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Abstract

In this thesis we present an SIMD implementation of the SHA-256 algo-
rithm, optimised for the ARM Cortex-A8 processor, using the NEON vec-
tor instruction set. This implementation is specifically designed for use in
hash-based signatures. By implementing SHA-256 directly in assembly, we
achieve a performance gain of 33.5% for 256-bit input and 27.5% for 512-bit
input messages.
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Chapter 1

Introduction

In 1994, Shor showed that both the discrete logarithm problem and integer
factorization can be solved in polynomial time by a quantum computer [20].
As most (if not all) of the widely used asymmetric cryptographic systems to-
day depend on the hardness of those problems, these systems will be broken
when we manage to actually build a quantum computer. We therefore need
alternatives to classical systems like RSA, DSA and ECDSA. In the case of
digital signatures, one such alternative is hash-based signatures. These have
been introduced by Lamport in 1979 [13], as a one-time signature scheme.
In 1989 Merkle proposed his Merkle signature scheme [16], which extended
Lamport’s scheme with a tree-hash algorithm enabling the use of multi-
ple signatures with one public key, and which has been the basis for modern
schemes like GMSS [6] and XMSS [5]. Recent developments show that hash-
based signature schemes are becoming more and more practical [12] [7], and
schemes based on MSS have been proven to be secure in a post-quantum
world [22]. However, more work needs to be done before they are ready to
become the new standard for digital signatures.

This thesis aims to provide a stepping stone to efficient implementa-
tions of these hash-based signature schemes on more restricted devices by
providing an efficient implementation of the hash function SHA-256 on the
ARMv7-A architecture, specifically the ARM Cortex A8. This implemen-
tation will exploit the NEON vector instruction set available on most pro-
cessors of this family. ARMv7-A processors, and their successors from the
ARMv8-A architecture, are widely used in mobile devices such as smart-
phones and tablets by companies like Apple, HTC and Samsung. The ma-
jority of those devices have access to NEON instructions. Bernstein and
Schwabe have shown that cryptographic primitives can benefit greatly from
the NEON instruction set [3], and Sánchez and Rodŕıgues-Henŕıquez show
similar results by applying these instructions to an attribute-based encryp-
tion scheme [19].

Hash-based signature schemes calculate a large amount of hashes of mes-
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sages of a fixed input-size. Many of these calculations can be done in parallel,
which can greatly benefit the efficiency of the signature scheme. Our contri-
bution is a NEON vector implementation of SHA-256, specifically for ARM
Cortex A8 processors, which calculates four hashes in parallel. It can be
used to improve the efficiency of implementations of hash-based signature
schemes like XMSS.
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Chapter 2

Preliminaries

2.1 Hash-Based Signature Schemes

This section provides a brief overview of how hash-based signature schemes
work. Hash-based signatures were introduced by Lamport in 1979, so we
begin by taking a look at the Lamport signature scheme [13], which is a
one-time scheme. We fix the hash function H as SHA-256.

This section is loosely based on a blog post by Langley from July 18th
2013 [14].

2.1.1 Lamport signature scheme

To create a signature using the Lamport signature scheme, we first need to
generate a public and private key pair. We do this by generating 256 pairs
of 256-bit random numbers (so 512 numbers), where pair i consists of xi and
yi. These 256 pairs comprise our private key. Our public key now consists
of the (256-bit) hashes of these 512 numbers, which we publish. To sign a
message m, we calculate H(m), and for each bit of H(m) we publish either
xi or yi; we choose xi if bit i is 0, or yi if bit i is 1. This results in a sequence
of 256 numbers, which is our signature. To verify this signature, the verifier
hashes m, and chooses 256 hashes of our public key the same way we chose
the secret numbers when signing the message; if bit i is 0 he chooses H(xi),
if it is 1 he chooses H(yi). The verifier then checks whether the hashes of
the numbers in our signature match those in our public key; if they do, the
signature is correct.

There are some problems with this scheme. First off, the public and
private keys are 16 KB big, which is a problem because a public key can
only be used once; if the same public key is used twice, an attacker can forge
a signature because for some of the private number pairs both numbers have
been used. We can use a PRG to generate the secret number pairs, which
reduces the private key to a single seed. To solve the problems with the
public key size and one-time signatures, we can use a Merkle hash tree [16].
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2.1.2 Merkle signature scheme (MSS)

A Merkle hash tree is a perfect binary tree with N leaves. To construct a
Merkle hash tree, we first generate N public/private key pairs of a one-time
signature scheme, like Lamport’s. The leaves of the tree are hashes of the
generated public keys (being the hashes of the 512 secret numbers in case
Lamport’s scheme is used). Every other node in the tree consists of the hash
of the concatenation of its children’s values. In the example of Figure 2.1,
the node with children A and B consists of H(AB). The value of the root
of the tree is the new public key.

To sign a message, you choose one of the leaves of the tree, and use
the corresponding public/private keys to sign that message using the one-
time scheme. To enable someone to verify your signature, you will have to
convince him or her that the public key you used is part of your overall
public key, or the root of the Merkle tree. Therefore, aside from the entire
public key you used, you will have to give the path up the tree. In the
example of Figure 2.1; if you used the key pair from leaf A, you will have
to give that public key, and nodes B and H(CD). The verifier can then
calculate H(AB) and H(H(AB)H(CD)), and compare the resulting root of
the tree with your overall public key.

