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Abstract

This thesis concerns itself with the problem of comparing two HTML doc-
uments. The algorithm used to solve this problem is based on a paper of
Chawathe et al. We have created a library called HDiff, which implements
this algorithm in Java. It is also based on an existing library called XMLD-
iff, which is written in Python. The purpose of HDiff is to support GX
Software in the process of releasing updates of their software. It uses the
tree structure of HTML to compare its input.
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Chapter 1

Introduction

I decided to do an internship at a company in Nijmegen, rather than solely
doing research at the university and writing a thesis about it. The advan-
tage is that I would work on a project of which the result would actually
be used by someone or something in the company. I ended up with an
assignment at GX Software1.

1.1 The assignment

The assignment is quite clear, compact, and defined in a few phrases: We
need a tool that automatically shows differences between two versions of
a HTML page. When a new version of a website is released, we want to
be sure that the new version of each page looks exactly how it is supposed
to. At the moment we check that manually, by checking every page of the
website. The tool should compute the differences, and show them in a user
friendly way.

1.2 How to achieve the goal

When looking around at the internet, it becomes clear that this problem is
not “new”. Many pieces of software try to achieve quite the same thing.
Some are focused on showing differences in text only, others compute dif-
ferences in XML or HTML. The assignment therefore consists of combining
and editing some pieces of existing software, and adjust them such that
they fit my case.

The remainder of the paper is structured as follows: Chapter 2 defines
the question to be answered by this study. Chapter 3 defines some theory
applicable to the domain. It introduces several ideas to (a) compare HTML
documents, and (b) visualize differences between them. Two possible ways

1https://www.gxsoftware.com/
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to solve our problem are defined in Chapter 4. Chapter 5 describes two
libraries related to our problem. Thereafter, in Chapter 6, we define a gen-
eral outline of how our algorithm works. An already existing algorithm
by Chawathe et al, which follows this outline, is presented in Chapter 7
[11]. Chapter 8 then discusses an implementation of this algorithm called
XMLDiff, which is written in Python. Our own implementation, HDiff, is
written in Java and is based on the algorithm of Chapter 7 and XMLDiff.
The differences between HDiff, XMLDiff, and the algorithm of Chawathe
et al are described in Chapter 9. Chapter 10 describes the drawn conclu-
sions. It also addresses the work that still has to be done before GX can use
HDiff in their systems.
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Chapter 2

Research question

The research question is clearly a result of the description of the assignment
as given in Section 1.1. We have chosen to try to achieve this goal,comparing
HTML documents, by comparing their HTML-code. This results in our re-
search question:

Is it possible to effectively compute and show differences between two
HTML documents by comparing their source code?

We stress the meaning of source code here. We do not mean the code
of the programming language which generates the HTML, but rather the
HTML of which the documents consist.

This HTML code is often manipulated by means of JavaScript or other
pieces of code. The documents on which we perform our algorithm, are
the ones that are rendered by a browser. Such that all JavaScript is cor-
rectly executed before we compare the result. This way, we are sure that
we compute differences on the exact documents that are shown to the end
user.

Please note that this paper is focused on designing and explaining a
piece of created software. Because the focus is on practical usage, it does
not concern itself with proofs of our algorithm regarding correctness. We
have not extensively tested the software, as it still needs adjustments de-
pending on the case it is used for. The algorithm of Chawathe et al is fo-
cused on correct an complete output. HDiff is based on that algorithm, but
the adaptions are focused on applicability rather than on completeness and
correctness.

For some cases the differences in css are more important, while other
cases focus more on text differences. For different cases one might want
to add different adjustments for efficiency, but also for output format. The
case namely also defines what the best format of the output looks like, such
that the most important differences are presented in the most user friendly
way.
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Chapter 3

Theory

Achieving our goal naturally consists of 2 steps. The first step is to calculate
the differences between the two files, and the second step is to present the
result to the user.

3.1 Ways to compare two HTML documents

Calculating the differences of two HTML objects can be done in several
ways.

3.1.1 Using text-based comparison tools

This is probably the least complex way to compare two files. In this case,
one does not take into account the tree-structure of HTML: you interpret
it as if it were just plain text. For simple HTML files, this might very well
work just fine.

However, when pages get more complex, and use elements like <table>,
<ul>, and nested <div>’s, chances are high that things will break. If you
would still use text-based comparison tools, the merged output file might
have invalid HTML syntax. In that case, the HTML cannot be rendered,
and thus we cannot show rendered HTML to the user. We do not want to
bother the user with the hassle of dealing with HTML code, so this is not
an option.

We can however, use a text-based comparison algorithm as a part of
our complete algorithm. When one knows that two nodes are each others
match in both trees, one can compare their inner text using text-based com-
parison. It is then possible to show specific changes to the user. Examples
are the replacements of single words. When you would not use text-based
comparison, the best one can do is mark the element containing the text as
“changed”. The result is that a whole block of text is marked as changed, as
soon as a single change in text occurs. This is clearly not desirable. In item
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3 of Section 9.2 we discuss the way we’ve implemented this comparison in
HDiff.

3.1.2 Using image-based comparison tools

Another way of looking at this problem is to not take the source code into
account at all. Tools exist that can show differences between images. One
can take snapshots of (parts of) the two HTML documents, and compare
them using those tools. This will probably suffice when the two pages
do not differ too much. However, when changes in alignment occur, this
method might be inferior to the alternatives, as it is not capable of struc-
turally showing the differences. Small differences can then result in the
tool interpreting the files as being completely different from each other.

We have therefore decided to not use this approach in HDiff.

3.1.3 Using the tree structure of HTML

With this method, you take into account the way HTML is structured. The
idea is that you build the tree for both of the files. Because HTML “in
the wild” is often malformed, this step will need a fixing algorithm. Mal-
formed HTML will render in browser, but it cannot be parsed, and thus a
tree cannot be created.

The reason that browsers are able to render malformed HTML, is that
the browser actually uses a fixing tool itself. We will therefore simulate a
browser in our library. This way, we achieve two goals. The first goal is
that the fixing is automatically done for us. The browser will always return
well-formed HTML. The second goal relates to the fact that we also need
to execute JavaScript, which often manipulates the HTML content. The
browser will also do this for us, and then returns the resulting HTML.

When the HTML is converted to a well formed tree, an algorithm needs
to be built that can compare the two trees. It should be capable of recog-
nizing which nodes in tree 1 correspond to which nodes in tree 2. This task
becomes more complicated when nodes are moved not only inside their
parent, but also between parents.

When all nodes are matched, the differences between two correspond-
ing nodes should be computed and saved.

It is possible that a changed node is not correctly matched to its new
version in tree 2. For example: tree 1 contains a node:

1 <div id="parent">

2 <span>Child 1</span>

3 <span>Child 2</span>

4 </div>
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And in tree 2, the children are swapped, and the tag of ’Child 1’ is changed
to <div>:

1 <div id="parent">

2 <span>Child 2</span>

3 <div>Child 1</div>

4 </div>

Ideally, the algorithm would recognize the swap, and present it to the user
as being a swap of two elements, and the rename of a tag. But when the
algorithm is not sophisticated enough, it might be unable to match Child
1 in tree 1 to Child 1 in tree 2. It will probably mark them as deleted and
inserted nodes. This behaviour is not devastating, but it is not desired ei-
ther. Tricks can be thought of to fix this issue. One might for example en-
force each child in each tree to have an “id” attribute with a unique value.
The algorithm can then use these identifiers to match nodes between trees.
This would however drastically lower the applicability of the software, as
HTML found online almost never has unique identifiers for all elements.

For our implementation, we have decided to follow this approach, while
not assuming unique identifiers.

3.2 Comparative designs

This section lists three categories to visualize differences between two com-
plex items: Juxtaposition, Superposition, and Explicit encoding [10].

• Using Juxtaposition, one places two objects visually next to each other
in space or time. This system relies on the viewers memory.

• Superposition places the objects on top of each other. One overlays
the two, and presents them in one place.

• The usage of explicit encoding requires the computation of the differ-
ences between two objects. After the computation, only visual encod-
ing of the relationship is shown.

Take a look at Figure 3.1 (which is taken out of Figure 1 of [10]) for a
simple visual example of the three representations.

When comparing two objects, one can either use only one of the build-
ing blocks mentioned above, or a combination of them. The paper [10] lists
that six variants are most common, including the three basic designs and
some combinations.

As visualized in Figure 9.1, our implementation uses the hybrid of Su-
perposition and Explicit encoding as explained below in Section 3.2.6. It
creates one output file which contains all data of both input files. The dif-
ferences between them are highlighted by the use of CSS and JavaScript.
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Figure 3.1: Visual example of three ways to represent differences

3.2.1 Juxtaposition

Juxtaposition usually occurs in space, rather than time. It is usually easy
to design, as it does not need a whole different representation of the ob-
jects. The challenge of juxtaposition is to aid the viewer with noticing the
relationships. It relies heavily on the human skill to see patterns in similar
objects.

3.2.2 Superposition

A superposition design is called an overlay design. It visualizes the objects
to be compared in one space. It often requires the modification of one or
both of the objects, such that they fit more easily in one picture. Superpo-
sition is most usable when the objects to be compared are similar enough
that they, and their differences, can be displayed in one space.

