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Abstract

In this thesis a method for procedurally generating mazes is described. This
is achieved by constructing an evolutionary algorithm which mutates L-
Systems to generate the desired structure. The fitness function of the evo-
lutionary algorithm gives designers some control over the outcome. In the
end it is shown that the presented method is capable of generating mazes
which attempt to maximize any of the two given fitness functions.
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Chapter 1

Introduction

Procedural C ontent Generation (PCG) is versatile tool, and a popular
subject of study [1]. It has the potential to allow architects to generate
a mock-up of a building in a matter of seconds [2], or easily create entire
worlds for use in video games. Especially video games have made extensive
use of PCG, from the old rogue-like games, to the more modern Minecraft,
or even The Elder Scrolls V: Skyrim.

The main goal in using PCG is usually reducing the workload of designers,
who would otherwise have to create the objects manually. Since video games
have far less limitations than the real world, PCG has also been used to
create millions of unique worlds for player to explore, effectively giving each
player a new and (almost) unique experience.

Over time, many different approaches have been devised for PCG. Every
application usually has its own PCG algorithm tailor-made for its specific
purpose. Especially within video games, with the many different require-
ments for each game, many different algorithms have been implemented.

In this thesis, I will be looking at one of these many facets of PCG: the
generation of video game levels. Because video game levels often have a
complex set of requirements, not all of which relate to the structure of a
level, the more complex level is reduced to a maze, which has far simpler
requirements.
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Figure 1.1: An example of a
maze.

For this purpose, a maze is considered
to be a 2D structure, consisting of set of
interconnecting hallways. The maze has
a starting point, where the player begins,
and an end point, which the player has to
find. All hallways are either directly of in-
directly connected to one another, and so
every section of the maze can be reached.
However, not every segment is situated on
a path from start to end: there can be dead
ends and cycles.

The goal of a maze is rather simple: pro-
vide a fun challenge for players in finding
the end, and do so through its structural
properties. The exact requirements, how-
ever, can still very from case to case, and
the designer of a maze still has to keep their audience in mind. It would, for
example, not be a good idea to create a fiendishly difficult maze for small
children to solve, as they would only get frustrated in doing so. Therefore,
allowing the users of such an algorithm to customize the properties of the
resulting maze is very important.

In an earlier paper, Ashlock, Lee, and McGuinness [3] describe such a way
of generating maze-like levels while giving designers a degree of control over
the resulting structures. This is achieved by implementing an evolutionary
algorithm, and letting designers set up the fitness function, thereby letting
them control which properties the maze would exhibit. Such an approach
has the potential of providing a common basic algorithm, which designers
can use for a great range of levels, instead of tailor-making a new algorithm
for each and every purpose.

Ashlock, Lee, and McGuinness [3] show-case their approach using four
different representations of mazes. In their paper they also suggest that
a representation based on L-Systems might provide a good alternative to
their own representations, due to the fact that L-Systems can be saved in
a compact manner compared to a direct representation, and because the
resulting maze can be computed with relative ease.

Lindenmayer Systems (or L-Systems) are a string rewriting system, not
unlike a context-free grammar, in which the productions are applied in par-
allel. Originally, they were used in order to describe the growth of biological
structures, such as plants and trees, and as such are relatively well suited
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for generating branching and repeating structures. Since mazes often come
down to a complex set of branching paths, L-Systems seem a natural fit for
this task. They do, however, have one disadvantage: tweaking the produc-
tion rules to generate the desired outcome is a difficult task for humans.
By using L-Systems as the underlying representation for the evolutionary
algorithm used by Ashlock, Lee, and McGuinness [3], this disadvantage is
removed.

So, in this thesis, I will attempt to show that L-Systems can effectively
be used as the underlying representation for an evolutionary algorithm to
generate mazes, roughly based upon the earlier work by Ashlock, Lee, and
McGuinness [3].

To achieve this goal, I will first describe the type of L-System used (Section
4.1). Since an L-System only generates a string, I will then introduce the
concept of Turtle Graphics, which is used to convert this string into an actual
maze (Section 4.2). Then I will describe the evolutionary algorithm used to
generate the L-Systems (Section 4.3). Followed by a short description of the
three different fitness functions used to test the viability of this approach:
one maximizing the shortest path from start to end, one simply summing
all path lengths, and one combining the two. After that I will give a short
description of the implementation, and where to find the source code, for
those curious.

The results of this algorithm will then be compared to the same algorithm
executing using plain strings as a representation. These strings will be in-
terpreted in the same way as strings generated by an L-System, using Turtle
Graphics. This is done to show that using L-Systems as a representation
does have its benefits.

The thesis is structured as follows. In Chapter 2 there will first be a short
description of related work in the field of PCG. Next, in Chapter 3 I will
cover the underlying concepts that are used in the rest of this thesis. Then,
in Chapter 4 I will describe the method used to acquire the results. Followed,
in Chapter 5, by the presentation of said results. Then, in Chapter 6 I will
discuss any caveats discovered with this method, and pose some possible
future research. Finally, in Chapter 7 I will draw a conclusion.
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Chapter 2

Related Work

Due to the potential benefits of a good PCG approach, a lot of research has
already been done on this subject. Below, I only mention research which is
either related to the goal I am trying to achieve in this thesis, or the method
by which I am trying to achieve this goal.

In architecture, Wonka, Wimmer, Sillion, et al. [4] published a paper
describing a way for entire buildings to be generated based upon a shape-
grammar. Their main goal being to provide enough control to their users to
tweak the generated buildings to their needs. In 2010, Merrell, Schkufza, and
Koltun [5] published a method of generated floor plans based on a Bayesian
network. They focused more on generating the layout than the outside of
the building.

