BACHELOR THESIS
COMPUTER SCIENCE

Fia:

a
é\9 Ny
S
orrer

MiNe €

RADBOUD UNIVERSITY

Security analysis of the IRMA app
using SPARTA and fuzzing

Author: SUPervisor/assessor:
Laurens Brinker Erik Poll
4361733

Second assessor:
Aleks Kissinger

September 5, 2016

Abstract

This paper discusses a security analysis of the Android-application called
CardProzy. This application is created by the IRMA (I Reveal My At-
tributes) project to be able to prove certain personal attributes (e.g. your
age) that are stored on a smart card. The purpose of this research is not to
check this specific application, but to see if the chosen methods can be used
to analyze an application that handles sensitive data like CardProxy. Also,
we did not focus on the underlying (cryptographic) security, but more on the
security of the implementation. This means we will not analyze the security
protocols that were used for purposes like encryption, but the usage of these
protocols and implementations in the context of the CardProxy application.
To clarify: Even if the cryptographic protocols behind IRMA are secure, a
buggy implementation can still contain security flaws.

The information handled by the CardProxy can be very sensitive, therefore
it is of great importance that the confidentiality of such data is guaranteed.
There are multiple ways of analyzing an app’s behaviors, but this research
was primarily focused on an annotation based analysis for information flows.
The specific tool that was used was SPARTA. Using this tool, we analyzed
the source-code to investigate information-flow related security properties
without needing to run the application. The second technique we wanted to
use was dynamic program analysis. This is a process where one can provide
and even automate some input and observe the application’s behavior. The
goal of this technique is to see if this will lead to unexpected (undesirable)
behavior. Given that the CardProxy app is very security-sensitive, it is of
great importance to investigate techniques to detect security flaws, or to
prove the absence of certain types of flaws.

During the course of research we found that getting SPARTA to work with
CardProxy was quite a problem because CardProxy is built using Gradle.
We found that CardProxy contains some debug-code that should be removed
because it logs the user’s pin-code. SPARTA also successfully detects this
code. We also concluded that using automated programs to do dynamic
analysis is a bit more complicated because our NFC-traffic has to be emu-
lated. Our research will primarily focus on the question if our chosen tools,
with the focus on SPARTA, can provide a way to analyze applications like
CardProxy.

Contents

2 Background|

2.1 Malware or security flaw|
[2.2 Static- versus dynamic program analysis in a nutshelll
2.3 Analysistools| oo
2.3.1 Checker-Frameworkl
32 SPARTAl . . . o v ee e
[2.3.3 Relation between SPARTA and Checker-Frameworkl .
234 Fuzzinglo L
RATIRMA]
3__Prior researchl
I;i.l ‘s&il‘llntzls: lQQlSI
[3.1.1 Static analysis tools|
[3.1.2 Dynamic analysis tools|.
B8.1.3 Fuzzingl
B.1.4 Overviewl oo i e e
[4_Researchl
4.1 Research question|.
4.2 My background and expertise|
|4.3 Initial investigations of CardProxy|
4.3.1 “Ordinary” Android antivirus analysis|
|4.3.2 Checking the code “by hand”|
6_SPARTA]
5.1 Android permissions vs SPARTA policies|
[5.2 Information flow properties to analyze
b.3 Approach|
b.3.1 SPARTA’sapproach|
b.3.2 My approach| L.
0.4 Inference framework and Stub files/
6.5 Installation of SPARTA|,

11
12
12
13
14
15

16
16
17
18
18
19

0.6 Results of SPARTAl. 27
5.6.1 Running SPARTA| 29

[5.6.2 Output SPARTA| 29

6 Fuzzing 31
[7__Conclusions| 34
[7.1 Information flows in general 34
M2 SPARTAL. o ot e 35
[7.2.1 Expressivity|.o 35

[7.2.2 Gradle support| L. 36

[7.2.3 Final conclusion about using SPARTA to analyze Card- |

| Proxy| 36
. UZZING| . .« v v v e e e e e e e e e e e e e e e e 37

(2.4 Final conclusion and small reflection| 38

8 Future workl 40
A Abpend 44
IA.1 Environment Variables| 44
|A.2 build.gradle file] o oo o 44
[A.3 List of SPARTA’s sources and sinksl 48

Chapter 1

Introduction

IRMA is a privacy-friendly authentication solution. It can be used to pro-
vide attributes where they are requested. For instance, in order to access
a liquor website one must be over the age of 18. The IRMA’s CardProxy
app functions as a proxy where personal information is retrieved from a
personal smart-card via NFC and sent to the requester of the attribute over
an internet-connection. So now arises the problem: How can we make sure
that this application does as it proclaims? For instance, we would like this
application to get into websites where we have to be above a certain age,
but we definitely would not want sensitive data ending up on the internet.

There are multiple ways of checking that an application does not have unex-
pected or unwanted behavior. It is of great importance that we check that
the app does not do things it is not allowed to and that sensitive informa-
tion is only accessible to the parties that should have access to it. In this
research:

e We gathered some tools which can be used for Android security anal-
ysis.

e We used a pluggable type-checker called SPARTA to analyze informa-
tion flows (static analysis).

e We tried fuzzing to analyze the application’s behavior (dynamic anal-
ysis).

e We concluded if the tools that were used provide a good way to check
the implementation of applications handling personal information like
CardProxy.

By doing this we would like to answer the following question: Using SPARTA
and fuzzing, is it possible to analyze security-sensitive applications like Card-
Proxy as a non-expert in these techniques?

Chapter 2

Background

This chapter gives some background information about certain aspects of my
research. Section 2.1 discusses the distinction between malware and security
flaws. Section 2.2 discusses the difference between static program analysis
and dynamic program analysis. After this section the Checker-Framework
and SPARTA, which are forms of Static program analysis, will be discussed
in Section 2.3.1 and 2.3.2. As a form of dynamic program analysis we will
talk about fuzzing in Section 2.3.4. To conclude extra information about
IRMA will be given in Section 2.4 for those who are interested. For this
research the particulars of IRMA are not important.

2.1 Malware or security flaw

Before we look at specific security analysis tools, it is important to recog-
nize the difference between actual malware and security flaws. Malware is
short for malicious software. Malware is designed to damage computer sys-
tems. Security flaws, however, are more subtle. They are not designed to
directly cause damage to a system, but can be used for malicious actions.
Often, this flaw is created by accident. For example, consider a banking
application where the pin code is sent over internet without the pin code
being encrypted. This is obviously a security flaw because eavesdroppers
could read the pin code. But sending a message over the internet is not
considered malware, and the fact that the message, in this case the user’s
pin code, is sent unprotected is just a matter of a poor implementation by
the developer. Although this application is not considered malware, one
would like to avoid applications where the implementation is not done cor-
rectly. So malware is intentionally malicious, whereas normal software can
be insecure by accident (security flaw). Our research is primarily focused
on finding security flaws.

2.2 Static- versus dynamic program analysis in a
nutshell

The difference between static program analysis and dynamic program anal-
ysis is that static program analysis tests the source code or a dissected .apk
file of a program. This means we can analyze the application without ac-
tually running it. Dynamic testing however requires the program to run so
that the behavior of the application can be reviewed. We can also illustrate
the difference as following;:

With static program analysis we analyze the applications as if it were a white
box. We know what is inside the box so that we can predict its behavior
based on that knowledge. Dynamic program analysis generally analyzes an
application as if it were a blackbox. We do not know what is inside, or we do
not look inside the box but by examining its behavior given certain input /
events we can check if there is any unexpected behavior. A simple example
of this is providing malicious QR-codes to the CardProxy application to see
if this leads to unwanted results.

2.3 Analysis tools

In this research we chose both a static program analysis technique (SPARTA)
and a dynamic program analysis technique (Fuzzing) to see if this provides
a good way to analyze our application. Section 3.1 will discuss what our
alternatives were and why we chose to use these two techniques. The sec-
tions below will provide some background information about the Checker-
Framework (which lies at the basis of SPARTA), SPARTA itself and fuzzing.

2.3.1 Checker-Framework

The Checker-Framework is used to create and check additional type-qualifiers
for Java. This means that at compile time the framework will run additional
type-checkers specified by the developer in means of annotations. For ex-
ample, one can create an @Encryption type-qualifier. Using this type
the developer can specify what functions and variables yield which type-
qualifier. This way the Checker-framework can be used to check if specific
variables are of that type-qualifier. For instance if it is specified that the
input of the function "sendPassword (String password) " must send
an encrypted password. We can annotate our method as following:
"sendPassword (@Encrypted String password)".

The Checker-framework can then be used to check if the origin of the vari-
able password is also of the @Encryption type.

In Java 8 one can use JSR308 to provide the annotations. This is because
JSR308 was incorporated in Java SE 8 with the purpose to be able to de-
tect and apply annotations. Because JSR308 is not compatible with earlier
versions of the Java SE, and Android uses Java 7, one needs to provide an-
notations in comments: /*@Annotationx/ (see Figure 2.1 for a graphical
representation of the relation between JSR308 and Checker-Framework).

2.3.2 SPARTA

SPARTA is a project created at the University of Washington. SPARTA
is short for Static Program Analysis for Reliable Trusted Apps. Using the
Checker-framework, SPARTA can be used to detect undesired information-
flows in Android applications. More specifically it can also be used to
verify that an application indeed contains no malicious information flows
[Ernst et al., 2014]. SPARTA’s input are annotated pieces of source-code,
these annotations will be in the form of type-qualifiers created by using the
Checker-framework. These type-qualifiers are necessary to prove a certain
security property. These security properties that SPARTA is useful for are
related to information flows. For instance, my GPS-location should not be
send to the internet. Using the typequalifiers @Sink and @Source we can
analyze information-flows and check if they uphold certain policies. With
@Sink you specify where the information might go to and with @Source
you specify where the information might come from. For example, suppose
we have the following statements where we annotate an object “loc” that
has a GPS location as source and internet as sink. This object will read
GPS data and send it over the internet:

@Source (LOCATION) @Sink (INTERNET) String loc = readGPS();
sendToInternet (loc);

We can then use policies to review if the code above should be allowed or
not. A policy specifies which flows are allowed to occur has the following
form:

[SOURCE] —-> [DESTINATION]

For instance, in the example above we could write the following policy:
LOCATION —-> INTERNET

This policy means that information from the GPS-reader is allowed to
flow to the internet. Because we have annotated LOCATION as source and
INTERNET as sink the piece of code is allowed by our policy. If we would
however change the policy to LOCATION -> SMS the SPARTA compiler
would give a policy error because we would still have a LOCATION —->
INTERNET flow but our policy file would only allow LOCATION -> SMS
and disallow LOCATION -> INTERNET (example from [Poll, 2015]).

[Ernst et al., 2014] reports that they have analyzed 72 applications, in which
they detected 57 Trojans. These Trojans were specifically designed to defeat
typical malware analysis. According to the researchers they detected 96%
of the malware that was related to information flow and 82% of all malware
that was present in their particular sample set. For more information it is
recommended visiting the SPARTA website:
https://www.cs.washington.edu/sparta

2.3.3 Relation between SPARTA and Checker-Framework

The relation between SPARTA and the Checker-Framework is as follow-

ing: SPARTA is built on top of the Checker-Framework [Ernst et al., 2014].
SPARTA uses the Checker-Framework by creating two specific type-qualifiers.
These type-qualifiers are, as stated on the previous page, @Sink and @Source.
These type-qualifiers are used by SPARTA to analyze an application’s information-
flow via static program analysis. Both SPARTA and the Checker-Framework

are used to analyze Java code by adding specific pluggable type-qualifiers.
Pluggable in the sense of being able to add and delete owner-specified types

into the type-system.

