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Abstract

Due to the rising complexity of medical decision problems there is an in-
creasing need for decision support. In an effort to support physicians in
their medical decision making, network systems have been developed which
can weigh diagnostic and patient information and recommend treatment op-
tions that also offer a favourable prognosis. In order to promote the use of
these network systems it is desirable that there is a way to show the practical
value of these network models. The context of the research described in this
thesis is clinical treatment selection. There network models are commonly
used.

I have compared several methods from different articles and books that
have something to say about the development and evaluation of network
models and have arrived at a methodology to evaluate network models used
for clinical treatment selection. The way in which each network model should
be evaluated may differ per model due to the decision problem it is expected
to handle. Several difficulties may need to be overcome during evaluation.
However, it appears that it is possible to evaluate these network models to
form an informed opinion regarding their functioning.
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Chapter 1

Introduction

Making decisions has always been a part of life as we know it. Though some
might argue that because we live in a deterministic universe our actions are
predetermined the actual decisions regarding those actions still need to be
made on a conscious level.

Predetermined or not, most organisms are wired in such a way to make
decisions that increase their chance of survival. Simple organisms may sim-
ply react to their sensory input, more complex organisms can tap into their
memory and integrate previous experiences into making decisions. Even
more complex, higher organisms if you will have the ability to reason and
may make decisions based memories and beliefs not directly linked with the
decision at hand.

We as humans have this ability to reason. We use it on a daily basis
and in many aspects of our lives. What we should eat, wear and read. We
make many decisions during the day. Of course, being humans, we have
professions, which often entail making decisions of a higher complexity than
what we would like to have for dinner.

One group of professionals that deals with particularly important deci-
sions would be those involved in the field of medicine. Medical practitioners
need to extract data from their patients and use this to ultimately come up
with the decision most beneficial to the patient and to which the patient
can give informed consent to [6, 25,29]

As medical science grew more advanced, so too did the decision making
problems involving treatment selection become more complex, not in the
least because medical practitioners often have to deal with uncertainty and
have to work with rather imperfect information. Medical practitioners are
also under increasing scrutiny as patients gain more access to information
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themselves. Also, having to deal with qualia such as discomfort, aesthetics,
perhaps even happiness, means that the decisions are also partially made
subjectively which makes it harder to judge the quality of a decision. Making
a decision that will lead to the most desirable outcome to the best of one’s
ability therefore requires a combination of solid reasoning an intuitive un-
derstanding of what the patient prefers. Intuition is still beyond computers,
but a clinician may be able to get some support regarding the rational part
of the decisions made in the form of a decision support system [27]. Network
models are one form of support system that can fulfil this function [22]. A
well-made network model may make help see the clinician see structure in
the decision problem and also calculate, given the evidence which course of
action would lead to the optimal outcome [9,16].

These decision making support systems have been under development for
several decades now. It seems almost inevitable that they are going to see
widespread implementation. Still medical practitioners are sceptical about
these models as they should be about everything that concerns the welfare
of their patients. They need to be reassured that these models fulfil their
function and that using them will beneficially affect healthcare [12].

In order to promote the use of these network models for clinical decision
making it is important that these models can show their worth. They need
to be properly evaluated. This might not be an easy task. We have already
established that some variables are subjective in nature and evaluation is a
challenge in itself. Still for the sake of improving healthcare we must try,
and that is why my research question is “How to evaluate network models
used in clinical decision making?”.

First I shall briefly explain the basics of decision theory, probability
theory and graph theory as these are necessary to get a grasp on the problem
at hand. I will then explain which models are most commonly used and how
their results are expressed and measured. Then I shall proceed to explain
how clinical treatment selection is performed and how a model might support
this. I will then describe the results of my research by explaining at which
points during the lifespan of a network model one might evaluate it and how
this is done. Lastly I will explain my conclusion.
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Chapter 2

Preliminaries

Before we can describe something new we must explain what is already
known. We shall limit ourselves to what is relevant within the scope of
this project. We shall describe probability theory, graph theory, Bayesian
networks, statistic decision trees and influence diagrams.

2.1 Decision theory

2.1.1 What is decision theory?

Decision theory is defined as the analysis of the behaviour of an individual
facing uncertainty [13]. It is used in many fields but the way it is used
in medical science is of particular interest to us. More specifically how
a clinician decides upon which treatment to recommend to a patient. A
decision-making task is one where a decision or choice is made. Usually the
result is based on which decision has been made and some results are more
desirable than others. A rationally made decision therefore is based on what
the outcome will be and the decision maker chooses the option which leads
to the most desired outcome. In situations where the outcome of every
possible decision is known and it is clear which of these is the best and
the decision-making is trivial. Such situations are not analysed by decision
theory.

2.1.2 Utility

One of the challenges of decision theory is to define what is the best outcome.
One way to do this is to assign each outcome a utility score [25,28,29]. If the
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desirability of the outcome is based on one variable then so will the utility
score be.

If our goal is to find as much fruit as possible then the utility score will
solely be based on the amount of fruit found. When multiple variables de-
termine how desirable the outcome is utility can be assigned to each variable
and the final utility score will be the sum of these individual utility scores.

Suppose someone tries to find as much fruit as possible, but only apples,
pears and oranges. The total utility score will be based on the sum of the
apples, pears and oranges found. Not every variable needs to be assigned the
same utility score. If for example an apple is more desirable than a pear, and
it is known exactly by how much then the utility score can express that by
assigning more utility for every apple found compared to how much utility
is assigned for every pear found.