A B C D

H(AB) H(CD)

H(H(AB)H(CD))

Figure 2.1: Example of a
Merkle Hash Tree

This construction eliminates the big pub-
lic key size, and enables you to use one public
key for many signatures, as you can make the
tree arbitrarily large. Because we use a stream
cipher to determine the one-time private keys,
the whole tree is fixed when we determine a
seed. However, the entire hash tree is going to
be enormous if we want to be able to sign a
lot of messages with one public key. We can
choose public keys at random in the hope of
never colliding, but to avoid collisions the tree
needs to be huge; in the order of 2128 entries. This means calculating the
entire tree would take an immense amount of time. Therefore, we will need
to defer calculating parts of the tree until we need them. We can do this
by not creating one big tree, but a top-level tree with sub-trees, which have
sub-trees of their own etc. Instead of signing a message with the key-pair
of a leaf, we sign the root of a sub-tree, and we use the lowest level of trees
to actually sign our messages. Again, because we use a stream cipher to
generate the private keys, the private number pairs of all leaves are fixed.
We can therefore calculate sub-trees when we need them. We still need to
remember which leaves we have already used though.

There is one last problem with this construction, which is the size of
resulting signatures. Since a signature has to contain the entire public key
used, which is already 16 KB big, plus the path up the tree to the root node,
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its size is very unpractical when used to sign emails or other relatively small
documents. In his original paper, Merkle describes a method to shorten the
signature size called the Winternitz scheme [16], which we describe in the
next section. However, even when using this scheme, signatures remain far
bigger than those generated by signature schemes that are in use today.

2.1.3 Winternitz one-time signature scheme (W-OTS)

The Winternitz scheme effectively trades signature size for computation time
by iterating a hash function. The size of the private and public keys, as well
as the length of the function/hash chains (the amount of iterations), are
dependent on the Winternitz parameter w, which is usually a small power of
two; w = 2t. The private key consists of a list of random numbers x1 . . . xN ,
and the public key Y is calculated as

Y = f(fw−1(x1))|| . . . ||fw−1(xN )),

where f i denotes i iterations of a hash function (the output of one iter-
ation being the input for the next).

To calculate a signature for a message m, we first hash this message
(using a 256-bit hash), and then break this hash up into t-bit blocks. For
example, if w = 16 = 24, we get 64 blocks of 4 bits, which we denote with
b1 . . . b64. We also compute a checksum C (which is necessary to stop an
attacker from forging signatures, more details can be found in [8]), which
we break up into parts of t bits as well to get N blocks in total: b1 . . . bN .
We then calculate the signature s by using the integer values of these blocks
as the amount of iterations of the hash function on the values of the secret
key;

s1|| . . . ||sN = f b1(x1)|| . . . ||f bN (xN )

so, for example, if b1 = 1001 in binary, we iterate the hash function nine
times on x1; f

9(x1).
To verify this signature, we first calculate the parts b1 . . . bN as described

above, then iterate the hash function on the parts of the signature until we
reach w iterations, and then hash the concatenation of these results one last
time. We accept the signature if and only if the result is equal to the public
key:

f(fw−b1−1(s1)|| . . . ||fw−bN−1(sN )) = Y

By using a Winternitz parameter w = 16, we can sign four bits of our
(hashed) message with each part of our private key, as opposed to one bit
per part when using Lamport’s scheme. This significantly reduces the size
of the generated signatures, but at the cost of some computation time since
we need to calculate more hashes.
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2.1.4 Improvements on MSS

An extension and improvement to MSS is GMSS [6], which is a highly flex-
ible scheme that can be adjusted to meet requirements and constraints of
the environment it is used in while having great signing time, signature
capacity and reasonable signature sizes. More recent work is XMSS [5], an
efficient and forward-secure signature scheme with minimal security require-
ments (being a secure and efficient second-preimage resistant function and
a pseudo-random function), and XMSS+ [12], which expands on XMSS to
generate keys in O(

√
n) instead of O(n), which makes XMSS+ practical for

use on smart-cards. The authors therefore provide the first full implemen-
tation of a hash-based signature scheme on a smart-card. These schemes
are based on the Merkle signature scheme described above, and their per-
formance is comparable to RSA and ECDSA. XMSS and XMSS+ use the
Winternitz scheme described above [4], which is improved in [11] to provide
a bigger reduction in signature size while reaching a higher level of security.
These developments suggest that hash-based signature schemes are now be-
coming practical, and might in the near future become the standard for
digital-signature algorithms.

2.1.5 Fixed-size input and parallelization

As can be seen in the schemes described above, most of the hashes used
in hash-based signature schemes are performed on either 256 or 512 bits
input messages. Using Lamport’s scheme, all hashes (except when hash-
ing the message to be signed) are performed on 256-bit private key values,
and when using W-OTS, we calculate hashes on either 256-bit private key
values or 256-bit output of a previous hash iteration (again, except when
hashing the message to be signed). When using Merkle trees, we hash 256-
bit public keys in leaves or, in other nodes, the concatenation of two 256-bit
child nodes. Because of this, we restrict our implementation to fixed-size
inputs of either 256-bit or 512-bit input messages. This allows us to get
rid of some unnecessary overhead, and thus boost the performance of our
implementation.

Also, since most of the hashes calculated in hash-based signature schemes
do not depend on output of others, many can be calculated in parallel.
A vectorized implementation of hash functions can therefore significantly
improve the performance of these signature schemes.