Looking further towards urban planning, Parish and Müller [6] devised a
method to generate an L-Systems that procedurally generates road networks
and building geometries, while respecting some global restrictions and goals.
Later Müller, Wonka, Haegler, et al. [2] published a way to generate the
visual shells of buildings for use as background scenery. This time their
method was based on a generative grammar, and produced realistic looking
building shells.

Based on this earlier work Chen, Esch, Wonka, et al. [7] devised a way
to generate road networks based upon tensor fields. They attempted to
provide more user control over the results than Parish and Müller [6], citing
the difficulty humans have in manually tweaking L-Systems to fit their needs.

Moving more towards video games, apart from commercial PCG methods,
implemented in games such as Minecraft, Skyrim or old rogue-likes, some
academic research has been done as well. In 2010, Dormans [8] described a
way of generating levels based on first generating a mission for the player,
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and then later generating the level around that mission. Both the mission
and the level were generated using generative grammars of different types.
Also in 2010, Johnson, Yannakakis, and Togelius [9] used another method,
cellular automata, to generate infinite cave levels in real-time. Later Dor-
mans [10] refined his method for PCG, by using a rewrite system to generate
a mission based on locks and keys a player needs to match up, then using
this generated mission to once again generate a level.

Also in 2011, Ashlock, Lee, and McGuinness [3] published their method
of generating maze-like levels. This was a search-based approach, using
different underlying representations, and attempting to provide control the
the level designers through their use of checkpoints and an evolutionary
algorithm, allowing tweaking of the fitness function.

In this thesis, the idea by Parish and Müller [6] to use L-Systems for PCG
is used. However, keeping in mind the criticism from Chen, Esch, Wonka, et
al. [7] about human usability, the method is adapted based on the work by
Ashlock, Lee, and McGuinness [3]. This results in L-Systems being used for
the first time, as far as I am aware, as the representation of a maze within
an evolutionary algorithm.
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Chapter 3

Preliminaries

In this section I will give an introduction to the theoretical concepts used
in this thesis. First, I will describe how L-Systems work, and how they are
defined (3.1). Second, I will describe the Turtle Graphics technique, which
is used to interpret the result of an L-System (3.2). Last, I will give a global
description of the concept of evolutionary algorithms (3.3).

3.1 L-Systems

L-Systems are mathematical systems originally developed to describe the
growth of plants and other biological structures. Essentially, they are a
type of string-rewriting where the main property is the fact that rewriting is
done in parallel. In non-parallel rewriting systems, whether they are based
on strings or any other type of subject, any given part of the subject is often
rewritten multiple times, until there are no applicable rewrites left for that
particular part [11].

L-Systems apply only a single production (a rewrite rule) to each token
(a character in most cases) in the original sequence, then start over with
the resulting token sequence as their new input [11]. This means that often
L-Systems have no natural stopping point for rewriting, and do not need
one. Usually, with an L-System, the string is rewritten a fixed number of
times.

There are a few types of L-Systems, distinguished by the type of produc-
tions they use. For this paper I will only look at the most basic deterministic
L-Systems (also sometimes called D0 L-Systems). The productions in this
type of L-System describe the rewriting of exactly one token into a fixed
sequence of tokens.
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For example, every token a could be mapped to b, and b could be mapped
to bc. This is usually written like in Equation (3.1).

p1 : a 7→ b

p2 : b 7→ bc
(3.1)

When applying this L-System once, to the string a, this string is then
rewritten to b. When applying the productions once more, b transforms into
bc, which turns into bbc after yet another iteration.

Formally we describe the productions in a D0 L-System as one function
of type A → A∗. Here, A is the set of valid tokens, known as the alphabet
of the system. A∗ is the set of all combinations of letters, or words, from A.
This can also be understood as {λ}∪A∪ (A×A)∪ (A×A×A).... λ is used
to describe the empty word. From this we can define any valid L-System,
l. Lastly, let L be the set of all possible D0 L-Systems l conforming to
Definition 1.

Definition 1. An L-System l is a tuple (A, δ) where A is a set of tokens,
and δ is a mapping δ : A→ A∗.

When looking back at the previously given example, this L-system can
now be described as:

lex = (Aex, δex), (3.2)

where
Aex = {a, b, c},

and

δex : Aex → A∗ex

a 7→ b

b 7→ bc

c 7→ c.

The rewriting of a string by any L-System can now be formalized by a
function of the form L : L×N×A∗ → A∗. To make this function more read-
able, we use a helper function δ̄, which applies the relevant productions to a
sequence of tokens once, whereas the main function, L, mainly keeps track
of the recursion. The first parameter is the L-System used to rewrite the
string from the third parameter. The second parameter, r, is the recursion
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parameter, which describes how many iterations of productions are applied
to the string.

Definition 2. The L-System application function L : L × N × A∗ → A∗ is
defined as:

L : L× N×A∗ → A∗

(l, 0, w) 7→ w

(l, r, w) 7→ L(l, r − 1, δ̄(l, w)),

where

L is the set of all possible L-Systems from definition 1,

l ∈ L is the L-System that will be used to rewrite the string,

r ∈ N is the recursion parameter,

w ∈ A∗ is the string to rewrite,

and the helper function δ̄ : L×A∗ → A∗ is defined as:

δ̄ : L×A∗ → A∗

((A, δ), λ) 7→ λ

((A, δ), aw) 7→ δ(a)δ̄((A, δ), w), for all a ∈ A and w ∈ A∗.

Using this definition of L, and the earlier description of lex in Equation
(3.2), we can now describe the example application of this L-System to the
token sequence a like this:

L(lex, 3, a) = L(lex, 2, δ̄(lex, a))

= L(lex, 2, b)

= L(lex, 1, δ̄(lex, b))

= L(lex, 1, bc)

= L(lex, 0, δ̄(lex, bc))

= L(lex, 0, bbc)

= bbc.

