Method Invocation

SOAP is a standard developed by Microsoft. It allows for implemen-
tations across different programming languages. This is achieved by using
XML to represent data and objects.

SOAP makes it possible to send the data contained in objects from one
machine to another. It is also possible to use SOAP to The invocation of
methods on remote objects could then be done by first obtaining a local
version of such a object, invoke methods on that object, and then notify the
server of any side effects of method calls. SOAP does not however specify
how this should be done, only how the data should be passed. In effect this
means that to use SOAP for method invocation on remote objects, we still
need to define a new system to send those messages. Therefore SOAP itself
is not of any interest.

CORBAJ2] was a popular standard developed by the Object Manage-
ment Group (OMG) in the nineties[6]. It allowed for communication be-
tween servers, regardless of the language they were implemented in. This
was achieved by making use of definitions written following the syntax of In-
terface Definition Language(IDL) [1]. The usage of IDL requires a compiler
that turns an IDL file into (amongst others) a so-called stub and skeleton.
I have not been able to obtain such a compiler. As a result I am unable to
use CORBA for this Thesis.

RMI[3] is developed by Oracle. It is written specifically for Java, and
has been available since JDK 1.1°. The standard version of RMI can only
work with Java. A variant of RMI, called RMI-IIOP, uses the standard
set by CORBA to communicate. This allows it to communicate with other
CORBA compliant systems.

2.3 Test application

We explain and test both RMI and YARMIS using a simple application.
The functionality of this program is to let a Hosting machine append a
string that is provided by the client machine to the string "Hello”. The
variable itself will be the string ”"world” that is passed from the client to the
host. During the execution of the application, the client will tell the host to
perform the append step, after which the client will obtain the result. Both
versions of the application will contain the same methods. The application
consists of 2 classes, each with 2 methods. The classes are called Host and
Client. As these run on different machines, they both need to implement
the main method. In this method any required preparation is performed.

The other predefined method of Host is called execute. It’s implementa-
tion is fixed across all systems and will return ”"Hello ” followed by the given
argument. For simplicity, the concatenation is done using the + operator
rather than a StringBuilder.

Phttp://docs.oracle.com/javase/7/docs/api/java/rmi/Remote.html

public class Host {

public String execute(String argument)

{
return ” Hello.”4+argument;
}
public static void main(String [] args)
{
Host host = new Host () ;
}

Figure 2.1: The code for the Host as defined in the framework

The second method of Client is called perform. Its implementation
is open to the different systems, but should contain a call to the ezecute
method of Host, as well as a means of storing the value returned by that
call, and printing it using the system’s OutputStream, available under Sys-
tem.out.println. The basics of this operation are given in the framework for
this example. This method is called by the main method of Client.

While perform is called by the main method of Client, the invocation
of execute is done by the client through each of the various systems. The
result of the invocation of execute should be stored in the String result.

The perform method of Client is made static as no instance is required
to perform operations. This differs from the execute method of Host, as all
systems require the remote object to be an instance.

public class Client {

private static final String IP_.HOST
private static final String MESSAGE

”192.168.1.17;
” world” ;

private static void perform ()

{ String result = null;
System.out.println (result);
}
public static void main(String [] args)
{
perform () ;
}

Figure 2.2: The code for the Client as defined in the framework

2.4 Java RMI System

Host

Clients can retrieve objects that implement the interface Remote from the
server and invoke methods on them. This interface doesn’t require the im-
plementation of any other methods. It is used simply to identify classes
whose methods can be called remotely. For our example program this adds
the requirement that Host needs to implement Remote. It is also required
to implement the Serializable interface, to allow an instance of Host (and
thus also an implementation of Remote), to be send over a connection.

import java.rmi.Remote;

public class Host implements Remote, Serializable { ... }

Figure 2.3: The new header for the Host

To allow access to classes that implement Remote so called Registries are
used. In Registries objects are stored under a name (String). All clients who
know that name can use the Registry to look up the object. To implement
this we need to have two things: A name for the object we're going to
register and a Registry to register it with. It is not important which name
is assigned to a registered object, as long as that name is used consistently
for that object.

To creation of a Registry is simple. We need to call LocateRegistry.createRegistry(int
port), where port refers to the port® that should be used. The returned Reg-
istry can then be used to register the object. This process is called binding
and can be initiated by calling bind(...) on the Registry. Both lookup(...)
and bind(...) can throw a RemoteException. The latter can also throw an
AlreadyBoundFException. These exceptions need to be caught.

The resulting code for Host then becomes:

public class Host implements Remote, Serializable {
public static final String NAME = "name” ;

public static void main(String [] args)

{

Host host = new Host () ;

try {
Registry registry = LocateRegistry.createRegistry () ;

registry .bind (NAME, host);

} catch (RemoteException | AlreadyBoundException e) {
e.printStackTrace () ;
}

Figure 2.4: The code for the implementation of the Host’s main method
using RMI

When a registered object is no longer referenced (locally or remotely),
then it is garbage collected. To prevent the registered object from being
discarded as soon as main finishes, you need to keep a reference to it. This
can be done by storing the registered object in a static field. This will keep
the registered object available while the process the host is running in is
still running. It is also possible to let the main method sleep for as long
as is required to let a client obtain a reference to the object. This requires
that the object is still referenced before sleeping. Here we’ll prevent the
registered object from being discarded by sleeping for a long time in the call
to main.

Client

Two options exist for accessing objects that are stored on a server. The
first option is by using Registry. This provides access to objects on a single

5The default port is 1099, accessible as Registry. PORT

server. The second option is to use a class called Naming containing mostly
static methods. It can be used to connect to multiple servers. It is explained
later on.

An existing registry can be obtained by calling getRegistry(...) on Lo-
cateRegistry. This will result in a Registry that was created on the host
using createRegistry(...). To connect to a different computer we need to
provide an IP address. The server doesn’t need to be on the local network.
The port is assumed to be 1099 unless specified otherwise. Note that the
Registry that the Client obtains is a reference to the Registry on the Host.
The Client doesn’t obtain the actual Registry. To allow for this, Registry
needs to implement Remote.

By calling the method lookup(String name) on a Registry objects from
a server can be retrieved. Calling this method might result in a Remote-
Ezxception or a NotBoundFEzception. The former is a generic exception that
is thrown whenever something goes wrong while accessing a remote object.
The latter is to indicate that there is no object registered on the Host under
the provided name.

public class Client {

private static final String IP_.HOST = 7192.168.1.17;
private static final String MESSAGE = "world”;

private static Registry host;

private static void perform ()

{
Host hostObj;
try {
hostObj = (Host)host.lookup (Host .NAME) ;
} catch (RemoteException | NotBoundException e) {
e.printStackTrace () ;
return;
}
String result = hostObj.execute (MESSAGE) ;
System.out.println(result);
}
public static void main(String [] args)
{
try {
host = LocateRegistry . getRegistry (IP_.HOST) ;
} catch (RemoteException e) {
e.printStackTrace () ;
return;
}
perform () ;
}

Figure 2.5: The full code for the implementation of a Client using RMI

As mentioned previously, Naming exists for connecting to multiple servers.
Naming holds a number of Registries, thus allowing multiple connections,
to different servers. It defines mostly the same methods as a regular Reg-
istry and forwards the calls for lookup(...), bind(...) and other methods to
the correct internal Registry. To be able to forward the call to the correct
Registry, it is required to provide an IP address every time any of the meth-
ods is called. This is done through creating a URL that is formed like //[ip
address]/[remote name]”, where [remote name/ is the name under which the
requested object is stored. In the line of the previous examples, a valid URL
would be //192.168.1.1/name.

"http://docs.oracle.com/javase/7/docs/api/java/rmi/Naming.html

private void usingLocateRegistry () throws
RemoteException, NotBoundException

Registry host = LocateRegistry.getRegistry (IP.HOST) ;
Host hostObj = (Host)host.lookup (Host .NAME) ;

}

private void usingNaming () throws
MalformedURLException, RemoteException, NotBoundException
{

Host hostObj = (Host) Naming.lookup (”//”"+Client .IP_HOST+" /
»+Host .NAME) ;

Figure 2.6: These two methods provide the same instance for hostObj. Note
that usingNaming can also throw a MalformedURL FException.

RMI also allows for class definitions to be send to a server, allowing the
server to work with classes that weren’t previously defined on the server.
This is called Dynamic Code Loading. It requires a SecurityManager to be
set and installed. This will manage the access classes have on the host. If
Dynamic Code Loading isn’t used, the SecurityManager isn’t required, as
the developer will know what access clients will have through the defined
classes.

10

Chapter 3

Implementation

YARMIS! (Yet Another Remote Method Invocation System) is a way of
allowing one Java Virtual Machine (JVM) to invoke methods on a different
JVM. It was created by Moritz Neikes and Maurice Knoop.

