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Sufficient conditions for sound hashing using a truncated
permutation — a preliminary

Sander van Dam

Radboud Univeristy Nijmegen

1 Introduction

In the paper we give a generic security proof for any tree hashing mode calling a random truncated
permutation, where the tree hashing mode satisfies four conditions. We use the indifferentiability
framework introduced by Maurer et al. [6] along with Patarin’s H-coefficient technique [3]. This
piece introduces relevant terminology and concepts and gives a high-level overview of the paper
and specifically the changes that have been implemented.

2 Tree hashing with a truncated permutation

A hashing mode needs a compression function to operate, which we can build by truncating a
permutation. A permutation is a one-to-one invertible function operating on a finite domain.
In this paper we consider permutations that operate on b-bit strings. Meaning there are 2°
possible inputs and 2° possible outputs (both from the same domain), making (2°)! possible
permutations. A random permutation is a permutation that is uniformly chosen from the set of
possible permutations. A truncated permutation is then a permutation whereafter it is mapped to
an output only the first n bits are taken. This permutation that acts as the compression function
is then used by a tree hashing mode. The basic idea of a tree hashing mode is to build a tree
from blocks of input, using the truncated permutation as an underlying function.

Our tree hashing mode takes as input a message and a set of parameters. The set of parameters
specifies how the tree is built. In order to reason this, we use a two-step process. First we build a
tree template, which is a recipe specifying how messages with a certain length should be hashed.
This means it is only dependent on the length of the message and parameters specifying how the
tree should be built. This template is then executed to obtain a tree instance, where every node
instance is a bit string, constructed according to the tree template. We refer to section 2 and
appendix A of the paper for a more in-depth explanation of these concepts. Figure 1 shows a tree
template and a tree instance.

3 Provable Security

Provable security usually refers to a mathematical (or formal) proof and thus mostly to cryp-
tography. A system is called provably secure in cryptography if its security conditions can be
formally stated in an adversarial model and a rigorous reduction can be given of the security
of the system to some underlying hypotheses. Our proof takes place in a random permutation
model.

4 Distinguishing advantage

Indistinguishability, sometimes referred to as a “security game”, is a framework to determine the
distinguishing advantage of the attacker. The basic idea is that one has an efficient algorithm
called a distinguisher which can access two worlds; the real and the ideal world.

— The real world consists of the cryptographic system containing the mode (in our case, the tree
hashing mode) we want to test and some idealized components (the permutation)
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Figurel. Left a tree template, specifying how the tree will be built. On the right a tree instance,
with the message and the chaining values filled into the tree.

— The ideal world is a perfectly random version of this (an ideal function accessed via the same
interface). It handles input and output similarly but the function used returns a random
response and acts deterministically.

The attacker will then be faced arbitrarily with either the real or the ideal world and he can
query the corresponding system, while not knowing in which world he is. The attacker should not
be able to distinguish which world he was in. The distance from a probability of % (which is the
chance the attacker would have by guessing) is what we call the advantage of the attacker. This
distance is what we want to bound; it bounds the probability of all generic attacks on the hash
function [6]. We use this model to compute an upper bound for the distinguishing advantage of
the attacker.

4.1 Random Oracle

A random oracle is a theoretical black box that for every input chooses a (truly) random output!
uniformly from its output domain. If queried with the same input multiple times, it will always
return the same output. The input is a bit string and the output is a fixed-length bit string, in
this paper its output is a fixed-length n-bit string.

4.2 Ideal hash function

Our ideal hash function is a function that calls the random oracle, similar to how the tree hashing
mode calls the permutation. Parts of the changes made to the paper were because of new insights
into the ideal hash function. Before, the ideal hash function presented the message and a set of
parameters (specifying how the tree should be built) injectively coded in a string to the random
oracle. Now the ideal hash functions generates a template from the message and the parameters,
then codes the message and the template injectively in a string, presenting it to the random oracle.
There was a condition specifying parameter-completeness, which made sure the tree could be built
from the given parameters, but we achieve this anyway if we send the tree template instead to the
ideal hash function. This allowed us to have one less condition for our proof. As we don’t have to
encode the parameters anymore, the construction is more efficient. These changes are reflected in
Figure 2, as G now calls the random oracle, instead of being called by the simulator.

! Impractical in reality, but it helps to reason about cryptography, which will be clarified later in this piece.



5 Indifferentiability

A generalization of indistinguishability was introduced by Maurer et al. [6] Public interfaces
within the framework can be accessed by anyone, while private interfaces can only be accessed by
friendly people (so that the adversary can’t directly access the interface). Indifferentiability makes
it possible for an adversary to also access a private interface. Indifferentiability applies to our case
because the adversary can directly query the permutation, instead of only being able to query it
via the tree hashing mode while in the ideal world there is no counterpart for the permutation.
We need this for our proof, because in e.g. a standard hash function the permutation would be
specified and thus the adversary would be able to “query” it. This means our proof wouldn’t
be sufficient if we didn’t let the adversary be able to directly query the permutation in our
indifferentiability set-up. Figure 2 is a visualization of the concept of indifferentiability from the
proof in our paper. The private interface doesn’t exist in the ideal world, so we need to introduce
a simulator for the sake of our proof.

5.1 7T -consistency and permutation consistency

For a given set of queries () and their responses X (Q), the T-consistency is the property that
the responses to the H interface are equal to those that one would obtain by applying the tree
hashing mode 7 to the responses to the Z*! interface. Permutation consistency is the property
that each member in a permutation couple can only occur once on the transcript. Meaning a
transcript with two couples (s, p) and (s, p) with s # s’ violates permutation consistency.