It is noteworthy that there are other types of productions, most commonly
non-deterministic and parametric [11], which are often used to either allow
for less discrete productions and interpretations, or introducing some more
variety into the results of the system. One is not limited to using only a
single type of L-System, but it is easier to think of each type as a property
of the system. And even though these types are not used in this paper, they
will be reviewed shortly for a more complete overview.
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Non-deterministic L-Systems Normally an L-System is deterministic,
which means that the production function δ is deterministic. In this context,
any production function δ is considered deterministic if for every token,
it always maps to same string, regardless of any other factors. If an L-
System is non-deterministic, this means the production function δ is not
deterministic. This allows δ to return a different string for the same original
token upon different applications of the function. When used in combination
with probability weights for each production, these types of L-Systems are
called Stochastic L-Systems [11], and are often used to introduced limited
randomness into a model.

Parametric L-Systems Parametric L-Systems introduce another prop-
erty to each token: their parameter list. In a parametric L-System each
token has a parameter list which can be used to influence the outcome of
the production function [11]. This transforms the function δ from type
A→ A∗ into, typically, a function of type A×N∗ → A∗. However, the exact
choice of parameters depends, of course, on the way the L-System is being
used.

Context-Sensitive L-Systems Another commonly seen type of L-System
is the context sensitive L-System. In this case the type of δ changes from
A→ A∗ to A×A×A→ A∗, with the first and last A in this signature being
the token directly succeeding and preceding the token being interpreted. In
the case of an Context-Sensitive L-System the productions are only applied
if the succeeding and preceding tokens also match.

3.2 Turtle Graphics

L-Systems alone only describe how to transform a short string, often con-
sisting of one token or a few tokens, into a far more complex string. When
modeling a plant, or a maze, these strings alone do not give a good idea of
what the result looks like, and a visualization method is needed to transform
this string into a representation better suited for human interpretation. The
technique most often used for this is called Turtle Graphics.

Turtle Graphics is applied after the L-System has been applied. The
most important part of this technique is called the turtle, a virtual actor
on a, usually, 2D plane. This turtle is fed the resulting token sequence
from the L-System, and interprets each token as a command. What each
of these commands means to the turtle is highly dependent on the task at
hand, but in most cases the turtle contains at least some simple commands
such as “walk forward”, “turn left”, or “turn right”. The path this turtle
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Figure 3.2: Shape resulting from a turtle parsing ff [rff ][rrrff ].

traversed after it has parsed the entire token sequence is then used as an
image representation of the string produced by the L-System.

Figure 3.1: Shape
resulting from a
turtle parsing ffrf .

A turtle could for example be instructed that the
token f means: walk forward 1 step, and the token r
means: turn right 90 degrees. If this turtle were to
be fed the string ffrf , the turtle would take two steps
forward, turn right, and take one more step, producing
the image that can be seen in Figure 3.1.

So far, the turtle can only walk one step at a time.
This limits the amount of shapes that can be drawn
effectively. Especially branching structures are hard
to draw, because the turtle would have to receive an
inverted sequence of commands to get back to the
branching point. For this purpose we introduce a new
type of command to the turtle. Commonly the tokens [ and ] are used as the
branching commands [11]. The [ command saves the current position and
heading of the turtle to memory, and the ] command jumps to that position
without crossing any other points.

The string ff [rff ][rrrff ], for example, causes the turtle to take 2 steps
forward, save its position, take 2 steps right, return to the branching point
and take 2 steps left, producing the image that can be seen in Figure 3.2.

3.3 Evolutionary algorithms

Evolutionary algorithms are a type of algorithm which attempts to mimic
the success of evolution in finding viable solutions to a problem. There are
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many different forms of evolutionary algorithms, but they almost always
use a set of solutions, known as the population, and a fitness function. The
fitness function describes how “good” any given solution is, often based on
how close it is to the ideal solution.

Usually an initial population of minimum viable solutions is created, and
these are “bred”. Breeding can happen by simply cloning the population
member, or by cross-breeding two different population members, and always
involves some sort of random mutation during the breeding process. De-
pending on the needs of the algorithm only the top x population members,
scoring highest on the fitness function, are allowed to breed and produce
offspring, or only the top x members of the produced offspring are allowed
to survive and form the next generation.

This process is repeated multiple times, until the population contains suf-
ficiently viable solutions, and one solution is selected as the top candidate.
The result is often a solution which humans could not easily have thought
of, and which is highly specialized for one particular purpose. The overall
quality of this solution often depends heavily on the chosen fitness function,
manner of breeding and mutation, population size, and number of gener-
ations. This risks the solution being over-specialized, or under-performing
due to the algorithm getting stuck in a local maximum of the fitness func-
tion. It is therefore important, when using an evolutionary algorithm, to
keep the population diverse, and large enough to allow for relatively radical
changes, which might eventually benefit the entire population.

For illustration purposes, a simplified algorithm for sexual evolution can
be seen in Algorithm 1. The algorithm takes 3 parameters. P : the current
population, from which the next generation stems. b: a breeding/mutation
function which is responsible for creating offspring when given two popu-
lation members, and applying random mutations in that process. f : a
fitness function which is used to to select the most viable members of the
population.

Eventually, because the mutations are random, this algorithm will keep
selecting solutions that score higher and higher on fitness function f with
every generation.
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Algorithm 1 Evolution algorithm with asexual reproduction.

1: function evolve(P, b, f) . Evolve population P .
2: P ′ ← ∅
3: for m1 ∈ P do . This example uses sexual reproduction.
4: m2 ← rand(P ) . Select m2 randomly from P .
5: m′1 ← b(m1,m2) . Each pair produces two offspring.
6: m′2 ← b(m1,m2) . Each offspring is mutated randomly by b.
7: P ′ ← P ′ ∪ {m′1,m′2}
8: end for
9: P ′ ← sort(P ′, f) . Sort P ′ according to f .