2.2 SHA256 Algorithm

SHA-256 is part of the SHA-2 hash function family, which was designed
by the NSA and first published in 2002 [17]. It produces 256-bit hashes (or
‘message digests’) for messages of at most 264−1 bits long. This section pro-
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vides a brief overview of the structure of the SHA-256 algorithm. For more
detailed information on SHA-256 and the other SHA-2 hash algorithms, we
refer to the official SHA-2 documentation [18]. All functions and constants
described in this section can be found there.

The SHA-256 algorithm consists of two stages, preprocessing and hash
computation. It uses eight working variables of 32 bits each (which we will
denote with a to h), a message schedule of sixty-four 32-bit words (denoted
with w0 to w63) and a hash value of eight 32-bit words (H0 to H7).

2.2.1 Preprocessing

During the preprocessing stage the hash value is initialized using constants
which can be found in section 5.3.3 of [18], and the message M is padded
to a multiple of 512 bits. This padding is done as follows: first the bit 1
is appended to the message, followed by 0’s until the length of the padded
message modulo 512 is equal to 448 bits. Finally the length of the message
is appended using a 64-bit block.

Padded message : M ||1||0||...||0||len(M)

2.2.2 Hash computation

The hash computation stage consists of the looping of four steps over all
512-bit blocks of the padded message. During each loop i, the ith 64-byte
block of the message M is used to calculate an intermediate hash value. In
this section (and the rest of this thesis) we use ⊕ to denote XOR operations,
SHR for shift-right and ROTR for rotate-right.

First the message schedule, w0 to w63, is prepared as follows, where M i
t

denotes 32-bit word t of block i of the input message:

wt =

M i
t for 0 ≤ t ≤ 15, and

σ1(wt−2) + wt−7 + σ0(wt−15) + wt−16 for 16 ≤ t ≤ 63
(2.1)

where

σ0(x) = ROTR7(x)⊕ ROTR18(x)⊕ SHR3(x), and

σ1(x) = ROTR17(x)⊕ ROTR19(x)⊕ SHR10(x).

We will refer to the message scheduling calculation (and specifically to
the second line in the above equation) as the function M .
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Next, the eight working variables a to h are initialized with the (i− 1)st

hash values (when i is 0, these are constants defined in [18]):

a = H i−1
0 e = H i−1

4

b = H i−1
1 f = H i−1

5

c = H i−1
2 h = H i−1

6

d = H i−1
3 g = H i−1

7

During the third step some calculations are performed on the working
variables a to h, using the temporary variables T1 and T2, and sixty-four
32-bit constants (denoted k0 to k63, see section 4.2.2 of [18] for their values):

for t = 0 to 63 :

T1 = Σ1(e) + Ch(e, f, g) + kt + wt + h

T2 = Σ0(a) +Maj(a, b, c)

h = g d = c

g = f c = b

f = e b = a

e = d+ T1 a = T1 + T2

(2.2)

where

Σ0(x) = ROTR2(x)⊕ ROTR13(x)⊕ ROTR22(x),

Σ1(x) = ROTR6(x)⊕ ROTR11(x)⊕ ROTR25(x),

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z), and

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z).

(2.3)

We will refer to these calculations on the working variables with the
function F .

Finally, the ith intermediate hash value is calculated by adding the in-
termediate values to the current hash values:

H i
0 = a+H i−1

0 H i
4 = e+H i−1

4

H i
1 = b+H i−1

1 H i
5 = f +H i−1

5

H i
2 = c+H i−1

2 H i
6 = g +H i−1

6

H i
3 = d+H i−1

3 H i
7 = h+H i−1

7

(2.4)
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After repeating these four steps for all n blocks of an input message M ,
the resulting message digest is obtained by appending the last intermediate
hash values:

Hn
0 ||Hn

1 ||Hn
2 ||Hn

3 ||Hn
4 ||Hn

5 ||Hn
6 ||Hn

7

2.3 ARM Cortex-A8 Processor

The Cortex-A8 processor implements the ARMv7-A architecture, which in-
cludes the 32-bit ARM instruction set and the NEON Advanced SIMD ar-
chitecture. It also includes the Thumb-2 and ThumbEE instruction sets,
as well as the Security Extensions architecture, but as these have not been
used in our implementation we will not address them here. In this section
we briefly discuss the relevant aspects of the Cortex-A8 for this thesis. For
more detailed information, we refer to the Cortex-A8 Technical Reference
Manual [15]. For a short programmer’s guide, we recommend [23].

All operations on the Cortex-A8 are performed in little-endian mode by
default. It is possible to switch to big endian and back by using the setend
instruction, but this only affects memory accesses: arithmetic operations
are still performed in little endian mode. We use this instruction occasion-
ally in our implementation to give hashes consistent with standard SHA256
implementations.

We created and tested our implementation on a BeagleBone Black de-
velopment board, which includes a 1 GHz ARM Cortex A8 processor. More
detailed information can be found on the BeagleBone website: http://

beagleboard.org/BLACK.

2.3.1 Architecture

Registers

The Cortex-A8 has 16 32-bit registers, r0 through r15. The first four of these
are used as the input parameters of a program. The stack pointer is stored
in r13, and r15 holds the program counter, which leaves 14 general-purpose
registers. The NEON architecture has 16 registers of 128 bits, denoted q0
through q15. These can also be used as 32 registers of 64 bits, denoted d0
through d31; q0 is equivalent to d0 and d1 combined, q1 is equivalent to
d2 and d3, etc. As Bernstein and Schwabe state in [3], one of the most
obvious benefits of using NEON is that you have much more space available
in registers, being 2048 bits opposed to the 448 bits of the basic ARM
architecture. This can reduce the amount of loads and stores needed.
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Pipeline

The Cortex-A8 is a pipelined processor, which means that multiple instruc-
tions can be processed simultaneously; they can be issued directly after each
other, as long as the results of the first instruction are not directly needed for
the second. If they are, execution will stall until those results are available.