5.2 The Simulator

A simulator simulates the ideal component called by the mode that is subject to the proof. In our
case that means it simulates the permutation (which is also why it is accessed by the same interface
as the permutation in figure 2). For this it uses an input retrieval algorithm. The input retrieval
algorithm can separate cases, in our paper referring to things that would otherwise happen in the
tree template (for a more detailed explanation of the tree template concept, we refer to appendix
A of the paper), such that it ensures T-consistency. If the call to S has an input that qualifies as
a final node in a tree hash process and the queries that the simulator has received before allow it
to reconstruct a full tree instance corresponding to a valid template, it returns a flag “success”.
Otherwise it returns a flag with an event related to the tree template. Then if flag “success”
was returned, the simulator calls the random oracle. Otherwise it chooses a random output from
the domain, excluding outputs it has already used, to account for permutation consistency (also
keeping in tact the permutation couples).

Figure2. Differentiating set-up for tree hashing modes with a truncated permutation



6 Patarin’s H-coefficient technique

For our proof we use Patarin’s H-coefficient technique. It is a technique used to get a concrete
upper bound for the distinguishing advantage of the attacker. As mentioned before, the goal of
the adversary is to distinguish between the real world (X) and the ideal world (Y). All interactions
between the adversary and the system are written on a transcript 7' (in our case these are simply
the permutation couples (s, p) with p = f(s) and the input/output pairs for queries to G/T). We
use Dx to denote the probability distribution for a given adversary of these transcripts in the
real world and Dy for the probability distribution in the ideal world. The transcripts are divided
into "good” and ”"bad” transcripts on the basis of certain properties. For example, a violation of
permutation consistency leads to a bad transcript. The trick is to define the criteria for transcripts
to be good or bad such that the bound is as small as possible. Proofs using this technique usually
start with defining a set of "bad” and ”good” transcripts, such that T' = Tj,,q U Tyeq. We can
then bound the differentiating advantage as Adv(A) < ¢ + Pr(Dy € Tpqq), meaning we need to
find the epsilon.If the following can be proven for a certain epsilon
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, we can find the upper bound for the distinguishing advantage. The good and bad transcripts
are defined so that ¢ is small, while at the same time still keeping Pr(Dy € Tp,q) small. In some
Pr(Dx=r)
PrDem)
advantage can be simplified as Adv(A) < Pr(Dy € Tpaq) (which is the case in our paper). A way

to compute either part of this ratio is to write Pr(Dx = 7) and Pr(Dy = 7) as |C|ng|X| and |C(|’gf|y|

proofs (and in our proof too) the ratio turns out to be greater than 1, such that the

respectively, where comp denotes a notion of compatibility. This can simplify computations, but
does not do so necessarily.

7 Contributions to the paper

The two major contributions that have been made are the updated ideal hash function and the
use of Patarin’s H-coefficient technique. The updated ideal hash function solves a problem where
the parameters had to be explicitly encoded, making the construction less efficient. The change
from a series of lemma’s to Patarin’s H-coefficient technique makes the proof both shorter and a
lot more structured, resulting in a more understandable proof.

— No changes have been made to parts 1 and 2.

— Part 3 is new and contains an explanation on Patarin’s H-coefficient technique.

— The conditions in part 4 have been reworded to take into account the changes of the ideal func-
tion, the parameter completeness condition could be scrapped altogether due to the updated
ideal hash function.

— The simulator and the input retrieval algorithms have been rewritten for these changes too.
They have also been made compatible with the transcripts used in the H-coefficient technique.

— The bulk of the changes made are in the proof, part 6. A completely different proof method
is used, Patarin’s H-coefficient technique, meaning next to nothing from the original text
remains.

8 Related Work

After Maurer et al. introduced their indifferentiability method, it was first applied to hashing in [4].
The first time indifferentiability was proven for a hashing mode calling a random permutation was
[1]. Provable security of tree hashes was researched in [7] and indifferentiability of tree hashing
modes based on a permutation was researched in [5]. Our paper has substantial added value,
because previous work on the indifferentiability of a compression function construction based on



a permutation proves indifferentiability in two phases. In this two-phase approach, each call to
the permutation part of the input is fixed to a constant value and hence is not usable for feeding
input. So it requires more calls to the permutation for the same input message length, making it
less efficient. It is also the first time that indifferentiability is proven for tree hashing modes with
an underlying random permutation. The closest related work is [2]. It has similar conditions and
proves the same bound, except it does this for tree and sequential hashing modes calling a hash
function instead of those calling a permutation.
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1 Introduction

In this paper, we give a generic security proof for tree and sequential hashing modes calling a
fixed-length permutation. We formulate a number of simple conditions for such a hashing mode
to be sound. For the soundness, we base ourselves on the indifferentiability framework introduced
by Maurer et al. in [9] and applied to hash functions by Coron et al. in [7]. In particular, we
prove an upper bound of the advantage of an adversary in differentiating a hashing mode calling
a random permutation from an ideal hash function based on a random oracle as a function of
the attack cost and the length of the chaining value. As already stated in [9] and formalized in
[1, Theorem 2], the success probability of any generic attack (e.g., collision, pre-image, length-
extension, ..) on such a hashing mode has success probability at most the proven bound plus
the success probability of this attack on a random oracle. It suffices to take the chaining value
long enough to make the difference between the success probability for the hashing mode and a
random oracle negligible.

After the indifferentiability paradigm was applied to hash functions in [7], indifferentiability
was proven for several other modes such as enveloped Merkle-Damgéard (EMD) transform in [2]
and chopped Merkle-Damgérd in [5]. These modes are sequential and call an ideal compression
function or an ideal block cipher that is used in Davies-Meyer mode. In contrast, the modes
treated in this paper call a random permutation and do not require a feedforward. Note that the
first hashing mode calling a random permutation that was proven indifferentiable was the sponge
construction [3]. However, as opposed to the modes treated in this paper, the sponge mode is
strictly sequential.