SPARTA
) v _
Checker Framework

JSR308
(Java 8)

Java

Figure 2.1: Relations illustrated (simplified)

https://www.cs.washington.edu/sparta

2.3.4 Fuzzing

Fuzzing is a form of dynamic program analysis where we consider our pro-
gram as a blackbox and start providing different input. Fuzzing is a tech-
nique used to uncover security vulnerabilities like Cross-site scripting, buffer-
overflow, Denial of Service, etc. This analysis technique uses unexpected/-
malformed data as program input [Garg, 2012]. Generally speaking we con-
sider two categories of fuzzing programs:

1. Mutation-fuzzing. Also considered as “dumb-fuzzing”, Mutation
fuzzing is about changing existing input blindly. An example of mutation-
fuzzing is bit-flipping. We can take normal input of the program and
make small adjustments to the bits and see what kind of behavior this
triggers in the program. This kind of fuzzing is called “dumb-fuzzing”
because you don’t need to have specific knowledge about the program
you're testing. One needs not to be familiar with the protocols of the
program.

2. Generation-fuzzing, however, is the opposite of “dumb-fuzzing”. In
Generation-fuzzing one needs to understand the program’s protocol
and adjust input based on the protocol. For instance, if our program
would execute bank transactions we could perform generation fuzzing
by analyzing the protocol, adjusting some protocol-stage and then
check if we can induce malicious behavior by giving an input. In
Generation-fuzzing this input is still related to the protocol’s stage.
For instance, in the IRMA CardProxy protocol one needs to scan a
QR code to be able to verify for that specific instance (for example a
liquor website). Because we know the protocol, and we know that there
is a stage where the app scans a QR code, we could use generation
fuzzing to provide malicious QR codes to the application to see if this
leads to undesired behavior.

See [Sutton et al., 2007] for more information on fuzzing.

2.4 IRMA

I Reveal My Attributes, IRMA, is a project of the Radboud University in
cooperation with SURFnet, TNO and SIDN. The project provides a way
of personal authentication where an authenticator only shows information
that is requested by the requester of the information, in most situations the
service provider. For example, when you want to access a bar you have
to show some sort of identification to prove that you are indeed over the
age of 18 years. This means you would have to show an ID, passport or
driver’s license to the bouncer of that bar. The problem however is that
these documents contain more privacy sensitive information that is not rel-
evant for proving your age (e.g. a Social Security Number). The IRMA
project has created a way where one can prove a certain personal attribute,
like being over 18 years old, without having to disclose other sensitive in-
formation. This can make the identification process more privacy friendly
[Alpar and Jacobs, 2013]. The original IRMA setup consists of the following
elements: Every user has a smart card. Upon registering for IRMA, personal
information like birth-date are checked by the authorities. This information
is then stored on a personal smart card. When a requester, like a service
provider, wants to check if an attribute holds, he holds an NFC-enabled de-
vice against the smart card. The software on that particular device is then
able to read the smart card and deduce if a certain attribute holds.

There are multiple kinds of devices capable of communicating with the smart
card. The biggest requirement is that an NFC-module is present in that
particular device. The software that runs on these devices is developed by
IRMA. For Android devices, IRMA has released a couple of applications:

e CardProxy. This application can be used by the normal users. For
instance, I have a smart card with the attribute 18+. If I want to
access a liquor site which has this attribute as a requirement. I can
use this application to let the card communicate with the website. This
is done as following: If I want to access this website with the required
attribute, I can use the app to scan a QR-code on the website. 1
then place my smart card against the NFC-module of my device, the
app will then read the smart card after a personal PIN-code has been
entered and then communicate back to the website whether or not the
user has successfully provided the attribute.

e Verifier. This application is typically used by the service providers.
When one wants to check a certain attribute of a smart card, this
application can be used to read the smart card to see if that specific
attribute holds. For instance, if a bouncer at a bar wants to check
the age of a customer, he can hold their smart card against his device
(again with NFC module enabled) and the application will check if the
attribute holds.

e Management. This application can be used by the user to view it’s
cards data. This application can also be used to change one’s PIN-
code.

e CardEmu. This is the most recent development of IRMA. Instead of
storing information on a smart card, the device will hold the attributes.
So in the future the user can use his device without the smart card to
provide certain personal attributes.

For more information of the IRMA project it is recommended checking out
their official website: https://www.irmacard.org/| and their GitHub
page for source-codes: https://github.com/credentials

10

https://www.irmacard.org/
https://github.com/credentials

Chapter 3

Prior research

This chapter discusses the work that has already been done in the field of An-

droid application security analysis. This chapter first discusses [Fedler et al., 2013],
a paper about typical Android antivirus followed by a paper about the re-
search performed by the developers of SPARTA. Finally Section 3.1 contains

a number of tools that are available to analyze the Android OS and Android
applications. Sectoin 3.1 ends with a small overview with some practical

data about the tools.

The first paper, [Fedler et al., 2013], is an assessment of the effectiviness
of current antivirus apps. They also looked at the performance of these
apps in scenarios that were slightly modified. For example, typical antivirus
mainly relies on signature and heuristic analysis of known malware. But in
this paper the authors also evaluated how well the tools can detect slightly
modified malware with different signatures. The authors concluded that
slightly altered malware is not detected well enough. They suggest that
there is room for improvement for the signature and heuristic detection of
current antivirus software. They claim it is still trivial for malware vendors
to slightly modify their code and avoid detection. Their final conclusion is
that on-device antivirus software is not sufficient to ensure the integrity of
devices. This means that tools that do not rely on signatures and heuristics
could possibly provide a better way to detect new malware.

The second paper, [Ernst et al., 2014], is written by the developers of
SPARTA. This paper describes a high assurance app store that requires ap-
plications to be annotated by app-developers. The store’s auditors will then
verify the information flow properties and the annotations. Further on, the
paper discusses a Red Team evaluation. The sponsor of SPARTA, DARPA,
wanted to evaluate SPARTA. They hired 5 companies (red teams) to create
both malicious and non-malicious applications. In total they created 72 Java
applications, of which 57 were malicious. The results were that SPARTA

11

detected 96% of the malware. They also found that 19 applications had
unjustified information flows. For instance, an application was allowed to
load photo’s from local-storage and it was allowed to send highscores to the
internet. However, the application was definitely not allowed to send the
photo’s from local-storage over the internet to a server.

Another interesting chapter in the paper discusses a usability study. The
first conclusion the researchers made is that when given an unknown appli-
cation, the vast majority of time was spent reverse-engineering the applica-
tion. Another conclusion was that the annotator only had to write 4% of
annotations where they could have been written. The other 96% was either
defaulted or inferred. As for learnability, the researches conducted a study
involving 32 third-year Computer Science students. The students reported
that the first annotations were the most time-consuming because they were
still learning how to use SPARTA.

3.1 Available tools

We found a nice list E] of Android security tools that could be interesting for
our research sorted on Static, Dynamic and Fuzzing analysis. These cate-
gories are based on Section 2.2 where we explained the difference between
static analysis and dynamic analysis.

3.1.1 Static analysis tools

1. SPARTA: Static program analysis to analyze information flows by
annotating source-code. See Section 2.3.2 and Section 5 for more in-
formation (paper of creators: [Ernst et al., 2014]).

2. AndroWarn: Tool that statically analyses the bytecode of an appli-
cation and generates a report based on information flow analysis. This
tool will for example analyze: Geolocation information leakage, con-
nection interfaces information leakage (WiFi details etc.), telephony
services abuse, information flow interception (like capturing calls /
video’s) and external memory operations. For more information check
out the AndroWarn GitHub page ﬂ

3. DiDFail: Research prototype that is based on Soot and FlowDroid.
The principle of DiDFail consists of two phases: Given a set of appli-
cations the tool determines the information flows that are enabled on
an individual level. This means that the tool starts by analyzing the

"nttps://github.com/ashishb/android-security-awesome
2https://github.com/maaaaz/androwarn

12

https://github.com/ashishb/android-security-awesome
https://github.com/maaaaz/androwarn

applications independently. Then, in the second phase, the tool enu-
merates the dangerous information flows in the set applications. This
means that the tool can be used to analyze information flows between
different apps. In [Burket et al., 2015] one can find more information
about this tool.

4. FlowDroid: Also works with the Source and Sink principle. Performs
a static program analysis. Additionally they use a model of the An-
droid’s lifecycle to allow the analysis to handle callbacks invoked by
the Android framework. The developers also state that context, flow,
field and object-sensitivity allows the analysis to reduce the amount
of false positives. For the paper see [Arzt et al., 2014].

5. Amandroid: Analyses inter-component control and information flows.
We consider components as modules of the device like storage and
SMS. The tool converts an application’s bytecode into an intermediate
representation on which static analysis can be performed. The tool is
able to illustrate the flows by creating an inter-component information
flow graph and data dependency graph which can be used to detect
explicit information flows. For more information see [Wei et al., 2014].

6. Smalisceﬂ Tool that analyses .smali files. Smali is similar to assembly
and multiple .smali files make up the final .apk file of an application.
Smalisca analyses the .smali files and provides a graphical overview
of the relationships in terms of information flows between classes and
modules of the application.

7. DroidSafe: Tool that again analyses information flows by analyzing
bytecode or an APK of the application. It already contains a verified
core of 98% of the API calls in Android applications. They also provide
an Eclipse IDE plugin [}

3.1.2 Dynamic analysis tools

1. IntelliDroid: This tool generates specific input for Android appli-
cations. This is the opposite of random fuzzing where we generate
random inputs and observe the output. IntelliDroid is also capable
of determining the order in which input has to be provided. Another
interesting part is that IntelliDroid uses static analysis to identify and
generate inputs in such a way that the dynamic analysis only has to
execute 5% of the application’s code. With this tool one can analyze
information flows. But dynamic analysis also makes it easier to check
other properties of a applications. For example, the ability to DoS or

3https://github.com/dorneanu/smalisca
4http://mit-pac.github.io/droidsafe-src/

13

https://github.com/dorneanu/smalisca
http://mit-pac.github.io/droidsafe-src/

crash the application are generally found using dynamic analysis. The
paper of IntelliDroid: [Wong and Lie, 2016].

2. Android DBI: Enables you to see I/0 logging and debug information
of an application. It also provides a way to inject your own code
into the application. The toolkit basically provides several ways to
“hack” the application. In a slide show of the toolkit the developer
also talks about NFC fuzzing. Instead of fuzzing with an actual card
the developer suggests simulating NFC traffic by pushing data to the
NFC stack. For more information check out the GitHub page [’}

3. DroidBox: This tool observes what an application is doing during ex-
ecution. For instance, it monitors if there are files being read/written
or sniffing the network packets that are sent to/from the application.
The tool uses an emulator to run the application.

4. TaintDroid: For this tool one needs custom-built firmware for his/her
device. TaintDroid tracks when private information is handled by ap-
plications and monitors if this information leaves the phone. [Enck et al., 2014]

5. Android-Hooker: Android-Hooker is an open-source project for dy-
namic program analyses of Android applications. It provides tools and
applications that can be used to automatically intercept and modify
any API calls made by a targeted application. Android-Hooker uses
ElasticSearch and Kibana to give a graphical visualization of the re-
sults. Source: https://github.com/AndroidHooker/hooker.

3.1.3 Fuzzing

Although typical fuzzing is also dynamic analysis the webpage (see footnote
1 on the previous page) considered it a different sub-category.

1. IntentFuzzer: Android intents are objects that are passed between
components of the Android device. The IntentFuzzer performs static
analysis to determine the structure of the intents and uses this to create
inputs for fuzzing. This fuzzer is intended to find vulnerabilities in the
Android OS [Sasnauskas and Regehr, 2014].