If something is considered undesirable it may be assigned a negative
utility score. Some other complicating factors in decision making would be
the interaction of decision makers and situations where the time at which
an action is taken is also of influence, also being referred to as the temporal
factor. In medical decision making variables that could be used to calculate
the utility score could be

• Treatment cost in euros

• Discomfort inflicted upon the patient

• Immediate chance of survival for the patient

• Chance of a full recovery

• Length of the recovery time

• Life expectancy of the patient

• Resulting quality of life for the patient

• Availability of specialists for certain treatments

Of course some of these variables are not easily quantified such as dis-
comfort inflicted upon patient and resulting quality of life. This means that
assigning a utility score for these variables is a subjective matter. Also, not
every patient finds each of these variables equally as important which means
weighing the variables against each other to calculate the utility score is a
subjective matter [8].
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In addition, variables such as treatment cost may be quantifiable, but
can these costs be justified? Is it exactly twice as undesirable to spend 200
euro as it would be to spend 100 euro? And how do you properly anticipate
on future cost [20]?

In short one should always be wary that utility is not as clean cut a
parameter as one might think.

2.2 Probability theory

Probability theory is a branch of mathematics that analyses phenomena
perceived as random. Phenomena of which the outcomes are considered to
be uncertain [9, 16–18,24,25].

A process of which the outcome is not known in advance is called an
experiment. The set of all possible outcomes is called the sample space S of
the experiment.

A probability distribution P is a function that associates outcomes with
the probability of their occurring. A subset of the sample space is called
an event E. An event is considered to be true if the outcome is an element
of the event, otherwise it is considered to be false which is expressed as
Ē. Every event has a probability to occur, in other words E ⊆ S. This is
expressed as P (E). Ē = S \ E which is the complement of event E.

If we look at a single roll of a single six sided die the sample space would
be expressed as follows.

Sample space S = {1, 2, 3, 4, 5, 6}.

An example of an event would be that an even value has been rolled.

E = {2, 4, 6} ⊆ S.
The probability of event E is written as P (E) = 0.5. In this case the

probability of Ē = S \E = {1, 2, 3, 4, 5, 6} − {2, 4, 6} = {1, 3, 5} The proba-
bility of this event is also 0.5. Not surprising because if the likelihood of an
event is 0.5 then the likelihood of its complement is 1 - 0.5 = 0.5.

In 1933 Kolmogorov published a book titled“Foundations of the Theory
of Probability”. Where he introduces the three axioms [17] discussed in the
next section.
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2.2.1 Kolmogorov’s three axioms

1. Kolmogorov’s first axiom for probability theory

P (S) = 1

The set of all possible outcomes is the sample space and therefore the
probability of the sample space is 1.

2. Kolmogorov’s second axiom for probability theory

∀E ⊆ S : P (E) ≥ 0

Any event E must have a probability that is not negative.

3. Kolmogorov’s third axiom for probability theory

E1 ⊆ S ∧E2 ⊆ S ∧E1 ∩E2 = ∅ → P (E1 ∩E2) = P (E1) +P (E2).

When two events are disjoint the probability of the union of those two
events is the sum of the probability of each individual event.

Axiom 1 Axiom 2 Axiom 3

Figure 2.1: Kolmogorov’s 3 axioms

This rectangle represents a 2 dimensional sample space. We shall con-
sider the surface of this rectangle 1.

A circle represents an event and its surface represents the space it takes
in the sample space

When two events are disjoint it can be seen that the probability of either
event taking place is the sum of their surface areas.

2.2.2 Conditional probability

Sometimes you will want to know the probability distribution of something
after learning that a certain event is true. For example, what can you say
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about the odds of someone ordering a cup of coffee given that he has ordered
a bagel?

Formally this is defined as

P (A|B) =
P (A ∩B)

P (B)

with P (B) > 0.

Figure 2.2: Conditional probability

In the figure below we could use conditional probability to calculate the
probability of a point in the sample space being in the right circle when we
already know it to be within the left circle. This probability is represented
by the area where the circles overlap. What it essentially does is limit the
space of outcomes to one of the circles and check the inside of that circle for
the odds of a point being inside the second circle as well.

2.2.3 Chain rule

The probability of a combination of events can be expressed as the probabil-
ity of the third given the second given the first. This holds for any number
of events and the result will be the same regardless of the order of events.
It is written as

P (A1 ∩ · · · ∩Ak) = P (A1)P (A2|A1) · · · P (Ak|A1 ∩ · · · ∩Ak−1)

Figure 2.3: Chainrule

As the figure shows we can use the chain rule to calculate the probability
of a point in the sample space being within all three circles. The order in
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which we check the circles will not affect how large the surface area of where
the three circles overlap is.

2.2.4 Bayes’ theorem

Bayes theorem is often used to calculate the probability distributions of
variables related to an event given the observed outcome. It reads as follows.

P (A|B) =
P (B|A)P (A)

P (B)

It means that the probability of an event given some evidence is the
probability of the evidence given the event times the probability of the event
without regard to the evidence divided by the probability of the evidence
without regard of the event.

For example, suppose I have two six sided dice. I want to roll higher
than 9. The sample space would have 36 possible outcomes of which 6
would make my roll higher than 9. My prior belief or prior is therefore that
my chance of rolling higher than 9 is 6

36 . We shall call this roll of higher
than 9 event A. If I roll the first die and it is a 5 then I will have gathered
some evidence. We can use Bayes theorem now to calculate what the odds
are now.

The probability of rolling higher than 9 given that the first die came
up with a 5 would be the probability of rolling a 5 given that we did roll
higher than 9 times the probability of rolling higher than 9 divided by the
probability of rolling a 5 with the first die.

P (higher than 9|first die rolled 5)

=
P (first die rolled 5|higher than 9)P (higher than 9)

P (first die rolled 5)

=
2
6 ∗

6
36

1
6

=
1

3

We know this to be correct because if the first die roll is a 5 then only a
5 or a 6 on the second die roll will yield a result higher than 9, which has a
probability of 1

3 . This is known as the posterior probability or posterior for
short. It is the prior with its beliefs updated given the evidence.
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No evidence

Monday 1/7

Tuesday 1/7

Wednesday 1/7

Thursday 1/7

Friday 1/7

Saturday 1/7

Sunday 1/7

Updated once

Monday 0

Tuesday 1/6

Wednesday 1/6

Thursday 1/6

Friday 1/6

Saturday 1/6

Sunday 1/6

Updated twice

Monday 0

Tuesday 1

Wednesday 0

Thursday 0

Friday 0

Saturday 0

Sunday 0

2.2.5 Bayesian philosophy

Bayesian philosophy is based on Bayes’ theorem and follows the belief that
if a hypothesis has been formulated with a probability or belief assigned to
it and some evidence comes to light then the probability or belief should be
updated to reflect that evidence [18].