The application that YARMIS was designed for required that certain
aspects of the application would be allowed to be executed remotely when
connected to one Host, but be blocked when connected to a different Host, all
depending on the settings of that Host. Furthermore, it should be possible
within the application to switch between being a Host and being a Client.
This means that sometimes functionality should be executed remotely (on
a Host), and sometimes needs to be executed locally (when being a Host to
other Clients, or when its not communicating.). So the system is required
to be transparent and flexible.

YARMIS abstracts all communication such that invoking a method on
a remote object is as easy as on a local object. Its key selling point is its
ability to switch between local and remote execution when required. This
allows the program to function as a remote control to a different machine
that’s running the same application, but also to provide that functionality
by itself. It is also suited for making a more intuitive approach to working
with a server. Rather than having to convert and reconvert every API call to
use, for instance, HTML POST, you can simply invoke a method. Extending
the functionality is as simple as defining a method in an abstract class and
then implementing it.

Consider the example of a music application that uses YARMIS. Sup-
pose device d4 is running that music application. The application is not
communicating. Then if play(...) is called on d4, d4 should start playing
music. Now suppose that d 4 is being a Host. It will still handle everything
locally, but will now allow others to connect. We introduce device dp to the
system, letting the application on dp becomes a client to d4. Then calling
play(...) on dp should make d4 start playing music. YARMIS is used to

"http://www.github.com /knoop/YARMIS

11

handle everything in this example, aside from actually playing music.

3.1 Structure

To allow for the required flexibility, YARMIS uses a modular approach.
Each Module provides specific functionality. In the context of the music
application you can define a Module with music controls like play and pause,
and a Module that contains a song library.

To allow switching between executing remotely and locally, it is impor-
tant that Host and Client have the same definition of which methods can be
invoked on a Module. This can be achieved by using interfaces. However as
some basic interaction is required with Modules, abstract classes extending
Module are used. These abstract classes are named Functionality Defini-
tion Classes (FDCs). These FDCs define the functionality provided by the
application.

Transparency

The transparency requirement is fulfilled using FDCs. This is done by cre-
ating separate implementations for local and remote execution. The local
implementation is implemented like you would with any other interface or
abstract class. So, if an FDC requires play(...), then the local implemen-
tation will implement the method to start playing. The remote implemen-
tation is used to let the call be executed on the Host. When a method is
invoked, a request is send to the Host to also invoke that method. The result
will then be reported back to the Client. This means that when play(...)
is called on a remote implementation, it will call its Host, and let the Host
perform play(...) on its local implementation. The UML diagram for Mod-
ule, the FDC and the local and remote implementations is shown in Figure
3.1.

12

Module

+TYPE : String

Extends

ExampleModule

+ method(): void

Extends Extends

LocalExampleModule | (RemoteExampleModule

Figure 3.1: The UML diagram that shows how Module should be extended
by an FDC(EzampleModule).

Accessing Modules

The usage of local and remote implementations by itself isn’t fully trans-
parent. The transparency can be increased by making it transparent how
an instance of FDC (either local or remote) can be obtained. This is done
through what is called Core. Core contains references to instances of Mod-
ules and makes these available.

Based on the fact that Modules provide functionality, it is not allowed to
store more than one instance of a Module at the same time. Otherwise it is
possible to have multiple Modules that are all providing the same function-
ality. Switching between local and remote execution is done by replacing
the stored module.

It is not required that Modules are swapped often. A setup where one
machine is always the Host, while others are always Clients is also possible.
This can be achieved by never using the remote implementation on the Host.

The Core and Module structure is part of YARMIS. The actual definition
of FDCs, as well as its local implementation defines the application itself and
are up to the developer to be implemented?.

3.2 Communication

The first problem about implementing remote method invocation is the com-
munication between devices. How can you tell a device which method needs
to be executed? What kind of protocol(s) should be used?

2The remote implementation is also part of the application, but the implementation is
always the same, regardless of the method. See Figure 3.4 for that code.

13

Four things need to be known to be able to invoke a Method using
reflection. The first is which Class should contain the Method. The second
is the actual instance of that class to invoke the Method on. The third is
the name of the Method to invoke. The fourth is an array of the type of all
parameters. With this information the Method can be found. To invoke the
method the parameters also need to be provided. These requirements follow
directly from how methods should be obtained and invoked using reflection.

Because of the usage of Modules, the first two requirements are easily
solvable. Only the Module type needs to be known to obtain the correct
instance, of which the Class can then be obtained.

The third can not be derived as is the case with the first two. Therefore
the method name has to be provided.

For the fourth requirement we can use the types of the parameters that
have been passed.

Overall, the required components for the communication then become
the name of the module, the name of the method and the instances of all
arguments. The combination of these components is called a Request.

Connections

The connection between JVM’s is made through Connections. This is an
abstract class that requires an InputStream and an OutputStream. Connec-
tions are capable of sending Requests through streams. This abstraction on
the communication channel makes it possible to not only use (W)LAN/WiFi
connections, but also Bluetooth or any other means of communication that
uses in- and outputstreams.

All Connections are handled through the Core. Specifically through
what we call the ConnectivityPlugin. 1t is available under Core.connectivity.
It contains a ConnectionManager that keeps track of all active Connections.
The ConnectionManager is the actual host, as it allows connections to be
set up through a ServerSocket. The ConnectivityPlugin is not a Module. It
can not have a remote implementation as it provides the Connection to a
Host3.

Messages

The requests sent over Connections are packed in Messages. Messages are
used to add some meta-data about the contained Request or other payload.
Messages consist of the version code of the message, a type coding, the
length of the payload, the actual payload and a Message Authentication
Code (MAC). Their respective sizes can be fount in Table 3.1. The payload
has a variable size. The actual size is indicated by the length of the payload

3Remote access to the ConnectivityPlugin can be achieved by defining a Module which
interacts with the ConnectivityPlugin.

14

in bits. As there are 24 bits available to indicate the length of the payload,
the payload size is limited to 16,777,215 bits, or 16MiB.

Version | Type | Payload length | Payload
4bits 4bits 24bits variable

Table 3.1: The structure of a Message, with each length being indicated in
bits.

Requests

As said earlier, Requests are used to contain all required information for a
host to execute a method. They are sent by the client. They contain an
identifier, the name of the intended Module, the name of the method to
call, and all parameters for the given method along with the list of classes of
those parameters. Requests are only created by Remote implementations.
To reduce the odds that a Request is assigned the wrong values, we define
mkRequest(...) in Module to generate the Request instead. The method that
needs calling can be derived from the StackTrace. This is possible as the
method that was called on Remote is also the method that should be called
on Local. Furthermore, by implementing mkRequest(...) in Module, you can
use the type stored to indicate the Module. The intended usage of sending
a Request from a Remote implementation is shown in Figure 3.2.

public abstract class RemoteExampleModule

{ protected void someMethod(String arg) {
Core.connectivity .sendRequest (super. mkRequest (arg)) ;
}
protected void someOtherMethod (String arg, int number) {
Core.connectivity .sendRequest (super. mkRequest (arg,
number)) ;
}
}

Figure 3.2: Using mkRequest(...) every method can be implemented roughly
the same.

The offset of the method call previous to mkRequest(...) depends on
the environment it is running on. Within the environment that offset will

15

never change. To make it work on every environment, the offset to find the
correct StackTraceElement needs to be found. This is done with a one-time
operation, that is performed within mkRequest(...). If the index hasn’t been
set (equals —1) we search the obtained StackTrace for mkRequest(...). The
required index will be one greater than the index of mkRequest(...). The
implementation of mkRequest(...) is shown in 3.3

protected Request mkRequest(Serializable ... args) {
StackTraceElement [] stack = Thread.currentThread ().
getStackTrace () ;

// Determine which index is of the previous call. This
varies over different devices.
i f (STACKTRACE MODULE_.CALLINDEX =— —1){
STACKTRACE MODULE CALLINDEX = 0;
while (! stack [STACKTRACE MODULE.CALL INDEX | .
getMethodName () . equals (”mkRequest”)) {
++STACKTRACE MODULE_CALLINDEX ;

}

// We’ve found mkRequest, we want the one that sits
underneath it.
STACKTRACEMODULE_CALLINDEX++;

}

return new Request(type, stack]
STACKTRACEMODULE.CALLINDEX | . getMethodName () , args);

}

private static int STACKTRACEMODULE.CALLINDEX = —1;

Figure 3.3: The full implementation of mkRequest(...) and the required
constant STACKTRACE_MODULE_CALL_INDEX.