Provable security of tree hashing was already investigated in [11] and indifferentiability of
permutation-based tree hashing modes was treated in [8], covering the mode used in the SHA-3
candidate MD6 [10]. However, as opposed to the modes treated in this paper, they used a two-layer
approach. First, the tree hashing mode was proven indifferentiable assuming an underlying ideal
compression function. Second, an ideal compression function construction was proven indifferen-
tiable assuming an underlying random permutation. As another example, the paper [4] proves
the indifferentiability of tree hashing modes calling an ideal compression function, which can in
turn be instantiated by using either a permutation-based or a block cipher-based construction.

In contrast, this paper addresses modes composed of only one layer. This allows for a more
efficient construction. For instance, the compression function in [8] is built by fixing part of the
input of the permutation and truncating its output. Our construction is more efficient in that in



typical scenario’s for most calls to the permutation its full input can be used. This is especially
relevant in sequential hashing where the full input can be used for all but one permutation call.

Despite similarity with some of the mentioned prior work, we believe this paper has a sub-
stantial added value as it is to our knowledge the first time that indifferentiability is proven in a
single layer for tree hashing modes (with sequential hashing as a special case) calling a random
permutation. Moreover, the bound we achieve on the success probability of differentiating the
mode from an ideal hash function is as tight as theoretically possible. Finally, we treat a more
general case than prior work in several aspects. Our mode of use is parameterized, with parameters
specifying the way to build the tree.

The remainder of this paper is organized as follows. After providing a rigorous definition of
tree hashing modes in Section 2, we give a high level overview of Patarin’s H-coefficient technique
in Section 3, and then we introduce a set of simple and easy-to-verify conditions for permutation-
based tree hashing modes that result in sound tree hashing in Section 4. After adapting the
indifferentiability setting of [7] to permutation-based tree hashing in Section 5, we detail our
simulator and the decoding algorithm it calls in Section 77, and then we provide in Section 6 the
indifferentiability proof using Patarin’s H-coefficient technique [6]. In Appendix A we illustrate
our formalism to describe tree hashing.

2 Tree hashing mode

In this paper, we consider tree hashing modes such as those treated in [4] by Bertoni et al. and
cover sequential hashing modes as a special case. In [4], tree hashing modes T were considered
that call an underlying function F, called inner function, with variable input length and indefinite
output length. In this paper we consider the case where the inner function is a permutation P
operating on b-bit values. The tree hashing modes 7 applied to a permutation P defines a concrete
hash function T[P], called outer hash function.

In our modes, we use a permutation P with the output truncated to its first n bits, denoted
by P, to compute chaining values. Therefore, our outer hash function 7[P] produces outputs
with fixed length n. In the rest of this section, we give the tree hashing mode description taken
from [4], keeping in mind that F is P, in our case.

We consider the general case of parameterized hash functions. Next to the input message M,
such a function takes as input a set of parameter values A that determine the topology of the
hashing tree such as node degree or total depth. In the simplest case, this set may be empty and
the tree topology may be fully determined by the message length |M]| .

2.1 Hashing as a two-step process

A tree hashing mode specifies for any given parameter choice A and message length the number
of calls to F and how the inputs in these calls must be constructed from the message and the
output of previous calls to F.

For a given input (M, A), the result is the hash h = T[F](M, A). We express tree hashing as
a two-step process:

Template construction The mode of use T generates a so-called tree template Z that only
depends on the length |M| of the message and the parameters A. We write Z = T(|M], A).
The tree template consists of a number of virtual strings called node templates. Each node
specifies for a call to F how the input must be constructed from message bits and the output
of previous calls to F (see Section 2.3).

Template execution The tree template Z is erecuted by a generic template interpreter Z for

a specific message M and a particular F to obtain the output h = T[F](M, A).
The interpreter produces an intermediate result called a tree instance S consisting of node
instances. Each node instance is a bit string constructed according to the corresponding node
template and presented to F. We write S = Z[F](M, Z). The hash result is finally obtained
by h = F(Sy), where S is a particular node of S, called the final node (see Section 2.2).



Hence h = T[F|(M, A) is a shortcut notation to denote first Z = T (|M|, A) then S = Z[F|(M, Z)
and finally h = F(S,). This two-step process is illustrated in Appendix A.

In this paper we only consider tree hashing modes that can be described in this way. However,
this is without loss of generality. While we split the function’s input in the parameters A and the
message content M, this is only a convention. If the tree template has to depend on the value
of bits in M, and not only on its length, the parameters A can be extended so as to contain a
copy of such message bits. In other words, the definition of the parameters A is just a way to
cut the set of possible tree templates into equivalence classes identified by (|M], A). As far as we
know, all hashing modes of use proposed in literature allow a straightforward identification of the
parameters that influence the tree structure.

2.2 The tree structure

The node templates of a tree template Z are denoted by Z,, where a denotes its index. Similarly,
node instances are denoted by S,. As such, the nodes of tree templates and tree instances form
a directed acyclic graph and hence make a tree.

Related to the tree topology, we now introduce some terminology and concepts. These are
valid both for templates and instances and we simply say “node” and “tree”.

— A node may have a unique parent node. We denote the index of the parent of node with index
a by parent(«). In a tree all nodes have a parent, except the final node. We use the index x*
to denote the final node. By contrast, we call the other nodes inner nodes.

— We say the node with index « is a child of the node with index parent(«). A node may have
zero, one or more child nodes. We call the number of child nodes of a node its degree and a
node without child nodes a leaf node.

— We say that a node Z, is an ancestor of a node Zg if a = parent(3) or if Z, is an ancestor
of the parent of Zg. In other words, Z, is a parent of Zz if there exists a sequence of indices
ap, a1, 41 such that @ = ap, ;-1 = parent(wo;) and og—1 = parent(5). We say Zg3 is a
descendent of Z, and d is the distance between Z, and Zg. Clearly, the final node has no
ancestors and a leaf node has no descendents.

— Every node Z, is a descendent of the final node and the distance between the two is called the
height of .. The final node has by convention height 0. The height of a tree is the maximum
height over all its nodes.