For example, if I state I will be going to my favourite restaurant sometime
next week and say nothing else and we assume I will only be going once that
week the probability distribution would show that each day has a probability
of 1 in 7 to be the day I visit my favourite restaurant. Now if we add a piece
of evidence, namely that the particular restaurant is closed on Mondays then
the beliefs must be updated accordingly. It would show a probability of 0
for Monday and 1/6 for the other days. If I were to add additional evidence
that I will be going with a friend of mine who can only go on Tuesdays then
the beliefs will again be updated to reflect this.

The task of belief updating is also known as probabilistic inference.

2.2.6 Conditioning

Conditioning is used to reduce the number of calculations needed to deter-
mine the probability of an event by establishing that a certain condition has
been met. If the value of a variable is known which influences the outcome
of an event then we can use this evidence to do a calculation which uses the
known value. A simple example would be the situation in which we were to
roll two six sided dice and we want to know the odds of throwing more than
nine as explained previously. When none of the dice have been thrown the
odds would be calculated by calculating the possibility of throwing nine or
more looking at the distribution of each die individually. This would involve
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calculating the odds for every individual value of the first die to be thrown
which is 1/6th for each value. But then for each of those possible values it
has to be calculated separately what the odds are that the value of the first
die will yield nine or more when added to the value of the second die.

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12
If we already threw one die we no longer need quite as many calculations.

Suppose a 5 has been thrown. We basically check the equivalent of one row
of the table. Like this.

1 2 3 4 5 6

5 6 7 8 9 10 11
Thus reducing the number of outcomes that have to be checked.
If we know B is dependent on A and we have evidence regarding A we

can condition this by calculating P (B|A)P (A) and P (B|¬A)P (¬A), thus
limiting the sample space we need to look into and making our calculations
less costly.

2.2.7 Marginalization

Marginalization is the elimination of variables out of the joint probability
distribution P .

Given two random variables X and Y with a joint probability distribu-
tion P (X,Y ) :

Y ¬Y
X 0.30 0.15

¬X 0.10 0.35

It is possible to calculate the marginal distribution of X by averaging
the information about Y : P (X) = P (X,Y ) + P (X,¬Y );

X 0.45

¬X 0.55
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2.3 Graph theory

Graph theory is the study of graphs. A graph is a mathematical structure
that models the pairwise relations between objects and are typically used to
graphically illustrate mathematical structures allowing for a more intuitive
interpretation.

Elements of graphs consist of nodes, also called vertices, and edges, also
called arcs. For example graph G = (V,E) where V is the collection of
vertices or nodes and E is the collection of edges. An edge is related to two
vertices, thus signifying a relationship. In a graphical representation a node
is typically a circle and an edge would be a line connecting two circles.

Node Node
Edge

Figure 2.4: A simple graph

An edge may connect a node with itself, signifying that the node has
a relation with itself somehow. Nodes may also be connected by multiple
edges, signifying multiple relations between the nodes in question. An ex-
ample for this would be in a graph that shows distances between cities and
there happen to be multiple roads between two cities. This is considered a
multigraph.

There are different types of graphs but most significant would be the
difference between directed and undirected graphs. In a directed graph an
edge between vertex Va and Vb would only imply the relation Va → Vb or Vb
→ Va. The relation goes only one way.

In an undirected graph an edge between vertex Va and Vb implies both
Va → Vb and Vb → Va, sometimes expressed as Va ↔ Vb, implying that the
relation goes both ways, which means it is a reflexive relation.

V1 V2 V3
e1 e2

V1 V2 V3
e1 e2

Figure 2.5: A directed graph and an undirected graph

A graph is considered cyclic if it is possible to make a path that visits
the same node multiple times.
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V1

V2V3

e1

e2

e3

V1

V2V3

V4 V5 V6

e2e1

e3 e4 e5

Figure 2.6: A cyclic graph and a tree

2.3.1 Trees

Formally a tree T is a graph T = (V (T ), A(T )), which is a directed acyclic
graph in which V (T ) is a set of vertices and A(G) is a set of (directed)
edges. Furthermore, there is one vertex, called the root r ∈ V (T ), that has
no incoming edges, and there is always one directed path from the root r to
any other vertex in V (T ). In this example V1 is the root. e2 = (V1, V2) =
V1 → V2
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Chapter 3

Models used in clinical
decision support

Combining knowledge from decision theory, probability theory, graph theory
and medical science we can create network models that can function as
clinical support systems. These models can use the evidence gained from
diagnostics and give insight about what the likelihood of certain outcomes
should a certain treatment be selected. I shall describe the most commonly
used network models used for this purpose.

3.1 Bayesian networks

3.1.1 Formal definition of Bayesian networks

Formally a Bayesian network B = (G,P ) is a pair, where G = (V (G), A(G))
is a directed acyclic graph in which V (G) is a set of vertices and A(G) is a
set of edges and

P : ℘(V (G))→ [0, 1]

is a joint probability distribution such that

P (V (G)) =

n∏
i=1

P (Vi|πG(Vi))

πG(Vi) denotes the set of immediate ancestors of Vi in G.
Meaning that this joint probability distribution can be written as a prod-

uct of the individual density functions, conditional on their immediate an-
cestors or parents.
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Smoking

Cancer

Pollution

Smoking

True False

0.25 0.75

Pollution

True False

0.1 0.9

Cancer

Smoking Pollution True False

False False 0.01 0.99

False True 0.05 0.95

True False 0.25 0.75

True True 0.2875 0.7125

Figure 3.1: A Bayesian network

3.1.2 A simple Bayesian network explained

This rather simple Bayesian network is used to shows us the relations be-
tween a form of cancer, smoking and pollution. According to this model a
person that does not smoke nor is subjected to pollution might develop can-
cer. Smoking and pollution both increase the chance of developing cancer,
as does a combination of the two. Smoking and pollution have cancer as
their common effect. Notice that the likelihood of developing cancer when
someone either smokes or is subjected to pollution does not specify whether
it was the smoking or pollution that caused the cancer to develop or that it
would have occurred without these factors.