Result

When a Request has been executed remotely, the result needs to be reported
back. This also applies when the executed method is void, to indicate that
the call has finished. An adaption of Future called Result is used to allow
the Client to wait until the Host has performed the Request. This aspect
works exactly like a Future. When get(...) is called on a Result instance,
the current thread is locked and is released as soon as a response from the
Host has been received. When the thread is released, the returned value
is returned or the result is thrown as an FEzxception if the Host threw an
Ezception. With a Result it is not possible to cancel a request. It is however
possible to use a callback rather than blocking the thread.

An example of the usage of Results in combination with the remote
implementation of a FDC is shown in Figure 3.4.

16

public class RemoteExampleModule extends ExampleModule

{
public String getText () {
try {
return (String)Core.connectivity .sendRequest (
super . mkRequest ()) .get () ;
} catch(Exception e) { }
}
public void setText(String text) {
try {
Core.connectivity .sendRequest (super. mkRequest (
text)).get();
} catch(Exception e) { }
}
}

Figure 3.4: Example remote implementation. This is the default way that
methods should be implemented in a remote implementation.

To let Results work, it is important to know what response the Result
is waiting for. This is achieved by using the identifier of a Request. When
a Request is made, a Result object is returned. The Result will contain the
identifier of the Request. When the host responds to a Request, it will provide
the same identifier. This way the response can be linked to the Request and
thus to Result. Then the Result can be released, and any threads waiting
on the response can be notified.

3.3 Method invocation

When a Request is received by the Host, the Host needs to execute it. It uses
reflection to obtain a Method using the information provided by a Request.
This found Method can then be invoked using the arguments provided by
the Request.

17

private Object performRequest(Request request) throws

{

// The referenced Module, supplied by Core.
Module module = (Module) Core.getModule(request.module);

// Turn the given arguments into an array of classes.
// This is required to find the correct method.

Class <?7>[] parameterTypes = new Class|[request.arguments.
length |;

int index = 0;

for (Object argument : request.arguments)

parameterTypes[index++] = argument. getClass () ;

// The referenced Method, found through reflection
Method method = module. getClass () . getMethod (request . method
parameterTypes));

return method.invoke (module, request.arguments);

Figure 3.5: The method in which a received Request is executed.

Access

The approach shown in Figure 3.5 is naive. It will allow for any method
to be executed as long as it is defined within a Module. This can lead
to unwanted results if the method was not meant for remote invocation.
This can also be extended to situations where only some users should be
allowed to invoke certain methods. To guard against unwanted invocations
the concept of rights is introduced. They are strings that can be assigned to
users(connections) using a RightsProvider. A method can demand rights by
using the @DemandRights annotation. If the @DemandRights annotation
is missing, then that method is not allowed to be invoked remotely*. The
rights are not checked if the method is not invoked remotely but locally. An
example of using @DemandRights is shown in Figure 3.6.

4This is to prevent access to methods that have not explicitly been made accessible

18

public class RemoteABCModule extends ABCModule
{

// doesn’t allow remote invocation
public void A() {

}

// doesn’t require any rights
@DemandRights ({})
public void B() {

}

// only allows whoever has 7admin” and ”"owner” rights.
@DemandRights ({”admin” ,” owner” })
public void C() {

}

Figure 3.6: Example Remote implementation showing different

3.4 Test application in YARMIS

We will implement the test application using YARMIS. First off, we define
a class that extends Module and that indicates which functionality the local
and remote implementation should contain. We call this class HostModule.
In HostModule we define the ezecute method. We are also required to define
which rights are required to be allowed to execute this method. We will not
require any rights, so we set it to an empty array. We are also required to
supply a String indicating the type of this module. This is done by supplying
that String to the super constructor.

This results in the following code:

public abstract class HostModule extends Module{

public HostModule (){

super (TYPE) ;
}
@DemandRights ({}) // No specific rights required, so empty
array.

public abstract String execute(String argument);

public static final String TYPE = ” HostModule” ;

Figure 3.7: The FDC of HostModule.

19

Next we need the local and remote implementations of the HostModule.
The remote implemenation can be created easily from the Module definition.
It needs to create a Request and send that Request to the Host. Sending
a Request is done through the ConnectivityPlugin of the Core, available
through Core.connectivity. The creation of a Request is done in the Module
class, by using the stacktrace. As a result the generated code for methods is
always the same, except for the parameters passed to super.mkRequest(...).
The created code is as follows:

public class RemoteHostModule extends HostModule{

public String execute(String argument)

{

Core.connectivity .sendRequest (super . mkRequest (argument)

)

Figure 3.8: The Remote Module definition for the HostModule.

The predefined Host requires few modifications. The first modification is
that the class needs to extend HostModule. This allows the ezecute method
to be called from any Client. The second modification is that the Core
needs to be set up. This requires only two calls. The first is that needs to
be indicated that this program is a Host. This will allow Clients to setup a
connection to the Host. The second step is that needs to be indicated which
instance of any important Modules it has. Here it is limited to the local
implementation of the HostModule, in other words, the instance of Host. It
is not necessary to indicate which type of Module is being set, as the type
is already contained in Module. Note that the RemoteHostModule does not
need to be defined on the Host in this case, as the Host will only use the
local implementation(which is Host).

The full code for the Host when using YARMIS is as shown in Figure
3.9.

20

public class Host extends HostModule{

public String execute(String argument)

{
return ” Hello.”4argument ;
}
public static void Main(String [] args)
{
Host host = new Host () ;
Core.connectivity .setHost (true);
Core.setModule (host) ;
}

Figure 3.9: The code for the Host using YARMIS

For the client we use the previously defined RemoteHostModule. Here
the local implementation, in this example called Host, does not need to be
known, as it will only use the remote implementation.

The Client needs to connect to the Host, and then call execute on its Host
instance. Setting up a connection is again done through Core.connectivity.
Specifically by calling connectToHost(...) providing an ip-address. This will
create a LAN-based connection (LanConnection).

Next the RemoteHostModule needs to be registered as a Module for the
Core. This is similar to how the local implementation of HostModule has
been set in Host, with the distinction that we now need an instance of
RemoteHostModule. The resulting code is shown in Figure 3.10.

21

public class Client {

private static final String IP.HOST = 7192.168.1.17;
public static void main(String [] args)
{

Core.connectivity .connectToHost (IP.HOST) ;
Core.setModule (new RemoteTestModule());
perform () ;

Figure 3.10: The code to setup a Client using YARMIS

Lastly the implementation for perform needs to be created. In that
implementation we need to obtain a reference to the instance of HostModule,
and call execute(...) on it. This is done by requesting the Module of the
type HostModule. TYPE, and invoking execute on it, as seen in Figure 3.11.

public class Client {

private static final String IP_HOST = 7192.168.1.17;
private static final String MESSAGE = ”"world” ;

private static void perform ()

{

HostModule hostObj = (HostModule) Core. getModule (
HostModule .TYPE) ;
String result = hostObj.execute (MESSAGE) ;
System.out.println (result);

}

public static void main(String[] args)

{

Core.connectivity .connectToHost (IP.HOST) ;
Core.setModule (new RemoteTestModule());
perform () ;

Figure 3.11: The full code for the implementation of a Client using YARMIS

22

Chapter 4

Research

As could be seen earlier, RMI and YARMIS share roughly the same struc-
ture. Both require that their Host does a few basic setup steps, and then it
allows an object to be registered for remote access. The same applies to the
Client only then it doesn’t register an object but it obtains the registered
object instead

Within this chapter we’ll look at the measured values and we’ll explain
them by looking at the workings of both YARMIS and RMI. To illustrate
these workings, we’ll look at the required calls to perform the required oper-
ation!. This is visualized as a calltrace. This calltrace is displayed following
these rules:

e If a method A(...) is above method B(...) then A(...) was called
before B(...);

e If B(...) is to the right of A(...) then a call to A(...) will lead to a
call to B(...);

e If A(...) and B(...) have the same indent, then A(...) and B(...) have
been called within the same method;

e If a constructor is called we denote this as a call to INITY(...).

e If a static assignment is done without, calling a specific method, we
denote this as a call to STATIC(...).

!The RMI sourcecode has been found using http://grepcode.com. The sourcecode for
YARMIS is available through http://github.com/knoop/YARMIS

23

public abstract class C

{
private void A() {
this.B();
}
private void B() {
// Do something
}
public static void main(String[] args){
C ¢ =new C();
c.A();
}
}

Figure 4.1: A simple example program to explain how the illustrations
should be interpreted.

C.main(...
C.INIT(...
C.A(..)

C.B(...)

I
N—

Figure 4.2: A visualization of the simple example program of Figure 4.1.