— We denote the restriction of a tree Z to a set of indices J as the subset of its nodes with indices
in J and denote it as Zj. The restriction is a subtree if for all the nodes it contains, except
one, the parents are also in the restriction. We call a subtree a final subtree if it contains the
final node. We call a subtree a proper subtree of a tree if it does not contain all its nodes.

2.3 Structure of node templates

A node template Z, is a sequence of template bits Z,[x], 0 < x < |Z,], and instructs the forming
of a bit string called the node instance S, in the following way. Each template bit has a type and
the following attributes (and purpose), depending on its type:

Frame bits Represent bits fully determined by A and |M| and cover padding, IV values and
coding of parameter value A. A frame bit has a single attribute: its binary wvalue. Upon
execution, the template interpreter Z assigns the value of Z,[z] to S,[x].

Message pointer bits Represent bits taken from the message. A message pointer bit has a
single attribute: its position. The position is an integer in the range [0, |M| — 1] and points
to a bit position in a message string M. Upon execution, Z assigns the message bit My] to
Salz], where y is the position attribute of Z,[z].

Chaining pointer bits Represent bits taken from the output of a previous call to F. A chaining
pointer bit has two attributes: a child index and a position. The child index S identifies a node
that is the child of this node and the position is an integer that points to a bit position in



the output of F. Upon execution, Z assigns chaining bit F(Sg)[y] to S,[z], with g the child
index attribute of chaining pointer bit Z,[z] and y its position attribute. A chaining value is
the sequence of all chaining bits coming from the same child. We denote the chaining value
obtained by applying the inner hash function to S, by cq4.

Appendix A gives an illustration of this concept.

3 Patarin’s H-coefficient technique

This is a high-level overview of Patarin’s H-coefficient technique. For a more in-depth explanation
we refer to [6].

The goal of the adversary is to distinguish between the real world (X) and the ideal world
(Y), written as

Adv(A) = A(X;Y)

where A(X;Y) denotes the statistical distance between X and Y. All interactions between the
adversary and the system are written on a transcript 7" (in our case these are simply the permu-
tation couples (s, p) with p = f(s) and the input/output pairs for queries to G/T). We use Dx to
denote the probability distribution for a given adversary of these transcripts in the real world and
Dy for the probability distribution in the ideal world. The transcripts are divided into ”good”
and ”"bad” transcripts on the basis of certain properties. For example, a violation of permutation
consistency leads to a bad transcript. The trick is to define the criteria for transcripts to be good
or bad such that the bound is as small as possible. Proofs using this technique usually start with
defining a set of "bad” and "good” transcripts, such that T' = T}),,qUTp.q. We can then bound the
differentiating advantage as Adv(A) < e+ Pr(Dy € Tpaq), meaning we need to find the epsilon.If
the following can be proven for a certain epsilon
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, we can find the upper bound for the distinguishing advantage. The good and bad transcripts
are defined so that ¢ is small, while at the same time still keeping Pr(Dy € Tpuq) small. In some
Pr(Dx=t)
P'r(Di/(:T)
advantage can be simplified as Adv(A) < Pr(Dy € Tpuq) (which is the case in our paper). A way

to compute either part of this ratio is to write Pr(Dx = 7) and Pr(Dy = 7) as |C‘|)g}7:|X| and |C‘|)$f|Y|

proofs (and in our proof too) the ratio turns out to be greater than 1, such that the

respectively, where comp denotes a notion of compatibility. This can simplify computations, but
does not do so necessarily.

Proofs using Patarin’s H-coefficient technique consist of three parts. First we carefully define
what bad and good transcripts are, using the transcripts themselves. Then we compute the ratio of
the probabilities of good transcripts in both worlds to get €. Finally we compute the probability of
bad transcripts in the ideal world to compute the upper bound for the advantage of the adversary

A.

4 Sufficient conditions for sound tree hashing

In this paper, we assume that the three conditions for a sound tree hashing mode 7, formulated
by Bertoni et al. in [4], are fulfilled. In addition, we introduce a fourth condition specific for a
tree hashing mode using a truncated permutation. First, let us briefly recall the four conditions
of [4].

Consider a tree hashing mode 7 using an inner function F (e.g., a truncated permutation as
in our case), and using the truncation of F to its first n output bits, denoted by F,, to compute
chaining values.



Definition 1 ([4]). An inner collision in T[F] is a pair of inputs (M, A) and (M', A") such
that their corresponding tree instances are different: S # S’, but have equal final node instances

S, =S

A collision of F,, can be used to generate an inner collision. However, an inner collision does
not necessarily imply an output collision of F,. One can define tree hashing modes where it is
possible to produce an inner collision without collision in F,, (see Appendix A for an illustrated
example). To avoid this situation, the concept of tree decodability has been introduced.

Definition 2 ([4]). A mode of use T is tree-decodable if there are no tree instances that are both
compliant and final-subtree-compliant with that mode, and there exists a deterministic algorithm
A gecode that, given a tree instance S with index set J, has the following behaviour:

— If S is compliant with T, Agecode Teturns a flag “compliant”.

— Flse if S is final-subtree-compliant with T, Agecode Teturns a flag “final-subtree-compliant”,
a node index B ¢ J such that parent(3) € J and the list of positions in Sparent(s) of the
corresponding chaining pointer bits 0 to n — 1. We call the index B an expanding index of S.

— FElse Agecode returns a flag “incompliant”.

The running time of Agecode Shall be O(m) with m total number of bits in S.

Note that Agecode can be specific to the mode but can only use the information contained in the
tree instance. Also, this definition includes the case where Agecode can identify the chaining values
and their attributes in a node from the sole information in that node instance, or the case where
it does so from information in that node instance and all its ancestors. In [4], it has been proven
that when 7 is tree-decodable, an inner collision in 7[F] implies an output collision in F;,. This
leads to the first condition.