The likelihood of developing cancer if the subject both smokes and is
subjected to pollution is 0.2875, which can simply be looked up in the figure
by looking up the field for which S, P and C are true. In short P (C|S, P ) =
0.2875.

It is possible to calculate P (C) using marginalisation. The calculation
would look as follows.

P (C) = P (C|S, P )P (S)P (P )

+P (C|S̄, P )P (S̄)P (P )

+P (C|S, P̄ )P (S)P (P̄ )

+P (C|S̄, P̄ )P (S̄)P (P̄ )

(3.1)
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If we fill in the equation we get the following.

P (C) = 0.2875 ∗ 0.25 ∗ 0.1

+0.05 ∗ 0.75 ∗ 0.1

+0.25 ∗ 0.75 ∗ 0.9

+0.01 ∗ 0.75 ∗ 0.9)

(3.2)

P (C) = 0.0071875 + 0.00375 + 0.16875 + 0.00675 = 0.1864375

Therefore the table would look like this.

Cancer

True False

0.1864375 0.8135625

If we were to input some evidence, for example that we know a subject
smokes then the probability distribution of pollution would remain unaltered
because there is no path from smoking to pollution and vice versa. The
likelihood of cancer would be affected. If we marginalize it since pollution
is still unknown we would get the following calculation.

P (C|S) = P (C|S, P )P (P )+P (C|S, P̄ )P (P̄ ) = 0.1∗0.2875+0.9∗0.25 = 0.25375

Should we know for a fact that a subject has cancer then we can use
inference to update the probability distributions of smoking and pollution.
First we would have to normalize the probability distribution for cancer by
multiplying each of the eight scenario’s with the probability of it occurring.
Below is a table which shows the likelihood of each combination of smoking
and pollution as well as the normalized likelihood of each outcome.

Cancer Normalized

likelihood Smoking Pollution True False True False

0.75 * 0.9 = 0.675 False False 0.01 0.99 0.00675 0.66825

0.75 * 0.1 = 0.075 False True 0.05 0.95 0.00375 0.07125

0.25 * 0.9 = 0.225 True False 0.25 0.75 0.05625 0.16875

0.25 * 0.1 = 0.025 True True 0.2875 0.7125 0.0071875 0.0178125

By using the presence of cancer as evidence we limit the sample space to
a smaller sample space. This means we have to disregard all cases in which
there is no cancer and normalize the results.
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0.00675 0.0913

0.00375 becomes 0.0507

0.05625 0.761

0.0071875 0.0972

This would yield the following updated distributions for smoking and pol-
lution. If we marginalize and normalize for both respectively.

Smoke Pollution

True False True False

0.8582 0.1418 0.1479 0.8521

3.1.3 Features of Bayesian networks

A Bayesian network is typically used to represent dependencies among vari-
ables. Each node in a Bayesian network corresponds to a variable and con-
tains a probability distribution for the values of that variable. Edges signify
a causal relationship between to variables and as such multiple edges leading
to one vertex would signify a common effect relation while multiple edges
emanating from a single vertex would signify a common cause relationship.

Distinguishing features of Bayesian networks are the following.

Inferring unobserved variables

When a model has been completed and some evidence is gathered regarding
at least some of the variables the knowledge of unobserved variables can
also be updated through inference. As demonstrated previously whenever
evidence is gathered it is possible to update the probability distributions of
the nodes directly connected to it by limiting the sample space, normalizing
it and then marginalize. It is then possible to update the nodes connected to
the nodes that were connected to the first node and so on. This phenomenon
is called belief propagation and is one of the most important features of
Bayesian networks [9, 14,16,18].

It is this feature that would allow a clinician to input the data he or
has gathered regarding his patient, usually patient history and diagnostic
information, and the model would show which outcome is the most likely
given a certain treatment.
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Parameter learning

If evidence has been gathered it can be checked how likely this evidence is
to occur given the probability distributions in the Bayesian network. Using
parameter learning it is possible to change the probability distributions in
such a way that the likelihood that this evidence occurs is maximized. This is
usually done by implementing a machine learning algorithm that uses data
to train the network [26]. With this feature the probability distributions
of a Bayesian network can be made to fit the data of a clinicians patient
population better. The more data that is used for parameter learning, the
more general the Bayesian network would become [9,16,18].

Structure learning

The structure of a Bayesian network can be designed using the knowledge
of a domain expert [4]. An alternative way to find the structure is to use
machine learning on data gathered to find the structure of the network
[11,19]. The algorithm would try to find if certain variables show correlation
and if so it would build the network on these correlations. Though not
particularly useful to create Bayesian networks that give a good overview of
the structure of the problem at hand this feature can yield Bayesian networks
that function decently as classifiers.

3.1.4 Known disadvantages and limitations

Circular causality

Because a Bayesian network is acyclic it is not recommended to try to model
circular causality in a Bayesian network. In such situations another type of
model is recommended [23].

Subjectivity

When a Bayesian network is designed by a domain expert it will only be
as good as the domain expert designing it. It might also be that another
domain expert does not agree with the assumptions made while designing
the Bayesian network such as the probability distributions and therefore
would be sceptical about it functioning [25].
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3.2 Decision trees

3.2.1 Formal definition of decision trees

Formally a decision tree T is a tree with a set of vertices V (T ) = C(T ) ∪
D(T ) ∪ U(T ), which are mutually disjoint. C(T )D is the set of chance
vertices each of which has a probability distribution assigned to it, D(T )
is the set of decision vertices and U(T ) is the set of utility vertices each of
which has a utility score assigned to it.