Dual issue

The NEON architecture includes separate pipelines for the arithmetic unit
and the load/store unit. This enables the processor to dispatch two instruc-
tions during one cycle, which are then processed in parallel. The order of
the two instructions is not important. Interleaving load/store and arithmetic
operations can improve code efficiency significantly. This is illustrated best
in an example from [3]: assuming no other latencies, the sequence ‘A LS
A LS A LS ’ (where ‘A’ stands for an arithmetic instruction and ‘LS ’ for a
load or store) costs three cycles, because this sequence is issued as ‘A LS, A
LS, A LS ’. The sequence ‘LS LS LS A A A’ costs five cycles (‘LS, LS, LS
A, A, A’).

2.3.2 Cycle timing

Instructions on the Cortex-A8 go through several pipeline stages, denoted
with N0 (when the instruction is issued), N1 etc, each of which takes one cy-
cle. For example, a vadd instruction (addition on vectors) requires its inputs
at pipeline stage N2 (one cycle after it is issued), and produces its result
in stage N3. This result can then be used by another instruction from N4

onwards. Note that the official ARM Cortex-A8 manual [15] always reports
the stage just before the result is available as the output stage. A vsub in-
struction (vector subtraction) behaves a bit differently, as it requires its first
input one stage earlier, in N1. Aligned load/store instructions occupy the
processor for one cycle, producing their result in stage N2. Unaligned loads
and stores require one extra cycle. When the result(s) of one instruction
are used in another, the latter will have to wait for the former. By cleverly
ordering instructions, it is often possible to hide these latencies (more on
this in section 4.3.1).

To get an idea of the performance and latency problems of our imple-
mentation, we used an online Cortex-A8 cycle counter by Sobole [21]. This
tool can be somewhat pessimistic at times, but displays most latencies cor-
rectly. Moreover, it shows how long an instruction is stalling and for which
register it is waiting, which is a great help when optimizing assembly code.
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Figure 2.2: Equivalent code

(a) NEON Assembly

1 vshr . u32 q2 , q1 , #15
2 veor q0 , q0 , q2
3 vshr . u32 q5 , q1 , #19
4 veor q4 , q4 , q5

(b) Qhasm equivalent

1 4x a = b unsigned>> 15
2 d ∧= a
3 4x c = b unsigned>> 19
4 e ∧= c

2.3.3 Cycle counter

The Cortex A8 has a cycle counter which can only be accessed from kernel
mode. Bernstein published a tool that exposes the cycle count to a Linux
device file which is included in the SUPERCOP benchmarking suite [2].
Unfortunately, at the time of writing SUPERCOP does not support bench-
marking for parallelized hashes. Our results are therefor measured on the
BeagleBone Black development board we used for our implementation, using
the cycle counter tool by Bernstein.

2.4 Qhasm

Programming in assembly is a notoriously delicate and time-consuming task.
The Qhasm tool developed by Bernstein provides a preprocessor which trans-
lates a C-like syntax directly to working assembly code; every line in Qhasm
corresponds to exactly one line in assembly. Figure 2.2 shows an example
of the Qhasm syntax; it displays a short assembly program in (a), and its
Qhasm equivalent in (b). Another major feature of Qhasm, and perhaps
its most useful, is that it takes care of register allocation. The programmer
only needs to worry about not using more registers than are available, as
Qhasm will not automatically spill variables to the stack.

From here on, all our code examples will use the Qhasm syntax, as it is
easier to read than raw assembly.

We added some instructions to Qhasm in order to properly load and store
values from and to memory in big endian mode. The version of Qhasm used
for our implementation can be found at https://gitlab.science.ru.nl/
wlinde/Qhasm.
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Chapter 3

Related Work

In 2004 Açiızmez explored the possibilities of using SIMD architectures to
improve the performance of several SHA hash functions (specifically SHA-
1, SHA-256, SHA-384 and SHA-512) [1], concluding that the hashing of
two or four independent messages can be made significantly faster using
this strategy. In [10] Gueron and Krasnov expand on Açiızmez’s study by
demonstrating performance gains on hashing multiple independent messages
of arbitrary size on (at the time) contemporary processors. In [9] Gueron
describes a tree mode implementation of SHA-256, using the AVX architec-
ture on a third generation Intel Core processor, to speed up the hashing of
a single message. The goal of this thesis is different from those of the above
three papers in that our implementation is specifically meant for use in hash-
based signatures, and therefore focuses on multiple independent inputs of
fixed-size length.

In [7], Oliveira and López present an efficient implementation of the
hash-based signature scheme MSS, using the AVX2 instruction set on an
Intel Haswell processor, using vectorized versions of SHA-384 and SHA-
256 to speed up key generation, signing and verification. The aim of this
thesis is to provide a similar SHA-256 implementation for ARM Cortex-A8
processors, to speed up hash-based signatures for more resource-restricted
devices.
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Chapter 4

Implementation

4.1 Lower-bound Performance Analysis

In order to properly evaluate the performance of our NEON Vector Imple-
mentation, we give a lower-bound performance analysis of the SHA-256 al-
gorithm to determine an absolute minimum on the amount of cycles needed
to calculate a single SHA-256 hash. Because all NEON arithmetic and
shift instructions used in our implementation occupy the processor for only
one cycle, it is sufficient to count how many of these instructions are re-
quired. Since we are aiming for an absolute lower bound, we do not take
into consideration any latencies between instructions. With proper instruc-
tion scheduling, it should be possible to eliminate most (if not all) latencies
anyway. We also do not count any cycles for loading or storing data to or
from memory: dual issuing enables us to load and store data for free, as we
explained in Section 2.3.1, when pairing memory access with an arithmetic
or shift instruction. Since we use NEON vector instructions in this analysis,
the calculated lower bound applies to the simultaneous hashing of four input
messages.