This visualization can get very cluttered if we show every method call.
Hence we will include only calls that are essential, and leave out any detail
that does not contribute to the understanding

4.1 Measurement setup

As RMI and YARMIS have a similar structure, it is possible to measure how
long each system takes to complete an aspect of their respective structures.
This is done for each part used within the test application. For measuring
purposes, we let YARMIS be part of the application. This allows us to
change parts of the YARMIS code, making it possible to place more mea-
surement points within the structure of YARMIS itself. As RMI comes with
JRE, we can not do the same for RMI.

24

Measuring

For the Host there are two aspects that are measured. The first is the
amount of time it takes to setup the server to allow clients to connect. The
second aspect is the amount of time it takes to register an object to allow
remote invocation. We will refer to this aspect as binding. The former is
mostly done only once, when the program is started. The latter can be done
multiple times to allow access to multiple objects.

For clients we measure three aspects. The first is the amount of time it
takes to setup a connection with the host. The second is the amount of time
it takes to obtain a reference to an object that is available on the host. We
will refer to this aspect as lookup. The third and last aspect is the amount
of time it takes to invoke the execute method on the Host. This includes
the time it takes to send the requests over a connection (WLAN or by using
Localhost). We will refer to this aspect as execute.

The measurements to determine how much time each aspect takes are
done by querying the current time in nanoseconds before and after that
aspect is executed?. Each measurement is performed a thousand times. The
JVM has a tendency to perform optimization when it comes to repetition.
As setting up the Client and Host is not something that happens often in real
world use, we need to prevent the JVM from performing these optimization
steps. Therefore we explicitly do not do any warm-up runs, nor do we
perform measurement in repetition. Instead we completely start and stop?
the Host and Client for each measurement.

Environment

The measurements need to be performed in a controlled environment. This
is achieved by using two Raspberry Pis*. The advantage of a Raspberry Pi
over a regular desktop or server is that it is easier to let them run for long
periods of time, while only performing this task. They will switch between
hosting and being client.

4.2 Performance comparison

4.2.1 Host

As indicated before, we measure the time it takes to complete the setup for
the Host, as well as the amount of time required to bind an object to the
Host.

2A call to System.nanoTime(...) takes on average 41ns. This is neglible
3 System. exit(...)
4Only one is used for measuring time. This is a model B, with 512mb of RAM

25

System Setup Binding
RMI 2.5%10'ms | 2.8 x 10%ms
YARMIS || 3.8 % 10%ms | 7.6 * 10~ 'ms

Table 4.1: The average host setup time in milliseconds for both RMI and
YARMIS

Setup

As shown in Table 4.1 it takes RMI an average of about 25 milliseconds to
be set up. For YARMIS it takes about 380 milliseconds. This difference can
be explained by looking at the setup processes in more detail.

RMI

During this setup process two important steps are performed. First a Uni-
CastServerRef instance is created. This class inherits from the RemoteRef
interface through a super class called UniCastRef. The RemoteRef inter-
face requires that a given Method can be invoked on a Remote object. The
method provided will be the method that was invoked on a Remote object.
This method is obtained through the use of Proxies. This calltrace is also
shown in Figure 4.3. A Prozy is an implementation of an interface that is
generated at runtime. It only allows calls to the methods defined in the
interface it implements. Every time a method is invoked, its corresponding
Method instance is passed on to a InvocationHandler. How these Proxies
are used in RMI is discussed in section 4.2.2.

‘ LocateRegistry.create Registry(...) ‘

‘ RegistryImpl. INIT(...) ‘

‘ UniCastServerRef.INIT(...) ‘

‘ UniCastServerRef.setup(...) ‘

‘ UniCastServerRef.exportObject(...) ‘

‘ Util.createProzy(...) ‘

‘ Prozy.newProzylnstance(...) ‘

Figure 4.3: The calltrace of the setup process of the RMI Host.

26

YARMIS

The setup process of the Core is started when the Core is first referenced.
This is due to the fact that Core consists solely of static attributes. The
setup requires the creation of a HashMap® and a ConnectivityPlugin. The
ConnectivityPlugin requires a RequestReceiver, a RequestSender and a Con-
nectionManager. The RequestReceiver creates a Cached ThreadPool. The
RegquestSender creates a new Thread and starts it. The ConnectionManager
only creates a new HashMap. The calltrace of these calls is shown in Figure
4.4. The required times to execute each of the steps is show in Table 4.2.

| Core. STATICY...)|

| HashMap.INITY(...)|

‘ ConnectivityPlugin. INIT(...) ‘

‘ RequestReceiver.INITY(...) ‘

‘ FEzecuterService.newCached ThreadPool(...) ‘

‘ RequestSender. INIT(...) ‘

| Thread.INIT(...)|

‘ Thread.start(...) ‘

‘ ConnectionManager.INIT(...) ‘

| HashMap.INITY(...)|

Figure 4.4: The calltrace of the setup process of the YARMIS Core.

Setup (overall) | ConnectivityPlugin | RequestReceiver | RequestSender

ConnectionManager

1.6 * 102ms 8.9 % 10 ms 4.3 %10 ms 1.0 * 10%ms

1.6 %« 10 ms

Table 4.2: The average time required to pass through the different stages of
the YARMIS Core setup.

Here we see that the setup for Core is mostly dependent on the creation
of ConnectivityPlugin. The most costly operation within the construction of
ConnectivityPlugin is the creation of a RequestReceiver. The time required
by RequestReceiver is spent on creating a ThreadPool.

When the Core is setup, it also needs to be set to hosting. This is done by
telling its ConnectivityPlugin to fullfil the Host role. Within fulfillRole(...)

For mapping a String to a Module

27

checks to see if it is not already hosting are performed. If it isn’t hosting
startHosting(...) is called. The time it takes for this method to finish is what
we call Hostingstart. In startHosting(...) three steps are performed. First
all still existing connections are removed. This we’ll call Clearing. When
all connections have been removed a new Thread is created and started.
Within this Thread ConnectionManager.host(...) is called. The creation and
starting of that Thread are the last two steps we measure being Threadereqte
and Threadg,,+ respectively. The calltrace of these calls is also made visible
in Figure 4.5. We will not measure ConnectionManager.host(...). This is
due to the fact that it is not part of the setup but rather what has been set
up. Furthermore its execution has no effect on the main thread as its done
asynchronous.

‘ ConnectivityPlugin. fulfillRole(...) ‘

‘ ConnectionManager.startHosting(...) ‘

‘ ConnectionManager.removeAllConnections(...) ‘

| Thread.INITY...)|

‘ Thread.start(...) ‘

‘ ConnectionManager.host(...) ‘

Figure 4.5: The calltrace of the setup process of the YARMIS host.

Within this calltrace we’ll measure how long each of the steps takes to
set the Host up. The results can be found in Table 4.3.

Hostinggart Clearing | Thread . eate Threads;qrt
85+ 10%ms | 1.6« 10°%ms | 5.8 % 10%ms | 7.6 * 10~ 'ms

Table 4.3: The average time required to pass through the different stages of
fulfillRole(...).

Binding
RMI

Binding a Remote in RMI is done by placing that Remote in a HashTable,
using the name to bind it under as a key, and the Remote as the value. This
is done within a synchronized block. Before a Remote is bound, it is checked
that the caller is allowed to bind a Remote, by calling checking where the
request to bind came from. The calltrace is as shown in Figure 4.6.

28

‘ RegistryImpl.bind(...) ‘

‘ RegistryImpl.checkAccess(...) ‘

‘ AccessController.doPriviligedy...) ‘

‘ PriviligedExceptionAction. INIT(...) ‘

‘ Priviliged ExceptionAction.run(...) ‘

‘HashTable.get(...)‘

‘HashTable.put(...)‘

Figure 4.6: The calltrace for binding in YARMIS.

YARMIS

Binding a Module in YARMIS is done by placing the Module inside a
HashMap that is inside Core. The type of the Module is used as the key,
and the Module itself as the value. The Module that is replaced will be no-
tified by calling dismiss(...), and subsequently onDismiss(...) for extensions
of Module, to perform required operations. The new HashMap is notified
by calling bind(...) which calls onBind(...). This is shown in Figure 4.7.
It is susceptible to the implementation of onDismiss(...) and onBindy(...).
If extensions perform heavy operations in these calls, then the overall time
required to bind a Module will be higher.

‘ Core.setModule(...)‘

‘ HashMap.remove(...) ‘

‘Module.dismz’ss(...)‘

‘ Module.onDismiss(...) ‘

‘ HashMap.put(...) ‘

| Module.bindy...) |

‘Module.oand(...)‘

Figure 4.7: The calltrace for binding in YARMIS.

Based on the small implementation differences the time gain by YARMIS
should be sought in the lack of synchronization and the use of a HashMap.