3.2.2 Explanation of a simple decision tree

100

no rain : P = 0.25

0
rain : P = 0.75don’t bring umbrella

25

no rain : P = 0.75

50
rain : P = 0.25

brin
g umbrell

a

Figure 3.2: A decision tree

At the root of this tree there is a decision node. There are two options
to choose from, bring an umbrella or don’t bring an umbrella. The chance
nodes that are connected to the decision node indicate that when one decides
to bring an umbrella the probability of rain is 0.25 and when one decides
not to bring an umbrella the chance of rain somehow is much higher at
0.75. Both chance nodes have two edges coming out of them to represent
the possibility of rain and no rain. Each possible outcome has a utility score
assigned to it. In this case the scenario with the highest utility score is
considered the best outcome. We can now check what the expected utility
is for each of the choices. If one choses to bring an umbrella it is 0.25 * 50 +
0.75 * 25 = 31.25 and for the option of not bringing an umbrella it is 0.75 *
0 + 0.25 * 100 = 25. Bringing an umbrella has the highest expected utility
value, therefore according to the model one should bring an umbrella.
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3.2.3 Features of decision trees

Decision trees are directed acyclic graphs which have three different kinds
of nodes.

• Decision nodes Usually represented by a rectangular box. Decision
nodes are labelled. These labels tell you what decision is made there.

• Chance nodes Represented by a circle, a chance node identifies where
in the decision tree uncertainty exists. The children of the chance
node represent different outcomes and each chance node has its own
probability distribution.

• Utility nodes Utility nodes are diamond shapes and are the leafs in
the tree. They represent the outcomes and have a score assigned to
them.

Decision trees can be used to map every possible scenario in a decision
problem. Here are some of its distinguishing features. [16, 30]

Allow the possibility of additional scenarios

If it turns out more choices can be made during a decision problem this can
be updated in the model by adding additional levels to the tree.
This could be useful if hospital policy were to add an additional decision to
be made during certain treatments.

Easily interpreted

Due to its structure it is not difficult to understand a decision tree. This
makes it easier to convince people to use one.

Different outcomes are more easily compared to each other

It is relatively easy to find the value nodes with the worst and best outcomes.
Also, it is possible to find the path with the best expected outcomes.

Highly detailed

Because decision trees map every decision possible they represent the deci-
sion problem with great detail and allow for very thorough analyses.
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3.2.4 Known disadvantage of decision trees

Unfortunately decision trees also have some disadvantages which in certain
situations make other network models preferable [16,30]

Multiple output variables are not allowed

In order to use a decision tree all variables used within must be reduced to
a single variable. Usually utility.

High complexity

When the tree expands the number of calculations needed to perform certain
operations increase exponentially. While this is not a problem for small trees
with large trees with a lot of unknown variables in the form of chance nodes
the computational costs could be very high. In case of a complex model
such as a medical decision problem this is a possible occurrence. Though
one might attempt to reduce this by pruning the tree a little this is usually
not enough to counteract the disadvantage.
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3.3 Influence diagrams

3.3.1 Formal definition of influence diagrams

Formally an influence diagram I = (V (I), A(I)), which is a directed acyclic
graph in which V(I) is a set of vertices and A(I) is a set of directed edges.

V (I) = C(I)∪D(I)∪U(I) with C(I), D(I), U(I) mutually disjoint where
C(I) is a set of chance nodes of which each has its own probability distri-
bution with a chance assigned to each eventuality, D(I) is a set of decision
nodes and U(I) is a set of utility nodes.

Influence diagrams are also probabilistic graphical models and therefore
also are acyclic and directed. Unlike Bayesian networks however they do
not solely consist of chance nodes but like the decision trees they may also
contain decision nodes and utility nodes.

3.3.2 Explanation of a simple influence diagram

Forecast

P(Rainy|Rain) = 0.8
P(Sunny|Rain) = 0.2
P(Rainy|Dry) = 0.2
P(Sunny|Dry) = 0.8

Rain P(rain) = 0.4

Indoor or
outdoor
activity

U

U|Rain, Indoor = 6
U|Rain, Outdoor = 1

U|Dry, Indoor = 4
U|Dry, Outdoor = 8

Figure 3.3: An influence diagram

As we can see there is a chance node labelled Rain which shows that
the chance that the actual chance that it will rain during the activity is
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0.4. According to the chance node labelled Forecast the weather forecast
is influenced by the weather during the activity and that the forecast has
a chance of 0.8 to predict the weather correctly. The decision node shows
us we have the choice of doing an indoor or an outdoor activity and the
value node shows us the utility for each outcome. Should the forecast say
that it will be sunny we know that the likelihood of the scenario’s involving
rain is 0.2 and those involving dry weather 0.8, therefore we can calculate
the expected utilities for the indoor and outdoor activities. For the indoor
activity it would be 6 * 0.2 + 4 * 0.8 = 4.4. For the outdoor activity it is
1 * 0.2 + 8 * 0.8 = 6.6. The model suggests that if the forecasts says it
will be sunny selecting the outdoor activity has the highest expected utility
value and should be chosen.

3.3.3 Features of influence diagrams

Influence diagrams are directed acyclic graphs. Like decision trees they
have chance, decision and utility nodes. Features that make them suitable
to be used as decision support systems for clinical treatment selection are
as follows [15,16].

Highly modular

A large influence diagram could be divided into smaller sub diagrams which
allows focusing on one aspect of a decision problem. Also, due to its modu-
larity, influence diagrams can be maintained and updated more easily.

Compact graphical depictions of a decision problem

Influence diagrams allow for networks with considerably less nodes than
decision trees. This means it is easier to display them. Also, they exhibit
less growth as the size of the system increases compared to the other models.