3.2.3 Explicit encoding

The main difference between explicit encoding and the first two categories,
is that it requires that the relationship between the objects being compared
is known. This spares the viewer from needing to find the differences him-
self, but has as a downside that the relationship between the objects has to
be known beforehand.

With this category, a new object is created and shown; the original ob-
jects are thus not shown at all. The new object might be of the same form
as the initial objects, or it might take another form of representation.

3.2.4 Juxtaposition combined with superposition

Using this hybrid, objects are being shown both in separate spaces, as well
as in the same space. As this is quite contradictory, most systems imple-
menting this hybrid actually display both methods separately from each
other, which makes it not really a hybrid.
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3.2.5 Juxtaposition combined with explicit encoding

Using this technique, both all objects to be compared and their relation-
ships are shown. On the one hand, the juxtaposition aids the viewer by
giving context. On the other hand the explicit encoding aids the user with
recognizing the relations.

3.2.6 Superposition combined with explicit encoding

This combination can be quite hard to visualize. One needs to show sev-
eral objects in one space, and at the same time highlight the relationships
between them. The highlighting can, however, assist in creating some order
in the chaos when superimposing two objects.
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Chapter 4

How to handle the assignment

When searching online for existing and usable tools, it becomes clear the
result can be achieved in either of two ways.

Chapter 5 describes two suitable comprehensive compassion tools we
have investigated. We concluded that understanding such a tool is very
hard when the only documentation we have is the documentation in the
code. In Chapter 7 and further we discuss the approach that lead us to our
end result.

4.1 Using comprehensive tools

This way, we use the most comprehensive tool we can find. This tool
should then be built specifically for comparing HTML documents, and vi-
sualizing the result. If such a tool can be found, this is the best way to
achieve the goal with the least effort.

It is very unlikely that, if such a tool is found, it does exactly what we
need, and how we need it. It would still need some adjustments.

A tool that purifies HTML, calculates its differences, and shows the re-
sult is quite complicated, while it still needs adjustments for our specific
case.

4.2 Split into subtasks

The alternative is to split the task into subtasks: search online for tools for
these tasks, and combine the result. The advantage is that an appropriate
tool can be found for each small part of the main task. The result might be
more adjusted to the needs than when we would use the first approach.
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Chapter 5

Comprehensive comparing
tools

We have investigated two comprehensive tools we have found online.

5.1 DaisyDiff

DaisyDiff [8] is the first tool we found that does exactly what we need. The
following two sentences on its website describe its working: “Daisy Diff is
a Java library that diffs (compares) HTML files. It highlights added and removed
words and annotates changes to the styling.”.

The output of comparing two versions1,2 of the main page of “news.bbc.co.uk”.
is shown in Figure 5.1.

Notice the following:

• Some of the css imports are missing, such that the layout is not fully
correct.

• Extra css is used to highlight what is changed. The visualization is
very clear.

• JavaScript is used to show tooltips when the user clicks on an edited
element. This is an effective way to give the user extra information
when desired.

• The library has a hard time dealing with images. It marks every im-
age as “removed” and “added”, even when its not changed.

• When we look at the parts “Last updated” and the itemize below
the text of “Polish archbishop quits amid row”, we see that it deals

1http://web.archive.org/web/20070107145418/http://news.bbc.co.uk/
2http://web.archive.org/web/20070107182640/http://news.bbc.co.uk/

12

http://web.archive.org/web/20070107145418/http://news.bbc.co.uk/
http://web.archive.org/web/20070107182640/http://news.bbc.co.uk/


Figure 5.1: Example output of DaisyDiff

with text changes quite well. It does not mark the whole node as
“removed” and “added”, but shows the differences inside the text.

We found out that several bugs exist in this library. We fixed some of them,
but fearing that new bugs would keep appearing, we decided to look for
alternative software. This library has not been updated for a while, and
little documentation can be found online.

We have therefore chosen not to use this library directly in our own
implementation.

5.2 HtmlDiff

HtmlDiff [7] is written in Python. HDiff is in Java, but we have used parts
of HtmlDiff as a basis for our own library.

A website3 found online lists several tools for comparing HTML docu-
ments. It says the following regarding this library: “Quite slow for large
files, but handles radical changes very well”. We have taken a look at this
software, to see which parts we can use.

3https://www.w3.org/wiki/HtmlDiff
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Figure 5.2: Example output of HtmlDiff

We ran it with the same input as we did with DaisyDiff. The output is
shown in Figure 5.2.

Notice the following:

• Images are not highlighted, but just replaced. All images contain the
source of the second page, and it is not visualized when they differ
from the first page. The problem here lies within the core of the li-
brary, and the way it parses its input. This is explained further in this
Section.

• The differences are shown quite similar as with DaisyDiff.

• The changes in text look even more “subtle” than with DaisyDiff. For
example: in the text of item with old title “Blair critical of hanging
scenes”, the words “Saddam” and “says” are not highlighted to be
changed. This is because they occur in both versions at a different
location. This library looks at the changes inside the inner text of

14



Figure 5.3: Example output of HtmlDiff in a side-by-side view

the elements, instead of just marking an element as “changed” as a
whole. It uses text-based comparison as described in Section 3.1.1.

The source code of this library is much less complicated than DaisyDiff.
The first thing we notice is that this library has an extra function, which

is quite interesting. It is able to show the differences in a side-by-side view,
instead of merging them in one file. This gives us the Juxtaposition (3.2.1)
method, instead of Superposition (3.2.2). The way the output looks like
using this visualization is shown in Figure 5.3.

The algorithm is divided into three main steps. We enumerate and ex-
plain them below.

5.2.1 Parsing the input

The algorithm gets files as input. It reads the contents of each file to a string,
and then runs split html(s) on both of them. This function splits the string
into a list of elements in roughly the following way:

1 pointer = 0

2 result = []

3 while pointer < s.length

4 if character at pointer is the start of a tag//Either the

5 // start or end of a block

6 result.append(s until the ‘>’)

7 else

8 result.append(one word)

9 pointer += length of added part

10 return result

15



Determining what “a word” is, is done via the following regular expres-
sion:

([^ \n\r\t,.&;/#=<>()-]+|(?:[ \n\r\t]|&nbsp;)+|[,.&;/#=<>()-])

So it adds every word and special character as a new element.
It never matches opening and closing tags of elements. So when an

element <div id="child1"> is added, it is never registered if and when
that element is closed by a </div>. This way of splitting the document
does not really feel natural. It shows that the algorithm does not use the
tree structure of HTML, which makes it really hard to match nodes between
two trees. It also results in a list of elements with several types:

• Opening tags, including attributes. Examples are
<script type="text/javascript">, <div>.

• Closing tags. Examples are </div>, </title>.

• Text inside elements. Examples are \n\t, ’ ’.

This raises the question how the program deals with this differences in
attributes in contrast to how it deals with changes in text.

5.2.2 Calculate differences

This is obviously the core of the library. It uses part of another library,
called difflib [1]. In fact, the HTMLmatcher used in this part extends the
SequenceMatcher of difflib. The SequenceMatcher is unaware of the format
of its input: it sees it as a list of plain text elements. This is the reason
that the first step is essential, without it, this step would break the HTML
structure.
It generates so-called opcodes, which are then used to created a merged
document of both inputs. These opcodes are generated after the calculation
of matching sequences of the input. We explain both parts:

5.2.2.1 Get matching sequences

This part uses a function get matching blocks(a, b). It returns a list of triples
(i, j, n), indicating that a[i : i + n] == b[j : j + n]. It finds the longest
match using the gestalt approach [9]. In short this works by finding the
first longest common block, adding it to the list of matching blocks, and
recursively applying the same function to the left and the right side of the
block.

A function is junk(s) is added. This function defines some type of char-
acters that may never be inside a longest match, but are allowed at one or
both ends of a matching block. HtmlDiff defines some special characters
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as junk, and a list of stop words like “a”, “how” and “it”. is junk(s) is not
used when ran with the --accurate-mode option, to improve the quality
of the result, while decreasing efficiency.

5.2.2.2 Get opcodes

The documentation of the library explains how the function get opcodes(a, b)
works. We discuss the format of the output, and how the output is com-
puted.

5.2.2.2.1 Output An opcode is a 5-tuple of the form (tag, i1, i2, j1, j2), and
represents one step in the task of rewriting input a to input b. tag indicates
the operation that has to be performed on a[i1 : i2] and b[j1 : j2].

For two neighbouring tuples in the list of opcodes, i2 in tuple 1 is equal
to i1 in tuple 2; likewise for j2 and j1. This ensures that the opcodes describe
a complete list of operations that have to be performed.

The four possibilities of the value of the tag explained in the documen-
tation complete the understanding:

‘replace’: a[i1 : i2] should be replaced by b[j1 : j2].
‘delete’ : a[i1 : i2] should be deleted.

Note that j1 == j2 in this case.

‘insert’ : b[j1 : j2] should be inserted at a[i1 : i1].
Note that i1 == i2 in this case.

‘equal’ : a[i1 : i2] == b[j1 : j2].

5.2.2.2.2 Computation The function starts at the beginning of both strings,
and loops over the calculated matching blocks. It keeps track of the current
position i at input a and j at input b. On every iteration, it creates two
opcodes.