29

In principle the lack of synchronization isn’t as disastrous as it might appear.
It is true that YARMIS uses multiple threads to handle the different Clients
a Host can be connected to. This multi-threaded system doesn’t pose an
immediate problem, Core can only be accessed locally. It is however possible
to use multiple threads to access the Core locally, which will still require
synchronization, making the YARMIS approach more similar to RMI.

Invocation

Both systems require a way for the Host to get from a received request for
invocation to actual invocation. These steps happen in the background. As
a result it is not possible to measure the amount of time RMI spends to
turn a request into actual invocation. A comparison between the required
method calls can still be made.

RMI

For RMI the process starts with a call to TCPTransport.handleMessage(...).
Here it is checked whether the incoming message is a RMI call. If it
is, it is passed to Transport where a security check is performed using
AccessController. The received call is then dispatched to UnicastServer-
RefS. The UnicastServerRef holds a mapping to identify Methods by their
hash (stored as long). Specifically, it is a WeakClassHashMap that maps
the Class of the referenced object to a mapping from the hash to the corre-
sponding Method. The referenced object is identified using its id. When the
Method is found, it is invoked on the reference object using the parameters
provided by the incoming call. The result of this invocation (if any) is then
sent back. This calltrace is shown in Figure 4.4.

The previously mentioned WeakClassHashMap is extended by Hash-
ToMethod_MAPS. 1t is used as a cache. If a Class is known, it will return the
mapping as expected. Whenever a Class is requested that isn’t yet mapped,
it will create a new empty mapping from Long to Method. It then fills
this mapping as follows. It will traverse each interface defined in that class.
For each interface that extends Remote, it will calculate the hash of each
Method, and store that hash along with the Method in the mapping. Fur-
thermore, it will indicate to the AccessController that this method should
be accessible. Once it is done iterating over all interfaces of the given Class,
it will move on to the super class and repeat the process.

Once this process is done, every method that is defined by a Remote
interface is made accessible and will be stored in the mapping, using its
hash as the key. This makes it possible for RMI to find a Method based on
a hash.

5As UnicastServerRef an implementation of Dispatcher and is the provided Dispatcher

30

‘ TCPTransport.handleMessage(...) ‘

‘ Transport.serviceCall(...) ‘

‘ ObjectTable.getTarget(...) ‘

‘ Target.getImpl(...) ‘

‘java. security. AccessController.doPriviligedy...) ‘

‘ Priviliged ExceptionAction.run(...) ‘

‘ TCPTransport.checkAcceptPermission...) ‘

‘ ConnectionHandler.checkAcceptPermission(...) ‘

‘ SecurityManager.checkAccept(...) ‘

‘ Target.getDispatcher(...) ‘

‘ UnicastServerRef.dispatch(...) ‘

‘ HashToMethod_Maps.get(...) ‘

‘ Method.invoke(...) ‘

‘ UnicastServerRef.marshal Value(...) ‘

Figure 4.8: The calltrace of the invocation process of the RMI Host.

YARMIS

In YARMIS the process of invoking a method on the Host from a received
message starts with a ConnectionReader. A ConnectionReader reads data
from the Connection that it is assigned to. When a Message is received over
that Connection, it unpacks that Message and inspects its payload. In this
context the payload will be a Request, as only Requests can be executed. The
other option, Response, is used to be notified of the outcome of a Request
that was sent.

The received Request is sent to the ConnectivityPlugin to be processed
by its RequestHandler. The RequestHandler will create a RequestRunner
that will run the Request. This RequestRunner is then placed in a queue to
be executed by a EzrecutorService. This allows the ConnectionReader to be
ready for new input. The calltrace is shown in Figure 4.9.

31

‘ ConnectionReader.run(...) ‘

‘ ConnectionReader.safeConvertInput(...) ‘

‘ ConnectivityPlugin.handleRequest(...) ‘

‘ RequestHandler.handleRequest(...) ‘

‘ RequestRunner.INIT(...) ‘

‘ FEzxecuterService.execute(...) ‘

Figure 4.9: The calltrace of the invocation process of the YARMIS Host up
to the placement in the executor queue.

After the RequestRunner is placed in the queue, it will be executed.
First it makes a call to get the rights that are assigned to the Connection
that made the Request. Then it finds the Method that is mentioned in the
Request. To do so, it obtains an instance of the Module mentioned in the
Request, and looks for the correct combination of the method name provided
by the Request as well as the type of the provided arguments. When this
Method is obtained, it compares the rights required” with the rights that
are assigned to the Connection. If the Connection is assigned the required
rights, the Method is invoked using the arguments stored in the Request. The
return value is then packed and sent back to the connection. This calltrace
is shown in Figure 4.10.

"These rights come from the @DemandRights annotation

32

‘ RequestRunner.run(...) ‘

‘ ConnectivityPlugin.getRights(...) ‘

‘ RightsProvider.getRights(...) ‘

‘ RequestRunner.performRequest(...) ‘

‘ RequestRunner.findMethod(...) ‘

‘ RequestRunner.isMethodCallPermitted(...) ‘

‘ Method.invoke(...) ‘

‘Response.INIT(...)‘

‘ Connection.sendResponse(...) ‘

Figure 4.10: The calltrace of the invocation process of the YARMIS Host
when a request is taken from the queue and executed.

The time it requires to perform a request is shown in Table 4.4. The
start is seen as when the Host first knows that it has received a Request.
At this point it has already read the InputStream. The amount of time
between placing a RequestRunner in the queue, and its run(...) method
being called is indicated as queue. The amount of time required to use the
Request to find the referenced Method and invoking that Method is indicated
as textitperform. The time it takes for the result to be converted to a byte
array is expressed as converting. The last step is self explanatory.

Total queue perform | converting sending
1.8 % 10'ms | 1.2 10%ms | 2.3 10%ms | 2.0 x 10°ms | 1.2 % 10'ms

Table 4.4: The average time required to pass through the different stages of
performing a Request.

4.2.2 Client

As indicated earlier, we measure three aspects for the Client. These aspects
are the setup, the lookup, and the execute processes.

33

System Setup Lookup Execute
RMI}car 5,9%102ms | 9,0%10% ms | 1,4 % 10! ms
YARMIS;pcai 7,8%10%ms | 3,6 107" ms | 9,4 * 10% ms
RMIw AN 5,9%102ms | 9,1%10%ms | 2,1 % 10! ms
YARMISwran || 3,8 102 ms | 2,5+ 107" ms | 5,0 % 10? ms

Figure 4.11: The average time it takes in milliseconds for processes of the
client to finish for both RMI and YARMIS

As shown in Table 4.11 the differences between RMI and YARMIS are quite
large. The performance differences are explained below using the workings
of RMI and YARMIS. We'll first explain the difference between the two
systems regarding the setup process. Due to a dependency between lookup
and execute for RMI, we’ll then look at the execute process before looking
at lookup.

Setup
RMI

The setup time for a Client in RMI is confined to getting a reference to
a Registry. In RMI the Registry with registered objects is stored on the
Host. The Registry that the Client uses is only a reference to the Registry
stored on the Host. So Registry is a Remote object that allows access to
other Remote objects. The usual way for obtaining a Remote object is not
possible here as it is the Registry that we are trying to obtain. So for this
situation LocateRegistry must create a Proxy that forwards all calls to the
Registry on the Host.

‘ LocateRegistry.getRegistry(...) ‘

| UniCastRef. INITY(...)|

‘ Util.createProzy(...) ‘

‘ Proxy.newProxylnstance(...) ‘

Figure 4.12: The calltrace of the setup process of the RMI Client.

YARMIS

For YARMIS we need to first initialize the Core, this is done automatically
when Core is referenced for the first time. This setup has been explained in
Section 4.2.1 and will not be explained here.

34

When the Core is setup, the Client needs to connect to a Host. This will
create a new LanConnection using a created Socket. When this Connection
is created, it is registered as an active connection within the Connection-
Manager.

‘ ConnectivityPlugin.connect ToHost(...) ‘

| Socket. INITY...)|

‘ ConnectivityPlugin.read PKF(...) ‘

‘ InetAddress.getHostName(...) ‘

‘ LanConnection.INIT(...) ‘

‘ ConnectionManager.addConnection(...) ‘

‘HashMap.put(...)‘

Figure 4.13: The calltrace of the setup process of the YARMIS Client.

We measure the amount of time it requires to perform each of these calls.
The measured times per part can be found in Table 4.5.

Total Socket, readPKF | LanConnection | addConnection

2.8 %10%ms | 1.9 % 10%ms | 5.3 * 10 ms 3.2 % 101 ms 4.7% 10" ms

Table 4.5: The average time required to pass through the different stages of
the call to connectToHost(...).