As explained in Section 2.2.2, when preparing the message schedule, the
functions σ0 and σ1 are used. Both of these use two XORs, two rotate-
right functions and one shift-right instruction. The rotate-right functions
consist of a shift-left, a shift-right and an XOR instruction (for example,
ROTR7(x) is equivalent to the sequence SHL25(x) ⊕ SHR7(x) for 32-bit
instructions)1. Therefore, the functions σ0 and σ1 both use (at least) nine
cycles. Equation 2.1 also uses three additions, resulting in 21 cycles, for 48
entries of the message schedule array. This gives us a total of 48 · 21 = 1008
cycles for the function M .

Since the second step of hash computation consists only of storing values,
no cycles are added here.

1A rotate-right instruction can also be coded using a shift-left and shift-right-insert in-
struction, but this solution generally introduces more latency, as we show in Section 4.3.1.
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During the third step, 64 iterations of calculations are performed on the
working variables a, b, . . . , h. The functions Σ0 and Σ1 from Equation 2.3
both use eleven cycles (three ROTR of three cycles each and two additions),
the function Ch uses three2, the function Maj uses five, and we have seven
more additions, giving a total of 37 cycles each iteration. Therefore, the
function F uses at least 64 · 37 = 2368 cycles.

Lastly, we have eight more additions when calculating the intermediate
hash value in Equation 2.4, which gives a lower bound of 1008 + 2368 + 8 =
3384 cycles per 64-byte block of the padded input message. Since 256-bit
messages are padded to one 512-bit block, the minimum amount of cycles
needed to hash a 256-bit message is 3384. 512-Bit messages are padded to
two 512-bit blocks, resulting in a minimum of 6768 cycles.

4.2 Code Structure

Our implementation is based on Bernstein’s SHA-256 implementation in-
cluded in the SUPERCOP benchmarking suite [2]. This implementation
follows the structure outlined in Section 2.2, but differs in that it only calcu-
lates parts of the message schedule (w0 through w63) when they are needed.
An overview of our code structure can be found in Appendix A. We adapted
this C implementation to hash a vector of four inputs, and then translated
it to assembly using the NEON SIMD instruction set.

4.3 Optimisations

Next we describe how we optimized our implementation in order to gain a
significant speed-up compared to the reference implementation. We start by
looking at minimizing latencies between instructions, which can be done by
rearranging instructions that depend on each other’s output and by inter-
leaving functions. We also look at substituting the shift-right-insert instruc-
tion with a more efficient option. We then discuss how we eliminated some
load and store instructions, and briefly look at utilizing big-endian mode
and how it can affect performance.

4.3.1 Minimizing latencies

Rearranging instructions

As we briefly mentioned in Section 2.3.2, when the result of one instruction is
used in a subsequent one, the latter has to wait for the result of the first to be
available. Generally, NEON arithmetic instructions produce their result two
cycles (pipeline stage N3) after they were issued, so a subsequent instruction

2Here we use the BIC (bit-clear) instruction, which uses one cycle.
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Figure 4.1: Equivalent code, but different performances

(a) Much latency: 18 cycles
1 z a l i gned= mem128 [ e ] ; e += 16
2 4x Sigma = z << 26
3 4x Sigma insert= z >> 16
4
5 4x r = z << 21
6 4x r insert= z >> 11
7 Sigma ∧= r
8
9 y a l i gned= mem128 [ e ] ; e += 16

10 4x ChMaj = z & y
11
12 y a l i gned= mem128 [ e ] ; e += 16
13 4x r = y & ∼z
14 ChMaj ∧= r

(b) Less latency: 12 cycles
1 z a l i gned= mem128 [ e ] ; e += 16
2 4x Sigma = z << 26
3
4 y a l i gned= mem128 [ e ] ; e += 16
5 4x ChMaj = z & y
6 4x r = z << 21
7 4x Sigma i n s e r t= z >> 6
8 4x r i n s e r t= z >> 11
9

10 y a l i gned= mem128 [ e ] ; e += 16
11 4x v = y & ∼z
12
13 Sigma ∧= r
14 ChMaj ∧= v

can use this result one cycle after that (stage N4 of the first instruction). If
the input for an instruction is not yet available, the processor stalls until it
is. The stage in which the inputs need to be available differs per instruction.
vadd, vand (logical ‘AND’), vorr (logical ‘OR’), veor (logical ‘XOR’) and
vbic (logical ‘AND NOT’) all require both their inputs to be available in
stage N2 (when operating on 128-bit registers). A vsub instruction is a bit
different in that it requires its second input to be available at stage N1. All
shift instructions require their input at stage N1. To avoid the processor
from stalling, and thereby wasting precious cycles, instructions have to be
ordered in a way that minimizes the amount of latency between them.