3.3.4 Known disadvantages of influence diagrams

Accurately constructing a diagram is difficult

Compared to the relatively simple decision tree and the somewhat simpler
Bayesian network it may be difficult to accurately model all the causal re-
lations with accurate probability distributions and all the possible decisions
into an influence diagram. Especially with complex decision problems. [15].
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Solution algorithms have a high complexity

Though graphically an influence diagram appears small enough, obtaining
the decision with the best expected outcome requires a lot of calculations.

3.4 How is a model made?

3.4.1 The basic steps of model building

Though there are many approaches to creating models there are a few rough
steps that most approaches have in common [10]. These steps are the fol-
lowing.

Draft
Model

Selection
Model
Fitting

Model
Validation

Model

Figure 3.4: The steps of model building

1. Draft First it has to be established that there is a need for a model.
The assumptions regarding it and any constraints have to be listed
and data on which it will be based has to be obtained.

2. Model selection In this step the available data such as patient infor-
mation, possible diagnosis results and knowledge regarding the medi-
cal processes involved are used to select the form of model that would
allow the data to be fitted in there.

3. Model fitting The data is fitted into the model. For example the
different parameters get their appropriate probability distributions as-
signed to them if known. Unknown parameters are being estimated as
best as possible or, through machine learning, could be trained.

4. Model validation The model is being evaluated. If during model
validation some problems are detected then the model can be improved
by going back to step one. Should no problems be detected then model
is ready for the next phase.
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3.5 Metrics used when validating

Regardless of the data the model is being validated with, there will be a
variety of metrics available.

Accuracy

Accuracy is how closely the answer a network model provides approaches
reality. This could be calculated by comparing the decisions a network
system makes to the actual decisions made. In case of a classifying network
model it the classifications the model makes would be compared to the actual
classes. The number of correct decisions or classifications would be divided
by the total number of measurements to give us the accuracy. In short, it
gives us the fraction of the correct classifications or decisions:

(tp+ tn)/(tp+ fp+ fn+ tn)

Precision

In case of classification precision is the number of instances correctly classi-
fied as a certain class divided by the total number of instances classified as
that class:

tp/(tp+ fp)

Recall

In classification recall is the number of instances belonging to a class that
are classified as such divided by the total number of instances belonging to
that class. This is also referred to as sensitivity

tp/(tp+ fn)

ROC

ROC stands for receiver operating characteristic or ROC curve. The ROC
curve is a graphical plot where the true positive rate is plotted against the
false positive rate at several threshold settings, resulting in a curve. The
steeper the curve, the better the model is. Also, there is the ROC space.
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Here the true positive rate and the false positive rate are also plotted against
each other but the results will be expressed as a point in that plot rather
than a curve.

Brier score

The Brier score is a score function that can be used when the predictions
assign probabilities to mutually exclusive outcomes. For example, a patient
will survive, or a patient will not survive.
The Brier score is most commonly formulated as follows””

BS =
1

N

N∑
t=1

(ft − ot)2

As the formula shows the Brier score is calculated by summing up the
squared differences between predicted result and observed result and then
dividing that by the number of observations. A lower Brier score means that
the model has yielded better predictions.

Log-likelihood ratio

The log-likelihood ratio is used to compare the goodness of fit of two models.
This is done by using a set of observations that we have. We know those to
be true so we can calculate how likely these observations are to occur given
the two models. The probability for these observations to occur in each
model are compared by dividing the likelihood of the model to be evaluated
by the likelihood of the model it is compared to, the null model. We apply
log to the resulting ratio and the higher the result the better the goodness
of fit of the model is compared to the null model.
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Chapter 4

Clinical Treatment Selection

Clinical treatment selection is essentially a decision-making problem [6, 25,
29]. In order to select the treatment selection that leads to what a physician
believes to be the most desirable result he must have gone through certain
processes.

First a patient has to present him or herself with some signs that some-
thing might be wrong with the patient. This can happen in several ways. It
could be that during a routine check up the examining physician was unable
to confirm the absence of pathological processes and decided that a more
thorough examination is required. It could also be that a patient visits his
or her physician with a complaint regarding his or her health. This is where
the diagnostic procedure begins.

The diagnostic procedure

At this point there is too much uncertainty to make a proper decision.
Therefore the physician will need to reduce the uncertainty. Usually this
procedure begins with the physician methodically gathers information in
the form of patient data. This is called an anamnesis. The anamnesis plus
the signs the patient already exhibits usually give the physician some ideas of
what might be wrong with the patient. Physicians tend to work hypothesis
driven, therefore he is going to methodically try to eliminate as many of
the possibilities as he can by asking further questions and performing more
diagnostics. Ideally the physician would have eliminated all but one of
the possibilities in this manner in which case only one disease needs to be
treated. It is possible however that there are still several possibilities. Some
diagnostic actions the physician may resort to are
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• Wait and observe By allowing the disease to take its course it may
become more evident which one the patient is suffering from. The
advantages of this choice are that no invasive diagnostic actions have
to be performed and more certainty is gained. The disadvantage is
that the disease is allowed to progress further.

• Use more invasive diagnostic procedures More information might be
gained by performing diagnostic procedures which are more invasive.
Such procedures include explorative surgery or a highly detailed CAT
scan. Depending on how invasive the diagnostic procedure is there will
be some damage caused to the patient which is a clear disadvantage.
An advantage is that it might allow for more certainty at an earlier
stage which might prevent other damage.

Treatment selection

At a certain point a treatment will be selected. This could be because further
diagnostic procedures will not be beneficial or simply because there is no
more time to do anything else but treat the patient. Usually a prognosis
is made based on the current status of the patient. The physician will
use his medical knowledge to make educated guesses what the influence of
certain treatment options may have on the prognosis of the patient. By
comparing the different expected outcomes of each of the treatment options
the physician is going to choose the treatment which will lead to the best
expected prognosis.