The setup time for a client is quite similar for RMI and YARMIS, being
in favor of YARMIS by about 100ms. An important difference between the
two systems during setup is that RMI requires much more communication
to the Host. YARMIS doesn’t require any communication by itself. So while
the setup of Core takes a lot of time, it is compensated by requiring virtually
no communication with the Host.

Execute
RMI

RMI uses Prozy to create remote references to objects. These proxies are
always assigned a RemoteObjectInvocationHandler to handle any method
calls. In handling these methods a distinction is made between methods
whose methods are declared by Object, and those declared by other classes.
The latter are always sent to the Host. The former are given a special

35

treatment. For instance, equals(...) is used to let the Prozy of an instance
be equal to that instance.

Sending an invocation call

The methods intended for remote invocation are passed to a UnicastRef.
This can either be a default instance of UnicastRef or a stub. Both provide
the functionality required to invoke a given method on the Host. While
UnicastRef can be used to handle calls to any class, a stub is defined by the
developer for a specific class. In this example we will not define a stub and
use the default instance of UnicastRef instead.

UnicastRef uses a StreamRemoteCall to allow invocation on a remote
object. When a StreamRemoteCall is created, it tells the Host that it is
about to invoke a method on a registered object. This is indicated by sending
three messages. The first is an identifier of the registered object on which a
method should be invoked. The second message sent is the operation type.
The final message is the hash of the method that was invoked on the Client.
This hash is calculated by Util.computeMethodHash(...). For performance
improvement, this hash is cached within RemoteObjectInvocationHandler.

Initially, no arguments are sent. With the data that has been sent, the
Host can prepare the call by obtaining the referenced object, as well as the
referenced method. This method is sent as its own hash. As demonstrated
in Section 4.2.1, the method can be found on the Host using that hash. This
allows for a limited amount of data to be required for the Host to be able
to know which method should be used.

Arguments

As the next step the arguments need to be send to the Host. This is done us-
ing an ObjectOutput which is obtained through the StreamRemoteCall. This
is used to marshal the arguments, and then to sent them to the Host. The ar-
guments to a method call are passed during the call to UnicastRef.invoke(...)
by calling marshalValue(...) for each argument.

Finishing

When all arguments are sent, the request for execution is finished by calling
executeCall(...) on the StreamRemoteCall. This will wait for the return
type to be sent back from the Host. This return type indicates whether
the execution finished successfully, or with an exception. In case of the
latter, the Ezception that was thrown on the Host is unmarshalled and
thrown on the Client too. In case of the former, the call to executeCall(...)
finishes. If required, the object returned by the Host will be unmarshalled
from the StreamRemoteCall’s InputStream and is returned, thus ending the
invocation process.

36

This procedure is shown in Figure 4.14.

‘ Host.execute(...) ‘

‘ RemoteObjectInvocationHandler.invoke(...) ‘

‘ RemoteObjectInvocationHandler.invoke RemoteMethod(...) ‘

‘ UnicastRef.invoke(...) ‘

‘ StreamRemoteCall. INIT(...) ‘

‘ ObjID.wm'te(...)‘

‘ ConnectionOutputStream.write(...) ‘

‘ UnicastRef.marshal Value(...) ‘

‘ ObjectOutput.write(...) ‘

‘ StreamRemoteCall.executeCall(...) ‘

‘ UnicastRef.unmarshal Value(...) ‘

‘ ObjectInput.readObject(...) ‘

Figure 4.14: The calltrace of the remote execution process of the RMI client.
The calltrace of calling ezecute(...) on a remote instance of Host.

YARMIS

The first step for remote execution in YARMIS is creating a Request. This
Request is then added to a queue to be send over a Connection. When the
Request is added to the queue, a Result is provided. This Result is then used
to wait for the response of the Host. It blocks the current Thread, and will
be released when a response has been received. The sending of a Request
from the queue is done in a separate Thread.

37

‘ RemoteHostModule.execute(...) ‘

‘ Module.mkRequest(...) ‘

‘Request.[NIT(...)‘

‘ ConnectivityPlugin.send...) ‘

‘ RequestSender.send(...) ‘

‘Element.[NIT(...)‘

| Result. INIT(...)|

| LinkedList.addLast/(...)|

‘ LinkedList.notify(...) ‘

Result.get(...)

Figure 4.15: The calltrace of the remote execution process of the YARMIS
Client. Not shown here is the asynchronous sending process. This is instead
shown in Figure 4.16

The asynchronous sending of Requests is done through the Request-
Sender. The RequestSender will send each element of its queue to the
required Connection. A part of sending Requests is placing it in a Mes-
sage. When a Request is placed in a Message, a byte representation of the
Request is created as well. This is shown in Figure 4.15.

‘ LinkedList.wait(...) ‘

‘ RequestSender.getNext(...) ‘

‘ Connection.sendRequest(...) ‘

‘ Connection.turnToByteArray(...) ‘

‘ Connection.send(...) ‘

‘Message.]N[T(...)‘

‘ Message.makeHeader(...) ‘

‘ OutputStream.write(...) ‘

Figure 4.16: The calltrace of the remote execution process of the YARMIS
client.

38

Lookup
RMI

In RMI objects need to be looked up through Registries. As indicated
earlier, Registry is a remote object. The calltrace of the lookup(...) call is
therefore nearly identical to that of ezecute(...). The only difference being
that the first called method is lookup(...). The calltrace of lookup(...) can
be found in Figure 4.17..

‘ RegistryImpl.lookup(...) ‘

‘ RemoteObjectInvocationHandler.invoke(...) ‘

‘ RemoteObjectInvocationHandler.invoke RemoteMethod(...) ‘

‘ UnicastRef.invoke(...) ‘

‘ StreamRemoteCall. INIT(...) ‘

| ObID. write(...) |

‘ ConnectionOutputStream.write(...) ‘

‘ UnicastRef.marshal Value(...) ‘

‘ ObjectOutput.write(...) ‘

‘ StreamRemoteCall.executeCall(...) ‘

‘ UnicastRef.unmarshal Value(...) ‘

‘ ObjectInput.readObject(...) ‘

Figure 4.17: The calltrace of the lookup process of the RMI Client. Note
that calltrace is, apart from the first call, identical to the one displayed in
4.14

YARMIS

The required amount of steps to look up a Module on YARMIS is much
lower. YARMIS keeps local references for remote objects, therefore it does
not require any communication between the Client and Host. It is nothing
more than interacting with a HashMap to either store or obtain a Module
instance, albeit through a synchronized block. The calltrace can be seen in
4.18. The fact that YARMIS is not only simpler, but also doesn’t require
communication makes it many times faster than RMI, as can be seen in
Table 4.11.

39

‘ Core.getModule(...)‘

‘ HashMap.get(...) ‘

Figure 4.18: The calltrace of the look up process of the YARMIS client.

4.3 Limitations comparison

Method selection

YARMIS contains an important flaw. Whenever arguments are casted, be
it explicitly or implicitly, then the wrong method will be called. This is due
to the fact that YARMIS uses a combination of a method name, as well
as the class of the given arguments to determine which method should be
invoked. If the classes of the given arguments does not exactly match the
method signature then the call on the Host will be to the wrong method.

Consider the following example. Suppose that we have defined the
method method(Object obj) for remote invocation. We call this method,
providing a String as an argument. A Request containing the method name
("method”) and the parameter type will be send to the Host. The Host will
then try to find a Method with the name ”method” and as argument type
String. Then either the method won’t be found, or the wrong method is
found. Either way this is an unwanted outcome.

To fix this problem, the Host needs to know the correct method signa-
ture. This can not be derived from the provided arguments alone, as we do
not know to which class each argument was casted. This is due to the fact
that casting is only used at compile time to determine which method should
be invoked [4]. As a result we need to provide the correct signature, by
indicating what the expected classes are of arguments. For this we expand
Request and mkRequest(...) to require an array of classes. We then supply
the expected classes at compile time. The resulting implementation for a
remote instance is shown in Figure 4.19. When a Request is being performed
at the Host, it no longer uses the classes of the arguments, but rather this

supplied array of classes.

40

public void method(Object value) {
super . mkRequest (new Class <?>[]{Object.class}, value);
}

public void method(String value) {
super . mkRequest (new Class <?>[]{String.class}, value);
}

Figure 4.19: A very simple example program to show how the improvement
works client side.

In RMI this problem doesn’t exist. RMI identifies methods differently,
removing the need to know the exact parameters. The solution RMI presents
isn’t applicable for YARMIS. RMI hinges on the fact that it receives a
Method instance from a Proxy. On the Host this Method can be used to
identify and invoke the correct Method®. YARMIS can’t use Prozies due
to the fact that the FDCs are abstract classes instead of interfaces. This
makes it infeasible to obtain the actual Method. Instead only to the name
of the method can be obtained, using the stack trace.