Figure 4.1 shows how this can be done. Lines with stalling instructions
have been colored red. Program (a) will for example stall at line number
three; the vsri instruction requires Sigma to be available, but because of the
previous shift-left instruction, it will not be available for two more cycles.
The vsri instruction on line six stalls for the same reason. The veor ’s on
lines seven and nine stall for one cycle instead of two, since they require
r at stage N2 instead of N1. These four latencies are resolved in (b) by
interleaving lines nine to fourteen with lines one to seven, and renaming
register r on lines 13 and 14 to v to avoid conflicts with the value we already
assigned to r. At the cost of one extra register, we reduced the cycle count
by one third.

Shift-right/XOR instead of shift-right-insert

In the above example we use the vsri instruction to shift a value to the right
and insert the result of that shift into a destination vector, using only one
instruction. This instruction occupies the processor for two cycles, which
means that during the second cycle of this instruction no other instructions
can be issued. In our vectorized SHA-256 implementation we have replaced
this instruction with a separate shift right and XOR, which gives the same
result but eliminates the unused cycle. Even though we still use two cycles
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for the same result, we can now issue a memory-access instruction during
the second cycle as well. In general, as Bernstein and Schwabe mentioned
in [3] as well, vsri instructions cause more latency problems than a separate
shift and XOR.

4.3.2 Eliminating loads and stores

Even though aligned-load-and-store instructions are free to execute when
dual issued with an arithmetic instruction, they are not entirely free. It
takes about 20 cycles for stored data to be available for the ARM unit of
the processor. Keeping values in registers instead of storing and loading
them again later is still beneficial for performance. This is where NEON’s
large register space is especially helpful.

4.3.3 Bigendian mode

In order to be compliant with existing implementations of SHA-256, the
C-implementation by Bernstein uses two functions, being load bigendian()
and store bigendian(), to make sure that certain values are loaded from and
stored to memory in big endian mode. Bernstein’s code uses two blocks of
function calls to load bigendian(), one to load the initialization constants and
one to load the input message, and one block of store bigendian() to store
the final hash to memory. These values are loaded and stored (respectively)
in big endian format, despite the endianness of the host system. These three
blocks cost a few hundred cycles each, and are therefore rather expensive.
By using the setend instruction available in the ARMv7-A architecture, we
were able to eliminate the block of store bigendian() calls and the second
block of load bigendian() calls3.

As explained in Section 2.3, the setend instruction can be used to switch
the endianness of the Cortex-A8, but this only affects memory access in-
structions. In Qhasm, the keyword bigendian is translated to the instruction
setend be, and littleendian to setend le, switching endianness to big endian
and little endian respectively. Figure 4.2 provides a code example of the
use of these instructions. The first instruction in both (a) and (b) copies
a 32-bit integer into all four lanes of the destination register. In (a), this
register is stored in little-endian mode, writing to memory a vector with
0x12345678 in all lanes. In (b) big-endian mode is used, which stores the
value 0x78563412. Notice the use of mem4x32 instead of mem128 in (b);
the former is translated to the vst1.32 instruction by Qhasm, while the lat-
ter results in a vst1.8 instruction. This distinction is important because of
the way the data is actually stored in memory. When storing a value byte

3We explain why we were not able to eliminate the first block of load bigendian()
function calls in Section 5
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Figure 4.2: An example of switching endianness

(a) Store little-endian

1 4x a = 0x12345678
2
3 mem128 [ i ] = a

(b) Store big-endian

1 4x a = 0x12345678
2
3 bigendian
4 mem4x32 [ i ] = a
5 l i t t l e e n d i a n

by byte, the endianness of the instruction is not relevant, but when stor-
ing blocks of four bytes it is. Load instructions have the same property of
course.

The use of the setend instruction comes at the cost of two cycles, one
for switching to big endian and one to switch back. We also observed that
switching endianness a lot comes with additional latency. The first 16 words
of the message schedule array contain the input message (see Section 2.2.2
and Section 4.2) in little endian format. We have to read this input in
big endian mode (using the vld1.32 instruction) during the first round of
functions F and M 4. However, since normal assembly memory accesses are
also affected by the switched endianness, we would have to switch 16 times
in this round of F to avoid reading constants the wrong way. We solved this
problem by rewriting the constants used in this round to their little endian
format; loading them in big endian mode reverts them back to their correct
representation. This little trick resulted in 15 less switches in endianness,
accompanied by a performance boost of about 200 cycles.

4This is no longer necessary after the first round of function M , as the values in the
message schedule array are then results of calculations on big endian input.
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Chapter 5

Results

5.1 Benchmark Results

As mentioned in Section 2.3.3, we used a program written by Bernstein
to benchmark our implementation on a BeagleBoard Black, because the
SUPERCOP benchmarking suite did not support benchmarks for parallel
hashes at the time of writing. The reported values are the median result of
10.000 iterations. Tables 5.1 and 5.2 show the total cycle counts, and Tables
5.3 and 5.4 show the amount of cycles used for the functions M and F .

Implementation Median cycle count

Reference implementation (C) 9386

Our implementation (ARM NEON) 6240

Improvement 33.5%

Table 5.1: Total cycle counts for 256-bit input messages

Implementation Median cycle count

Reference implementation (C) 15833

Our implementation (ARM NEON) 11494

Improvement 27.5%

Table 5.2: Total cycle counts for 512-bit input messages

5.2 Discussion

The results above show that a significant speed-up can be obtained by using
the NEON SIMD architecture on ARM processors. We are positive that
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Implementation M F Others

Reference implementation (C) 2062 6447 2939

Our implementation (ARM NEON) 1829 2771 1640

Improvement 11.3% 57.0% -

Table 5.3: Cycle counts per function for 256-bit input messages

Implementation M F Others

Reference implementation (C) 4105 12818 3015

Our implementation (ARM NEON) 3767 5602 2125

Improvement 8.2% 56.3% -

Table 5.4: Cycle counts per function for 512-bit input messages

more can be done to improve the efficiency of our implementation, but due
to time restrictions we were unable to do further optimizations.