2. Radamsa: Radamsa is a black-box fuzzer. It does not require infor-
mation about the application. The tool takes input for an application,
for example “aaa” and creates variations to this input like “aaaa”.
The tool is especially useful to see how the application reacts to weird
input. Radamsa’s usage for Android applications is limited since the
tool is mainly for Windows and Linux programs

Shttps://github.com/crmulliner/adbi
Shttps://github.com/aoh/radamsa

14

https://github.com/AndroidHooker/hooker
https://github.com/crmulliner/adbi
https://github.com/aoh/radamsa

3. MFFA (for Android OS): MFFA stands for Media Fuzzing Frame-
work for Android. The principle of this tool is to generate media files
that are corrupt but structurally allowed. In other words, the tool cre-
ates malformed media files that are accepted by Android. This tool is
also mainly to detect vulnerabilities in the Android OS and standard
applications like Media Players, Web Browsers, etc. ﬂ

3.1.4 Overview

The table below will be a brief overview of the tool with some possible
relevant information. In the Gradle support entry SPARTA was classified as
IND (indirect) because the Checker-Framework has Gradle support enclosed
in its manual. The entries with a YES * mean that it does not matter how
the application is built. For example, some tools only use the .apk file to do

Static Program Analysis (they can dissect the .apk file).

Table 3.1: Small practical overview

Tool Creator Gradle support | Last Update
SPARTA University of Washington IND Aug 25, 2016
DiDFail Will Klieber YES * Feb 1, 2016
FlowDroid Steven Arzt YES * Aug 10, 2016
Amandroid Argus Laboratory YES * Jun 16, 2016
Smalisca Victor Dorneanu YES * Jun 22, 2015
DroidSafe MIT CRS NO June 13, 2016
IntelliDroid Michelle Wong YES * Aug 23, 2016
Android DBI Collin Mulliner YES * Jun 13, 2015
DroidBox Patrik Lantz NO Sep 25, 2015
TaintDroid Intel Labs and Penn State University | NO Feb 6, 2014
Android-Hooker | AMOSSYS YES * Aug 9, 2016
IntentFuzzer iSECpartners N/A Dec 10, 2015
Radamsa B. Archer and Darkkey N/A Jul 20, 2016
MFFA Alexandru Blanda N/A Aug 17, 2015

"https://github.com/fuzzing/MFFA

15

https://github.com/fuzzing/MFFA

Chapter 4

Research

This chapter discusses the choices we made with respect to our chosen re-
search and the tools to do this research with. We will begin by explaining the
goal of our research in Section 4.1 and the initial choices we made. Section
4.2 introduces the context of the researcher so that the readers will under-
stand his field of expertise prior to the research. Section 4.2 will explain the
purpose of our research. Section 4.3 discusses what research with respect
to the CardProxy we did before analyzing it with SPARTA and fuzzing in
terms of “regular” malware and manual analysis.

4.1 Research question

Chapter 1 introduced our research question briefly. Now we would like to
elaborate it a bit more.

The purpose of this research is to see if static program analysis and dy-
namic program analysis can be used to detect malicious code and to prove
that certain malicious or vulnerable code is not present. More specifically,
we will examine if SPARTA and fuzzing are sufficient to analyze applica-
tions like CardProxy that handle sensitive data. It is of great importance
for the techniques used to be easy to use. The last property is also why
we will explain my background in Section 4.2. Someone who wants to an-
alyze an application should be able to do this without requiring extensive
background knowledge of the tool. Especially if we consider the concept
of [Ernst et al., 2014] where we have an app store where the applications
provided are required to be already annotated by the developers to prove
that the application has no insecure information flows. For a developer it
should not be a burden to have to learn how to use SPARTA.

16

Why CardProxy
CardProxy is not the latest application of the IRMA project. Their latest
app, CardEmu, does not use the smart-card to store the attributes but it uses
the device itself as storage for attributes. However, from an information-flow
perspective the CardProxy application is very interesting to analyze because
it uses the smart-card. Sensitive data is requested from the device, read from
the smart-card and fed back to the requester. This means that the imple-
mentation of this application must be of great quality because an error in
the implementation can cause big problems in the exchange of sensitive data.

The source-code of the CardProxy app can be found at: https://github.
com/credentials/irma_android_cardproxy

4.2 My background and expertise

For this research it is also important to briefly inform the reader about the
researcher. This way, the reader will understand the background of the
researcher and the scope of his capabilities with respect to the tools. It is
especially useful because the research question implicitly asks if a person
with knowledge of programming, but not of the specific tools, can still use
them effectively to analyze his or her applications. My background at the
time of starting the research was as following:

e Student Computer Science,

e Familiar with the basics of Gradle,

e Proficient with Java programming,

e Familiar with Android developing.

e Not familiar with the specifics of Java compilers.
e Not familiar with SPARTA.

e Not familiar with fuzzing.

17

https://github.com/credentials/irma_android_cardproxy
https://github.com/credentials/irma_android_cardproxy

4.3 Initial investigations of CardProxy

4.3.1 “Ordinary” Android antivirus analysis

When checking an application for malware one of the first logical steps
is to analyze the application with antivirus software for Android. These
software usually calculate the application’s signature by hashing the pro-
gram and checking this signature in their database of known malware. But
as [Fedler et al., 2013] correctly conclude it is easy to circumvent this by
changing the bits of the program a bit so that you would have the same
(malicious) program, but with a different checksum. They also remark that
common antivirus software is not able to dynamically analyze the applica-
tions so that downloading exploits/malware at runtime can go unnoticed.
Nevertheless, it can never hurt to check the applications with antivirus soft-
ware.

AndroTotal E] is a great website where one can upload an .apk file of the
application and let it be checked by various Android antivirus software. Be-
low you can see the result of the AndroTotal test. [

Sample SHA-256

57511b4¢9299037cc8a999ab640e8dfc1461a94a13426ca4d790961da755adt

Sample SHA-1

992e20£136517505d7d17852221aa37767e51cal

Sample MD5 7

37ead3d706b9229a2b08837ef080780f

Detections

0/6

The 6 tools used are, similar to [Fedler et al., 2013]:

1. AVG Mobile
2. Bitdefender

3. Comodo Security Solutions

4. ESET
5. TrustGo inc

6. McAfee Mobile Security

For CardProxy, all the tests came back negative (no threats detected). An
important notion to bear in mind is that these anti-virus software only detect
malware. Security-flaws are generally not considered malicious by these
tools. See Section 2.2 for more information about the difference between
malware and security flaws.

"nttps://andrototal.org/
2https://andrototal.org/sample/57511b4c9299037cc8a999%ab\
640e8dfcld461la94al3426cadd’790961lda755adftf

18

https://andrototal.org/
https://andrototal.org/sample/57511b4c9299037cc8a999ab\640e8dfc1461a94a13426ca4d790961da755adff
https://andrototal.org/sample/57511b4c9299037cc8a999ab\640e8dfc1461a94a13426ca4d790961da755adff

4.3.2 Checking the code “by hand”

Previous chapter discussed an automated way of virus detection of the ap-
plication. Now we will talk about some more in-depth analysis of the code.
If you have access to the source code of a project it is also good to just
check the code “by hand”. Obvious buggy code can possibly detected this
way. When going through the source code of CardProxy we quickly saw
something that could be considered undesirable. The code was still the de-
bug version. Although adding debug statements to code is not malicious,
one must make sure to remove these lines of code before releasing the ap-
plication. In the case of CardProxy the following piece of code immediately
caught our attention:

Log.i (TAG, "PIN entered: " + dialogPincode);

This statement logs the PIN-code of a user to the console. The console
can be read by every application. Obviously this statement is highly inse-
cure as it leaks the PIN of the user. Surely this is code that is not intended
to be released. If we could for example use SPARTA to detect this before
the application gets released it would prevent the leakage of sensitive data.
Other than the undesired debug code we found no obvious malicious/vul-
nerable code in the CardProxy repository.

19

Chapter 5

SPARTA

This chapter discusses SPARTA. Section 5.1 will briefly compare SPARTA
policies and Android permissions. Section 5.2 discusses which information
flows properties we would like to analyze. Then, Section 5.3 discusses the
main approach of SPARTA and the approach I followed. Section 5.4 dis-
cusses the Inference-framework and the principle behind Stub files to deter-
mine annotations. Then, Section 5.5 will briefly list the steps needed to take
to get the tool working. Finally we will talk about the results of running
the tool in Section 5.6.

5.1 Android permissions vs SPARTA policies

Before installing an application the Android OS shows you a message box
with information about permissions that a specific application is requesting.
An example:

@ SMS Text Messaging « PC Texting

[EZ] Identity

2 Contacts/Calendar
B swms

K‘ Phone

’)-\ ogle

Figure 5.1: Example of Android app store permissions
Because Android makes every application run in their own Sandbox (their

own environment with different permissions), Android can specify which
specific permission an application can use. These permissions are the ones

20

specified by the developers and agreed by the user upon accepting the per-
missions notification. One thing to notice is that these permissions are the
device’s components and corresponding APIs that an application is allowed
to use. So for the example above the application could access the SMS
component and the Contact list. These permissions however do not specify
if we allow data to flow between these allowed components. This is where
SPARTA’s policies come into play. With these policies we can specify what
information-flows between components we allow. We will discuss these poli-
cies in the next section.

5.2 Information flow properties to analyze

It is kind of trivial, but surely we would want to analyze information-flows
that deal with privacy sensitive information. This means that we both have
to analyze how the information comes into the application and how it leaves.
In our case our main input is data obtained via NFC, keyboard and cam-
era and the output is mainly to internet or local storage. Especially how
data leaves the application is very important to analyze since this is the
place where our data is “released into the wild”. However, this is not all.
When analyzing information flows it is not sufficient to just analyze how
the information flows into and out of the device, we also need to look at
how the information is handled internally. As noted in Section 4.3.2 logging
a password to a debugging console is not desired. Therefore, we must also
check that sensitive information does not leak to places like consoles, mem-
ory, shared-preferences and so on.

Because, as Section 5.3.1 will further elaborate, SPARTA works with white-
listing instead of black-listing it is hard to specify how we will prohibit
certain information flows. However, if we tackle the problem from another
perspective, we first disallow every information flow (by providing zero al-
lowed flows) and then check for each flow whether or not it is allowed. This
is the approach SPARTA recommends (see section 5.3.1).

21

5.3 Approach

5.3.1 SPARTA’s approach

First of all it is really useful for someone with no experience in the field
of annotations to fiddle around with them. I highly recommend using the
Checker-framework first because they have made a really easy step-by-step
tutorial to go through a couple of practice cases. 1 personally used the
Eclipse plugin they have created. The full tutorial can be found at http:
//types.cs.washington.edu/checker—framework/tutorial/.

To get started with SPARTA the first step would be to install SPARTA.
See Section 5.4 for more specific information. The tool’s creators describe
in their tutorial the following basic approach for using SPARTA:

1.

Infer annotation types. Using the Inference framework we can auto-
matically annotate our source-code (we will give more information in
Section 5.4).

Run the Information-flow checker. This will yield all information flows
as errors because we have not specified a flow policy yet.

Create a file called flow-policy to store all the policies which we would
like to allow. This is one of the strengths of SPARTA because instead
of disallowing certain flows, we must specify which flows we do allow.
This manner is a white-listing approach which follows the principle of
least privilege. This privilege states that we only allow actions that
are necessary and nothing more. So we would rather block an allowed
action than allow a malicious action.