10: P ′ ← top(P ′, |P |) . Select only the top half of the population.
11: return P ′ . Return a new population of equal size.
12: end function

13



Chapter 4

Research

In this section I will explain how exactly the different theoretical concepts
from Section 3 are applied. Starting again with L-Systems, then Turtle
Graphics and lastly, the evolutionary algorithm. Because the idea behind
this thesis largely comes from the paper by Ashlock, Lee, and McGuinness
[3], any differences in approach will be explained where applicable.

4.1 L-System

The type of L-System used is D0 L-Systems. A formal definition of this
type of L-System has already been given in Section 3.1. However, for use
in the evolutionary algorithm we still need to choose the alphabet of tokens
we use, the initial L-Systems, and a sequence of tokens each L-System is
applied to.

As an alphabet A, the following was used:

A = {f, b, r, l, [, ], s, e, a, b, c, d, f, g, h, i, j, k, l,m, n}.

This alphabet contains all tokens which will be used as turtle commands
(f , b, r, l, [, ], s, and e), and a few extra commands without any special
meaning. These extra commands are used to mitigate the effect of the choice
to use D0 L-Systems. This encompasses all randomness into the evolutionary
algorithm, while still allowing the L-System to be relatively flexible in the
structures it generates. If the L-System were only able to use production
from any valid turtle command to another, it would be almost impossible
to generate diverse and still complex structures.

As an initial L-System, lε = (A, δε), a simple D0 L-System with only
two production is used: the first production p1 : a 7→ f , and the second
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p2 = f 7→ ff . So, the production function δε, looks as follows:

δε : A→ A∗

a 7→ f

f 7→ ff

x 7→ x, for all other x ∈ A.

The initial L-System, lε, will be used for the first population of the evolu-
tionary algorithm described later on in Section 4.3.

In order to effectively fix the string each L-System is tested against, a
function L′ was defined. L′ is a variant of L from definition 2, adjusted to
use a pre-defined string, saf , instead of a third parameter. Like in Definition
2, L refers to the set of all possible L-Systems as defined in Definition 1.

L′ : L× N→ A∗

(l, n) 7→ L(l, n, saf )

4.2 Turtle Graphics

For the purpose of this thesis the Turtle Graphics technique was used
to create an undirected weighted graph out of the string resulting from an
L-System. Typically the result of a applying this technique is an image,
as has been explained in Section 3.2. However, in this case it made more
sense to let the turtle create an undirected weighted graph, using the path
walked by the turtle as the paths in the maze, since the fitness functions
that will be used all relate to the length of the path between two points.
These problems have already largely been solved efficiently for graphs, and
this way the solutions can be reused.

The basic principle is still the same as with typical Turtle Graphics. How-
ever, instead of drawing a line with every move command, we insert a vertex
into the graph after each move command, and create an edge between the
originating and the newly created vertex with a weight of 1. When starting
a branch, using the token [, we save the current position and heading (di-
rection) of the turtle on a stack. When ending a branch, using the token
], we pop the position and heading of the stack and warp the turtle there
without creating an additional vertex or edge in the graph.

In order to formally define this turtle, the type of coordinate system,
graph and memory state need to be defined first.
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Coordinate System For the coordinate system 2D Euclidean space is
used, snapped onto a N × N grid, meaning the coordinates of each point
in the space consists only of numbers in N. The set of points P is defined
in Equation (4.1). For expressing the heading of the turtle a vector in the
same space is used. These vectors are elements of the set V as defined in
Equation (4.2).

P = {(x, y) | x, y ∈ N} (4.1)

V = {

(
x

y

)
| x, y ∈ N} (4.2)

Two helper functions: ρL and ρR are also defined. Function ρL for rotating
left by 90 degrees and function ρR for rotating right by 90 degrees.

ρL : V → V

v 7→

(
0 −1

1 0

)
∗ v

(4.3)

ρR : V → V

v 7→

(
0 1

−1 0

)
∗ v

(4.4)

Graph A undirected weighted graph g consists of a set of vertices V , the
set of the edges between those vertices E, and a function, ∆, from E to N
which maps each edge to its weight. Or, more formally:

Definition 3. An undirected weighted graph, g, is a tuple:

g = (V,E,∆),

where

V ⊆ P is the set of vertices,

E = {{v1, v2} | v1, v2 ∈ V } is the set of edges in the graph,

∆ : E → N is a function mapping all edges in E to their weight.

Then let G be the set of all possible graphs g as defined in Definition 3.
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To use this graph as a maze, it needs to be possible to determine the
starting point, and the end of the maze. For this purpose the definition of
g is adjusted to also include s and an e, two special vertices.

Definition 4. A maze m is a tuple:

m = (V,E,∆, s, e),

where

(V,E,∆), is a graph as defined in Definition 3,

s ∈ V is the starting vertex of the maze,

e ∈ ({⊥} ∪ V ) is the end vertex of the maze, with ⊥ meaning no end
has been set yet.

Let M be the set of all possible mazes m as defined in Definition 4. Also,
let mε be the empty maze. This maze only contains a single vertex (0, 0),
which is also the starting point, and a ∆ which is undefined as of yet, denoted
by ⊥, since there are no edges. This empty maze will be used as the initial
maze for the turtle.

mε = ({(0, 0)}, ∅,⊥, (0, 0),⊥)

Turtle State A turtle state is used to keep track of the current position
of the turtle, and the maze it is building. In this state, p ∈ P is the current
position of the turtle, θ ∈ V is the current heading (direction) of the turtle,
m ∈M is the maze the turtle is currently building, and σ′ is either another
state, or nothing, which is represented as ⊥. This last member of the state
is used to facilitate branching. More formally:

Definition 5. A turtle state σ is a tuple:

σ = (p, θ,m, σ′),

where

p ∈ P is the current position of the turtle,

θ ∈ V is the current heading of the turtle,

m ∈M is the maze the turtle is building,

σ′ is either ⊥ or any other state which also adheres to the definition
of σ.
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Let S be the set of any and all possible states σ as defined in Definition

5. Also, let σε = ((0, 0),

(
0

1

)
,mε,⊥) be the empty state the turtle will be

in initially. This means the turtle starts at the coordinates (0, 0), facing
upwards, with an empty maze.