It is not entirely impossible to obtain the called Method without the use
of a Prozy. Anonymous classes have a property called EnclosingMethod.
This is the Method instance in which the anonymous class was created. By
adding the call Method m = (new Object()).getClass().getEnclosingMethod()
m will contain the Method that this code was executed in. This solution is
however a hack, and shouldn’t be used to solve the problem.

Garbage Collection

RMI uses Distributed Garbage Collection to perform garbage collection on
objects registered in Registries. If remotely available objects are no longer
referenced on any machine then they will be garbage collected.

This functionality does not exist in YARMIS. The reason lies in the in-
tended usage of YARMIS. Modules are intended to provide the functionality
of an application. You usually don’t throw functionality away. This is why
Core is designed to hold only one Module of each type. It can be used to
hold multiple objects, but each of them will need to provide a different type
when they are registered on the Host.

If the necessity arises to create and discard a lot of different Modules
then this means that either YARMIS wasn’t used as intended, or that a lot
of switching between being a Host or Client is happening. The latter isn’t
a problem as long as the user does not hold on to instances of Modules, but
instead calls Core.getModule(...) each time it needs a specific Module. Core

8This is a simplified run-down. See Section 4.2.2 and Section 4.2.1 for a more detailed
explanation.

41

does not hold on to an old Module so as long as the application doesn’t
either, it will be garbage collected.

Access control

RMI and YARMIS can both use the standard SecurityManager. This can
check whether the running thread is granted the required Permissions to
perform a certain operation. Many basic Permissions have been prede-
fined, but it is also possible to create custom Permissions. The granted
Permissions depend on the active Policy.

Guarding methods from unintented invocation

RMI checks that a requested method is allowed to be invoked. This is
done by checking that the referenced method is required by an interface
that extends Remote. If this isn’t the case then the call is forbidden. This
situation can happen when a remotely accessible object implements other
interfaces or extends other classes. If these classes were not intended for
remote invocation, then the method shouldn’t be allowed to be invoked.

YARMIS’ rights system is used to provide the same security. Allowed
calls however are not linked to their class but to whether they have the @De-
mandRights annotation. This would also allow methods that are not defined
in an FDC to be invoked if they have the @DemandRights annotation.

User groups

Unlike with RMI, YARMIS’ rights system also makes it possible to let access
be specified for user groups” or individual users'®. This can be useful if you
want to have an Administrator who has the rights to change settings of the
application, while other users do not have those rights. It can also be used
to enforce that someone is a registered user to be able to do anything on the
Host.

This system is not perfect due to the fact that its security checks are
very superficial. Only the first method call is checked. This allows for a
security breach in case that a non (or limited) secured method calls a high
secured method. The security of the second method is then not checked,
while the first method is allowed to be invoked by (nearly) everyone. It is
essential that the rights required to execute specific methods are well chosen
to prevent these kind of situations.

9 Assign a right to multiple users
10 Assign a right to a single user.

42

Chapter 5

Related Work

RMI has been compared before. Govindaraju et al [5] have looked at whether
it is feasible to use RMI in a scientific environment. They have investigated
whether SOAP RMI, which is RMI that serializes to SOAP rather than use
the default serialization. [5]. They have shown that RMI outperforms SOAP
RMI. This has been attributed to the fact that XML is an inefficient data
format. It is also shown that RMI outperforms nezxusRMI.

Juric et al [7] have compared RMI different methods to let RMI work
over firewalls and proxies. They compared plain RMI with HTTP-to-port,
HTTP-to-GCI and Java Web Services. They have shown that plain RMI for
the most part outperforms the other techniques. They have measured the
performance for sending different datatypes, which lets it be more indicative
than using only one datatype. With these measurements, Java Web Services
has been found to be the best alternative out of the investigated options.

43

Chapter 6

Conclusions

YARMIS provides a few advantages over RMI. It is quicker in allowing you
to access remote objects. It also supports more security by letting rights
be assigned to different users. However, the execution of remote methods
happens significantly slower. Worse is the fact that YARMIS will not always
find the correct method, and might even invoke the wrong method.

As it stands now, YARMIS is better of as a special version of RMI. The
underlying functionality of RMI can be used, while YARMIS’ Modules and
Core can function as a replacement for Registry and Remote. Otherwise
YARMIS has to be significantly improved, to let its unique features make
it stand out, rather than having its flaws make it unusable. This can be
achieved by incorporating Proxy and using to to create the remote instances
for Modules. This would remove the necessity of user defined remote imple-
mentations. This can also remove the necessity to manually set an instance
of a local or remote implementation of a Module. This can be achieved by
letting the Module contain the local implementation and the Prozy. If the
Module then forwards every call to the correct instance, switching between
local and remote can be limited to telling the Module to flip a boolean.

YARMIS is already dynamic in the sense of remote versus local. If it
came overcome its flaws then it will truly be a dynamic alternative to RMI.

44

Bibliography

1]

Common object request broker architecture (corba) specification, version
3.3. Technical report, OMG.

Corba specification. Technical report, Object Management Group.
Rmi specification. Technical report, Oracle.

J Gosling, B Joy, G Steele, G Bracha, and A Buckley. The java language
specification java se 7.0 edition. Technical report, Oracle.

Madhusudhan Govindaraju, Aleksander Slominski, Venkatesh Chop-
pella, Randall Bramley, and Dennis Gannon. Requirements for and eval-
uation of rmi protocols for scientific computing. In Proceedings of the
2000 ACM/IEEE conference on Supercomputing, page 61. IEEE Com-
puter Society, 2000.

Object Management Group. History of corba, 2014.

Matjaz B Juric, Bostjan Kezmah, Marjan Hericko, Ivan Rozman, and
Ivan Vezocnik. Java rmi, rmi tunneling and web services comparison and

performance analysis. ACM Sigplan Notices, 39(5):58-65, 2004.

45

Appendix A

Measurements

A.1 RMI

Host
Measurement | average value (ns)
presetup 47.733
midsetup 25.046.286
postsetup 27.858.496

Client
Measurement | average value (ns)
presetup 0
postsetup 587.620.984
prelookup 587.681.003
postlookup 1.499.279.278
preexecute 1.499.333.183
postexecute 1.520.306.007

46

A.2 YARMIS

Host

For YARMIS the measurement is more detailed. The first Host measurement
for YARMIS is a detailed look at the setup.

The second measurement is about how much time it takes to execute
an incoming Request. The naming for measurements is less obvious. The
measurement points are as follows:

e start/0: ConnectionReader.run(...), when it is known that received is
an instance of Request.

e requestpreperform: RequestRunner.run(...), immediately.

e requesthandled: RequestRunner.run(...), before the call to connec-
tion.sendResponse.

e preconvert: Connection.sendResponse(...), before the call to turnTo-
ByteArray(...).

e presendbyte: Connection.sendResponse(...), after the call to turnTo-
ByteArray(...), before the call to send(...).

e responsesend: Connection.sendResponse(...), after the call to send(...).

47

Setup

Measurement average value (ns)
presetup 50.880
precoresetup 76.495
preconnectivitypluginconstructor 67.115.610
prerequestreceiverconstructor 78.978.580
postrequestreceiverconstructor 122.404.317
prerequestsenderconstructor 139.274.580
prerequestsenderstart 139.536.222
postrequestsenderstart 140.296.468
postrequestsenderconstructor 140.358.453
preconnectionmanagerconstructor 156.208.045
postconnectionmanagerconstructor 156.392.918
postconnectivitypluginconstructor 156.448.542
postcoresetup 156.547.288
prerolesetup 156.574.420
postrolesetup 167.687.181
prestarthosting 168.204.744
preremoveconnections 168.309.699
postremoveconnections 169.958.593
precreatethread 170.010.992
postcreatethread 175.779.987
prestartthread 175.833.109
poststartthread 176.592.466
poststarthosting 176.662.164
midsetup 176.696.918
postsetup 177.306.328

performing Request

Measurement average value (ns)
requestpreperform 1.249.139
requesthandled 3.583.698
preconvert 3.616.730
presendbyte 5.613.969
responsesend 18.307.721

48

Client

The Client has also been measured more extensively for YARMIS. In the
first measurement the setup is measured. The second measurement is a
detailed look at what happens when a remote method is invoked.

Setup
Measurement average value (ns)
presetup 107.563
precoresetup 170.178
postcoresetup 162.250.999
presetmodule 162.330.467
postsetmodule 164.575.267
preconnecttohost 164.660.869
presocketconstructor 165.035.447
postsocketconstructor 353.116.311
prelanconnectionconstructor 406.377.113
postlanconnectionconstructor 439.056.376
preaddconnection 439.161.715
postaddconnection 439.635.154
postconnecttohost 439.687.867
postsetup 439.178.699

49

Making Request

Measurement average value (ns)
postsetup 379.623.735
prelookup 379.723.042
postlookup 379.958.029
preexecute 380.032.854
premkrequest 380.148.265
postmkrequest 394.548.714
presendrequest 394.663.485
postsendrequest 417.780.199
preunpackresult 417.882.035
prereceived 418.026.926
postreceived 877.292.590
postunpackresult 877.400.304
postexecute 877.439.045

50

Appendix B

UML

The full UML Diagram of YARMIS is shown below. for readability, larger
versions have been included after the full view.