. The next step is to start white-listing certain information flows. For

example, if we would run the tool and get an error where the policy
LOCATION —-> INTERNET is detected as prohibited. If we would like
to allow it we must be able to justify this information flow. An infor-
mation flow is justified when the developer can show the (potential)
verifiers that the information flow is necessary and poses no threat to
the users. If the flow can be justified it can be added to the flow-policy
file. The error should now disappear.

One must try to avoid adding policies to the policy file that are too
permissive. For example ANY —> INTERNET. This flow is in most
cases too permissive because ANY contains too much sources we can-
not account for. Avoiding policies that are too permissive requires
additional manual annotating of the code. This is because ANY often
originates from SPARTA’s default flow qualifiers (see Table 5.1). Some

22

http://types.cs.washington.edu/checker-framework/tutorial/
http://types.cs.washington.edu/checker-framework/tutorial/

good examples of policies can be found in the Sparta manual E

6. When all errors generated by SPARTA have been fixed by creating
a policy file that describes all allowed flows, we can guarantee that
the application only contains the information flows that are specified
in the flow policy. A good practice is to check if there are flows in
the policy file that should not be allowed. In step 4. we discussed
that an information-flow policy should be justifiable so this is just a
double check. In [Ernst et al., 2014] the authors propose an app-store
where all applications are validated. In this situation it is the store’s
administrator’s task to validate that the policies drafted by the app-
developers are indeed justified.

Another approach, yet not specifically discussed in the SPARTA man-
ual, can be the following: Consider an application where we would
like to verify that we only allow certain information flows. The first
step of this alternative approach would be to write down policies that
should be allowed. For instance, SMS —> INTERNET. The next step
would be to run the SPARTA tool to check if the application will be
accepted given the predetermined policies. When there are errors en-
countered we can choose between three things. The first thing would
be that the error was caused by code that had not been inferred by the
Inference Framework (see Section 5.4). We should now add our own
annotations. The second possibility is to alter the source-code of the
application to make sure the piece of code that caused the error will
be fixed. For instance, if we had a piece of code that did some logging
and the policies did not allow this. This piece of code can be deleted
and the error should disappear. As a third possibility we could follow
SPARTA’s original approach and extend the policy file.

5.3.2 My approach

The goal of SPARTA’s approach is to prove that an application only contains
information-flows that should be allowed. Our goal is different. Instead of
wanting to prove that CardProxy is a valid application, our goal was to
analyze the information flows that SPARTA found. Obviously, proving that
CardProxy handles sensitive data correctly would be the ultimate goal, but
unfortunately due to some restrictions (which will be discussed in Section 5.4
and Section 7) we did not have time to do this. Because SPARTA initially
lists all information flows as forbidden, we can still use this to deduce critical
information about the information flows of the application. So my approach
was to get SPARTA working with CardProxy, detect all information flows
and finally analyze these information flows by hand to see if there are some

"nttp://types.cs.washington.edu/sparta/current/sparta-manual.pdf

23

http://types.cs.washington.edu/sparta/current/sparta-manual.pdf

information-flows that should not be allowed. This means we will analyze
the given information-flows by hand and will not draft policies. This means
that we will also check if the logging of the password will be detected by
SPARTA.

5.4 Inference framework and Stub files

The Inference framework is a tool that can be used to automatically anno-
tate source code. The Inference framework automatically infers @Source
and @Sink types for fields, method parameters and return types. For the
Inference framework it is important that the code of the APIs is already
known. For instance, the Inference framework relies on Android’s main
APIs to be annotated by developers. According to [Ernst et al., 2014] the
developers only has to annotate 4% of the places annotations can be placed.
The rest is inferred or defaulted.

When you run SPARTA, the tool will give an error where it says that it
found two types (@Source and @Sink) but required another pair. For
example:

found : @Sink ({}) @Source ("ANY") String
required: @Sink ("INTERNET") @Source ({}) String

Here a defaulted String was found with zero allowed sinks ({}) and ANY
possible sources. The String however requires to have as sink “internet”
and source “nothing”. This usually happens when an object is defaulted
and used in a method which is detected to have other (required) sources
and sinks. A second possible error is that a flow is found, but forbidden:

found: @Sink ("ANY") @Source ("ANY") JsonObject
forbidden flows:
ANY —-> ANY

In this example SPARTA detected a flow that is not yet in the policy file.
Therefore SPARTA will yield this flow as an error.

24

So how does SPARTA know what types of @Source and @Sink a
certain piece of code is? There are two ways how SPARTA determines the
types to code. The first way are so called stub files. Because Android works
with a lot of library calls, the Information flows checker needs to know the
effect of that call. Stub files basically include an annotation summary for
the API methods. An example taken from the SPARTA manual:

package android.telephony;

class TelephonyManager {
public @Source (READ PHONESTATE) String getLinelNumber () ;
public @Source (READ PHONESTATE) String getDeviceld();

}

This example will tell SPARTA how to interpret a piece of code where
these methods are being called. Annotating Stub files for all APIs is almost
impossible as these also contain external APIs. Therefore SPARTA has
a second way of determining the types of the code: defaulting. Because
SPARTA has no information about the types the code has it will consider the
code as permissive as possible by defaulting it with types like @Sink (ANY)
and @Source (ANY):

Table 5.1: Default information-flow qualifiers for unannotated types from
the SPARTA manual

Location Default Flow Type

@Source(w) @Source(a) @Sink(w), w is the set of sinks allowed to flow from all sources in «
@Sink(w) @Source(a) @Sink(w), a is the set of sources allowed to flow to all sinks in w
Method parameters @Source(ANY) @Sink({})

Method receivers @Source(ANY) @Sink({})

Return types @Source({}) @Sink(ANY)

Fields @Source({}) @Sink(ANY)

null @Source({}) @Sink(ANY)

Local variables @Source(ANY) @Sink({})

25

5.5 Installation of SPARTA

The next section discusses the general approach for installing the SPARTA

tool.

We reference to other links and manuals which will provide more

information and possible solutions for user-specific errors. The last step
will be discussed in Section 5.6 because this was the crucial step in getting
SPARTA to work in our research.

1.

Install Java JDK 1.7. Installing the Java JDK 1.7 is very important
because we want to analyze code for Android. Android uses Java 1.7.

Install Ant. We need Ant to compile the SPARTA repository.

Install Android SDK.

. Install Checker-Framework. E|

Install and build the SPARTA tool. [
Set up environment variables. See appendix A.1.
Install Gradle.

Adjust build.gradle. See appendix A.2 for the full file and Section 5.5
for more information.

Zhttp://types.cs.washington.edu/checker-framework/current/
checker-framework-manual.html#installation

Jhttp://types.cs.washington.edu/sparta/current/sparta-manual.
html#sec%$3Ainstall

26

http://types.cs.washington.edu/checker-framework/current/checker-framework-manual.html#installation
http://types.cs.washington.edu/checker-framework/current/checker-framework-manual.html#installation
http://types.cs.washington.edu/sparta/current/sparta-manual.html#sec%3Ainstall
http://types.cs.washington.edu/sparta/current/sparta-manual.html#sec%3Ainstall

5.6 Results of SPARTA

Section 3.1.4 briefly discussed the support of different tools for Gradle. But
Gradle is a big part of this research because our chosen application is built
using Gradle. Gradle is a system to build applications and it no longer uses
the build.xml file one would typically see in older projects. It is required
that SPARTA can analyze applications built with Gradle.

In the Checker-Framework’s manual there is brief section that explains how
to use the framework in a Gradle environment. There is no information
about Gradle in the SPARTA manual but since the SPARTA is built on top
of the Checker-Framework [Ernst et al., 2014] we thought getting it to work
would work the same as the Checker-Framework. This turned out to be only
partially true.

Before analyzing the CardProxy application we tested some examples with
both the Checker-Framework and later with SPARTA to get familiar with
the tools. The examples given worked great and after a while we felt con-
fident that we could start analyzing the CardProxy application. However,
the test cases we used were all using Ant as build tool. CardProxy, built
using Gradle, was more difficult to setup. The first step was to try to get
CardProxy working with the Checker-Framework since there was some in-
formation about that available. However, we encountered some weird errors:

warning: unknown enum constant ElementType.TYPE_USE
warning : unknown enum constant ElementType.TYPEPARAMETER

These element-types are needed to use the @Sink and @Source annota-
tions.

Although the manual of the Checker-Framework is quite extended, the sec-
tion about Gradle is very limited. Therefore we could not find a suitable
solution to fix this error. Also, because this problem was quite specific we
could not find a suitable answer on the internet. Our last step was to get
in contact with the developers of the tool. We had an email conversation
with S. Millstein, one of the developers of SPARTA, and she referred to a
GitHub issue[] This GitHub issue contained a comment where an adaption
of the build.gradle file was suggested. Using this adapted version of the
build.gradle file we managed to get the Checker-Framework working with
out Gradle project. The next step for our research was to get SPARTA
working with CardProxy. Because I am not an expert in the field of Java
compilers and Gradle the help of one of de developers was again needed.

4https://github.com/typetools/checker—framework/issues/5644
issuecomment-200927221

27

https://github.com/typetools/checker-framework/issues/564#issuecomment-200927221
https://github.com/typetools/checker-framework/issues/564#issuecomment-200927221

With some instructions of the developer we managed to get SPARTA work-
ing with Gradle by adding the following to the build.gradle file (for the full
build.gradle file, see Appendix A.2.):

sparta fileTree(dir: ”$System.env.SPARTACODE”, include: [’
*.jar’])
if (typecheck) {
compile fileTree (dir: ”$System.env.SPARTA CODE”, include
["x.jar’])
}

gradle.projectsEvaluated {
tasks.withType(JavaCompile). all { JavaCompile compile —>
compile.options.compilerArgs = |

'—processor ', ’sparta.checkers.FlowChecker’

'—processorpath’, ?${configurations.sparta.
asPath }:${configurations.checkerFramework.
asPath}” |

'—AflowPolicy=/home/laptop/Documents/Bachelor—
Scriptie /Irma—Application/irmaproxychecker/
Flow—Policy /policy . flow’

}

This adaption basically lets Gradle execute some tasks upon building the
application with custom processor arguments to run SPARTA. After adjust-
ing the build.gradle accordingly we successfully managed to run SPARTA.
The outcome was a list of all information flows given as errors. This was ex-
pected since, as discussed in Section 5.2, SPARTA will return all information
flows as invalid when there are no policies specified. The next step would
be to annotate the code. This is when some problems occurred. First of
all, the Inference-framework (see Section 5.4) did not work with our project.
This is probably because the Inference- framework does not support Gradle.
However we cannot verify this because there is no extensive manual for the
inference framework. The inability to use the Inference-framework had as
consequence that we could not automatically annotate a lot of code (roughly
96% [Ernst et al., 2014]).

The second problem was that CardProxy uses a lot of external APIs. This
means that if we were to annotate our full project we would also have to
annotate the APIs in the form of stub-files (Section 5.4). Because my knowl-
edge of the APIs was not enough to annotate them the choice was made to
only use SPARTA as a tool to list all information flows instead of prov-
ing that the program does not contain specific unwanted flows. This is the
reasoning behind using our approach as discussed in Section 5.3.2.

28

5.6.1 Running SPARTA

To run SPARTA one must first go to CardProxy’s main directory and exe-
cute the following two commands in a terminal:

1. Assuming the Environment Variables (See appendix A.1.) are set using
~/.bash_profile ($vim ~/.bash profile, copy the variables and
adjust accordingly to your setup) one must first execute the $source
~/.bash_profile command.