1. It firstly creates an opcode (tag, i, ai, j, bj). i and j are, as mentioned,
the current positions, and ai and bj are the indices for a and b in the
matching block that is currently being evaluated. tag is defined by:

if i < ai and j < bj:

tag = ‘replace’

elif i < ai:

tag = ‘delete’

elif j < bj:

tag = ‘insert’

If the current positions are both smaller than the start of the next
matching block, a[i : i + ai] 6= b[j : j + bj], and thus the first one
should be replaced by the second one.

17



If only i < ai, and thus j ≥ bj, a[i : ai] should be deleted to get both
pointers at the start of the matching block.

If j < bi, and i ≥ ai, b[j : bj] has to be inserted at a[i].

2. It then moves i and j to the end of the matching blocks, and creates
opcode (‘equal′, ai, i, bj, j). This defines that a[ai : i] == b[bj : j],
which is the matching block. Now the pointers are at the end of this
matching block, and the next one can be evaluated.

5.2.3 Creating the output

This is the last part of the library. It now knows the difference between a
and b, which is defined as a list of opcodes. It naturally loops over the op-
codes, and for each opcode (tag, i1, i2, j1, j2) writes, depending on the value
of tag, the following to an initially empty output file:

• tag == “equal”
Write a[i1 : i2] to the output.

• tag == “delete”
For each item in a[i1 : i2], do the following:
If the item starts with “<”, in other words, the item is not inner text
but an element tag, skip this element4. Else, write the complete inner
text wrapped in a <span class="delete"> element to the output.

• tag == “insert”
For each item in b[j1 : j2]. do the following:
If the item starts with “<”, write the element tag to the output. Else,
write the complete inner text wrapped in a <span class="insert">

element to the output.

• tag == “replace”
If each element in a[i1 : i2] and b[j1 : j2] starts with “<”, just write
b[j1 : j2] to the output. Else perform the delete of a[i1 : j2] and the
insert of b[j1 : j2] as shown above.

The algorithm then finishes up by adding a simple CSS stylesheet for the
“insert” and “delete” classes.

It is now clear what goes wrong in this library: It does not show differ-
ences inside element tags. This results in the fact the it only shows inserts,
deletions, and changes of inner text.

The biggest problem here is that the program does not use the tree struc-
ture of HTML. So when it notices a tag to be different, it could mark it as

4Notice that it now becomes clear why changed images are not being highlighted. The
algorithm only shows differences in inner text, not in element tags.
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“added”, and mark the old one as “deleted”, but nothing more. This results
in an output file that shows the fact that an element has changed attributes,
but the old element with its inner HTML cannot be shown anymore. The
following example clarifies why:

The first input contains the following snippet of HTML.

1 ...

2 <div style="color:red">

3 Inner HTML

4 </div>

5 ...

The file is changed, such that the following snippet is now present in that
place.

1 ...

2 <div style="color:blue">

3 Inner HTML

4 </div>

5 ...

The opcodes will say that line 2 in the first input is changed to line 2 in
the second input, and lines 3 and 4 are unchanged. It will then perform
text delete(t) on line 2 of input 1 and text insert(t) on line 2 of input 2. Ini-
tially, it would have then written nothing to the output in the first function,
and it would have written the exact line 2 of input 2 to the output in the
second function. This would have shown no differences at all, as it just
skips tags.

The way we can solve this, is to created an element with class “deleted”,
without its original content, and immediately close it. Thereafter we add
the new element with class “added”, with its new content. We cannot add
the new content to the old element, as there is no way to be sure that that
these elements are even the same elements in both files. And we surely do
not want to add the wrong content to the “deleted” element. Input 2 could
just as well be as follows.

...

<div style="color:blue">

Inner HTML

</div>

<div style="color:red">

Inner HTML

</div>

...

Which suggests that the first element of both files should not even be seen
as a match at all.
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This problem cannot be solved without changing the core of the algo-
rithm. The problem lies within the first of the three parts: the way the input
is split.

HDiff splits the input using its tree structure, and uses the approach of
HtmlDiff to compare inner texts.
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Chapter 6

Outline of a possible algorithm

Now that we have seen two implementations of showing differences in
HTML, we have got some insight in how an end solution should look like.

If we split the input while keeping its HTML structure, we get a big
advantage over the approach of HtmlDiff: we can use an algorithm that
matches (sub)trees between the files. If that is done correctly, we are sure
whether element a in input 1 is a match to element b in input 2. We are then
able to show the user which parts of which elements have been changed in
which way, and which elements have been added or deleted as a whole.

The main requirements of our solution are:

• The solution should deal with both inner HTML data and attribute
changes.

• To show differences in a user friendly way, the solution should be
aware of the tree structure of HTML.

• The solution should be able to match nodes accurately and in a logical
way.
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Chapter 7

A working algorithm

After defining the general outline of the needed algorithm in Chapter 6, it
is a little clearer what sort of algorithm we need. We need an algorithm that
computes a matching of two tree structured data inputs. We found a paper
by Chawathe et al [11] that describes an algorithm to detect changes in
tree structured data. This section is dedicated to explaining that algorithm
extensively, making use of example trees where deemed necessary. The
implementation of the algorithm is discussed in Chapters 8 and 9.

7.1 Four characteristics

The introduction of the paper introduces four “key characteristics”. We
state them here, and define the applicability to our case

• Nested Information
Idea: The algorithm deals with hierarchical information. It identifies
changes to the nodes themselves, but also to their relationship to the
data structure as a whole.
Applicability: This is exactly what we need. As we have shown in
Chapter 6 as a result of the findings in Section 5.2, one of the require-
ments of our algorithm is that it needs to be aware of the tree structure
of our data.

• Object Identifiers not assumed
Idea: Because of this characteristic, the algorithm does not assume
the presence of unique identifiers. If there were unique identifiers
for all nodes, these could be used to uniquely match nodes between
trees. Since these identifiers are assumed not to be present, nodes are
matched on their contents instead.
Applicability: We have shortly mentioned the usage of unique iden-
tifiers in Section 3.1.3. If we would have unique identifiers for each
element in the first tree, and these identifiers are unchanged in the
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second tree, this would highly simplify the matching part of the algo-
rithm. As HTML found online rarely has unique identifiers for every
element, we need an algorithm that can also match on other charac-
teristics.

• Old, New Version Comparison
Idea: The algorithm is focused on detecting changes not in two to-
tally different inputs, but rather on two versions of the same data.
Applicability: In our case, we will apply the algorithm on two ver-
sions of the same HTML page, so this is what we need.

• High Performance
Idea: The algorithm uses features common in many applications, for
performances sake. It should therefore be more efficient than other
solutions, but might sometimes find non-minimal although still correct
deltas.
Applicability: The fact that it sometimes finds non-minimal solutions
is not really a problem. As long as the output is correct, we can use
it. If some changes are shown a little non-intuitive, the output is still
usable.

The paper continues by defining some preliminaries, and explains the algo-
rithm in detail. We will follow this outline in the remaining of this Chapter.
The differences between HDiff and the paper are enumerated in Sections 8
and 9.

7.2 Preliminaries

The input consists of two trees T1 and T2. A tree has a root and descending
nodes; each node has a label, a value, and a unique identifier. Identifiers
may be generated by the algorithm. An element in the first tree might have
another id than its match in the second tree, such that the identifiers can-
not be used while computing a matching. They are only used to reference
nodes: node with id x will be called “node x” having label l(x), value v(x),
and parent p(x).

The algorithm firstly needs to find pairs of nodes that correspond to
each other in both trees. If two leafs have the exact same value, they prob-
ably correspond. We say “probably” because this does not only depend on
the value of a node, but also on its position in its parent. Because of this,
two nodes do not have to be exactly equal for them to be matched. When
two nodes have the same position in the same parent, but have differing
values, they might still be the best match. So we have to define a function
that computes whether two nodes are “equal”, which basically means they
are similar enough in label, value, children, and position in parent.
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A set of matching node tuples is called a matching M, which is always
one-to-one. This means that a node can be matched to at most one other
node. A partial matching considers some but not all nodes of two trees,
whereas total matching takes all nodes into account.

Two trees are isomorphic if their only differences are the identifiers. We
want to find a sequence of operations that changes T1 into T′1, where T′1 is
isomorphic to T2, which we denote as T′1 ∼= T2. The partial matching M for
T1 and T2 can then be extended to a total matching M′ between T′1 and T2,
as they are isomorphic.

A sequence of operations e is called an edit script E. We call this a se-
quence and not a set, as the order of the operations matters. The working
of the algorithm decides the order of the sequence. When we for example
need to insert a new node that has a descending leaf, the node obviously
has to be inserted before its leaf.

It is best to rewrite T1 to T′1 with the least effort possible, as this results
in the most intuitive edit script. We therefore define the cost for an edit
operation, where the cost of an edit script is the sum of the costs of its edit
operations.

We define v1, . . . , vm as children of node u, and call vi the ith child of u.
Recall that a node x has label l(x), value v(x), and parent p(x). There exist
four edit operations.

• Insert: INS((x, l, v), y, k) means that node x with label l and value v
is inserted as the kth child of node y.

• Delete: DEL(x) removes leaf x from the tree. To delete an inner node,
we recursively delete its descending children before deleting the node
itself.

• Update: UPD(x, val) performs v(x) = val.

• Move: MOV(x, y, k) sets x to be the kth child of y; x’s children move
along with x.