Turtle Commands Now we define multiple functions, each corresponding
to a command the turtle recognizes. Each of the functions Cx for x ∈
{f, b, r, l, s, e,PUSH ,POP} has the following type: Cx : S → S.

The first two functions use a helper function E , which is used to add an
edge to a graph, while simultaneously adding both vertices the connected
by the edge if they are not yet in this graph. It takes 4 arguments, a maze,
two edges and the weight for the edge to be created, and returns a new maze
with the newly added edge.

E : M × V × V × N→M
((V,E,∆, s, e), v1, v2, n) 7→(V ∪ {v1, v2},

E ∪ {{v1, v2}},
∆′,

s, e),

(4.5)

where

∆′ = x 7→

n, if x = {v1, v2}

∆(x), otherwise.

The token f instructs the turtle to take one step forward. This is described
in Cf .

Cf = (p, θ,M, σ) 7→ (p+ θ, θ, E(M,p, p+ θ, 1), σ)

The token b instructs the turtle to take on step backwards. This is de-
scribed in Cb.

Cb = (p, θ,M, σ) 7→ (p− θ, θ, E(M,p, p+ θ, 1), σ)

The token r instructs the turtle to turn 90 degrees to the right. This is
described in Cr.

Cr = (p, θ,M, σ) 7→ (p, ρR(θ),M, σ)
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The token l instructs the turtle to turn 90 degrees to the left. This is
described in Cl.

Cl = (p, θ,M, σ) 7→ (p, ρL(θ),M, σ)

The tokens s and e instruct the turtle to set its starting and end point
respectively. This is described in Cs and Ce.

Cs = (p, θ, (V,E,∆, s, e), σ) 7→ (p, θ, (V,E,∆, p, e), σ)

Ce = (p, θ, (V,E,∆, s, e), σ) 7→ (p, θ, (V,E,∆, s, p), σ)

The tokens [ and ] instruct the turtle to save the current state, or restore
a previously saved state respectively. This is described in CPUSH and CPOP .

CPUSH = (p, θ,M, σ) 7→ (p, θ,M, (p, θ,M, σ))

CPOP = (p, θ,M, σ) 7→

(p′, θ′,M, σ′) iff σ = (p′, θ′,M ′, σ′)

(p, θ,M,⊥) iff σ = ⊥

These command function are combined in a turtle core function Υ. This
function is used to generate a function from one state σ ∈ S to another state
σ′ ∈ S based on an input word in w ∈ A∗. Any tokens encountered in the
string that are not recognized as a turtle command, are silently ignored.

Υ : A∗ → (S → S)

ε 7→ (s 7→ s)

aw 7→ (Υ(w) ◦ Cx), for a ∈ {f, b, r, l, s, e} and w ∈ A∗

[w 7→ (Υ(w) ◦ CPUSH), for w ∈ A∗

]w 7→ (Υ(w) ◦ CPOP ), for w ∈ A∗

aw 7→ Υ(w), otherwise, for a ∈ A and w ∈ A∗

(4.6)

Using Υ from Equation (4.6) we can define the turtle T as a function from
words, to mazes. One last helper is used in this definition, π3, to extract the
the maze from a turtle state. These two functions are defined in Equation
(4.7) and Equation (4.8) respectively.

π3 : S →M

(p, θ,M, σ) 7→M
(4.7)

T : A∗ →M

w 7→ π3(Υ(w)(sε))
(4.8)
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As a small example the result from using the string sfe with the turtle is
shown below. This results in a very simple maze, with the starting point on
(0, 0), and the end on (0, 1).

T (SFE) = π3(Υ(sfe)(σε))

= π3((Υ(fe) ◦ Cs)(σε))

= π3((Υ(e) ◦ Cf ◦ Cs)(σε))

= π3((Ce ◦ Cf ◦ Cs)(σε))

= π3((Ce ◦ Cf ◦ Cs)((0, 0),

(
0

1

)
,me,⊥)))

= π3((Ce ◦ Cf )((0, 0),

(
0

1

)
,m′,⊥)))

where m′ = ({(0, 0)}, ∅,⊥, (0, 0),⊥)

= π3((Ce)((0, 1),

(
0

1

)
,m′′,⊥)))

where m′′ = E(({(0, 0)}, ∅, (0, 0),⊥), (0, 0), (0, 1), 1)

= ({(0, 0), (0, 1)}, {{(0, 0), (0, 1)}}, ({(0, 0), (0, 1)} 7→ 1), (0, 0),⊥)

= π3((0, 1),

(
0

1

)
,m′′′,⊥))

where m′′′ = ({(0, 0), (0, 1)}, {{(0, 0), (0, 1)}}, ({(0, 0), (0, 1)} 7→ 1), (0, 0), (0, 1))

= ({(0, 0), (0, 1)}, {{(0, 0), (0, 1)}}, ({(0, 0), (0, 1)} 7→ 1), (0, 0), (0, 1))

Figure 4.1: The
string sfe visual-
ized as an image.

So, the string sfe results in maze with two vertices,
(0, 0) and (0, 1), an edge between this two vertices with
a weight of 1, the starting point on (0, 0), and the end
point of (0, 1). This maze is also visualized in figure
4.1.

4.3 Evolution

I have now defined the L-System and Turtle, but
these are only the representation of the maze. Next, I
defined an evolutionary algorithm, that uses this repre-
sentation to find the maze that scores best on its fitness
function.