2. The command to run the tool: $gradle compileReleaseJavaWithJavac
-Ptypecheck=true

For the full output see the output_sparta.txt file on GitHub ﬂ

5.6.2 Output SPARTA

/home/laptop/Documents/Bachelor—Scriptie /Irma—Application/
irmaproxychecker/src/org/irmacard/androidcardproxy/
ProtocolResponseSerializer.java:33: error: [method.invocation
.invalid] call to getAPDU() not allowed on the given receiver

obj.addProperty (”apdu”, Hex.bytesToHexString (src
.getAPDU () . getBytes()));

found : @Sink (”INTERNET”) @Source(”NFC”) ProtocolResponse
required: @Sink(”ANY”) @Source(”ANY”) ProtocolResponse

/home/laptop /Documents/Bachelor—Scriptie /Irma—Application/
irmaproxychecker/src/org/irmacard/androidcardproxy/
ProtocolResponseSerializer.java:34: error: [forbidden.flow]

return obj;

flow forbidden by flow—policy
found: @Sink(”ANY”) @Source(”NFC”) JsonObject
forbidden flows:

NFC —> ANY

The output above is a typical example of some errors that are easy to un-
derstand for a developer of the application but a bit harder for an outsider.
In the first error the method getAPDU () is recognized by SPARTA. After
doing some research it turned out to be that APDU, short for Application
Protocol Data Units, are the data units transferred from and to a smartcard
via NFC. This method retrieves information from NFC traffic. Because the
method get APDUY() is recognized by SPARTA, SPARTA labels this method
as @Source (NFC). The Object “obj” is detected by SPARTA to be sent
over the internet in a different part of the code. For this reason the method

Shttps://github.com/LaurensBrinker/irmaproxychecker/blob/master/
output_sparta.txt

29

https://github.com/LaurensBrinker/irmaproxychecker/blob/master/output_sparta.txt
https://github.com/LaurensBrinker/irmaproxychecker/blob/master/output_sparta.txt

is labeled @Sink (INTERNET) .

This is information that can be very useful for someone analyzing or even
developing the application. The person analyzing the code would see the
error above and notice that it concerns a sensitive piece of code. He could
then choose to take a closer look at this part of the code to see if there are
potential vulnerabilities.

The next error to discuss is the following:

/home/laptop /Documents/Bachelor—Scriptie /Irma—Application/
irmaproxychecker/src/org/irmacard/androidcardproxy/
MainActivity.java:622: error: [argument.type.incompatible]
incompatible types in argument.

Log.i(TAG, ”"PIN._entered:.” + dialogPincode);

found : @Sink({}) @Source(”ANY”) String
required: @Sink (?”WRITELLOGS”) @Source({}) String

This is exactly the piece of code we detected by hand to be undesirable.
SPARTA detected this information flow because there is an information flow
to the WRITE_LOGS. The task for the user of SPARTA is now to analyze
if the data being written to the logs is actually undesirable. In this case
we would like to prevent our pin-code being written to the logs. Chapter 7
discusses the conclusions with regard to SPARTA. An important part of the
conclusions will be about how well we can express information flows using

SPARTA’s language.

30

Chapter 6
Fuzzing

This chapter discusses the second analyzing technique we wanted to use on
the CardProxy application. NFC and QR-~codes are very interesting inputs
for CardProxy because the NFC-traffic contains the sensitive data and the
QR-code starts the verification protocol. This is the reason why we focused
on these parts for fuzzing. However, because the focus of this research was
on SPARTA, the fuzzing part had received a lower priority. We did experi-
ment with some fuzzing and analysis-tools, but due to some restrictions we
did not get any proper results. This chapter will therefore briefly discuss
the limitations we faced while trying fuzzing.

First of all we tried to provide some wrong input ourselves via manual
fuzzing. Our primary focus was the QR-code that CardProxy scans ver-
ify attributes:

[Verifying IRMA attributes - Google Chrome

B betps://demo.irmacard.org/tomcat/irma_api_server/server/verify.html

SHOWING ATTRIBUTE(S)

A website requested that you disclose some IRMA attributes.
Either scan the QR code with your phone, or press the card
reader button to continue.

HELP CANCEL

Figure 6.1: IRMA QR-example

31

We chose to begin with QR-codes because these are very tangible. First, a

regular QR-scanner application was used to determine the URLS that were

used by the IRMA demo’s. One of the URLs we found was: https://
demo.irmacard.org/tomcat/irma_api_server/api/v2/verifidation/
rfFAK2vYRS jkeYxVHCv\YRN7kmEChlkxOWX1UHAKQa50. We first cre-

ated our own QR-code that would contain a malicious URL (like redirecting

to “www.bad.com”). (Un)fortunately this was detected by IRMA.

Another thing was trying to use expired QR-codes. We simply made some
QR-codes that would redirect to an expired url. IRMA uses tokens to iden-
tify QR codes and after expiration these tokens will become invalid. Card-
Proxy has incorporated checks to prevent the application from accepting
malicious QR-codes. One thing that was not desired was that CardProxy
will crash when an invalid URL or expired token would be provided. Gener-
ally one would like to avoid program crashes because it can contain critical
information about the program, the host’s system or some memory dumps
that can be exploited. There was no case of a possible DoS (Denial of Ser-
vice) attack because the QR-code only crashed the application and it had
no impact on the server. Apart from this there were no critical flaws found
by hand.

The next step was to try some tools that automated fuzzing. The tools
that were discussed in Section 3.1 were not really suitable for this research.
MFFA and IntentFuzzer are mainly used for detecting vulnerabilities in the
Android OS and Radamsa is primarily focused on programs for Linux and
Windows. The next step was to check the “ordinary” dynamic program
analysis tools. Android-Hooker caught our attention. Android-Hooker’s
developers provided an example application. The application was a simple
BlackJack game. After using the tool to analyze the application, it was found
that the app calls API methods like getDeviceid (), getSimState (),
getNetworkOperator (), getLinelNumber (), etc H These API calls
are obviously not necessary for the game and can contain some private infor-
mation. Although this analysis is a pure blackbox (we only see what goes in
and what goes out in terms of API calls), it does give a good idea what in-
formation is obtained and how information enters and leaves the application.

Then we tried to get CardProxy running with Android-Hooker. One of
the requirements for Android-Hooker is having the Substrate Framework
installed on the device used for analysis. This framework requires your de-
vice to be rooted (Android equivalent of Jailbreaking).

'nttps://developer.android.com/reference/android/telephony/
TelephonyManager.html

32

https://demo.irmacard.org/tomcat/irma_api_server/api/v2/verification/rfFAK2vYRSjkeYxVHCv\YRN7kmEChlkxOWX1UHAKQa50
https://demo.irmacard.org/tomcat/irma_api_server/api/v2/verification/rfFAK2vYRSjkeYxVHCv\YRN7kmEChlkxOWX1UHAKQa50
https://demo.irmacard.org/tomcat/irma_api_server/api/v2/verification/rfFAK2vYRSjkeYxVHCv\YRN7kmEChlkxOWX1UHAKQa50
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html

After doing this and getting CardProxy ready to analyze, we found that
Android-Hooker does not yet support external interactions. This includes
NFC. In [Mulliner, 2012] the author suggests emulating NFC traffic to be
able to perform fuzzing. However, emulating NFC traffic is quite compli-
cated because it a form of dynamic binary instrumentation (DBI). Android
DBI (see Section 3.1) is a method of analyzing an application on binary
level. This happens by injecting code into the normal instruction stream
(execution path). Due to the advanced knowledge required to use DBI this
technique was pushed to our Future Work.

33

Chapter 7

Conclusions

This chapter discusses the conclusions we made with respect to our research.
Section 7.1 will briefly discuss information flows in general. Then, Section
7.2 discusses our conclusions with respect to the SPARTA tool. As third,
Section 7.3 will be a short conclusion about the fuzzing part of our research.
Finally, Section 7.4 will be a final conclusion and a brief reflection of the
research performed in this paper.

7.1 Information flows in general

In terms of security flaws (See chapter 2.1) malicious information flows can
be considered as one of the most dangerous. One of the main reasons is that
these flaws can be unbeknownst to the user of the application. The idea to
analyze information flows via static program analysis is really great. We also
concluded that it is hard to formulate information flows that we want and
do not want to allow. For example, it is easy to say that a password should
not end up in the log files. But consider a weather application. To provide
accurate weather information this application could use your GPS location.
So we would like to allow the flow GPS—data -> Internet. However,
if this application also supports advertisements, one would like to prevent
these ads to obtain your GPS data. For this reason, it is really hard to
determine concrete information flows because there are a lot of parameters
to consider (although for this specific case SPARTA offers a solution, see
the next section). Nevertheless, information flows can give still give a good
indication about the general behavior of an application. Analyzing flows can
also give great insight into which flows we would like to block or allow. After
detecting possible information flows it should be a bit easier to understand
which flows can pose a security threat like ones that can cause information
leakage. Section 7.3 will discuss the usage of information flows in SPARTA.

34

7.2 SPARTA

7.2.1 Expressivity

The first important question to ask if SPARTA’s language (sources and
sinks) is expressive enough. Is the existing list of sources and sinks ade-
quate enough for apps like CardProxy? Independent of the approach that
was followed in our research we came to the following conclusion: Not en-
tirely. Although with the sources and sinks SPARTA has provided you can
cover a lot (the sources and sinks in appendix A.3. cover all modules, like
SMS and GPS, that an Android application can interact with), there is still
an aspect which cannot be done. At least not without extensive knowledge
of the tool. Consider the following example app which can be seen as an
abstract version of CardProxy:

Example app

Figure 7.1: Example application simplified

This application has two ways of sending NFC data to the internet. The first
way is via a method that first encrypts the data (desired), the second one is
via a route that has no encryption (undesired). As discussed in Section 5.2
the information flows that we would like to allow depend on whether or not
it has passed through an “encryption module” within the application. In
the SPARTA manual there is a brief section dedicated to using parameters
in the flow policy file. For example the following policy is mentioned:
FILESYSTEM (" /home/user") —> INTERNET ("mydomain.org").
This way one can specify that the application should only allow data taken
from the directory “/home/user” to flow to the webpage “mydomain.org” on
the internet. This construction can work for the example we gave in Section
7 about our GPS data flowing to the internet. Using this construction we
could write the policy:

ACCESS_FINE_LOCATION —-> INTERNET ("weather.com")

to only allow the user’s GPS data flowing to the weather.com website. We
tried to use the same construction for our NFC data (figure 7.1). But it did
not work. This is because the parameters are only applicable in the flow
policy file. SPARTA can recognize that data has been taken from a certain
directory and flows to a certain webpage, but it can not detect that data
has flowed through an internal encryption module. It requires the analyzer

35

to annotate in the code what parameters will be attached to certain Sinks
and Sources. To our knowledge this does not work (yet).

The same applies to our USER_INPUT problem where the pin-code was
written to WRITE_LOGS. SPARTA can not automatically determine if
some input is a pin-code or some information that is not dangerous to log.

There is one workaround that could be used for both issues, although it
is not optimal. The workaround would be to suppress specific warnings
with proper justification. This way we could prohibit the flow USER_INPUT
-> WRITE_LOGS by not adding this flow to the policy file, but if need
to use this flow we can suppress warnings for individual errors (by using
@SuppressWarnings, see Checker-Framework manual).

7.2.2 Gradle support

As discussed in Section 5.6, SPARTA’s Gradle support is very limited. Using
SPARTA to analyze a Gradle project is really complicated right now and
external tools like the Inference-framework do not work properly in the
Gradle environment. As discussed in Chapter 5.4, the Inference-framework
combined with defaulting generally accounts for 96% of the annotations in a
program. Luckily, during the e-mail conversation with one of the developers
she mentioned that proper Gradle support is coming in the future. And
although the difference between using SPARTA on an Ant-built application
and one built by Gradle is really important, it is unfortunately not clearly
mentioned in SPARTA’s manual.