As the tables above demonstrate, most of the performance gain was
obtained by optimizing the function F . This can be explained by comparing
the performance of the reference implementation to the lower bound we
determined in Section 4.1; as the lower bound for function F is about 4000
cycles below the amount the reference implementation uses (as opposed to
about 1000 cycles for M), this function had most room for improvement.

The ‘others’ category in the tables above contains everything not in-
cluded in the functions F and M . This includes message padding, copying
the initialization constants to the working variables and initial hash value,
and storing the computed hash to memory. In comparison to the actual hash
computation, this category is quite expensive in our implementation, but be-
cause of the limited time frame available we were not able to address this
any further in the context of this thesis. We have omitted our improvement
on this category as the compiler interleaves this code with other instructions
to eliminate latencies, essentially reducing the cost of this category. This is
why the total cycle count of the reference implementation is lower than the
sum of the costs of the individual parts.

An example of further optimizations would be to eliminate the last re-
maining block of load bigendian() function calls. This can be done by read-
ing the initialization constants directly into registers during the first round of
the function F , instead of copying those constants into the working variables.
We were not able to do this optimization because we ran into instruction
scheduling problems, resulting in a significant drop in performance.

Also, currently there are still some small latencies in our implementation.
These were introduced when we managed to switch from unaligned memory
access to aligned memory access. Since the first costs one additional cycle to
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execute, our performance was improved significantly, but some latencies that
were ‘hidden’ by the additional cycle used by unaligned memory accesses
were exposed after this optimization. Hiding these latencies should improve
our results even further.
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Appendix A

C-code Structure

Here we provide a short overview of the structure of our code, in a C-like
syntax. We have left out the padding and some repetitive parts for the sake
of brevity and readability.

A.1 SHA-256 Code Structure (256-bit input)

1 int hash256 vect (unsigned char ∗out , unsigned char ∗ in ) {
2 unsigned char padded [ 2 5 6 ] ;
3
4 // Copy inpu t to padded
5 for ( int i = 0 ; i < 128 ; ++i ) padded [ i ] = in [ i ] ;
6
7 // Padding : as d e s c r i b e d in s e c t i o n 2 . 2 . 1
8 . . .
9

10 // Perform hash ing c a l c u l a t i o n s
11 b l o ck s v e c t 256 ( out , padded ) ;
12 }
13 void b l o ck s v e c t 256 (unsigned char ∗ s ta tebyte s , unsigned char ∗ in ) {
14 uint32x4 abcdefgh [ 8 ] ; // Working v a r i a b l e s
15 uint32x4 s t a t e [ 8 ] ; // In t e rmed i a t e hash v a l u e s
16 uint32x4 w[ 1 6 ] ; // Message s c h e du l e array
17 memcpy(w[ 0 ] , in , 256) ; // Copy inpu t to message s c h e d u l i n g array
18
19 // I n i t i a l i z e work ing v a r i a b l e s and hash v a l u e s
20 load b igend ianx4 ( ivx4 + 0 , abcdefgh [ 0 ] ) ; s t a t e [ 0 ] = abcdefgh [ 0 ] ;
21 load b igend ianx4 ( ivx4 + 16 , abcdefgh [ 1 ] ) ; s t a t e [ 1 ] = abcdefgh [ 1 ] ;
22 . . . . . .
23 load b igend ianx4 ( ivx4 + 96 , abcdefgh [ 6 ] ) ; s t a t e [ 6 ] = abcdefgh [ 6 ] ;
24 load b igend ianx4 ( ivx4 + 112 , abcdefgh [ 7 ] ) ; s t a t e [ 7 ] = abcdefgh [ 7 ] ;
25
26 // S t a r t NEON assemb ly code
27 // vk −> con t a i n s c on s t an t s as s p e c i f i e d in FIPS 180−4
28 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w0 through w15
29 M(w[ 0 ] ) ; // Prepare w16 through w31
30 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w16 through w31
31 M(w[ 0 ] ) ; // Prepare w32 through w47
32 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w32 through w47
33 M(w[ 0 ] ) ; // Prepare w48 through w63
34 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w48 through w63
35
36 // Add c a l c u l a t e d b l o c k to i n t e rmed i a t e hash va l u e and
37 // s t o r e r e s u l t in ou tpu t ( done wi th NEON i n s t r u c t i o n s )
38 s t a t eby t e s [ 0 ] = s t a t e [ 0 ] + abcdefgh [ 0 ] ;
39 s t a t eby t e s [ 1 ] = s t a t e [ 1 ] + abcdefgh [ 1 ] ;
40 . . . . . .
41 s t a t eby t e s [ 6 ] = s t a t e [ 6 ] + abcdefgh [ 6 ] ;
42 s t a t eby t e s [ 7 ] = s t a t e [ 7 ] + abcdefgh [ 7 ] ;
43
44 return ;
45 }
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A.2 SHA-256 Code Structure (512-bit input)

1 int hash512 vect (unsigned char ∗out , unsigned char ∗ in ) {
2 unsigned char padded [ 5 1 2 ] ;
3
4 // Copy inpu t to padded
5 for ( int i = 0 ; i < 256 ; ++i ) padded [ i ] = in [ i ] ;
6
7 // Padding : as d e s c r i b e d in s e c t i o n 2 . 2 . 1
8 . . .
9