Because of a number of differences between the method in this thesis,
and the method used by Ashlock, Lee, and McGuinness [3], and the low
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amount of detail explained in their paper, it is difficult to directly compare
the results of Ashlock, Lee, and McGuinness [3] to the ones found now. So,
in order to determine whether or not L-Systems are a viable representation
candidate for search-based PCG, a second evolutionary algorithm is run,
using the (almost) exact same fitness functions, but a plain token string,
instead of one generated by an L-System.

The evolution algorithm comprises a two-step process (a generation) which
will be repeated multiple times. First the “breeding pairs” are selected, then
they are bred. This is often called sexual reproduction, because multiple
members of the population needed to breed together to form offspring.

A breeding pair consists, in this case, of two population members, which
are combined to produce a third one. By choosing sexual reproduction over
asexual reproduction the resulting population variety is increased, and by
this the chance of overcoming local minima during the process. These are
selected by designating two fractions of the population, of size x1 and x2,
with x1 + x2 being equal to the population size. From the top x1 members
of the population, x1 pairs are randomly selected. Each population member
can be picked for multiple pairs, and some might be unlucky and not get
picked at all. From the top x2 members of the population, again x2 pairs
are randomly selected. This is the extra-fertile fraction of the population,
because instead of having two offspring each, each member of the top x2 has
four offspring. By allowing for the top-most members of the population to
produce more offspring, the top-layer is focused on while still allowing for
some variety, by not reducing the population to only the top x2 immediately.

Next the pairs are bred. We use two types of population members, a tuple
of an L-System and a recursion parameter, and a string of plain tokens from
A. The evolutionary algorithm acts the same in both cases, but the breeding
function has to be adjusted for each type.

L-Systems L-System tuples are bred by averaging their recursion param-
eter first. Then, all productions are looped through. For each production
in L-System a, a production with the same origin token is looked for in
L-System b. If none is found, the production from a is used, otherwise it is
a 50-50 chance which is inserted. Afterwards, all productions from b which
were not yet considered are inserted as well.

Lastly the new L-System tuple is mutated. The recursion parameter has
a 1 in 6 chance to be increased by one, or decreased by one, but never below
1. Each production has a 14% chance to have a random token removed or
added in. When added a token, the token is selected from all valid tokens
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for the turtle, and the tokens a production originates from. Each production
also has a 8% chance to be converted into a branch, and a 4% chance to be
removed entirely. Each of these mutations is mutually exclusive. Eventually,
with a 30% chance a production originating from a random token in A to
〈F 〉 is added.

Token Strings Token strings are bred by looping through each token
from a. With a 50-50 chance it is either inserted into the child string, or the
token with the same index will be selected from b. If a token from b should
be selected, but b does not have a token at the same index (e.g. because
it is shorter than a), no token will be inserted. If b is longer than a, each
remaining token in b with an index higher or equal to the size of a is inserted
into the child string with a 50% chance.

Each token in the resulting child string has a 10% chance to be duplicated,
removed or mutated into another random valid token. Valid tokens, in this
case, include all tokens for which the turtle has a defined action. The string
is limited to these tokens, because this significantly improves performance
by reducing the junk which needs to be parsed.

4.4 Fitness functions

As a last ingredient the evolutionary algorithm also needs a fitness func-
tion, to determine the best members of the current population. In this
section, three fitness functions will be presented. Each of these fitness func-
tions rewards a different property in the maze. One rewards the maze for
making its shortest path from start to end as long as possible, another re-
wards the maze for the total path length it generates, and the third rewards
the maze based upon a mix of the first two.

This is where some key differences between the approach in this thesis,
and the approach by Ashlock, Lee, and McGuinness [3] appear. Ashlock,
Lee, and McGuinness [3] use fitness functions which operate directly on the
image of the maze. To simplify this, they used checkpoints placed on the
grid in pre-defined positions which are then strung together into a simple
graph. Their fitness functions then reward either the number of checkpoints
on any given path from start to finish, the number of checkpoints that are
not on any path to the finish, or whether a specific checkpoint was visited or
not. Because the turtle from Section 4.2 results in a graph directly, and the
boundaries of the maze are not fixed beforehand, the fitness functions in this
thesis do not use checkpoints. This causes a few differences in approach, but
the core idea remains: that the fitness function is one of the most important
parts, as it is used to steer the properties of the final maze.
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Even though the fitness functions all reward different properties in the re-
sulting maze, they also have some things in common. Each fitness function
includes a complexity punishment. This complexity punishment is accom-
plished by defining a function cL : L × N × A∗ → N for L-Systems and a
function cT : A∗ → N for token strings.

The function cL sums the length of the resulting token string, with the re-
cursion parameter and the length of the longest production in the L-System.
This is to make sure that the evolutionary algorithm does not generate
strings with a lot of non-sense tokens, because this can affect the perfor-
mance of the system adversely. Production length is punished as well to
make sure the L-System does not generate its entire maze inside a single
production.

cL : L× N×A∗ → N
((A, δ), r, w) 7→ |w|+ r + max

x∈A
(|δ(x)|)})

The function cT is just the length of the token string. This complexity
function is far simpler, because properties such as the number of iterations
do not exist on a token string.

cT : A∗ → N
w 7→ |w|

The first fitness function, F1, rewards the length of the shortest path from
start to end, expressed by the sum of the weights of all edges on this path.
This length is multiplied by 10, and then the complexity is subtracted from
it to get the final score. The shortest path from start to end is denoted here
by min path : M → N, and returns the minimum path length in a maze from
the maze’s start to the maze’s end. In the implementation Dijkstra’s shortest
path algorithm was used as min path. In all of these fitness functions T will
be used as well, with T being the turtle from Equation 4.8.

When considering an L-System, the variant F1L is used.