7.2.3 Final conclusion about using SPARTA to analyze Card-
Proxy

In [Ernst et al., 2014] the authors say that getting SPARTA to work and
getting used to SPARTA’s policies is the hardest part and consumes most
time. This can be confirmed. Especially considering the fact that the tool
was completely new for me and the fact that getting SPARTA to work with
Gradle was even more complicated. However, although this research did not
use SPARTA like it was intended by the developers (we used SPARTA to
detect information flows not to prove certain information flow properties),
SPARTA can still be very useful in analyzing privacy sensitive applications.
Even though the pin-code to logs “error” was detected by hand, there is
also a bit of luck involved. For example if some code is spread over muliple
source files it can be hard to find a vulnerability. SPARTA can provide an
automated systematic way to detect these kinds of problems, even the ones
that can appear as innocent on first sight.

36

This is because SPARTA for example traces the Source back to the ori-
gin and will then show the analyzer where data can come from (and flow
to). I am also certain SPARTA will be able to find more complicated errors
when everything is working correctly.

As for the problem with the “encryption-module” or detecting different
types of USER_INPUT I suggest the following (if not already possible):
Use the Checker-Framework and SPARTA’s parameter principle (Section
7.2.1) to allow a user of SPARTA to create “custom” Sources and Sinks.
For example, assume we have a method called nfcToEncrypted () {...}
which takes NFC data and encrypts it. 1 propose the following concep-
tual technique: Use the Checker-Framework to annotate the method as
the custom type “NFC_ENCRYPTED”. So we would get @Source (NFC)
@NFC_ENCRYPTED nfcToEncrypted(){...}. We could now specify in
our policy file that we do allow the flow NFC_ENCRYPTED -> INTERNET.
This way we can enforce that the only NFC data that will be send over
the internet will come frome the encryption module. I think this could pro-
vide users that do not know all the details of SPARTA a way to write and
use “their own” Sources and Sinks. Maybe it is not necessary to introduce
custom sources and sinks by just adding an extra declassification method.
Consider an encryption module that can enforce that data is classified as
@Source (NFC) @Sink (ANY). By doing this we can make some data only
available after it has been encrypted (declassify). After the data has been
encrypted we can allow it to flow to anything (hence @Sink (ANY)).

To summarize: SPARTA’s principle is really great and after SPARTA will
be more compatible with Gradle it could be a great tool not only detect
information flows, but also prove that an application does only contain the
flows that are allowed by the policy flow file.

7.3 Fuzzing

Unfortunately there was not enough time left to extensively explore the field
of fuzzing. Therefore, we cannot make a concrete conclusion about the tech-
nique. Chapter 6 discussed two ways we wanted to do fuzzing. The first was
by hand in terms of trying out unexpected QR-codes. The only result we
got was the application crashing. For CardProxy this is only a DoS for your
own device, and it does not affect the server. If it did, it would be a serious
problem because crashing a server by entering some malformed QR-codes
would be a big problem.

37

Although the fuzzing tools that were discussed in Section 3.1.3 were not
suitable for CardProxy (see Chapter 6), we tried to use Android-Hooker.
Android-Hooker is a dynamic program analysis tool that can be used to
automate input and observe the behavior of an application. As discussed
in Chapter 6, the tool worked pretty good for the example application (the
blackjack app) the developers gave. But due to the tool not being able to
handle NFC traffic CardProxy could not be analyzed.

The main purpose of the tool however is to observe the behavior of the
application, but we wanted to use the tool in such a manner that we could
also automate some input. Due to the NFC-problem we faced with this tool
we moved the usage of Android-Hooker to our future work.

7.4 Final conclusion and small reflection

In our introduction chapter the following research question was stated: “Us-
ing SPARTA and fuzzing, is it possible to analyze security-sensitive appli-
cations like CardProxy as a non-expert in these techniques?” Section 7.2.3
and 7.3 concluded that the principle of the tools / techniques are useful for
applications like CardProxy, but in practice they were not yet sufficient for
someone without extensive knowledge of SPARTA because of the lack of
support for Gradle. For Ant we found that SPARTA worked good for the
examples given by the developers.

Although SPARTA was used in a way that was still useful for our research.
We would have liked to use SPARTA with CardProxy to prove that it con-
tains only the flows we allow instead of just analyzing the flows (see Section
5.3 for the difference between these two approaches). If this research were
to be repeated the biggest change would be seeking help from the developers
earlier. Too much time was spent trying to get the tool working ourselves
and searching for the answer. In SPARTA’s case, we initially thought that
the problem was our own setup and that the manual would be sufficient to
get the tool working. However, after getting help from the local department
in Nijmegen and after contacting the developers in Washington it turned
out that the answer to the problem was something we would have probably
never found by ourselves.

Assuming that we did not run into any problems running SPARTA an inter-
esting question would be what our policy file would look like. Although we
cannot give a specific policy file, we guess that the file will not be large. This
is because the CardProxy does not offer more features apart from scanning
the QR-code and authenticating (providing the attributes).

38

Therefore we predict that the ideal main sources and sinks used in our
policies would be NFC, INTERNET, USER_INPUT and CAMERA. T will
definitely keep an eye on SPARTA because I have the feeling I only grasped
the surface of the tool and that when the tool is fully working I could use
its full potential.

For the fuzzing part of our research question we would have liked more
time to explore it some more. As Chapter 7.3 discussed, NFC is essential
for the CardProxy application and because we could not emulate our NFC
traffic yet we did not have enough results to make a substantiated conclusion
about fuzzing the CardProxy app.

Acknowledgement

Special thanks to S. Millsteiner for helping me out with the SPARTA tool.

39

Chapter 8

Future work

This chapter will discuss some points that would be interesting to perform in
future work. These points will be actions we would have liked to perform but
due to the time were not able to and possible improvements and alternatives
for our research.

1. Creating a better integration of SPARTA and the Inference-Framework
with Gradle. At this moment the Gradle support for these tools is not
sufficient. In order for applications like CardProxy that use Gradle to
make use of SPARTA a better integration is necessary.

2. When doing the Checker-Framework tutorial we also used the Eclipse
plugin. This turned out to be very easy to use. A future work could be
to integrate the Checker-Framework and SPARTA into AndroidStudio
as AndroidStudio is the current standard IDE and support for Eclipse
will be stopped E

3. The first option would be to prove that CardProxy does indeed have
certain allowed information flows. As discussed in our conclusion due
to problems getting SPARTA working with CardProxy we did not have
time to fully annotate the code. But another factor would be to get
the Inference-Framework to work, because annotating everything by
hand will cost a lot of time.

4. It would also be interesting to check the CardEmu application be-
cause it is more recent than CardProxy and will actually be the stan-
dard application for the IRMA project in the future. CardEmu will
also be more of a challenge because instead of getting the credentials
from a smart-card they need to be taken from local storage. This will
add more potential risky information flows. The only problem is that
CardEmu also uses Gradle and NFC, so the problems we had with
CardProxy will also occur when analyzing CardEmu.

"https://developer.android.com/studio/index.html

40

https://developer.android.com/studio/index.html

5. Focus more on dynamic program analysis. This research was primarily
focused on SPARTA. A future work could be to explore dynamic pro-
gram analysis a bit more together with automated fuzzing. Because
NFC and internet are the most important input and output for Card-
Proxy we would focus our analysis on those two information flows.
Considering the solution that we can simulate NFC traffic in order
to analyze the application using Android-Hooker (see Chapter 6 and
[Mulliner, 2012]).

41

Bibliography

[Alpar and Jacobs, 2013] Alpar, G. and Jacobs, B. (2013). Credential de-
sign in attribute-based identity management. In Bridging distances in
technology and regulation, 3rd TILTing Perspectives Conference, pages
189-204.

[Arzt et al., 2014] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P. (2014). Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint anal-
ysis for android apps. ACM SIGPLAN Notices, 49(6):259-269.

[Burket et al., 2015] Burket, J., Flynn, L., Klieber, W., Lim, J., and
Snavely, W. (2015). Making didfail succeed: Enhancing the CERT static
taint analyzer for Android app sets.

[Enck et al., 2014] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun,
B.-G., Cox, L. P., Jung, J., McDaniel, P., and Sheth, A. N. (2014). Taint-
droid: an information-flow tracking system for realtime privacy monitor-

ing on smartphones. ACM Transactions on Computer Systems (TOCS),
32(2):5.

[Ernst et al., 2014] Ernst, M. D., Just, R., Millstein, S., Dietl, W., Pern-
steiner, S., Roesner, F., Koscher, K., Barros, P. B., Bhoraskar, R., Han,
S., et al. (2014). Collaborative verification of information flow for a high-
assurance app store. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 1092-1104. ACM.

[Fedler et al., 2013] Fedler, R., Schiitte, J., and Kulicke, M. (2013). On
the effectiveness of malware protection on android. Fraunhofer AISEC,
Berlin, Tech. Rep.

[Garg, 2012] Garg, P. (2012). Fuzzing: Mutation vs. gen-
eration. http://resources.infosecinstitute.com/
fuzzing-mutation-vs—generation/.

[Mulliner, 2012] Mulliner, C. (2012). Powerpoint: Dynamic binary instru-
mentation on android. Lecture slides Systems Security Labs (Northeastern
University).

42

http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/

[Poll, 2015] Poll, E. (2015). Powerpoint: Information flow for Android apps.
Lecture slides Software Security (Master course at Radboud University).

[Sasnauskas and Regehr, 2014] Sasnauskas, R. and Regehr, J. (2014). Intent
fuzzer: crafting intents of death. In Proceedings of the 2014 Joint Interna-
tional Workshop on Dynamic Analysis (WODA) and Software and System

Performance Testing, Debugging, and Analytics (PERTEA), pages 1-5.
ACM.

[Sutton et al., 2007] Sutton, M., Greene, A., and Amini, P. (2007). Fuzzing:
brute force vulnerability discovery. Pearson Education.

[Wei et al., 2014] Wei, F., Roy, S., Ou, X., et al. (2014). Amandroid: A
precise and general inter-component data flow analysis framework for se-
curity vetting of android apps. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, pages 1329-1341.
ACM.

[Wong and Lie, 2016] Wong, M. Y. and Lie, D. (2016). Intellidroid: A tar-
geted input generator for the dynamic analysis of android malware. In

Proceedings of the Annual Symposium on Network and Distributed System
Security (NDSS).