Figure 7.1 shows an example for each of the four possible edit actions.
The numbers denote the identifiers; the capital letters the labels, and small
letters define the values of the leafs. Inner nodes do not have values in this
example.

Now an edit script E is a sequence of edit operations ei. E = e1, . . . , em

takes T1 to Tm+1 if there exists T2, . . . , Tm such that T1
e1−→ T2

e2−→ . . . em−→ Tm+1.
An edit script of T1 with respect to T2 is said to transform T1 to T2: T1

E7−→ T2

if and only if T1
E−→ T′1 ∧ T′1 ∼= T2.

As mentioned, we define the cost of an edit script to be the sum of the
costs of its edit operations. We define cD(x), cI(x), cU(x), cM(x) respec-
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Figure 7.1: Examples of the operations

(a) The initial tree T

→
(b) T after INS((11, A, g), 3, 2):
Insert a node with identifier 11,

value A and label g into node r at
position 2.

→

(c) T after DEL(6): Delete node 6

→

(d) T after UPD(10, d): Update the
value of node 10 to d

→

(e) T after MOV(10, 3, 1): Move
node 10 to position 1 in node 3

tively to be the cost of deletion, insertion, update, and move of node x;
cD(x) = cI(x) = cM(x) = 1.

To calculate cU(x), we need a compare(v, v′) function, that checks how
different x’s old value v and its new value v′ are. The result is a value be-
tween zero and two. If v and v′ are similar enough, the result of compare is
< 1, else it is ≥ 1. Using this cost model, deleting and inserting a node
which value has not changed a lot, is more expensive than just updating
its value. The result is that our model prefers updates over deletions/in-
sertions when two nodes are similar. This will give a more intuitive edit
script.

7.3 The good matching problem

This part of the algorithm is responsible for creating a good matching M.
Recall the second characteristic explained in Section 7.1. As a result of this
characteristic, we assume keyless data. Therefore we must match nodes on
their label and value, and not by their unique identifiers.
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7.3.1 Matching criteria

There is obviously more than one way to match two trees. Hence we define
some criteria which a matching must satisfy.

M is better than M′ if edit script EM conforming M is cheaper than edit
script EM′ conforming M′. We try to find the best M for the considered trees
T1 and T2. The goal of each of the following criteria is to create meaningful
matches, or to make the matching algorithm more efficient.

1. Criterion 1: Do not match dissimilar leafs
Recall the compare() function as discussed in Section 7.2. It takes two
values and returns the distance between them as a value between 0
and 2. We define a parameter 0 ≤ f ≤ 1, which is the maximum
distance the values of two nodes may have for them to be matched in
M. So for all (x, y) ∈ M, compare(v(x), v(y)) ≤ f . We also state that
l(x) = l(y) holds for all (x, y) ∈ M. Thus two nodes must have equal
labels for them to be matched.

2. Criterion 2: Do not match dissimilar nodes
We also do not want to match inner nodes are not similar. For an inner
node x, we say that x contains y if y is a leaf in the subtree rooted at
x. |x| is the total number of leaf nodes that x contains. We now define
a set common(x, y) = {(u, v) ∈ M|x contains u, and y contains v}; for
internal nodes x and y to be matched, |common(x,y)|

max(|x|,|y|) > t. t is another
parameter, indicating how similar x’s and y’s descendants must be
for x and y to be matched. Its value is defined by 1

2 ≤ t ≤ 1. So we
match inner nodes x and y only if enough of the leafs they contain are
matched. For inner nodes x and y it also holds that if (x, y) ∈ M, then
l(x) = l(y).

3. Criterion 3: There is at most one good match for each leaf
This criterion is concerned with both the type of input, and the def-
inition of the algorithm. It states that for any leaf x ∈ T1, there is at
most one leaf y ∈ T2 such that compare(v(x), v(y)) ≤ 1, and the other
way around for all leafs y ∈ T2. So for all leafs in T1 or T2, there is at
most one leaf in the other tree that is similar enough for them to be
matched.

This means that the compare() function is defined such that it outputs
at most one match for each node. As we will see later, this criterion
cannot be true for all types of data that the algorithm is used on.

7.3.2 The algorithm

We define separate equal() functions for leafs and inner nodes. They rely on
the compare() function we introduced earlier. Two nodes are thus ought to
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be “equal” when they are similar enough, as we have already mentioned in
Section 7.2. The definitions of equal for leafs and inner nodes respectively
are as follows:

equal(x, y) =

{
true if l(x) = l(y) and compare(v(x), v(y)) ≤ f
f alse otherwise

equal(x, y) =

true if l(x) = l(y) and
|common(x, y)|

max(|x|, |y|) > t

f alse otherwise

These equations show that we must traverse bottom up: children need to
be matched before their parent, as the equal function of inner nodes relies
on the matching of their descending leafs.

With this knowledge, our matching algorithm is straightforward:

1 M = []

2 Mark all nodes in T1 and T2 as unmatched

3 for all unmatched nodes x in bottom_up_traverse(T1)

4 for all unmatched nodes y in bottom_up_traverse(T2)

5 if equal(x,y)

6 M.append((x, y))

7 Mark x and y as matched

8 break

7.4 Generating the edit script

The problem of generating an edit script is stated as follows: Given a tree
T1, a tree T2, and a (partial) matching M between their nodes, generate a
minimum cost edit script E conforming M and transforming T1 to T2.

The algorithm generates edit operations and applies each operation to
T1 as soon as one is created. When the algorithm terminates, we have a
complete minimum cost edit script, and a complete matching M’, which is
an extended version of M.

We call a node that is not matched in M and unmatched node. A matched
node has a corresponding partner in the other tree. The algorithm is split
into five parts, which are explained below.

• Update
In this part, we look for partners (x, y) ∈ M with differing values,
and update the value of x to the value of y:
For all (x, y) ∈ M where v(x) 6= v(y): Create UPD(x, v(y)).

27



• Align
This step creates MOV operations to move children inside their par-
ents until all partners have the same position in their parent. To clar-
ify, let us say we have parents x, y, where (x, y) ∈ M. x has children
u and v, which have partners u′ and v′ being the children of y. When
u is to the left of v, but u′ is to the right of v′, u and v are misaligned,
thus we need a MOV operation.

How we efficiently define the set of needed MOV operations, will be
explained in Section 7.4.1. We use the Largest Common Subsequence for
this problem.

• Insert
Before this step, we need to be sure that the roots are matched. So
when the roots are not already matched in M, we create new roots x
and y for T1 and T2 respectively. The old roots x′ and y′ are made the
sole child of x and y, and x and y are matched. We now have matched
the roots for both trees.

We look for unmatched nodes z in T2, where p(z) = y, and (x, y) ∈ M.
We then create a new identifier w, and create INS((w, l(z), v(z)), x, k).
Thus we copy z, and insert the new node at position k in the partner
of z’s parent. We then append (w, z) to M.

How position k is calculated, is explained in Section 7.4.2; it uses the
number of already aligned children in x.

• Move
In this step, we look for partners x and y whose parents are not matched:
(x, y) ∈ M, p(x) = u, p(y) = v, (u, v) 6∈ M. We then create MOV(x, s, k),
where (s, v) ∈ M. We are sure that s exists because we have finished
the Insert step already. So we move x into the partner of y’s parent
at position k. k is calculated in the same way as in the Insert step, as
explained in Section 7.4.2.

• Delete
This is the last step. At this point, T1 is almost isomorphic to T2. The
only difference is that T1 has some unmatched nodes. Thus we tra-
verse T1 bottom up, and for each unmatched node x, we create and
apply DEL(x).

To clarify the working, take a look at Figure 7.2. It shows two trees T1 and
T2, where T2 is an altered version of T1. The nodes are already matched:
matching nodes have the same color; white nodes are unmatched. The
numbers inside the nodes are unique identifiers; the small letters are the val-
ues; the capital letters are the labels. The red arrows indicate the position
in the tree on which the associated action has effect. The labels represent
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HTML elements:
<body>, <div>, <ul>, <figure>, <a>, <p>, <li>, <img>, <span>.
The associated documents, example_T_1.html and example_T_2.html, can
be found in the Appendix, together with their visual representation. Note
the following about these documents:

• HTML attributes are ignored in this example. They are added in the
HTML document such that it looks like a normal HTML page, or to
force that the nodes are matched as displayed in Figure 7.2.

• Node 8 in example_T_1.html has its label changed to <span> in Node
20 in example_T_2.html. The reason we do that is that the HTML
standard prevents us from having a <li> within a parent that is not
of type <ul>. The currently explained version of the algorithm would
not allow node 7 and 20 to be matched if they do not have the same
label, which is why we set the label of node 20 in T2 to L.

• Node 3 and node 16 only have one equal child. Because node 3 has 3
children, |common(3,16)|

max(|3|,|16) = 1
3 . As mentioned in Section 7.3.1, 1

2 ≤ t ≤ 1.
So equal(3, 16) would be false. In order to still get this matching, we
should adjust t to have a value≤ 1

3 . We ignore this fact as the example
is focused on clarifying the creation of the edit script, not the creation
of the matching.

We perform the algorithm on the trees, showing the current T1 after each
step in Figure 7.3. Confirm that the algorithm works on this example, as
T1
∼= T2 holds after the last step.