Condition 1 ([4]) T is tree-decodable

Naturally, we can have an output collision in 7[F] without an inner collision if there are
message bits that are not mapped to any template node or if two template trees resulting from
two different messages of the same length and different parameters are equal in all frame bits and
chaining pointer bits, but not in message pointer bits. For that reason, the concept of message-
completeness has been introduced.

Definition 3. A mode of use T is message-complete if for all combinations (|M|, A) the resulting
tree template contains all |M| message pointer bits at least once and there is a deterministic
algorithm Apessage that, given a tree instance S compliant with T, provides the list of positions
in S of message pointer bits 0 to |M| — 1. The running time of Amessage shall be O(m) with m
the total number of bits in S.

Message-completeness implies that the message can be fully reconstructed from the tree instance.
Condition 2 ([4]) T is message-complete.

The third condition prevents a property that generalizes length extension to tree hashing. That
is, given an output h = T[F]|(M) of some message M, one can compute the output h’ = T[F|(M')
with M a substring of M’ without knowing M (see Appendix A for an illustrated example). The
simplest way to avoid this is to have domain separation between final and inner nodes.

Condition 3 ([4]) T enforces domain separation between final and inner nodes. In other words,
T is such that for any (M, A) and (M', A") and for any node index oo # x in T (| M|, A) we have
S« # Sl where S and S’ correspond with inputs (M, A) and (M', A"), respectively.



For a tree hashing mode 7 using P,, to compute chaining values, generating an inner collision
is easy due to the possibility of computing P!, the inverse of the permutation. For instance,
consider a leaf node instance S, of a given known tree instance S. The evaluation of P, (Sy)
gives a n-bit chaining value ¢ which is in the parent node instance of S, in S. The evaluation of
P~1(c||x) (with || denoting concatenation) returns a b-bit value X. If X has the right coding for
a leaf node (e.g., frame bit values indicating that they are leaf nodes), we can replace S, by X
in S and this gives an inner collision: another tree instance S’ which differs from S only by one
leaf node instance.

A solution to this problem, called leaf node anchoring, is to impose a fixed initial value IV
in a fixed position in each leaf node. For the generation of an inner collision as described above
to succeed, the evaluation of P~!(p) shall return an inner node instance X having the IV in the
right position. It turns out that for the simplicity of the security proof, non-leaf nodes shall have
a chaining value at that position. Without loss of generality, we take for the fixed position just
the first n bits of the node. We use the notation |x], to denote the truncation of a binary string
T to its n first bits.

Definition 4. A mode of use T is leaf-anchored if for any leaf node template Z, generated with
T, | Za]n contains frame bits coding a fixed value IV and for any non-leaf node Zg generated with
T, | Zg|n contains a chaining value.

Condition 4 7T is leaf-node-anchored.

5 The distinguisher’s setting

We study the indifferentiability of a tree hashing mode 7, using a random permutation P, from
an ideal hash function G using a random oracle RO. We base ourselves on the indifferentiability
framework introduced by Maurer et al. in [9] and applied to hash functions by Coron et al. in [7].

The adversary shall distinguish between two systems (see Figure 1) using their responses to
sequences of queries. The system at the left is 7[P] and P, and the adversary can make queries to
both subsystems separately, where the former in turn calls the latter to construct its responses.
As P is a permutation, the distinguisher can also make calls to its inverse P~1. She has the
following interfaces to this system:

— H taking as input (M, A) with M € Z% and A the value of the mode parameters, and returning
a binary string y € Z, i.e., y = T[P](M, A);
— Z*! combining two sub-interfaces:
e Z*! taking as input a binary string s € Z5, and returning a binary string p € Z4 with

p = P(s);
e 7! taking as input a binary string p € Z, and returning a binary string s € Z4 with
s =P (p).

The system at the right consists of an ideal hash function G, of a simulator § simulating the
permutation and a random oracle RO for G and S to query. It offers the same interface as the
left system. G provides the interface H and returns an output truncated to n bits when queried
with (M, A). The permutation simulator provides the interface Z*! combining two sub-interfaces
It and Z71, such as in the left system.

First, the simulator should be self-consistent: if queried with the same query multiple times,
it should give the same response. Second, the output of § should look consistent with that which
the distinguisher can obtain from the ideal hash function G, like if S was P and G[RO] was T [P].
To achieve that, the simulator can query RO, denoted by S[RO]. Note that the simulator does
not see the distinguisher’s queries to G[RO]. Third, S must simulate a permutation consistently:
TH(s) £ TH(s) iff s #£ s/, T-Hp) #Z 1Y) iff p # p' and p = TTL(s) iff s = Z71(p). We call
this property permutation-consistency.



Fig. 1. The differentiating setup

Indifferentiability of 7[P] from the ideal function G[RO] is now satisfied if there exists a sim-
ulator S such that no distinguisher can tell the two systems apart with non-negligible probability,
based on their responses to queries it may send.

In this setting, the distinguisher can send queries ) to both interfaces. Let X be either
(T[P],P) or (G[RO],S[RO]). The sequence of queries @ to X consists of a sequence of queries to
the interface #, denoted Q and a sequence of queries to the interface Z*!, denoted Qr+1. Qy
is a sequence of couples Q; = (M;, A;), and Q=1 is a sequence of couples Qz+1,; = (k, f) with
ke Zg and f a flag equal to 1 or -1, indicating whether the query k is sent to Zt! or Z71 .

In the following, we use the concept of T-consistency recalled below. Note that T-consistency
is per definition always satisfied by the system on the left but not necessarily by the system on
the right.

Definition 5 ([4]). For a given set of queries Q and their responses X(Q), the T -consistency
is the property that the responses to the H interface are equal to those that one would obtain by
applying the tree hashing mode T to the responses to the IF! interface (when the queries Qz+1
suffice to perform this calculation), i.e., that X (Qu) = T[X(Qz+1)](Qn).