Full view

Comectioareger
o - i b Gomecion

- CONNEGTNS Mapsting,Connacion» pr— Reawesthecater
4 ANDLER Rocestocomer sGosesoseen BT —
' SENDER RonenSander e St sune

emovenrCamacson) -vod frse—
" Sonaprovdar Rinaprovie e % Cormeciont

- SoaComecianiConecan o [E—— e L P—
R:ie emoveGommecsonnns) voa Gompaoreant npusrean
|+ ALss HOST:aying - removeConnection(Connection) : void # getOutputStreamy) : OutputStream.

et S — *Caseian) w00
-+ ConneciviyPluging - hos0 - vo + getPublickeyFingerprint) :Sting [
hanonequesiequest Comnecion) v o) vad e] —

& " - sopHosing) :boolean -+ block() -void
S sonRaaves,Comacton) os s spios) v]
s bt Rocunsiunr ciosa) oean HEAOER e
- sen P ro) - Res send| void - PAYLOAD
. SorionaComerao) LicSung> [— R B 080 by
| oo oo vio e o | ancRoqestRoes s Rre—
Gacomnecionng) o . : s o
st s e e —p— o | esnaeoyel bl oy e
- Gacomectromliooosan s i v - ersaon
-+ connectToHostSting) - vo - isMetoaCalPermited(iehod, List<Sving : boolean + Mesmooiee. bren iy o)
comectorossung. i) vo . GobmaanoRGalenod LS e Mossageen
Method + toByteArray() : bytel] .
+ getconnectionCount(:int L Inekietieardosgel, I booke Vol
Wi vod
1 [orncs. erscoRenar
RequestSender + RESULT : Object MessageReadar
= REQUEST Paauen

+ toSting() - Sting - Response(Request. Object paret
|+ equals(Ovject) : boolean ~ Response(Request, Object, int)
|+ hashCode(:int +isSet(iny) - boolean

ComectionRsadar

+ getRights(Connection, boolean) : List<Sting> J—

Sement + ConnectonReader
Core + REQUEST :Roquest -+ un :void

+ RESULT : Result !
+ COMNECTVINY . ConneciiPluain + CONNEGTION : Connection saveConvertiputtoyl) : Object
- MoDuLES Mol
getogulSting) :Module etertace> ent(Roguest, Connecton)

- loar() :void
-+ setle(Fole) :void 0

H : .

o
23

Rosut

- sinusa -boolean

TYPE Sving - rosuit Object

- STACKTRACE MODULE CALL INDEX.:ini - excoptonNeedsThrowing : boolean
Jean

Modulo(sving) callbacks :Lisi<OnRosuReceivedLisieners

- bind) :void

onind) :void - Resut)

- dsmiss() -void - get) : Ovject

#isinUse) -boolea

n - set(Response) -void
mkFoquestiSoralizable.) :Fequest

o1

ConnectivityPlugin

HANDLER : RequestReceiver

SENDER : RequestSender

CONNECTIONMANAGER : ConnectionManager
- rightsProvider : RightsProvider

+PORT :int

+ALIAS HOST : String

+ ConnectivityPlugin()

+ handleRequest(Request, Connection) : void

+ handleResponse (Response) : void

+ handleFailedConnection(Connection, Exception) : void
+ send(Request, Connection) : Result

+ send(Request) : Result

+ send(Request, String) : Result

+ getRights(Connection) : List<String>

+ setRightsProvider(RightsProvider) : void

+ disconnect(String) : void

+ disconnectFromHost() : void

+ disconnectFromAll(boolean) : void

+ connectToHost(String) : void

+ connectToHost(String, int) : void

+ getConnection(String) : Connection

+ getConnections() : Set<Entry<String, Connection>>
+ getconnectionCount() : int

+ fulfillRole(Role) : void

ConnectionManager

- isHosting : boolean
- stop : boolean
- CONNECTIONS : Map<String, Connection>

o
T

- ConnectionManager()

- removeAllConnections() : void

- addConnection(Connection) : void

- removeConnection(String) : void

- removeConnection(Connection) : void

- getConnections() : Set<Entry<String, Connection>>
- host() : void

- startHosting() : boolean

- stopHosting() : boolean

RequestRunner

+ REQUEST : Request
+ CONNECTION : Connection

- RequestRunner(Request, Connection)

+run() : void

- isMethodCallPermitted(Method, List<String>) : boolean

- getMissingRights(Method, List<String>) : List<String>

- findMethod(Class<? extends Module>, Request) : Method
- performRequest(Request, List<String>) : Object

r

+ createDefaultRightsProvider() : RightsProvider T—
¢
RequestSender
Request
- requestSender: Thread
- ORDER : LinkedList<Element> +ID : String
- PENDING : HashMap<Request, Element> J +MODULE : String
+METHOD : String
+ RequestSender() + ARGUMENTS : Serializable[]
+ send(Request, Connection) 0.+
- getNext() : Element ~ Request(String, String, Serializable[])
+ report(Response) : void + toString() : String

+ clear() : void

+ equals(Object) : boolean

+hashCode() :int

<<Interface>>
> RightsProvider
h
+ getRights(Connection, boolean) : List<String>

Element

Core

+ CONNECTIVITY : ConnectivityPlugin
- MODULES : HashMap<String. Module>

+ REQUEST : Request
+RESULT : Result 1
+ CONNECTION : Connection

K <<Interface>> - Element(Request, Connection)
+ getModule(String) : Module o . . » Y
X nResultReceivedListener - :
+ setModule(Module) : void) '(;T:;:(B@j:&onse) tvoid

+ setRole(Role) : void

0 Module

-isinUse : boolean
+TYPE : String
- STACKTRACE MODULE CALL INDEX :int

Module(String)

~ bind() : void

onBind() : void

~ dismiss() : void

onDismiss() : void

#islnUse() : boolean

mkRequest(Serializable...) : Request

+ onResultReceived(Object): void
ﬁ/ + onResultFailed(Exception): void
0. 1

Result

- result: Object

- exceptionNeedsThrowing : boolean

- hasReleased : boolean

- callbacks : List<OnResultReceivedListener>

~ Result()

+get() : Object

+ addOnResultReceivedListener(OnResultReceivedListener) : void
~ set(Response) : void

92

Connection

~isClosed: boolean
~ isBlocked : boolean
- PUBLICKEYFINGERPRINT : String

+ Connection(String)

getinputStream() : InputStream

getOutputStream() : OutputStream
closelnner() : void

———>>{ + getPublicKeyFingerprint() : String <

+ close() : void

+ block() : void

+ unblock() : void

+ isBlocked() : boolean
+isClosed() : boolean

- send(byte[]) : void

+ sendRequest(Request) : void

+ sendResponse(Response) : void
+ turnToByteArray(Object) : byte[]
+ turnToObject(byte[]) : Object

RequestReceiver
- requestHandlers: ExecutorService

+ RequestReceiver()
+ handleRequest(Request, Connection)

Message

- VERSION: int
-LENGTH :int

- HEADER : byte]]
- PAYLOAD : byte]]

+Message
+Message
+ Message(byte[], byte[], byte[], byte[])

+ Message(byte[], byte[], byte[])

+ Message(int, byte[], byte[], byte[])

+ fromByteArray(byte[]. byte[]) : Message

+ toByteArray() : byte[]

- makeHeader(int, int, boolean, boolean) : byte[]

byte[l)
int, byte[])

Response

+FLAGS :int

+ RESULT : Object

+ REQUEST : Request

+FLAG THROW EXCEPTION :int
+FLAG INVALID REQUEST :int
+FLAG UNAUTHORIZE REQUEST :int
+FLAG TREATED AS SPAM :int
+CLEAR :int

~ Response(Request)

~ Response(Request, Object)

~ Response(Request, Object, int)
+isSet(int) : boolean

MessageReader

- VERSION: int
-LENGTH :int

- TYPE :int

- PAYLOAD : byte][]

+ MessageReader(byte[])

+ parse(InputStream) : Message

- parseHeader(InputStream) : void

- getBitBlocks(intf], InputStream) : intf]

ConnectionReader
- mr : MessageReader

+ ConnectionReader

+run() : void

- safeGetInput() : Message

- saveConvertinput(byte[]) : Object