F1L : L× N→ N
(l, r) 7→ 10p− c, if 10p > c

(l, r) 7→ 0, otherwise,

(4.9)

where

p = (min path ◦ T )(w), the raw score of the system,
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c = cL(l, r, w), the complexity value of the system,

w = L′(l, r), the token string resulting from the application of the
system.

When considering a token string, the variant F1T is used.

F1T : A∗ → N
w 7→ 10p− c, if 10p > c

w 7→ 0, otherwise,

(4.10)

where

p = (min path ◦ T )(w), the raw score of the token string,

c = cT (w), the complexity value of the token string.

The second fitness function, F2, rewards the total length of all paths, no
matter the start or end of the path. This length is once more multiplied
by 10, and then the complexity is subtracted from it to get the final score.
The total path length is computed by summing the weight of all edges in
the maze.

When considering an L-System, the variant F2L is used.

F2L : L× N→ N
(l, r) 7→ 10p− c, if 10p > c

(l, r) 7→ 0, otherwise,

(4.11)

where

p =
∑

e∈E ∆(e), the raw score of the system,

c = cL(l, r, w), the complexity value of the system,

w = L′(l, r), the token string resulting from the application of the
system,

(V,E,∆, s, e) = T (w), the maze created by the turtle.
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When considering a token string, the variant F2T is used.

F2T : A∗ → N
w 7→ 10p− c, if 10p > c

w 7→ 0, otherwise,

(4.12)

where

p =
∑

e∈E ∆(e), the raw score of the token string,

c = cT (w), the complexity value of the token string,

(V,E,∆, s, e) = T (w), the maze created by the turtle.

Lastly, the third fitness function, F3, combines both F1 and F2, and
attempts to strike a balance between the total path size, and the shortest
path from start to end. F3 emphasizes the shortest path from start to end
a little bit more, to prevent the evolutionary algorithm from discarding the
shortest path entirely, and simply generating a maze with the start and end
on the same vertex.

When considering an L-System, the variant F3L is used.

F3L : L× N→ N
(l, r) 7→ (6p1 + 4(p2 − p1))− c, if (6p1 + 4(p2 − p1)) >= c

(l, r) 7→ 0, otherwise,

(4.13)

where

p1 = (min path ◦T )(w), the raw score of the system according to F1L,

p2 =
∑

e∈E ∆(e), the raw score of the system according to F2L,

c = cL(l, r, w), the complexity value of the system,

w = L′(l, r), the token string resulting from the application of the
system,

(V,E,∆, s, e) = T (w), the maze created by the turtle.

25



When considering a token string, the variant F3T is used.

F3T : A∗ → N
w 7→ (6p1 + 4(p2 − p1))− c, if (6p1 + 4(p2 − p1)) >= c

w 7→ 0, otherwise,

(4.14)

where

p1 = (min path ◦T )(w), the raw score of the token string according to
F1T ,

p2 =
∑

e∈E ∆(e), the raw score of the token string according to F2T ,

c = cT (w), the complexity value of the token string,

(V,E,∆, s, e) = T (w), the maze created by the turtle.

The numbers used in these fitness functions were acquired through exper-
imentation in balancing the path-score against the complexity punishment.
Weighing the path-score 10 times as heavily as the complexity punishment
made sure that some expansion was no problem, but the complexity of the
system was not allowed to grow rampant.

4.5 Implementation

In order to obtain the results presented in the next chapter, an imple-
mentation of this algorithm was created in C++. This implementation
follows the mathematical definition given here as closely as possible. The
source code of this implementation can be found on GitHub at https:

//github.com/tjvoncken/bachelor-thesis.
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Chapter 5

Results

The evolutionary algorithm from Section 4.3 has been executed several
times, with different values for the number of generations, and the size
of the population. For each fitness function, the evolutionary algorithm
was executed with both a population size of 100 and 10000 generations,
and a population size of 500 and 1000 generations. Because randomness
is involved, each of these trials has been run 100 times, and their results
aggregated.

The graph in Figure 5.1 shows the results when running with fitness func-
tion F3, the function combining the other two, and population size 100. The
graph in Figure 5.2 shows the results when running with the same fitness
function, but a population size 100. The graph in Figure 5.1 shows 10000
generations, whereas the graph in Figure 5.2 only shows 1000. The lines
represent the average score over 100 iterations for each generation. The
gray area shows the standard deviation of this score.

The token string method seems to stabilize at around a score of 100 with
a population of 100, or around 250 for a population of 500. The L-System
method does not seem to stabilize within the calculated generations. It does
however, beyond a certain number of generations, seem to consistently score
higher than the token string method.
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Figure 5.1: Fitness function F3, population size 100.

Figure 5.2: Fitness function F3, population size 500.

28



Figure 5.3: Based on an L-System, fitness function F1, population size 100.

When looking at one of the resulting mazes in Figure 5.3 it can be seen that
the mazes all seem to attempt to maximize the length of the shortest path
by making a straight path, with as few branches as possible. This supports
earlier conclusions, also cited by Ashlock, Lee, and McGuinness [3], about
using the shortest path between start and end as a fitness function.

Figure 5.4: Based on a to-
ken string, fitness function F3,
population size 100.

The graphs for fitness functions F1 and
F2 show similar results. The exact resulting
values differ, of course, but this is due to the
fitness function not being directly compara-
ble. The graphs do, however, show a con-
sistent tendency for the L-System method
to outrun the token string method after
only relatively few generations. The result
graphs for the other fitness functions can be
seen in Appendix A, as Figures A.1 and A.2
for F1, and Figures A.3 and A.4 for F2.