Prognostic process

Once the patient has undergone the selected treatment it is customary to
monitor the patient to see if the treatment was successful. With more data
available now regarding how the treatment went a new, more accurate prog-
nosis can be made. If this prognosis differs too greatly from what was
expected during treatment selection in an undesirable way the patient may
have to undergo additional treatment.

Figure 4.1 shows schematically how clinical treatment selection works.
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Ways in which network models might support a physician

How could network models provide support to a physician? First we need to
briefly establish that for each of the stages as shown in the above illustration
there is a possible model that could support a physician [22].

• Diagnostic models can help a physician interpret the data collected
during diagnostic actions [21]. Basically it can be calculated how much
uncertainty there currently is and how much more certainty is gained
by performing an additional diagnostic action, therefore having a more
accurate estimation of when it is time to select a treatment.

• A decision model can help a physician decide if enough certainty has
been gained to commence treatment or that more certainty is necessary
and another diagnostic action must be performed to collect more data
[21]. It can also help choose which treatment to select by calculating
which decision with the current evidence will yield the highest expected
utility.

• A prognostic model can give the clinician an overview of the possible
outcomes and their likelihoods using the available patient data and
diagnostic information as evidence [1–3].

Now if we combine the three models like in the illustration below we can
create a model that can function as a decision support system.

Diagnostic
Model

Decision
Model

Prognostic
Model

Figure 4.2: Flow of information in a network model designed for clinical
decision making

Basically the resulting network model would use the information gained
from the diagnostic model to see which treatment options are available. The
information from the prognostic model would yield information about the
likely result of each possible decision. The combined model can therefore
pick the decision with the best expected outcome.

This network model could basically be plugged into the figure about the
medical treatment process to illustrate its supportive function.
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Chapter 5

Evaluation Methods

5.1 Why Evaluate?

There are several reasons why we would evaluate network systems used for
clinical decision making [12]

1. To stimulate physicians to use these network models. In order to pro-
mote the use of these models we must be able to show the advantages
of using them. Should a model get a positive evaluation this is more
easily done.

2. To further advance science. These models are constantly being de-
veloped. Thoroughly evaluating them may yield new insights which
would lead to better results.

3. To aid developers of network models. Without a way to properly
evaluate their work, developers will not know if they did a good job
or not. Proper evaluation will help developers become more effective
at their work.

4. To justify the use of the network model. If it hasn’t been evaluated
then it is unknown if a network model is worth the cost of implementing
it because it is unknown how well it does compared to other resources.

5. To reduce the risk of liability. If a patient has received a less than opti-
mal treatment and it turns out that the network model consulted had
not been properly evaluated prior to being implemented the patient
may decide to sue.
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5.2 Difficulties when evaluating a model

Evaluating a network model meant to assist in clinical treatment selection
will not likely be a very straightforward task. A medical decision is usually
the result of a combination of objective and subjective variables [6, 25, 29].
The objective variables are objectively measurable with a very low degree
of inaccuracy such as weight, height, age, size, family history.

There are however more subjective variables which are also taken into ac-
count such as discomfort, quality of life. Those are very difficult to measure
in a uniform manner that holds true for multiple patients because obviously
every patient is unique and therefore would have assigned different numeric
values to certain degrees and forms of discomfort and would different factors
would influence their opinion about their quality of life differently.

Also there are those variables that although seemingly quantifiable are
still subjective due to the measured value being dependent on subjective
things or somehow influenced by factors outside of the scope of the model.
Cost of the treatment expressed in Euros for example is one of these because
although the cost in Euros is objectively measured the difference in cost
cannot always be rationally explained. The same treatment could have a
different cost depending on the facility the treatment will take place. Also,
it would seem that when ones health is concerned one tends not to assign
much weight to the cost of the treatment. This has caused a lot of things
medical to be of a higher price than they usually would be and others not
which makes cost in Euros a less reliable measure.

Another such variable would be life expectancy. Though it is measurable,
only when the patient has died will one know what his or her actual life
expectancy was. Not only is that a factor, but also the fact that there are
a great many variables outside of the scope of the model that influence this
variable.

Because people are involved it also remains to be seen how closely they
follow the network model. It might be that the physician disagrees with the
model to such an extend that he decides to select a different treatment. Of
course it would still be possible to check that models prediction regarding
the actual treatment chosen [5, 7].

People also tend to behave differently when they know the are being
evaluated or are being part of an evaluation [12]. This change to less natural
behaviour may influence the observations made during the evaluation and
it is hard to determine in what way and to which degree precisely.
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5.3 What is there to evaluate in a network model?

There are quite a number of things one can examine in a network model.
First I shall go through some of the most important metrics and definitions.

5.3.1 Validation

Validity is how closely a model represents the real system [2, 3]. Validation
therefore involves checking how accurately the model represents this real
system. There are several kinds of validation. In the next few sections I will
explain ways in which a network model can be statistically validated.

Internal Validation

Internal Validation is the process of evaluating whether the model is valid
when only previously acquired data is used and no new data is introduced.
A medical research facility may use the data they collected on patients
in a single year and base their model only on that information. Internal
validation checks the model using only that data.

One could check the model by using a sample of the data to see if the
model yields a correct prediction or decision. If that data has been used by
the model to learn however it can be assumed to give the correct answer. It
is impossible to say anything about the predictive value of the model using
this approach since the model just looks up the cases in the knowledge it
has and is guaranteed to have an exact match.

To properly apply internal validation on a network model one would
want to use cross-validation. The data is divided into training data and test
data. The training data is used to train the model and the test data is used
to test the predictive value of the model. Depending on how exhaustive
one wants to test the model and the data one can adjust the ratio between
training and test data and the number of fold in which the data is divided.
Cross validation is a method to prevent overfitting, thus making sure that
the perceived predictive value will not turn out to be very different from the
actual predictive value.

External Validation

External validation involves testing the model against data other than the
data initially used to build the model. One could test it on patient data
obtained by another medical research centre for example. If the model
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performs well on external data as well its external validity is determined. An
externally valid model is considered applicable on a more general population.