5.1 The cost of queries

We consider the same cost of queries setting as in [4]. The cost ¢ of queries to a system X is the
total number of calls to P or P~! it would yield if X = (T[P],P), either directly due to queries
Qr+1, or indirectly via queries Q3 to T[P]. The cost of a sequence of queries is fully determined
by their number and their input. Each query Qz+1; to P or P! contributes 1 to the cost. Each
query Qu; = (M;, A;) to H costs a number fr(|M;|, A;), depending on the tree hashing mode T,
the mode parameters A; and the length of the input message |M;|. The function f7(|M|, A) counts
the number of calls 7P| needs to make to P from the template produced for parameters A and
message length |M|. Note that fr(|M], A) is also the number of nodes produced by T (| M|, A).

Duplicate queries are not taken into account. This means that two equal queries Q71 ; or two
equal queries (Q7,,; are counted as one. Note that this is only an a posteriori accounting convention
rather than a suggestion to replace overlapping queries by a single one. This convention only
benefits to the adversary and is thus on the safe side regarding security.

5.2 7T-decoding

For T-consistency, we use a decoding process very similar to the “7T-decoding” in [4]. This pro-
cess extracts an input (M, Z) from a given final node instance, using the first two members of
quadruples (s,p,a,c) in T. Input retrieval of a final node s using a table 7' does not necessarily
lead to an input (M, Z). In this context we provide the following definition.



Definition 6. A final node instance s is T-bound for a given table T if there exists a tree instance
S with s = S, such that given any proper final subtree Sy of S, for each expanding index B of Sj
and the corresponding chaining value cg, 3(Sg, p,*,*) € T where |p|, = cg. Given the message
M and the parameter A corresponding to S, we say that s is T-bound to (M, Z) via S.

Note that a final node instance may be T-bound to multiple inputs (M, Z).

With respect to T-decoding we distinguish between couples (s, p) in 1" that are obtained from
queries to Zt! and those to Z=!, and we denote the former by T+ and the latter by 7. Thus,
TT and T~ form a partition of T. Our input retrieval procedure is specified in Algorithm 1. It
makes use of TF and ignores couples in T~

We define an n-collision in a table T'.

Definition 7. Two couples (s,p) and (s',p") in T with s and s’ inner nodes, s # s’ and |p|, =
|p'|n is called an n-collision in T.

If Algorithm 1 is successful for a given node s, it returns an input (M, Z) and we say the node
s is T -decodable. Otherwise, it returns one of the following flags:

— “dead-end at ¢”: for some expanding index f3, there is no couple (s,p) in T" with |p|, = cg.

— “n-collision”: for some expanding index 3, there are more than one couple (s, p,*,*) in T
with |p|, = ¢g, hence there is an n-collision in 7.

— “incompliant coding”: the constructed tree instance S is inconsistent with the tree hashing
mode.

When there are no n-collisions in 7", all T"-bound final nodes are input-retrievable.

Algorithm 1 7-decoding

input: s and set 7"
output: flag and pair (M,Z) or chaining value ¢
Initialization: J = {*}, S« = s and Z, = O/l
while Agdecode(Ss) returns flag “final-subtree-compliant” do
Fill in the chaining pointer bits of the expanding index in Z
Let ¢ be the chaining value corresponding to expanding index 8 extracted from S
if there is exactly one entry (s',p, *,*) € Tt with |p|, = c then
Let J = JU{B}, Ss = ' and Zs = O!*']
9: else if there is no entry (s',p, *,*) € T then

10: return flag “dead end” and ¢

11:  else { There is more than one entry (s',p, *,*) € TT with |p|, = c}
12: return flag “n-collision”

13:  end if

14: end while
15: if Adecode(Ss) returns flag “incompliant” then

16:  return flag “incompliant coding”

17: else

18: Reconstruct the message pointer bits in Z; by calling Amessage(S7)

19:  Determine the remaining undetermined bits (all frame bits) in Z; by copying them from S
20:  Reconstruct M from S; using the message pointer bits in Z;.

21:  return flag “success” and (M, Z)

22: end if

5.3 The simulator
Algorithm 2 specifies the simulator S[RO]. It has the following design principles:

— It is always self-consistent.
— It violates permutation-consistency only with a very small probability.
— It satisfies 7 -consistency as long as a particular event, called a C-collision, does not occur.



Algorithm 2 The simulator S[RO]
1: Initialization: T =TT UT™ < (—,—,—,IV)

2: Interface p = 71! (s) with s,p € Z3

3. if 3(s,t,*, %) € T then

4: return p=t

5: end if

6: Call Algorithm 1 resulting in a flag and a result

7: if Algorithm 1 returned flag “success” and (M, Z) then

8:  Set ptoG(M,Z)

9:  Append (b — n) uniformly and independently drawn random bits to p
10:  TF « TH U (s,p,“success”, —)

11: else if Algorithm 1 returned flag “dead-end” and ¢ then

12:  Choose p randomly and uniformly from Z5 \ T’

13:  TF « TH U (s,p,“no success”, c)

14: else {Algorithm 1 returned flag “n-collision” or “incompliant coding”}
15:  Choose p randomly and uniformly from Z5 \ T’

16:  TF « TH U (s,p,“no success”, {|p|n})

17: end if

18: return p

19: Interface s = Z~'(p) with s,p € Z}

20: if 3(i,p, %, %) € T then

21:  return s=1

22: end if

23: Choose s randomly and uniformly from Z5 \ T}
24: T~ + T~ U (s,p,“no success”, {|s|n})

25: return s

As long as permutation-consistency is not violated and there are no C-collisions, its output
has the same distribution as that of a random permutation.

To satisfy self-consistency, it keeps track of the queries and their responses in a table T
containing quadruples (s, p, a,c) with s,p € Zg, a being a flag indicating whether ¢ should have
a value, and ¢ being the chaining value corresponding to the query. We denote the set of first
members of these quadruples by 77 and the set of second members by 7T,.. When receiving a query
T7Y(s) with s already in 7}, the simulator returns the second member of (s,p,a,c) € T (line 4).
Similarly, when receiving a query Z~!(p) with p already in T}, the simulator returns the first
member of (s,p,a,c) € T (line 21).