As for the resulting mazes, none look re-
ally like a maze. This is probably caused
by a relatively poor choice of fitness func-
tion, as the results do seem to maximize the
different fitness functions quite effectively.
One more promising result can be seen in
Figure 5.4, this result did not however score
very well on its fitness function, and should
probably be regarded more of an accident,
than a success.
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Chapter 6

Discussion

While the results from the previous chapter do suggest that an L-System
based approach at least outperforms a token string based approach, this
does not directly mean that L-Systems are a good fit for this kind of PCG
work. To strengthen the conclusion from this thesis, further research will be
needed to eliminate other factors. Some of these factors will be discussed in
this chapter.

Performance First of all, with any evolutionary algorithm the speed of
calculating the next generation is extremely important. Since evolution-
ary algorithms depend on random and often small mutations to progress
towards their goal, usually many iterations are needed to make any mean-
ingful progress. Furthermore, using a large population is also important in
order to keep a varied population and be able to overcome local maxima
and other obstacles. So, a balance has to be struck between the number of
generations and the size of the population. A larger populations means a
longer computation time per generation, which in turn makes it less viable
to use a large number of generations, but a smaller generation might mean
the algorithm gets stuck on a local maximum before it reaches a good solu-
tion. In order to mitigate the effect of this on the conclusion, the experiment
was run both with 10000 generations and a population size of 100, and 1000
generations and a population size of 500.

This need for performance also forced the introduction of the complexity
punishment in each fitness function. Since the L-Systems and token strings
would otherwise become so cluttered with non-sense tokens or return to the
same paths so many times that computing the fitness of the resulting maze
becamse very expensive. This does not necessarily have a negative effect on
the results, but does introduce another factor in the fitness functions which
can influence them.
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Another way to improve system performance, and eventually get better
results, would be to attempt execution of the fitness functions directly on
the string, instead of computing a maze first. This would eliminate the need
for a turtle in the implementation, and allow the evolutionary algorithm
to skip this, now very expensive, step. This would, however, require some
additional research into how a fitness function based on a maze could be
reliably translated into a fitness function based on a string.

In the end, the performance of my implementation does not seem great.
Due to this, the results all have either a relatively low population size,
or a relatively low generation count. In the end, the algorithm runs once
in roughly 900 seconds, and this is not suited for any kind of real-time
generation. This could somewhat skew the results, and a better optimized
version of the code might generate more conclusive results. On the other
hand, since the token string method does seem to stop improving relatively
early on, it does seem that the results can be used for comparison between
the two methods.

Applicability Second, the fitness functions used during this thesis, while
based upon earlier work by Ashlock, Lee, and McGuinness [3], are not di-
rectly conducive to generating a good maze. When attempting to maximize
the shortest path from start to end, an easy solution is to make a straight
path as long as possible. Generating branches and circles only adds more
complexity, while not increasing the path length. The same can be said for
the other two fitness functions, since both of these are almost directly based
upon path length within the maze.

Ashlock, Lee, and McGuinness [3], for example, had a fitness function
rewarding the amount of cul-de-sacs (dead ends) within the structure for
example. A similar approach, rewarding the number of branches not leading
to the end, was not tried due to time constraints, but might give additional
insight in whether an L-System backed evolutionary algorithm is actually
suited for generating mazes. As is, the results merely allow the conclusion
that an L-System backed evolutionary algorithm can effectively maximize
the fitness functions used in this thesis.
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Chapter 7

Conclusions

The data from chapter 5 does seem to support the goal of this thesis, to
show that L-Systems are a viable representation for generating mazes using
an evolutionary algorithm. And keeping the caveats from chapter 6 in mind,
it can be stated with relative confidence, that the L-System based approach
will consistently outperform the token string method, and generate a maze
which maximizes the chosen fitness function.

While this does not directly support the claim that L-Systems can be
used to randomly generate a maze, and this was also not observed directly
in any of the results, all resulting structures did effectively maximize their
respective fitness functions. This suggests that upon tweaking of the fit-
ness function, to reward more maze-like properties, a proper maze can be
generated using the approach described here.

32



Bibliography

[1] N. Shaker, J. Togelius, and M. Nelson, Procedural content generation
in games. Springer, 2014.

[2] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Proce-
dural modeling of buildings,” in Acm Transactions On Graphics (Tog),
ACM, vol. 25, 2006, pp. 614–623.

[3] D. Ashlock, C. Lee, and C. McGuinness, “Search-based procedural
generation of maze-like levels,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 3, no. 3, pp. 260–273, 2011.

[4] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, Instant architec-
ture, 3. ACM, 2003, vol. 22.

[5] P. Merrell, E. Schkufza, and V. Koltun, “Computer-generated resi-
dential building layouts,” in ACM Transactions on Graphics (TOG),
ACM, vol. 29, 2010, p. 181.

[6] Y. I. Parish and P. Müller, “Procedural modeling of cities,” in Pro-
ceedings of the 28th annual conference on Computer graphics and in-
teractive techniques, ACM, 2001, pp. 301–308.

[7] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang, “Interactive
procedural street modeling,” in ACM transactions on graphics (TOG),
ACM, vol. 27, 2008, p. 103.

[8] J. Dormans, “Adventures in level design: Generating missions and
spaces for action adventure games,” in Proceedings of the 2010 work-
shop on procedural content generation in games, ACM, 2010, p. 1.

[9] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular automata
for real-time generation of infinite cave levels,” in Proceedings of the
2010 Workshop on Procedural Content Generation in Games, ACM,
2010, p. 10.

[10] J. Dormans, “Level design as model transformation: A strategy for au-
tomated content generation,” in Proceedings of the 2nd International
Workshop on Procedural Content Generation in Games, ACM, 2011,
p. 2.

33



[11] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants.
Springer Science & Business Media, 2012.

34



Appendix A

Result Figures

Figure A.1: Fitness function F1, population size 100.
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Figure A.2: Fitness function F1, population size 500.

Figure A.3: Fitness function F2, population size 100.
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Figure A.4: Fitness function F2, population size 500.
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