Temporal Validation

Temporal validation is applied when the same research centre evaluates the
performance of the model over time. The population will be the same for the
most part with a few different patients possibly. Technically it is somewhat
in between internal and external validation in the sense that most of the
predictions or decisions will be based on cases exactly the same as in the
training data but that there will also be some new data to test it against.
Not as much as when externally validated though.

The difference between validation and evaluation

Statistical validation is purely concerned with how well a model fits its data.
Clinical validation is about whether the model is relevant and usable. Eval-
uation is of a broader scope and could also involve analysing how reliable the
test was and what the long term effect of the model might be on healthcare.
Evaluation may also have a broader scope in regard to purpose.

5.4 When is a model evaluated?

During its lifespan a model is going to get evaluated a number of times. It
could very well be that it is constantly being evaluated. I shall give a list
in chronological order of these evaluation moments and which methods of
evaluation are of most use.

Draft
During
Design

Lab
Testing

Field
Testing

During
Use

Figure 5.1: Lifespan of a model

Draft

Already during it’s draft stage a few things can be taken into consideration.
If the model that is being considered to make does not have sufficient data
to fit a model to then the nest stage may have to be postponed until enough
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data has been gathered. If it doesn’t seem like the model would be useful
then aborting its design may need to be considered.

Design

While the model is in this early of a stage it can be checked if the assumptions
made while selecting the model and fitting the data make any sense. If the
model represents the domain knowledge relevant to its function properly.
If the model is going to be useful should it be implemented as is. And of
course if the model is going to do what it is being designed for. In case of
a purely diagnostic model it can be checked if the model drew the correct
conclusion. In case of a binary scale such as if a patient tested positive or
negative for a disease we can use accuracy, precision or recall to see how it
performs.

In case of a model that functions as a classifier we can evaluate how well
it classifies by measuring the classification error. Usually this is done using
precision and recall.

For a continuous scale model area we could use residual or R2. If the
differences between predicted and observed value seem random and the dif-
ference isn’t so much it can no longer be explained by random measurement
error then the model was fitted sufficiently. If there seems to be too much
of a recurring difference then the model may have to be refitted.

Evaluating diagnostic models seems the easiest since a diagnosis is either
false or correct. A complicating factor for a prognostic model is that in order
to validate it the predictions have to be checked. This is only possible if the
data regarding these predictions is available. For example, if the model
predicts whether the patient will survive the procedure one will have the
answer relatively quickly. If the model tries to predict survival after five
years it may take five years to validate the model.

Decision support models, since they combine aspects of the diagnostic
and prognostic models have the same problem when being evaluated. If one
wishes to validate a model quickly it would therefore be recommended to do
a retrospective analysis so that all the required data has been collected in
advance.

At this stage pretty much every form of validation will involve internal
validation because the model is being checked against the data it was based
on.

Once the model has been validated internally it should be checked if it
is applicable on new data. This can be done by applying the same methods
of validation on the model but with different data. For temporal validation
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it would use data from the same research centre but accumulated during
a different time interval. Data collected one year later for example. For
external validation completely new data of another population would be
used. A slightly decreased performance is to be expected. If the model
performs badly however this is likely to be a sign of overfitting in which case
the model works nicely for the dataset it was trained on but is not quite
applicable for the general population. It may require more data or the way
it trains on its data may have to be reviewed.

Lab test

When the model has also been validated externally and as much as possible
with retrospective studies it is time to use it. It is possible to do a lab
test which would allow for more control over the parameters due to the
controlled environment provided by a laboratory. Once again the model will
be validated by measuring the differences between its predicted results and
the observed results. The same measures would be used as in the previous
steps except that in the lab one can also test the usability of the model and
perhaps how satisfactory its usage is for the clinicians and patients. Factors
to keep in mind are that the people involved in the experiment know they
are being observed and thus may act differently than they otherwise would.
Also, for the lab test to be useful it has to be an approximately realistic
setting.

Field test

Lastly the model can be field tested. This would involve using the model
as it was intended from the beginning. As a decision support system used
by clinicians on actual patients. Statistically the model can be evaluated
in the same manner. There are however other aspects of the model and its
implementation that can be evaluated now or that have to be factored in.
Once again the Hawthorne effect will play a role. Also, the results will be
influenced by the compliance of the clinicians and patients. Though everyone
is technically free to make their own decisions for the sake of evaluating the
model it must be documented when it is decided not to follow the model.

Implementation

Of course it is recommended that the model is periodically evaluated once
it has been accepted and implemented. This should be part of its main-
tenance routine. Evaluating it periodically allows for measurement of the
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improvement of healthcare and can yield new insights concerning the deci-
sion problem which might further improve the model.
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Chapter 6

Conclusions

Thanks to the abundance of literature available about related subjects such
as network models used for diagnostic models, prognostic models, statistical
validation of models, clinical validation, medical decision analysis, proba-
bility theory and evaluation it was possible to find methods of evaluation
applicable to network models used in clinical treatment selection.

Evaluating such a model would ideally occur several times during its
design. It would get statistically validated so that it fits well on the data
used to create it. Then one would proceed to see how it handles external
data. Once the model works sufficiently well on external data it can be
tested in a lab environment. If it performance is satisfactory and it is also
determined that it is relevant and not too difficult to use it can be subjected
to a field test. If under these less controlled circumstances it still performs
well it should be ready for implementation. Of course, once it is implemented
it can still be periodically evaluated as part of its maintenance. Also, it can
now be measured if it is of influence on the performance of the facility it
is implemented in and on a larger scope, healthcare in general could be
measured as well.

It may take some time to evaluate some of the models and it is also
dependent on the compliance of physicians and patients, but by using the
proposed method to evaluate network models used in clinical treatment se-
lection we could see some increased usage of these models. Of course ad-
ditional research regarding the actual implementation of these models and
how they perform as well as regarding how willing physicians are to use
these models would be desirable.
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