Figure 7.2: The matching of T1 and T2
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Figure 7.3: An example of edit script algorithm

(a) T1 after the update step

→

(b) T1 after the align step

→

(c) T1 after the insert step; 26 in T2
gets the same color as 27 in T1

→

(d) T1 after the move step

→

(e) T1 after the delete step; T1
∼= T2

7.4.1 Aligning children

In general, there is more than one way to align the children of a node. Thus
we have to use an algorithm that aligns all children of x with the least pos-
sible edit actions. To get this sequence of actions, we use a solution to the
Longest Common Subsequence problem [4]. The algorithm takes three inputs:
two sequences S1 and S2, and a function equal().

If the children of x are misaligned, and (x, y) ∈ M, the sequences are the
children of x and the children of y. The equal function defines node u and v
to be equal when (u, v) ∈ M. The algorithm computes the longest common
subsequence of the two input sequences. We then mark all children of x
that occur in that sequence to be properly aligned. For all other children,
we create and apply edit actions for moving them to the correct position,
relatively to the already aligned children. Thereafter we are sure that all
children of x are aligned.

7.4.2 Finding the right position

This function is used to find a position at which a node has to be inserted.
The input is a node x ∈ T2. We define y = p(x) ∈ T2. If x is the first child in
y that is yet in order, we immediately return 1. Else, we find the rightmost
in-order node v ∈ T2 that is to the left of x. Now u ∈ T1 is v’s partner. We
count the number of elements to the left of u that are in order, and return
that number + 2, such that the returned position will be directly to the right
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of u. This is the position at which the partner of x is to be inserted.

7.4.3 The algorithm

Having the definition of each step, we define the edit script algorithm:

1 E = []

2 M’ = M

3 for all nodes x in bread_first_traverse(T2)

4 y = p(x)//y in T2

5 z = partner of y in M’//z in T1

6 if x does not have a partner in M’

7 k = find_position(x)

8 e = INS((w, l(x), v(x)), z, k)//w is a copy of x

9 M’.append((w, x))

10 E.append(e) and apply e to T1

11 else if x is not the root

12 w = partner of x//w in T1

13 if v(w) is not equal to v(x)

14 e = UPD(w, v(x))

15 E.append(e) and apply e to T1

16 v = p(w)//v in T1

17 if (v, y) not in M//The parents of w and x are not matched

18 k = find_position(x)

19 z = partner of y in M’

20 e = MOV(w, z, k)

21 E.append(e) and apply e to T1

22 align_children(w, x)

23 for all unmatched nodes x in post_order_traverse(T1)

24 e = DEL(x)

25 E.append(e) and apply e to T1
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Chapter 8

XMLDiff

The algorithm explained in the previous Chapter is already implemented
in Python, in a library called XMLDiff [2]. As we learned in Section 5.1,
understanding a comprehensive library can be quite a challenge. But now
we completely understand the algorithm on which it is based; this helps a
lot!

We start by explaining how HTML is parsed to a tree. Thereafter, we
will explain how both phases of the algorithm are implemented in this li-
brary. It will mainly consist of explaining noteworthy differences between
the library and the paper. Note that in HDiff, some things differ even more
from the paper. The changes regarding HDiff with respect to XMLDiff are
discussed in Chapter 9.

8.1 Parsing the input

HTML is parsed by a Python library called “etree”. With this parser, ele-
ments can have two types of text: Inner text and Tailing text. We explain
how these values assigned to which nodes by the use of the following sam-
ple code:

<div id="1">

text1

<p id="2">

paragraph

</p>

text2

</div>

Now “text1” is, quite obviously, the inner text of node 1. “paragraph” is
the inner text of node 2. The text “text2” is not assigned to its parent, but is
the tailing text of node 2.
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Whenever text occurs in source code, we check the tag that was evalu-
ated just before that. If its a closing tag (</p>), the text is assigned to be the
tailing text of that element. If its an opening tag (<div...>), it will be the
inner text of that element.

This way, nodes always have at most 1 value for the inner text and the
tailing text. If we would have assigned “text2” to be the second inner text
of node 1, we would get elements containing a whole lists of texts.

An HTML node now has four characteristics instead of two described
in the paper:

• Tag. This is equal to the label in the paper

• Inner text. This is equal to the value in the paper

• Tailing text.

• Attributes. HTML tags can, and often do, have attributes. Examples
are “class”, “style”, and “type”.

8.2 Finding matches

The outline of the library regarding the matching part is quite the same
as described in the paper. The main differences can be found in the three
criteria discussed in Section 7.3.1.

Remark that the compare() function of this library computes similarity
instead of distance. So the variable f is not used as the maximum distance,
but rather as the minimum similarity. Its value is just transformed to be
1− f .

1. Criterion 1: Don’t match dissimilar leafs
The library drops the requirement of l(x) = l(y). This feels very nat-
ural. Suppose we have two elements:
<div id="child1">This is child 1</div> and
<span id="child1">This is child 1</span>. We obviously want
them to be matched. So for HTML, the equality of labels is definitely
not a must.

The requirement of compare(v(x), v(y)) ≤ f (or in the case of similar-
ity instead of distance: > f ) is still used. For the value of a node, its
inner text is used.

The variable f is a user-defined parameter.

2. Criterion 2: Don’t match dissimilar nodes
To compute the similarity of two inner nodes x and y, the paper runs
the compare function for both inner nodes and the one for leafs. The
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reason behind this is probably that inner nodes are as much important
as leaf nodes in the “meaning” of an HTML document.

The paper is focused on structures where leafs contain almost all in-
formation of the tree, and inner nodes mainly exist to define the struc-
ture (like in LATEXdocuments). In HTML, this is not the case. Not only
leaf nodes have characteristics, but inner nodes do as well.

To distinguish the two compare functions, we call the compare func-
tion for inner nodes compareinner, and the compare function for leafs
comparelea f . For leaf nodes, only the comparelea f is used to define sim-
ilarity. For inner nodes, both the compareinner and the comparelea f are
used.

compareinner is equal to the one described in the paper, apart from the
fact that it is based on immediate children instead of descending leafs.
This again shows the importance of inner nodes over leafs. When
comparing two inner nodes, their direct children are a better indica-
tion of their similarity than their descending leafs. The latter could
exist in a much lower level of the sub tree, and thus not say anything
meaningful about the node currently being evaluated.

The variable t is not used. To compute the final similarity of two inner
nodes x and y, the average of compareinner and comparelea f is taken.
This result is ought to be > f . This is probably chosen to drop the
differences between inner nodes and leaves even more. When you
reason that inner nodes are as important as leafs, it does not really
make sense to have different requirements regarding the minimum
similarity. This way they indicate that value comparison and child
comparison are of equal importance.

3. Criterion 3: There is at most one good match for each leaf
As we’ve mentioned in Section 7.3.1, this criterion is dependent on
the type of input. As it is very likely that more than one node in T2
can be matched to node x in T1, this criterion does not hold for HTML.
The simple and realistic example of several </br>’s in a documents
substantiate this.

To solve this problem, the paper loops over all nodes x in T1, and cal-
culates similarity with all unmatched nodes y ∈ T2. The tuple with the
highest similarity is picked to be added to matching M, if that simi-
larity is high enough. So instead of just matching nodes when their
similarity is high enough, they are only matched if their similarity is
high enough and as high as possible for the current node.

The last change with regard to our explanation in Section 7.3, is that XMLD-
iff implements a variant of the Fast Matching algorithm. This alteration of
the matching algorithm is explained in Section 5.3 of [11].
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This implementation tries to fasten the matching algorithm by prepend-
ing a loop to it. This loop concerns all pairs of nodes (x, y) that occur in
lcs(T1, T2), and appends it to M′. Thereafter, the usual matching algorithm
is performed. lcs() computes a list of pairs that occur in the longest common
subsequence of both trees. Two nodes are defined equal when their similar-
ity is greater than or equal to 0.5. Of course, the computation of equalinner
does not make any sense here, as none of the nodes are matched yet. So the
similarity only depends on equallea f .

Taking into account these changes, the matching algorithm looks as fol-
lows:

1 M = []

2 mark all nodes in T1 and T2 as unmatched

3 for all pairs (x, y) in lcs(T1, T2)

4 M.append((x, y))

5 mark x, y as matched

6 for all unmatched nodes x in T1

7 best_match_value = 0

8 match_node = None

9 for all unmatched nodes y in T2

10 match_value = compare(x, y)

11 if match_value > best_match_value

12 best_match_value = match_value

13 match_node = y

14 if match_value = 1

15 break

16 if best_match_value > f

17 M.append((x, match_node))

18 mark x and match_node as matched

8.3 Generating the edit script

When we refer to line numbers in this Section, we refer to the algorithm
shown in Section 7.4.3.

Because elements have four characteristics instead of two (Section 8.1),
the library has three extra methods which are inserted into the algorithm

• updateNodeAttributes(x, y). When the nodes of a match (x, y) are
compared, the attributes of x must also be updated to have the values
of the attributes of y. This function is created for that purpose. It per-
forms a simple version of each step of the algorithm (Update, Align,
Move, Insert, Delete) on all attributes. It starts by creating three lists:
newKeys, removedKeys, and commonKeys. The first one holds at-
tributes that do not occur in x, but do in y. The second one holds
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attributes occurring in x but not in y. The third one holds attributes
that occur in both nodes. Then for each step:

– Update. for all keys k in commonKeys, it checks if the value u
of that key in x is equal to the value v of that key in y. If u 6= v,
it creates EditAction UpdateAttribute(x, k, v): Update attribute k
in node x to have value v.