In general the simulator satisfies permutation-consistency in the following way. When receiving
a query ZT!(s) with s ¢ 7T it selects the response p randomly from the set of possible values,
excluding those in T} (lines 11 and 14). When receiving a query Z~!(p) with p ¢ T, it selects the
response s randomly from the set of possible values, excluding those in 7; (line 23). This conflicts
with 7T-consistency in certain queries Z™!(s) with s a final node. In that case, and in that case
only, permutation-consistency may be violated (lines 8-9). Note that if the simulator has violated
permutation-consistency, there may be multiple pairs in T with the same second member and the
simulator’s response to Z~! (line 21) is not well-defined. This could be fixed but would complicate
the description of the simulator and in our proof we consider the adversary has succeeded as soon
as permutation-consistency is violated.

The table T has in each quadruple a value ¢ containing n-bit chaining values and the IV
(Definition 4). The number of times a value ¢ occurs in the set is its multiplicity. Initially, T
contains the IV and the simulator adds members to T" with a non-empty value ¢ when receiving
queries:

— If T-decoding returns “incompliant coding” or "n-collision” a query Z7!(s), adds to T the
chaining value |p|, for c¢(line 15).

— A query Z7Y(p) adds [s], (line 28) to T for the variable c. Due to leaf-node anchoring, if the
response s is a leaf node, |s], = IV and otherwise |s], is a chaining value.



— A query Z71(s) adds the chaining value ¢ to T iff T-decoding returns “dead-end at ¢” excep-
tion.

The values ¢ in the quadruples in T have no influence on the way the simulator generates its
responses and its purpose is to define a concept that facilitates our proof: C-collisions.

Definition 8. There is a C-collision in the simulator if a value ¢ in T has at least one member
with multiplicity larger than 1.

The simulator satisfies T-consistency by querying G[RO] if necessary. When making a query
T7Y(s) with compliant coding, the simulator performs 7-decoding to s (line 6). If T-decoding
returns (M, Z), the simulator calls G[RO] with (M, Z) to guarantee 7T -consistency (line 8); then
it extends the received n-bit value GI{RO|(M, Z) with (b—n) random bits to make a b-bit response
p (line 9). Note that this may may violate permutation-consistency if the generated value p is
already in T;. If the input retrieval of s does not return an input (M, Z), the simulator chooses p
randomly from all possible values excluding 7, (line 11).

6 The Proof

Notation We’d like to define the notation we use for falling factorials. A falling factorial is
defined as (), = z(z —1)(z —2)...(z —n+1).

6.1 Definition of good and bad transcripts

The transcripts contain the same information as the state of the simulator, meaning all bad tran-
scripts can be identified by looking at the transcripts themselves.

A bad transcript occurs in two cases

— A C-collision occurs in the simulator, which can be caused by the following mutually exclusive
cases
1. Dead-end at c
2. n-collision
3. invalid coding
— Permutation consistency is violated

The transcripts we use are the same as the tables T' that the simulator builds. This means each
transcript element consists of a quadruple (s, p, a, ¢) where s and p are the permutation couples. a
is a flag with value “success” or “no success”. These flags are determined mostly by the T-decoding
algorithm and in turn they determine what the value of ¢ is. a has value “success” if T-decoding
returns the flag “success” In this case ¢ gets value ’-’; as this case doesn’t cause C-collisions. a
has value “no success” in the following cases

— 7T-decoding returns “dead-end”. In this case ¢ gets value ¢ of the chaining value.
— T-decoding returns “n-collision” or “incompliant coding”. In these cases ¢ gets the value

{lpln}-

— The interface I~ is used. In this case ¢ gets the value {|s],}.

A bad transcript is then a transcript that has (at least) two distinct entries (s, p,a,c) and
(s',p',d', ), where ¢ = ¢’ or a transcript where permutation inconsistency occurs. We split the
transcripts into two mutually exclusive parts, one denotes queries that return success when put
through the 7-decoding algorithm and the other one denotes queries return a flag different from
"success”. T' = Tsycces U Thosucces-
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Notation of queries We use lowercase and capital Qs to differentiate between the number of
queries up to a certain point and the final number of queries respectively. Queries on Tgyeces are
denoted by ¢ and queries to Th,psucces are denoted by ¢o. This means we have six ways of denoting
queries;

— q1, denotes the queries up to a certain point, that had flag “success”.

— @9, denotes the queries up to a certain point, that didn’t have flag “success”.

— 14, defined as ¢; + g2, meaning it denotes all the queries up to a certain point.

— @, denotes the total amount of queries after the complete transcript has been built.
— @1, denotes the total amount of queries that had flag “success”.

— (@2, denotes the total amount of queries that didn’t have flag “success”.

Something about cost and queries Due to the nature of the bad transcripts, one would get
only good transcripts if one was to solely query G and T. That’s why for every query to G/T we
add a ’free’ (not counted towards the cost) query to S/P respectively. By doing this we can focus
on only the simulator for bad transcripts in the ideal world, which simplifies the proof.

6.2 Bounding the ratio Pr(Dx = T)/Pr(Dy = T) for good transcripts
The Real World We want to compute the probability to get a certain good transcript in the
real world. We do this by dividing the amount of permutations compatible with this transcript

by the total amount of permutations. We use €2 to denote the total amount of permutations and
comp to denote the amount of compatible permutations.

Oy = 2%

compx = (2" — Q)!

The Ideal World To compute the probability to get a certain good transcript in the ideal world,
we split the computation into two parts. Queries that have flag “success” have a probability of 2—11,
Queries that don’t have flag “success” have probability ﬁ To get the total chance of getting
a certain good transcript we then have to take the product over all queries of this. We define a
function 6(7) that equals 0 when ¢ € ¢; and equals 1 when i € ¢o.