43

Appendix A

Appendix

A.1 Environment Variables

Environment Variables are necessary to run SPARTA. The following vari-
ables were used in this research. The Environment Variables were stored in
~/.bash_profile. If you are using the same file, remember to do $source
~/.bash profile every time you boot your laptop/PC.

export CHECKERFRAMEWORK=/home/laptop /Documents/Bachelor—Scriptie
/sparta—sparta —1.0.2/checker —framework —1.9.11

export PATH=${CHECKERFRAMEWORK} / checker /bin :$PATH

export JAVAHOME=/usr/lib /jvm/default—java

export PATH=$JAVA HOME/ bin : $PATH

export ANDROIDHOME=/home/laptop /Documents/Bachelor—Scriptie/
android—sdk—linux

export PATH=$ANDROID HOME/ platform—tools :$PATH

export PATH=SANDROID HOME/ tools :$PATH

export ANDROID_SDK=/home/laptop/Documents/Bachelor—Scriptie/
android—sdk—linux

export SPARTA CODE=/home/laptop/Documents/Bachelor—Scriptie/
sparta—sparta —1.0.2

export CHECKERINFERENCE=/home/laptop/Documents/Bachelor—
Scriptie/checker—framework—inference

A.2 Dbuild.gradle file

This build.gradle file is necessary to run the SPARTA information-flow

checker with the CardProxy application. https://github.com/LaurensBrinker/
irmaproxychecker/blob/master/build.gradle

apply plugin: ’com.android.application’
apply plugin: ’maven’

version="0.8"
group="org.irmacard”

44

https://github.com/LaurensBrinker/irmaproxychecker/blob/master/build.gradle
https://github.com/LaurensBrinker/irmaproxychecker/blob/master/build.gradle

ext.targetJavaVersion = JavaVersion.current ().isJava7() ?
JavaVersion.VERSION_1.7 : JavaVersion.VERSION_1_8

buildscript {
System . properties [’com. android . build . gradle.
overrideVersionCheck’] = ’true’
repositories {
mavenCentral ()
}

dependencies {
classpath ’com.android.tools.build:gradle:1.5.0"
}

}

repositories {
mavenLocal ()
maven {
url "https://credentials.github.io/repos/maven2/”
}

// Use this to get minimal android library
maven {
url "https://raw.github.com/embarkmobile/zxing—android—
minimal /mvn—repo /maven—repository /”
}

mavenCentral ()

}

android {
compileSdkVersion 19
buildToolsVersion 719.1”

sourceSets {

main {
manifest.srcFile >AndroidManifest.xml’
java.srcDirs = [’src’]
resources.srcDirs = [’src’]
res.srcDirs = [’res’|
assets.srcDirs = [’assets’]

}

lintOptions {
// BCProv references javaz.naming
// CredentialsAPI references java.awt and java.swing
disable ’InvalidPackage’

}

configurations {
if (targetJavaVersion.isJava7()) {
checkerFrameworkJavac {

45

description = ’a.customization.of_the_Open_.JDK_javac
~compiler_with_additional _support._for_type.
annotations’
}
}
checkerFrameworkAnnotatedJDK {
description = ’a.copy.of.JDK.classes_with_Checker.
Framework._type_qualifers._inserted’
}
checkerFramework {
description = ’The_Checker_Framework:._custom._pluggable.
types.for.Java’

}

sparta

}

dependencies {

ext .checkerFrameworkVersion = ’1.9.11"°
ext.jdkVersion = JavaVersion.current ().isJava7() ? ’jdk7’
"jdk8

checkerFrameworkAnnotatedJDK ”org.checkerframework : ${
jdkVersion }:${checkerFrameworkVersion}”

checkerFrameworkJavac ”org.checkerframework:compiler:${
checkerFrameworkVersion}”

checkerFramework ”org.checkerframework:checker:${
checkerFrameworkVersion}”

compile ”org.checkerframework:checker—qual:${
checkerFrameworkVersion}”

sparta fileTree(dir: ”$System.env.SPARTACODE” , include: [’
x.jar’])

if (typecheck) {
compile fileTree(dir: ”$System.env.SPARTA CODE”, include

[’x.jar’])

}

compile ’com.loopj.android:android—async—http:1.4.3"’

compile ’com.android.support:support—v4:19.1.0°

compile ’com.google.code.gson:gson:2.2.2"°

// zzing QR code libraries

compile ’com.embarkmobile:zxing—android—minimal:2.0.0 @aar’

compile ’com.embarkmobile:zxing—android—integration:2.0.0
Q@aar’

compile ’com.google.zxing:core:3.0.1"°

compile ”org.irmacard.android:irma_android_library:0.9.1”
compile ’net.sf.scuba:scuba_sc_android:0.0.7 —irma’

compile ’net.sf.scuba:scuba_smartcards:0.0.7 —irma’

ext .checkerFrameworkVersion = ’1.9.13°

ext.jdkVersion = JavaVersion.current ().isJava7() ? ’jdk7’
7jdk8”’

checkerFrameworkAnnotatedJDK ”org.checkerframework: ${
jdkVersion }:${checkerFrameworkVersion}”

46

def typecheck = project.properties[’typecheck’] 7: false
allprojects {
if (typecheck) {
gradle.projectsEvaluated {
tasks.withType(JavaCompile). all { JavaCompile compile —>
compile.options.compilerArgs = |
'—processor ', ’sparta.checkers.FlowChecker’,
'—processorpath’, 7${configurations.sparta.
asPath }:${configurations.checkerFramework.
asPath}” |
'—AflowPolicy=/home/laptop/Documents/Bachelor—
Scriptie /Irma—Application/irmaproxychecker/
Flow—Policy/policy . flow”’
// uncomment to turn Checker Framework errors
into warnings
//’—Awarns ’,
//"—AprintErrorStack”

compile.options.compilerArgs += [’—source’, '7’, '—
target’, 7]

options.bootClasspath = "${configurations.
checkerFrameworkJavac.asPath}:” 4+ System.
getProperty (”sun.boot.class.path”) + 7:”7 +

options.bootClasspath

options.fork = true
options.forkOptions.jvmArgs += ["—Xbootclasspath/p:$
{configurations.checkerFrameworkJavac.asPath}”]

}

task wrapper(type: Wrapper) {
gradleVersion = 2.2’
}

47

A.3 List of SPARTA’s sources and sinks

The Sinks and Sources as taken from the FlowPermission.java file (Dir =
/sparta/src/sparta/checkers/quals)

VAT

x This special constant is shorthand for all sources, that is,
the data can

* come from any possible source. Using this constant is
preferred to

* listing all constants, because it’s future safe.

*/

ANY(T.BOTH) ,

VAT

x The following are special permissions added by SPARTA Make
sure that

* whatever permission you add is not the same as any permission
already

* added.

*/

CAMERA SETTINGS (T.BOTH) , DISPLAY (T.SINK) , FILESYSTEM (T.BOTH) ,
RANDOM(T.SOURCE) , READ_TIME(
T.SOURCE) , // WRITE.TIME is an Android Permission, but
read time
// isn’t
USERINPUT (T.SOURCE) ,
WRITELOGS(T.SINK) , // READ_LOGS is an Android Permission, but
there is mno
// WRITE_LOGS
DATABASE(T.BOTH) , // This is an Android database that could be
any of the
// Content database.
SYSTEM PROPERTIES(T.BOTH) , // This is for java.lang.System
MEDIA (T.SOURCE) ,
READ_EMAIL(T.SOURCE) ,
WRITE_EMAIL (T. SINK)
WRITE.CLIPBOARD (T. SINK) ,
READ_CLIPBOARD(T.SOURCE) ,
SPEAKER(T.SINK), // Physical speaker / headphones
SENSOR(T.SOURCE) , //See android.hardware. Sensor
PACKAGEINFO(T.BOTH) , //For data from/to android.content.pm.
PackageManager

VAx:

* These are old sources or sinks that may or may not be of use
*/

PHONENUMBER/(T.SOURCE) ,

SHARED_PREFERENCES(T.BOTH) ,

ACCELEROMETER(T.SOURCE) ,

VAT

48

* The following permissions are temporary and implemented now
in a simple
x way for an upcoming engagement.

*/

REFLECTION(T.BOTH) , // The caller of the invoke method should

have this
// permission.

INTENT (T.BOTH) ,

BUNDLE(T.SOURCE) ,

PROCESS BUILDER(T.BOTH) , // The ProcessBuilder variable should
have this

// permission.

PARCEL (T.BOTH) ,

SECUREHASH(T.BOTH) , // Use only for one way hashes (MD5 for
example)

CONTENT_PROVIDER (T .BOTH) ,

// Allows read/write access to the "properties” table in the
checkin

// database, to change values that get uploaded.

ACCESS_CHECKIN_PROPERTIES (T.BOTH) ,

// Allows an app to access approzimate location derived from
network

// location sources such as cell towers and Wi-Fi.

ACCESS_.COARSE_LOCATION(T.SOURCE) ,

// Allows an app to access precise location from location
sources such as

// GPS, cell towers, and Wi-Fi.

ACCESS_FINE_LOCATION (T .SOURCE) ,

// Allows an application to access ezxtra location provider
commands

ACCESSLOCATION_EXTRA_ COMMANDS(T.SOURCE) ,

// Allows an application to create mock location providers for
testing

ACCESS MOCK_LOCATION(T.SOURCE) ,

// Allows applications to access information about networks

ACCESSNETWORK STATE(T.SOURCE) ,

// Allows an application to use SurfaceFlinger’s low level
features

ACCESS_SURFACE_FLINGER(T.BOTH) ,

// Allows applications to access information about Wi-Fi
networks

ACCESS_WIFLSTATE (T.SOURCE) ,

// Allows applications to call into AccountAuthenticators.

ACCOUNT MANAGER(T.SOURCE)

// Allows an application to add voicemails into the system.

ADD_VOICEMAIL(T.SINK) ,

// Allows an application to act as an AccountAuthenticator for
the

// AccountManager

AUTHENTICATE ACCOUNTS(T.BOTH) ,

// Allows an application to collect battery statistics

BATTERY_STATS(T.SOURCE) ,

49

// Must be required by an AccessibilityService, to ensure that
only the

// system can bind to it.

BIND_ACCESSIBILITY_SERVICE (T.BOTH) ,

// Allows an application to tell the AppWidget service which
application can

// access AppWidget’s data.

BIND_APPWIDGET (T.BOTH) ,

// Must be required by device administration receiver, to ensure
that only

// the system can interact with it.

BIND_DEVICE_ADMIN (T .BOTH) ,

// Must be required by an InputMethodService, to ensure that
only the system

// can bind to it.

BINDINPUT_METHOD (T.BOTH) ,

// Must be required by a RemoteViewsService, to ensure that only
the system

// can bind to it.

BIND_REMOTEVIEWS(T.BOTH) ,

// Must be required by a TeztService (e.g.

BIND_TEXT_SERVICE (T.BOTH) ,

// Must be required by an VpnService, to ensure that only the
system can

// bind to it.

BIND_VPN_SERVICE (T.BOTH) ,

// Must be required by a WallpaperService, to ensure that only
the system

// can bind to it.

BIND_-WALLPAPER (T .BOTH) ,

// Allows applications to connect to paired bluetooth devices

BLUETOOTH(T.BOTH) ,

// Allows applications to discover and pair bluetooth devices

BLUETOOTH ADMIN(T.BOTH) ,

// Required to be able to disable the device (very dangerous!).

BRICK(T.SINK) ,

// Allows an application to broadcast a notification that an
application

// package has been remowved.

BROADCAST PACKAGE REMOVED(T . SINK)

// Allows an application to broadcast an SMS receipt
notification

BROADCAST SMS(T. SINK) ,

// Allows an application to broadcast sticky intents.

BROADCAST STICKY (T.SINK) ,

// Allows an application to broadcast a WAP PUSH receipt
notification

BROADCAST WAP PUSH(T. SINK) ,

// Allows an application to initiate a phone call without going
through the

// Dialer user interface for the user to confirm the call being
placed .

CALL PHONE(T.SINK) ,

// Allows an application to call any phone number, including

50

emergency

// numbers, without going through the Dialer user interface for
the user to

// confirm the call being placed.

CALL_PRIVILEGED (T.SINK) ,

// Required to be able to access the camera device.

CAMERA(T.SINK) ,

// Allows an application to change whether an application
component (other

// than its own) is enabled or not.

CHANGE_.COMPONENT ENABLED_STATE(T. SINK) ,

// Allows an application to modify the current configuration ,
such as

// locale.

CHANGE_CONFIGURATION(T. SINK) ,

// Allows applications to change network connectivity state

CHANGE NETWORK STATE(T. SINK) ,

// Allows applications to enter Wi-Fi Multicast mode

CHANGE_-WIFI.MULTICAST STATE(T. SINK) ,

// Allows applications to change Wi-Fi connectivity state

CHANGE-WIFLSTATE(T.SINK) ,

// Allows an application to clear the caches of all installed
applications

// on the device.