– Align. This step is skipped. The order of attributes does not
matter in HTML.

– Move. This step is used to update keys of attributes. For all keys
k in removedKeys, v is the value of k in x. If v occurs as the value
of a key k′ 6= k in y, create EditAction RenameAttribute(x, k, k′):
Change the key of attribute k in x to k′.

– Insert. For all key value pairs (k, v) in newKeys, create EditAc-
tion InsertAttribute(x, k, v): Create attribute k with value v in x.

– Delete. For all keys k in removedKeys, create EditAction
DeleteAttribute(x, k): Delete attribute k in x.

• updateNodeTag(x, y). As we know from Section 8.2, the tags of x and
y do not have to be equal for them to be matched. So when their
tags differ, create EditAction RenameNode(x, t): Update the tag of x
to have value t, where t is the tag of y.

• updateNodeText(x, y). This function creates the UPD(w, v(x)) opera-
tions in line 14. It creates UpdateTextIn(x, i(y)) and
UpdateTextA f ter(x, t(y)) to update x’s inner text and tailing text if
they differ from those of y. i(y) is y’s inner text, t(y) is y’s tailing text.

When a node is duplicated as in line 8, the library does not duplicate texts
and attributes. Instead, an empty element is created having the same tag
as the duplicated node. Later in the algorithm, text, tail, and attributes are
added, each via its own EditAction. This way the user sees the creation of
a node step by step.

Taking into account these changes, the edit script algorithm looks as
follows:
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1 E = []

2 M’ = M

3 for all nodes x in bread_first_traverse(T2)

4 y = p(x)//y in T2

5 z = partner of y in M’//z in T1

6 if x does not have a partner in M’

7 k = find_position(x)

8 e = InsertNode((w, l(x), ""), z, k)//w is a copy of x

9 M’.append((w, x))

10 mark w and x to be in_order

11 E.append(e) and apply e to T1

12 else if x is not the root

13 w = partner of x//w in T1

14 v = p(w)//v in T1

15 if (v, y) not in M//The parents of w and x are not matched

16 k = find_position(x)

17 e = MoveNode(w, z, k)

18 mark w and x to be in_order

19 E.append(e) and apply e to T1

20 if l(w) is not equal to l(x)

21 e = RenameNode(w, l(x))

22 E.append(e) and apply e to T1

23 updateNodeAttributes(w, x)

24 align_children(w, x)

25 if i(w) is not equal to i(x)

26 e = UpdateTextIn(w, i(x))

27 if t(w) is not equal to t(x)

28 e = UpdateTextAfter(w, t(x))

29 for all unmatched nodes x in post_order_traverse(T1)

30 e = DeleteNode(x)

31 E.append(e) and apply e to T1
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Chapter 9

HDiff

As mentioned in Section 5.2, GX Software needs the end product to be in
Java. We have therefore implemented the algorithm in Java, following the
implementation of XMLDiff. This Section is dedicated to showing the dif-
ferences between XMLDiff and HDiff, and to substantiate these choices.

The first addition is that we extend nodes with another attribute: the
style attribute. In XMLDiff, this attribute is handled in the same way as
other attributes: the value is a string. What we do now, is create a StyleAt-
tribute for each key:value pair in the style attribute. The result is that we
can compare styles using key value pairs instead of just strings.

We also split class attributes. Its values are not handled as strings, but
rather as a list of classes. The algorithm can then count the number of equal
classes when comparing nodes. This improves the similarity calculation
when classes occur in different order. For example:
<div class="div child element"/> and
<div class="child div element"/> now have equal classes.

9.1 Finding matchings

This Section describes changes we have made to the matching algorithm.

1. We have implemented a function bestMatch(). As the name suggests,
it does not only compute legitimate matches, but it computes the best
possible matches. We prefer this function, as we have noticed that
when using the original algorithm on documents found online, the
match() function produces “wrong” matches quite frequently. This
happens because nodes in T2 are no longer taken into account as soon
as they are matched. To clarify, consider the simple example trees T1
and T2:
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1 <html>

2 <div id="el1" class="text-div child">

3 First element with some text

4 </div>

5 <div id="el2" class="text-div child">

6 Second element with some text

7 </div>

8 </html>

1 <html>

2 <div id="el3" class="text-div child">

3 Second element with some text

4 </div>

5 </html>

The matching algorithm considers el1 first. It checks for similarity
with el3. They are not completely similar, but they have much in
common. Their classes match, and their inner text is quite similar as
well; they will thus be matched. When the function considers el2 in
the next iteration, it will not check for similarity with el3 anymore,
because el3 already has a partner. At the end, el1 and el3 will be
matched, and el2 will not. However, it is obvious that a matching of
el2 and el3 would result in a more natural edit script.

What we did to prevent these sub-optimal matches, is implement a
solution for the Stable marriage problem [5]. As stated on wikipedia:
“Given n men and m women, where each person has ranked all mem-
bers of the opposite sex in order of preference, marry the men and
women together such that there are no two people of opposite sex
who would both rather have each other than their current partners.
When there are no such pairs of people, the set of marriages is deemed
stable.”. Nodes in T1 are men, nodes in T2 are women. The pref-
erences of men is defined by their similarity with women, and the
other way around for women. “Married” nodes are nodes who occur
in a match in M. When the solution to this problem is used instead of
the original match(), the above “error” will not occur anymore!

So a new function is created called
matchIfCurrentBestMatch(x, y, value). Lines 6-8 in Section 7.3.2 are
replaced with a call to this function. It is defined as follows:
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1 u = x’s current partner

2 v = y’s current partner

3 if v is null:

4 if u is not null

5 unmatch x and u

6 match x and y

7 else if value > the similarity of v and y

8 unmatch v and y

9 if u not is null

10 unmatch x and u

11 match x and y

We then remove the word “unmatched” in line 4 in Section 7.3.2.
So now all unmatched nodes in T1 are compared to all nodes in T2.
The performance of this implementation is worse, but the resulting
matching creates a more intuitive edit script.

2. We have updated comparelea f . XMLDiff uses only inner text when
performing this compare function. But in HTML, text is definitely not
the only important factor when comparing nodes. It also has tailing
text and attributes. On top of that, it now also has a map of StyleAt-
tributes and a list of classes.

When calculating similarity for of x and y, the algorithm now consid-
ers four values:

• Text similarity and Tail similarity
The similarity for inner text and tail is calculated in the same
way.
To calculate this value, the two strings of x and y are compared
using their Levenshtein distance [3]. The similarity is given by
1− d

m . d is the distance of the two strings, and m is the maximum
length of the two. This function is called sim(s1, s2).

• Style similarity and Attribute similarity
For both of these maps, the similarity is computed equally.
For all keys that occur in both x’s and y’s map, sim(v1, v2) is
computed for the values of v1 of x and v2 of y of this key. The
results are summed, and divided by the total number of distinct
keys.
For the class attributes, an exception is made: its similarity is de-
fined by the number of equal classes divided by the total number
of distinct classes.

3. We have decided to keep the variable t in the algorithm. This gives
the user a little more freedom in how to configure the program. The

40



main reason for this choice is that we can then use the enhancement
described in the next point, which showed to improve the results.

4. As explained in Section 3.3.4 of [6], small changes in small sub trees
can have a high impact. We do not want such a change to be the
reason that its parent is not matched, as this can traverse upwards in
the tree, resulting in large trees not being matched while they should.
HDiff therefore applies the solution described in [6]: when an inner
node has≤ 4 descending leafs, the value of t is lowered to 0.4 for that
tree. This is obviously in contradiction with the paper of Chawathe
et al, but it works better on HTML.

5. Some HTML elements require a special case when comparing them
with other nodes. A good example is the <img> element. In many
cases, its only identifiable attribute is the src attribute. For two differ-
ent images on the same website, the values of these attributes may be
very alike, although the image is entirely different.

For these type of cases, another function is added:
couldBeMatched(x, y). This function indicates whether it is possible
that x and y could be matched at all. Its return value, a Boolean, is
based on simple checks. Regarding the example above: When both
nodes have the <img> tag, they can only be matched if the values of
the src attribute are identical.

The result of this function is checked when calculating the similarity
of two leafs. If it returns false, a similarity of 0 is returned. If the
result is true, the function continues like it used to. This makes the
matching algorithm not only more accurate, but also more efficient.

6. To increase the precision of matches, simple heuristics can be added.
Examples of these heuristics are: increase the similarity of two nodes
by 20% if their tags are equal; if elements are hard to identify, e.g.
they have few characteristics, increase their similarity by 25% if their
parents are matched.

These multipliers decrease the chances of simple leafs being matched
to other simple leafs where it is clear that they should not be.

After the similarity is calculated, it is multiplied by the result of
getSimilarityMultiplier(x, y). This function implements simple heuris-
tics as the examples above.

7. For some documents, texts and tails are more important in similarity
calculation than attributes and styles. An example is a static HTML
file that mainly consists simple <p>’s and <div>’s containing large
parts of text. Classes and other attributes will probably occur, but
will not have much to do with the layout of the file. In that case, the
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matching is more accurate if the similarity is based more on text and
tail than on attributes and styles.