10 // Perform hash ing c a l c u l a t i o n s
11 b l o ck s v e c t 512 ( out , padded ) ;
12 }
13 void b l o ck s v e c t 512 (unsigned char ∗ s ta tebyte s , unsigned char ∗ in ) {
14 uint32x4 abcdefgh [ 8 ] ; // Working v a r i a b l e s
15 uint32x4 s t a t e [ 8 ] ; // In t e rmed i a t e hash v a l u e s
16 uint32x4 w[ 1 6 ] ; // Message s c h e du l e array
17
18 // Copy f i r s t i npu t b l o c k to message s c h e d u l i n g array
19 memcpy(w[ 0 ] , in , 256) ;
20
21 // I n i t i a l i z e work ing v a r i a b l e s and hash v a l u e s
22 load b igend ianx4 ( ivx4 + 0 , abcdefgh [ 0 ] ) ; s t a t e [ 0 ] = abcdefgh [ 0 ] ;
23 load b igend ianx4 ( ivx4 + 16 , abcdefgh [ 1 ] ) ; s t a t e [ 1 ] = abcdefgh [ 1 ] ;
24 . . . . . .
25 load b igend ianx4 ( ivx4 + 96 , abcdefgh [ 6 ] ) ; s t a t e [ 6 ] = abcdefgh [ 6 ] ;
26 load b igend ianx4 ( ivx4 + 112 , abcdefgh [ 7 ] ) ; s t a t e [ 7 ] = abcdefgh [ 7 ] ;
27
28 // vk −> con t a i n s c on s t an t s as s p e c i f i e d in FIPS 180−4
29 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w0 through w15
30 M(w[ 0 ] ) ; // Prepare w16 through w31
31 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w16 through w31
32 M(w[ 0 ] ) ; // Prepare w32 through w47
33 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w32 through w47
34 M(w[ 0 ] ) ; // Prepare w48 through w63
35 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w48 through w63
36
37 // Add c a l c u l a t e d b l o c k to i n t e rmed i a t e hash va l u e
38 abcdefgh [ 0 ] += s ta t e [ 0 ] ; s t a t e [ 0 ] = abcdefgh [ 0 ] ;
39 abcdefgh [ 1 ] += s ta t e [ 1 ] ; s t a t e [ 1 ] = abcdefgh [ 1 ] ;
40 . . . . . .
41 abcdefgh [ 6 ] += s ta t e [ 6 ] ; s t a t e [ 6 ] = abcdefgh [ 6 ] ;
42 abcdefgh [ 7 ] += s ta t e [ 7 ] ; s t a t e [ 7 ] = abcdefgh [ 7 ] ;
43
44 // Copy second inpu t b l o c k to message s c h e d u l i n g array
45 in += 256 ;
46 memcpy(w[ 0 ] , in , 256) ;
47
48 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w0 through w15
49 M(w[ 0 ] ) ; // Prepare w16 through w31
50 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w16 through w31
51 M(w[ 0 ] ) ; // Prepare w32 through w47
52 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w32 through w47
53 M(w[ 0 ] ) ; // Prepare w48 through w63
54 F(w[ 0 ] , vk , abcdefgh [ 0 ] ) ; // Compress w48 through w63
55
56 // Add c a l c u l a t e d b l o c k to i n t e rmed i a t e hash va l u e and
57 // s t o r e r e s u l t in ou tpu t ( done wi th NEON i n s t r u c t i o n s )
58 s t a t eby t e s [ 0 ] = s t a t e [ 0 ] + abcdefgh [ 0 ] ;
59 s t a t eby t e s [ 1 ] = s t a t e [ 1 ] + abcdefgh [ 1 ] ;
60 . . . . . .
61 s t a t eby t e s [ 6 ] = s t a t e [ 6 ] + abcdefgh [ 6 ] ;
62 s t a t eby t e s [ 7 ] = s t a t e [ 7 ] + abcdefgh [ 7 ] ;
63
64 return ;
65 }
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Appendix B

Running our implementation

Our implementation can be found at https://gitlab.science.ru.nl/

wlinde/neon_sha256. To run our test code, you will also need the Qhasm
implementation we used, which can be found at https://gitlab.science.
ru.nl/wlinde/Qhasm. The qhasm folder should be placed in the Implemen-
tation folder found in the ‘neon sha256’ repository, outside of the c-code
folder. Then simply run the Makefile.

To use just our SHA-256 implementation, you will need the following
files: hash vect.c, hash vect.h, vFMopt.s, vaddmov.s, and vaddstr.s. The files
with suffix .s contain the assembly code generated by Qhasm from the corre-
sponding files with suffix .q, which contain Qhasm code. We have included
the .s files in our repository for convenience. These can be manually gen-
erated using Qhasm; for example, to create vFMopt.s, use the command
‘qhasm-arm vFMopt.q vFMopt.s’. To calculate a hash with our implemen-
tation, you need to call the functions hash256 vect for 256-bit input and
hash512 vect for 512-bit input. These functions use the assembly code in
the .s files mentioned above. The input for these functions must consist of
four already interleaved messages of 256 or 512 bits each. We have provided
a function that interleaves four messages of equal length (using 32-bit blocks)
in the file ‘util.c’. The output of the hash functions is still interleaved; use
for example our ‘deleave’ function (also in util.c) to de-interleave the output
into four separate hashes.
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