<1
=1

The ratio
Pr(Dx =T) TI2.2"—d(a)q
Pr(Dy=T) (250

This is clearly larger than 1, because we can get one of two possibilities; certain values ¢ would
lead to 2° — i, equaling and thus cancelling out the terms from Pr(Dx = T); while the other
values would lead to 2°, resulting in terms larger than 1. So Adv(A) < £+ Pr(Dy € Theq) is
reduced to Adv(A) < Pr(Dy € Tpeq).
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6.3 Bounding the probability of bad transcripts in the ideal world

To compute the probability of a bad transcript in the ideal world, we need to compute the sum
of the probabilities of a bad event occurring at each point of building the transcript. Because of
the division of queries, a certain query in ¢; can only make the transcript bad by permutation
inconsistency and a certain query in g» can only make a transcript bad by causing a C-collision.
This means that we need to compute two things and add them to each other:

— the chance that the ith query, if it’s a “success” query, gives a permutation inconsistency is
i

2b

— the chance that the ith query, if it isn’t a “success” query, gives a C-collision is

q2
on

. This means that this would be 2% when maximized (meaning all queries would be sent to
the simulator).

Meaning the chance for getting a bad transcript is

Q1 Q2 Q1(Q1—-1) Q2(Q2-1)
q @ 5 5 Q@1 1) Q2(Q2-1)
Pr(Dy €Toad) S D, o5+t D 5n =95 T~ = gori T o
q1=0 q2=0

b is assumed to be far greater than n. This means we can maximize the advantage of the

attacker by only querying the simulator (such that @; = 0 and Q2 = @), so that % +

% is in the worst case scenario % This means our differentiating bound for the worst

case scenario is Q(Q ) Q2
-1
Adv(A) < ol S uil-

7 Conclusions

We have proven that a hashing mode that calls a compression function consisting of a truncated
fixed-input-length permutation achieves the best possible differentiating advantage if it satisfies
four simple conditions. This is valid for both sequential and tree-hashing modes.
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A Tllustrations

In this section we illustrate the tree hashing mode described in section 2 and two undesired
properties of tree hashing modes explained in Section 4 to introduce two of the four conditions
for sound tree hashing.

In our figures of tree templates we use the following conventions. We depict message, chaining
and frame blocks rather than individual bits, where a block is just a sequence of consecutive
bits. Frame blocks are depicted by white rectangles with their value indicated, message blocks
by light grey rectangles and their position in the message indicated, and chaining blocks by dark
grey rectangles with an indication of their child. An output is depicted by a rounded rectangle.
The relation between the nodes is indicated by arrows, symbolizing the application of F (or P,,)
during template execution for a concrete input M.

Figure 2 shows a tree template consisting of a number of node templates. Each row represents
a call to the inner function F. Each node contains frame bits (with constant bit values). Leaf
nodes contain message pointer bits representing bits taken from the message M. Except leaf
nodes, other nodes contain chaining pointer bits representing chaining value bits taken from the
output of a previous call to F.

Figure 3 represents a tree instance obtained after executing the tree template with the message
M and the parameters A. Message pointer bits in leaf nodes have been replaced by the message
bits. The output of F after treating the final node constitutes the hash value.

00110 F—
011110110 |— F
Y
0011110 |— F——

001000100 F—
110010110 ~ F

1100101100100010011110110011

A 4

0001010 |— F
A
110101101 |~7:

Y
001011100100010111010101110001011_... 4 ;

Fig. 2. A tree template. Fig. 3. A tree instance.

We now illustrate undesired properties using figures of templates generated by some mode of
use. The way these templates have been generated by the mode of use are out of scope of this
section. Note also that these templates illustrate undesired properties and hence the modes of
use that would produce them are per definition not sound.

The first property is related to the existence of inner collisions in the absence of collisions in
the output of F and is illustrated in Figure 4. The figure depicts two templates that are generated
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Z 01 M; Z, 01 M
Z, 01 M, Z 01 M,
Z2 01 M,

A 4 Y Y A 4
Z 01 M, cv, Y Y, Z+ 01 M Cr, CVry

\ 4 Y
) )
M= My | M; | M5 | 1 M= My| FQO1| My | Ms | M,

Fig. 4. Example of an inner collision without a collision in F

by a mode of use T for two different message lengths. All nodes have as first two bits frame bits
with value 01. The template on the left has four nodes: three leaf nodes of height 1 and a final
node that takes an input block and the chaining values corresponding to the three leaf nodes. The
template on the right has three nodes: two leaf nodes of height 1 and a final node that takes an
input block and the chaining values corresponding to the two leaf nodes. Note that the final node
of the right template has a message block (indicated by M]) in the place where the final node
of the left template has the concatenation of a message block My and a chaining block C'V5. We
can exploit this fact to construct an inner collision from any message M with length matching
the left template. As can be seen in the figure, it suffices to form M’ by replacing in M the block
M; by F(01|My).

The second property, a generalization of length-extension to tree hashing, is illustrated in
Figure 5. Given the output of h = T[F|(M) of some message M, length-extension is the possibility
to compute the output of T[F|(M’) with M a substring of M’, only knowing h and not M itself.
Figure 5 depicts two templates corresponding with two different message lengths. The templates
have a binary tree structure. The template on the left has three nodes: two leaf nodes and a
final node containing the chaining values corresponding to the two leaf nodes. The template on
the right has seven nodes: four leaf nodes, two intermediate nodes each containing the chaining
values corresponding to two leaf nodes and a final node containing the chaining values of the
intermediate nodes. Note that the chaining block C'Vj in the final node of the right template
corresponds with the hashing output of the left template. As can be seen in the figure, given
the hash output h of a message M with length matching the left template, one can compute the
hash output of any message M’ = M |Ms|M3 with length matching the right template without
knowledge of M.
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Fig. 5. Example of the generalization of length extension to tree hashing
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