Therefore, the user is now given the option to work with weights.
There exist three weights: TextWeight, AttributeWeight, and StyleWeight.
When the four similarities of above are calculated, their values are
multiplied by the corresponding weight (Text and Tail similarity both
use the TextWeight). In the end, all values are summed and divided
by the sum of the used weights. When one increases the value of Tex-
tWeight, the similarity of two nodes is based more heavily on their
text and tail similarities, and less on attributes and styles.

Note that a weight is only used if the characteristic occurs in at least
one of the nodes. If for example both nodes do not have any HTML
attributes, the AttributeWeight is not used. The result is then given
by the sum of the style and text divided by the sum of the TextWeight
and StyleWeight. If none of the characteristics occur, -1 is returned
as similarity. This notifies the matching algorithm that the similarity
of the nodes is in this case only given by the compareinner, and thus
comparelea f is ignored. This is desired behaviour, as we can not say
anything meaningful about the similarity of two nodes that do not
have any identifiers (except for the similarity of their parents, which
case is already handled by the heuristics of point 5.).

If we would not discard unused weights, the similarity of nodes with
few to none characteristics would be very low to zero in any case.
Take the common example of a <table> element without any attributes,
styles, or texts, but with a large number of children. When calculating
comparelea f (recall from Section 8.2 that this function is also computed
on inner nodes) using all weights, the result would be 0, as we have
no similarities between all characteristic. As comparelea f ≤ f , the ta-
ble elements would never match. It is clear that if all children of the
table match, the desired behaviour is that the tables would also be
matched.

8. In many documents, unidentifiable leafs exist. Examples are <br/> and
<span></span>. These nodes are easily mismatched to unidentifiable
leafs in other parents in the tree, despite the improvements described
above.

Because these leafs say little to nothing about the document, we ex-
clude them from the algorithm. If an element is such a leaf, it is
skipped in both the matching and the edit script part. The output
therefore contains all the unidentifiable leafs of T1, and none of the
ones of T2.
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9.2 Generating the edit script

This Section describes changes regarding the generation of the edit script.

1. In Section 8.3 we talked about the function updateNodeAttributes(x, y).
This function is now performed by a dedicated class called Attribute-
Differ. This AttributeDiffer creates a special case for the value of the
“style” attribute. It skips this attribute itself, while another class, the
StyleDiffer, is responsible for comparing this attribute. It does essen-
tially the same thing as the AttributeDiffer, but on the value of “style”.

We have split these two cases, such that the algorithm can create sepa-
rate EditActions for them. Therefore the actions InsertStyleAttribute,
DeleteStyleAttribute, RenameStyleAttribute, and UpdateStyleAttribute
are added. They have similar meanings as the ones explained in Sec-
tion 8.3.

With the separation of these actions, the algorithm can now show the
user the difference between the change of a normal attribute, like a
class or custom attribute, and the change of a certain style element,
like color or size.

2. Recall line 8 of the algorithm described in section 8.3. This is the point
where a copy is made of a node in T2. XMLDiff only copied the tag of
node x at this point. Later in the algorithm, other characteristics like
text and attributes were added.

We have made nodes cloneable. When element x is cloned to element
w, all characteristics of w are equal to the ones of x, except for the
parent. So it creates w by cloning x, and afterwards set z to be the
parent of w. It also recursively matches x and w along with their
children, and marks them as in order.

The result is that it creates only one EditAction for a newly inserted
node. We prefer this over the solution of XMLDiff, because it makes
the result less messy. Instead of creating an EditAction for each sin-
gle characteristic, plus one for the insertion of the node itself, it only
creates one EditAction for the insertion itself. It should be clear to the
user that all characteristics were inserted along with that node.

3. We have also extended the way that changes of inner texts and tails
are shown to the user. Recall the explanation of HtmlDiff in Section
5.2. The algorithm consists of three parts: Parsing the input, calculat-
ing the differences, and creating the output. In our case, we can ob-
viously skip the part where the input is parsed. But we also noticed
that the main problem of this library is the way the input is parsed.
So we decided to implement the last two parts of the library, where
the elements are characters in texts or tails.
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XMLDiff just marks a text or tail to be “changed” when two values are
not exactly equal. In large similar texts, it is worth the effort to show
these differences in more subtle way. Thus we have implemented
the SequenceMatcher used in HtmlDiff, and apply the opcodes to in-
ner texts and tails. This results in <ins> and <del> tags inside texts.
This visualizes the precise differences to the user, instead of showing
a block of text marked as “changed”. We have now got a solution
combining Sections 3.1.1 and 3.1.3.

The SequenceMatcher is only used when the similarity between the
two strings is greater than or equal to 75%. If it is smaller, it marks
the whole first text as deleted and the whole second text as inserted.
If this check would not be added, very dissimilar texts would result
in a very messy result with a lot of <ins>’s and <del>’s.

9.3 Other changes

This Section describes changes we have made regarding the structure of
certain elements of the algorithm. They are mostly made such that the out-
put that is created is more applicable to this project.

1. When an element is deleted, all EditActions that belong to the chil-
dren of this element are also deleted. The only possible EditActions
of these children are DeleteNode actions, and when the user sees that
a parent is deleted, it should be clear that all of its children are deleted
as well. So to reduce messiness, deletions of all of its children are re-
moved, and thus not shown.

To show that we are certain that all actions of the children are Delete-
Node actions, assume the following:

(a) The parent being currently deleted is node x ∈ T1.

(b) x has child u ∈ T1, and thus x is u’s parent.

(c) Assume u has EditAction e.

(d) From 1a we derive that x does not have a partner, because if it
would, it would not be deleted.

(e) If e were an InsertNode action, u should have a partner v ∈ T1,
whose parent y ∈ T2 would be the partner of u’s parent (by defi-
nition of the Insert part of the algorithm). But we know from 1b
and 1d. that u’s parent does not have a partner. So we know that
e is not an InsertNode action.

Now if e would be any other action than the DeleteNode action (this
is the assumption):
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i. We can assume that u has a partner v ∈ T2, because any actions
on u not being DeleteNode or InsertNode actions, are changes
with respect another node: its match v. And we know from 1e
and the assumption that e is not and DeleteNode or InsertNode
Action.

ii. From 1d and 1i we derive that If v has a parent y, this parent is
not a partner of x.

iii. From lines 1b and 1ii we derive that p(v) 6= p(u).

iv. From the fact that the algorithm proceeds bottom up, we know
that all EditActions on u are created and applied before any ac-
tions on its parent x.

v. From lines 1iii and 1iv we derive that if v has parent y, then y 6= x
and u is already moved to that parent. And if v does not have a
parent, u is already set to be the root, as v is the root too.

vi. From 1v we derive that either u is the root and thus does not have
a parent, or u has a parent which is not x.

vii. 1vi contradicts 1b, thus the assumption cannot be true!

2. We have added a new class called TreeEditor. Whenever an EditAc-
tion is created, it is applied by this editor. Before applying it, it creates
a so called “PopupText” and adds it to the corresponding node. These
texts describe the changes of the actions. Examples are “This node is
deleted” and “The style attribute with key k has its key changed to
key k′”.

3. The class EditAction has a function called isVisible(). This function
defines whether the PopupText belonging to the action should be
shown in the output file. We have added this function because for
some actions we are certain that they have no visual effect. Exam-
ples are actions with a target that has a tag that is never visible, like
<script> and <base>. But also elements with the style attribute visi-
bility:gone are never to be shown to the user.

It is hard if not impossible to handle all cases in this function. For
some EditActions we are not sure whether it has a visible effect or
not. An example is the addition of a class, which could or could not
result in new css attributes, changing the layout of the node.

4. We have added a class Outputter. This class is responsible for creat-
ing an output HTML file that shows the user all calculated differences
between T1 and T2. It creates the output from a template, which in-
cludes a styles.css file and a script.js file. It also adds an element
<div id="explanation"/>. The JavaScript ensures that whenever
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the user hovers a changed element, the PopupTexts of this element
are shown as a list inside the explanation div.

The Outputter then performs the function write(n) on the root:

1 Add ‘edited’ and ‘deleted’ classes to n if needed

2 Write the tag of n, its attributes, style attributes,

3 and ‘popuptext’ attribute

4 Write the inner text of n

5 for all children c of n

6 write(c)

7 Write the closing tag of n

8 Write the tail of n

The attribute “popuptext” is a <ul> holding a <li> for each Popup-
Text of the node. It finishes up by properly closing and saving the
html file.

5. When a node is moved, a clone is created. The clone is being marked
“deleted”, and gets the popuptext “This node is moved”. It is placed
in its parent at the old position. The original node is moved to the
new position. This way, a moved node is shown in both its old and
its new position. When nodes are moved to a whole different location
in the tree, this helps the user in tracking down the old position of a
moved node.

6. As mentioned in the abstract, GX needs to apply our software on all
pages of a complete website. We have therefore created a Snapshotter.
To run, it needs four values:

• URL ul of the login page.

• Login credentials c.

• URL ud of the page which shows, after the user is logged in, a
list of all links in the complete website

• Key k that is used to uniquely identify each URL. When no key is
provided, the inner text of a node is used as its unique identifier.

• Folder name f . The snapshot is saved in this folder.