CLEAR_APP_CACHE(T.SINK) ,

// Allows an application to clear user data

CLEAR_APP_USER DATA(T.SINK) ,

// Allows enabling/disabling location update notifications from
the radio.

CONTROL_LOCATION_UPDATES(T. SINK) ,

// Allows an application to delete cache files.

DELETE_CACHE _FILES(T.SINK) ,

// Allows an application to delete packages.

DELETE PACKAGES(T.SINK) ,

// Allows low—level access to power management

DEVICE POWER,(T.SOURCE) ,

// Allows applications to RW to diagnostic resources.

DIAGNOSTIC(T.BOTH) ,

// Allows applications to disable the keyguard

DISABLE KEYGUARD(T. SINK) |,

// Allows an application to retrieve state dump information from
system

// services.

DUMP(T.SOURCE) ,

// Allows an application to expand or collapse the status bar.

EXPAND_STATUSBAR(T. SINK) ,

// Run as a manufacturer test application , running as the root
user.

FACTORY.TEST(T.NONE) ,

// Allows access to the flashlight

FLASHLIGHT (T.SINK) ,

// Allows an application to force a BACK operation on whatever
is the top

// activity.

o1

FORCEBACK(T.SINK) ,

// Allows access to the list of accounts in the Accounts Service

GET_ACCOUNTS(T.SOURCE) ,

// Allows an application to find out the space used by any
package .

GET_PACKAGESIZE (T.SOURCE) ,

// Allows an application to get information about the currently
or recently

// running tasks.

GET_TASKS(T.SOURCE) ,

// This permission can be used on content providers to allow the
global

// search system to access their data.

GLOBALSEARCH (T .BOTH) ,

// Allows access to hardware peripherals.

HARDWARE.TEST(T.BOTH) ,

// Allows an application to inject user events (keys, touch,
trackball) into

// the event stream and deliver them to ANY window.

INJECT_EVENTS(T.SINK) ,

// Allows an application to install a location provider into the
Location

// Manager

INSTALL_LOCATION_PROVIDER(T.SINK) ,

// Allows an application to install packages.

INSTALL PACKAGES(T.SINK) ,

// Allows an application to open windows that are for wuse by
parts of the

// system wuser interface.

INTERNAL.SYSTEM_-WINDOW (T. SINK)) ,

// Allows applications to open network sockets.

INTERNET (T.BOTH) ,

// Allows an application to call killBackgroundProcesses(String)

KILL BACKGROUND_PROCESSES(T. SINK) ,

// Allows an application to manage the list of accounts in the

// AccountManager

MANAGE ACCOUNTS(T.BOTH) ,

// Allows an application to manage (create, destroy, Z—order)
application

// tokens in the window manager.

MANAGE APP_.TOKENS(T. SINK) ,

MASTER.CLEAR (T .NONE) ,

// Allows an application to modify global audio settings

MODIFY_AUDIO_SETTINGS(T.SINK) ,

// Allows modification of the telephony state — power on, mmi,
etc.

MODIFY_PHONE STATE(T. SINK) ,

// Allows formatting file systems for removable storage.

MOUNT FORMAT FILESYSTEMS(T.BOTH) ,

// Allows mounting and unmounting file systems for remowvable
storage.

MOUNT_UNMOUNT_FILESYSTEMS (T .BOTH) ,

92

// Allows applications to perform [/O operations over NFC

NFC(T.BOTH) ,

// This constant was deprecated in API level 9. This
functionality will be

// removed in the future; please do not wuse.

// Allow an application to make its activities persistent.

PERSISTENT_ACTIVITY (T.SINK) ,

// Allows an application to monitor, modify, or abort outgoing
calls .

PROCESS_.OUTGOING_CALLS(T.BOTH) ,

// Allows an application to read the user’s calendar data.

READ_CALENDAR/(T.SOURCE) ,

// Allows an application to read the user’s call log.

READ_CALL LOG(T.SOURCE) ,

// Allows an application to read the wuser’s contacts data.

READ_CONTACTS(T.SOURCE) ,

// Allows an application to read from external storage.

READ_EXTERNAL STORAGE(T.SOURCE) ,

// Allows an application to take screen shots and more generally
get access

// to the frame buffer data

READ_FRAME BUFFER(T.SOURCE) ,

// Allows an application to read (but not write) the user’s
browsing history

// and bookmarks.

READ HISTORY BOOKMARKS(T.SOURCE) ,

// This constant was deprecated in API level 16. The API that
used this

// permission has been removed.

READ_INPUT_STATE(T.SOURCE) ,

// Allows an application to read the low—level system log files.

READ_LOGS(T.SOURCE) ,

// Allows read only access to phone state.

READ_PHONE STATE(T.SOURCE) ,

// Allows an application to read the user’s personal profile
data.

READ_PROFILE(T.SOURCE) ,

// Allows an application to read SMS messages.

READ_SMS(T.SOURCE) ,

// Allows an application to read from the user’s social stream.

READ_SOCIAL_STREAM (T .SOURCE) ,

// Allows applications to read the sync settings

READ_SYNC_SETTINGS(T.SOURCE) ,

// Allows applications to read the sync stats

READ_SYNC_STATS(T.SOURCE) ,

// Allows an application to read the user dictionary.

READ_USER_DICTIONARY (T.SOURCE) ,

// Required to be able to reboot the device.

REBOOT(T. SINK) ,

// Allows an application to receive the ACTION.BOOT-COMPLETED
that s

// broadcast after the system finishes booting.

RECEIVE BOOT_-COMPLETED (T .SOURCE) ,

// Allows an application to monitor incoming MMS messages, to

93

record or

// perform processing on them.

RECEIVEMMS(T.SOURCE) ,

// Allows an application to monitor incoming SMS messages, to
record or

// perform processing on them.

RECEIVE_SMS(T.SOURCE) ,

// Allows an application to monitor incoming WAP push messages.

RECEIVE_-WAP _PUSH (T .SOURCE) ,

// Allows an application to record audio

RECORD_AUDIO(T.BOTH) ,

// Allows an application to change the Z—order of tasks

REORDER.TASKS(T.SINK) ,

// This constant was deprecated in API level 8. The
restartPackage (String)

// API is no longer supported.

RESTART PACKAGES(T.SINK) ,

// Allows an application to send SMS messages.

SEND_SMS (T . SINK) ,

// Allows an application to watch and control how activities are
started

// globally in the system.

SET_ACTIVITY WATCHER/(T. SINK) ,

// Allows an application to broadcast an Intent to set an alarm
for the

// user.

SET_ALARM(T.SINK) ,

// Allows an application to control whether activities are
immediately

// finished when put in the background.

SET_ALWAYS_FINISH (T.SINK) ,

// Modify the global animation scaling factor.

SET_ANIMATION_SCALE(T.SINK) ,

// Configure an application for debugging.

SET DEBUG_APP(T.SINK) ,

// Allows low—level access to setting the orientation (actually
rotation) of

// the screen.

SET_ORIENTATION (T.SINK) ,

// Allows low—level access to setting the pointer speed.

SET_POINTER_SPEED (T.SINK) ,

// This constant was deprecated in API level 7. No longer wuseful
, see

// addPackageToPreferred(String) for details.

SET_PREFERRED_APPLICATIONS(T.SINK) ,

// Allows an application to set the mazimum number of (not
needed)

// application processes that can be running.

SET_PROCESS_LIMIT (T.SINK) ,

// Allows applications to set the system time

SET_TIME(T.SINK) ,

// Allows applications to set the system time zone

SET_TIME_ZONE(T.SINK) ,

// Allows applications to set the wallpaper

o4

SET WALLPAPER(T.SINK) ,

// Allows applications to set the wallpaper hints

SET_-WALLPAPER HINTS(T.SINK) ,

// Allow an application to request that a signal be sent to all
persistent

// processes

SIGNAL_PERSISTENT_PROCESSES(T.SINK) ,

// Allows an application to open, close, or disable the status
bar and its

// icons.

STATUS BAR(T.SINK) ,

// Allows an application to allow access the subscribed feeds

// ContentProvider.

SUBSCRIBED_FEEDS_READ (T.SOURCE) ,

SUBSCRIBED_FEEDS_WRITE (T . SINK) ,

// Allows an application to open windows using the type
TYPE.SYSTEM_ALERT,

// shown on top of all other applications.

SYSTEM_ ALERT WINDOW (T. SINK)) ,

// Allows an application to update device statistics.

UPDATE DEVICE.STATS(T.SINK) ,

// Allows an application to request authtokens from the
AccountManager

USE_CREDENTIALS (T.SOURCE) ,

// Allows an application to use SIP service

USE_SIP(T.BOTH) ,

// Allows access to the wvibrator

VIBRATE(T.SINK) ,

// Allows wusing PowerManager WakeLocks to keep processor from
sleeping or

// screen from dimming

WAKETLOCK(T.BOTH) ,

// Allows applications to write the apn settings

WRITE_APN_SETTINGS(T.SINK) ,

// Allows an application to write (but not read) the user’s
calendar data.

WRITE.CALENDAR/(T. SINK) ,

// Allows an application to write (but not read) the user’s
contacts data.

WRITE_.CALL LOG(T.SINK) ,

// Allows an application to write (but not read) the user’s
contacts data.

WRITE_ CONTACTS(T. SINK) ,

// Allows an application to write to external storage.

WRITE_ EXTERNAL STORAGE(T. SINK) ,

// Allows an application to modify the Google service map.

WRITE_GSERVICES(T.SINK) ,

// Allows an application to write (but not read) the wuser’s
browsing history

// and bookmarks.

WRITE HISTORY BOOKMARKS(T. SINK) ,

// Allows an application to write (but not read) the user’s
personal profile

95

// data.
WRITE_PROFILE (T. SINK) ,

// Allows an application to read or write the secure system
settings.

WRITE_SECURE_SETTINGS(T. SINK) ,

// Allows an application to read or write the system settings.

WRITE_SETTINGS (T. SINK) ,

// Allows an application to write SMS messages.

WRITESMS(T.SINK) ,

// Allows an application to write (but not read) the user’s
social stream

// data.

WRITE_SOCIAL. STREAM (T .SINK) ,

// Allows applications to write the sync settings

WRITE_SYNC_SETTINGS(T.SINK) ,

WRITE.TIME (T. SINK) ,

// Allows an application to write to the user dictionary.

WRITE_USER DICTIONARY (T. SINK) ,

o6

	Introduction
	Background
	Malware or security flaw
	Static- versus dynamic program analysis in a nutshell
	Analysis tools
	Checker-Framework
	SPARTA
	Relation between SPARTA and Checker-Framework
	Fuzzing

	IRMA

	Prior research
	Available tools
	Static analysis tools
	Dynamic analysis tools
	Fuzzing
	Overview

	Research
	Research question
	My background and expertise
	Initial investigations of CardProxy
	``Ordinary'' Android antivirus analysis
	Checking the code ``by hand''

	SPARTA
	Android permissions vs SPARTA policies
	Information flow properties to analyze
	Approach
	SPARTA's approach
	My approach

	Inference framework and Stub files
	Installation of SPARTA
	Results of SPARTA
	Running SPARTA
	Output SPARTA

	Fuzzing
	Conclusions
	Information flows in general
	SPARTA
	Expressivity
	Gradle support
	Final conclusion about using SPARTA to analyze CardProxy

	Fuzzing
	Final conclusion and small reflection

	Future work
	Appendix
	Environment Variables
	build.gradle file
	List of SPARTA's sources and sinks