The Snapshotter then makes a snapshot of the complete website. It
starts by visiting ul , and posting the login form with the provided
credentials c. After this login, it has the right cookies such that it is
allowed to visit ud.

It then visits ud, and crawls all <a> elements of the page. It saves these
in a map. For each found element, it maps the value of the identifying
key k to the value of the href attribute.
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It loops over all entries in the map. Using a WebClient, it visits the
URL of each entry. We use a WebClient such that we get the well-
formed resulting DOM, after the JavaScript is executed. As men-
tioned in Chapter 2, this is exactly the HTML we need to compare.
For each resulting HTML, a file is saved in folder f with the name
equal to the key of the entry.

After all entries are visited, we have saved a complete snapshot of the
website, were each page has an associated HTML file in folder f .

9.4 Example run

Now that we have got a working implementation, we run it with the same
input as we did with DaisyDiff and HtmlDiff. Figure 9.1 shows the result.
Note the following:

• Because the input files were retrieved via web.archive.org, all images
had different src attributes on both pages, even if it was the same im-
age. This happens because the base of each src referred to the snap-
shot saved by web.archive.org. This also explains why DaisyDiff had
a hard time matching images.

To prevent our algorithm from not matching any images, we removed
the requirement that images can only be matched if their sources are
identical (item 5 of Section 9.1). This example did not result in many
mismatches due to the absence of this requirement. So now the im-
ages are matched, and their difference is shown as a change in the
value of the src attribute.

• We have excluded changes in “href” attributes in this example. The
reason is the same as for “src”: each href is marked as changed, be-
cause of the base being in web.archive.org.

• Our variables f and t were set to 0.7 and 0.6 respectively.
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Figure 9.1: Example output of HDiff
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Chapter 10

Future work & conclusion

As seen in Chapter 9, we have made quite a few changes and enhancements
on the original paper an XMLDiff. Nevertheless, there are still improve-
ments possible. These are split in two types. The first type of improvements
are the ones than improve the library in a way that it generates better out-
put. Improvements of the second type are focused on the implementation
of GX. When GX is going to implement the software in their systems, it is
advised that they implement these improvements first.

10.1 Improvements to the algorithm

1. In item 5 of Section 9.1 we talked about the function couldBeMatched().
This function currently only checks whether the src attributes of <img>
elements are identical. When the software is used in practice, one will
find other checks that can be added. The output will improve because
false matches will occur less often, and the efficiency will benefit from
it as the comparelea f will have to be ran less often.

2. Item 6 of Section 9.1 could also use more cases. The best way to find
out which cases result in a better matching, is to test the library on real
world examples. Complicated HTML inputs might result in weird
matches, which can be avoided by adding multipliers in this function.
This clearly applies mostly to elements with few characteristics, as
these are most vulnerable to be matched to the wrong partner.

3. To reduce messiness in the output, the function isVisible() of item 3
of Section 9.3 should be enhanced as well.

It currently only checks the tag of the target. If this tag is a tag that
is invisible by definition, false is returned. More sophisticated checks
can and should be added.
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An example we have seen is that some pages have a time stamp rela-
tive to the current time saved in an attribute in the <body> element. It
is clear that this value changes for each snapshot, and that this change
does not have a visual effect. On top of that, because it is a change in
the <body> element and thus occurs at one of the highest levels in the
tree, the whole screen will marked as “changed”.

It is hard to verify that these type of changes are invisible, but with
enough test cases one might find general and logical checks to add to
this function.

4. Depending on the case on which the library is used, one might want
to add support for CSS changes. Included CSS files are currently not
handled by the library, while some cases might need this.

For CSS support, one could proceed in two ways.

• It is possible to rewrite all entries in the CSS file to style elements
for the according HTML elements. This is the easiest way to
add CSS support, as tools yet exist for this purpose. Because the
library already has separate cases for the style element, it will
then work directly. However, it might slow down the algorithm
drastically, as elements get very long style values.

• It might therefore be better to write a separate Differ for im-
ported CSS style sheets. The changes to these sheets are then
separated from changes directly to HTML, which offers the pos-
sibility to show these changes to the user in a different way.

10.2 Improvements for GX Software

1. The first improvement is efficiency. When one would want to run
the Snapshotter twice on a whole website, and then run the Differ on
all resulting files, this might take too long. In our test case, it took
about a second per page to snapshot. When a website has several
hundreds of thousands of pages, it is not doable to snapshot all of
these. Depending on the situation, it might be sufficient to take a
sample of about a thousand pages, and check these for differences.
This is of course not a improvement of efficiency of the algorithm,
but it will reduce the time needed to check a website for differences.

One might also want to drop the bestMatch() function as explained in
item 1 of Section 9.1. This function definitely improves the result, but
this might not be needed in practice. If the regular match() function
generates sufficient results, this is a better choice as it is more efficient.
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2. When the software is used to compare a whole website, the result
needs to be shown to the user in a user friendly way. This typically
consists of looping over all files that have changed, highlighting each
change separately. The user then has to confirm each change. When
all changes are confirmed by the user, the software confirms that the
website looks as its supposed to.

Firstly, this shows us the importance of item 3 of Section 10.1: when a
user has to confirm all sorts of changes that have no visual effect, this
reduces the value of the software.

But more importantly, this raises another problem. Our test case ran
on a website where the title of each page occurred in (a sub menu
of) the menu, which was positioned at the left of the screen. In our
second snapshot, the title of one of the pages was changed. This re-
sulted in the snapshot of every page being changed. Why? The new
title resulted in a change in the menu bar, which naturally occurred
on every page of the website.

So when the software is used in practice, we need some observer that
recognizes equal or similar changes that occur on a significant part of
all pages of the website. The user should then confirm the change
of that part only on the first page. The software then knows that the
change of the menu on all other pages is already confirmed, such that
it does not have to bother the user with that change anymore.

A menu is not the only element on which this issue occurs. We also
have headers and footers, and included elements of other websites
that occur on every page. This observer should be quite sophisticated,
as we do not want it to skip changes that the user has not confirmed
yet.

3. Since GX uses this software in their Content Management System
XperienCentral1, they have control over the format of the HTML. This
is a great advantage, which they could use to improve the algorithm.

For example, we could handle our problem of item 2 in another way.
GX knows which elements on which pages have which function: they
know where the footer and menu are. They can then easily tell the
algorithm to skip elements in the menu, such that these changes do
not occur on every page.

They could also enforce each element to have automatically gener-
ated unique identifiers. In Section 3.1.3 we talked about this op-
tion. We ruled out the possibility that we would use identifiers to
match nodes, as the documents on which the algorithm is used on
most likely will not have them. If GX can ensure that all elements on

1https://www.gxsoftware.com/en/products/xperiencentral.htm
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the whole website have unique identifiers, they should definitely use
these. The matching algorithm will become way more efficient, and
will be able to calculate fully accurate matches.

10.3 Conclusion

The current version of our software is definitely able to correctly compute
difference in two HTML documents.

However, we have seen that one of the hardest parts is to define whether
a change has a visual effect to the user.

It also became clear that just computing differences between two doc-
uments is not sufficient when comparing a whole website. We need these
changes to have a place in the comparison of the complete website. A Differ
between Differences might be desired. When a few changes are very alike,
they can be grouped into a group of changes, which can then be confirmed
by the user at once.

So yes, we can effectively compute and show differences between two
HTML objects. What still has to be sorted out is if we can correctly distin-
guish visible from invisible changes, and if we could place changes of single
pages into the context of the complete website.
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Appendix

Listing 1: example T 1.html
< !DOCTYPE html>
<html lang=”en”>

<body>
<div>

<p>
This i s the f i r s t paragraph of the example f i l e .

</p>
<p>

This i s the second paragraph of the example f i l e .
</p>

</div>
<ul>

< l i>
This i s the f i r s t item of the l i s t .

</ l i>
< l i>

This i s the second item of the l i s t .
</ l i>
< l i>

This i s the t h i r d item of the l i s t .
</ l i>

</ul>
<f i g u r e>

<img s t y l e =” display : block ”
s r c =” ht tps ://www. google . com/images/branding/

googlelogo /2x/google logo color 272x92dp . png”/
>

<span>
This i s a t e x t below an image of google

</span>
</ f i g u r e>
<a id=” l i n k ” href=” ht tps ://www. google . com”>

<span>
This i s a l i n k to google

</span>
</a>

</body>
</html>
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Listing 2: example T 2.html
< !DOCTYPE html>
<html lang=”en”>

<body>
<div>

<p>
This i s the f i r s t paragraph of the example f i l e .

</p>
<span>

This i s the f i r s t item of the l i s t .
</span>
<p>

This i s the second paragraph of the example f i l e .
</p>

</div>
<ul>

< l i>
This i s the second item of the l i s t .

</ l i>
</ul>
<f i g u r e>

<span>
This i s a t e x t below an image of google

</span>
<img s t y l e =” display : block ”

s r c =” ht tps ://www. google . com/images/branding/
googlelogo /2x/google logo color 272x92dp . png”/
>

</ f i g u r e>
<a id=” l i n k ” href=” ht tps ://www. ru . nl ”>

<span>This i s a l i n k to the website of Radboud</span>
<span> &#x1f517 ;</span>

</a>
</body>

</html>

Figure 1: example T 1.html and example T 2.html visualized side-by-side
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