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Abstract

Graph drawing algorithms are used to automatically generate graph draw-
ings. Ideally, these drawings are clear and readable and conform to one
or more aesthetic criteria. This research focuses on the drawing of entity-
relationship diagrams, which are a type of graph. We provide some insight
into existing algorithms and implement metrics for five aesthetic criteria
which can be used to score the generated drawings. We use a graph draw-
ing algorithm based on one by Tamassia et al. and evaluate the generated
drawings. We find that the algorithm scores really high for the crossings
aesthetic. However, the other criteria which we have measured could see
some improvement.
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Chapter 1

Introduction

More and more manual tasks are becoming automated by clever computer
programs and algorithms. This can save a lot of time and money. Even
(parts of) the task of building software is being automated. A part of soft-
ware development that, when automated, can save a large amount of time
is the drawing of entity-relationship diagrams. This is difficult to do auto-
matically, because you want to make your diagrams as clear and readable
as possible. However, a computer does not know what is clear and readable
to humans.

Entity-relationship diagrams are a type of graph. This means that to
automatically draw an entity-relationship diagram we need a good graph
drawing algorithm. A lot of work has been done in the field of graph drawing
algorithms. See for instance the bibliography put together by Di Battista [7].
This bibliography shows that only a very small number of these algorithms
were developed with entity-relationship diagrams in mind.

We want to represent graphs or diagrams in a readable and understand-
able way, and these drawing algorithms are often based on some aesthetic
criteria. However, as pointed out by Purchase [19], the measurement of
such criteria is often done informally and may differ between algorithms.
In her paper she introduces formal measurements for seven commonly used
aesthetic criteria.

In this thesis we will try to answer the following question: Can an al-
gorithm produce clear and readable E/R diagrams and how can this be
measured? To answer this we will give an overview of important work that
has been done in the field of graph drawing, specifically regarding aesthetic
criteria. We will implement metrics for a few important aesthetic criteria
to enable us to score diagrams. We will then use an algorithm to generate
E/R diagrams and score these drawings with the implemented criteria. The
results we get can be used by other researchers to compare their algorithms
with the one used in this research. Alternatively the implementations of the
metrics for the aesthetic criteria can be used to compare their work with
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related algorithms.
This thesis starts with some preliminary knowledge needed to understand

the rest of the work (chapter 2). In chapter 3 an overview of important
previous work is given. Implementations for metrics of aesthetic criteria
are shown in chapter 4. The algorithm we used to generate E/R diagrams
for testing is described in chapter 5. Following this we will present the
results from testing the diagrams against the implemented metrics. Chapter
7 contains our conclusions and some future research.
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Chapter 2

Preliminaries

2.1 Graph theory

There is a lot of literature covering graph theory. Within this literature you
can find all kinds of slightly different ways to describe and represent graphs.
We use the following description that can be found in ’Graph Algorithms’, by
Shimon Even [10]. A graph consists of a set of nodes (also called vertices)
V = {v1, v2, ...} and a set of edges E = {e1, e2, ...}. Each edge has two
endpoints, which are nodes. For example, edge e1 = (v1, v2) means that the
endpoints of e1 are the nodes v1 and v2. Note that two distinct edges can
have the same endpoints. And in some cases both endpoints of an edge are
the same node. Such an edge is called a self-loop. An example of this is edge
e1, from the graph depicted in Figure 2.1.

Figure 2.1: Example of a graph.

We chose this particular definition of graphs because it corresponds with the
way we work with graphs in the Open Graph Drawing Framework [6], which
is the framework used to implement our algorithm. Here a graph object also
contains the set of nodes and the set of edges. Edges have references to their
endpoints, these points are called source and target.
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2.1.1 Graph drawing

When drawing graphs, nodes are usually represented by dots, circles, boxes
or some other shape, and edges connect these shapes with lines drawn be-
tween them. There are various graphic standards for the representation of
graphs in the plane. In [7], we are given some examples. A commonly
adapted standard is a drawing where an edge is represented by a polygo-
nal chain. This is called a poly-line drawing. This standard comes in two
variants. (See Figure 2.2).

1. A straight-line drawing maps each edge into a straight-line segment.

2. An orthogonal drawing maps each edge into a chain of horizontal and
vertical segments.

Figure 2.2: Straight-line drawing and orthogonal drawing.

Drawing a graph by hand is relatively easy for small graphs. As a graph gets
larger this task becomes more difficult and time consuming. At a certain
point drawing a graph by hand becomes unfeasible. This is where graph
drawing algorithms are very helpful. They receive as input a combinatorial
description of a graph and produce a drawing of that graph conform a given
graphic standard.

The goal of a graph drawing algorithm is to produce a readable drawing,
as the usefulness of a drawing depends on the readability. Readability can
be defined as the capability to convey the meaning of a diagram quickly and
clearly [7]. Purchase [20] describes it as follows: a graph drawing should help
the user to understand and remember the information being visualized. To
achieve better readability, graph drawing algorithms try to optimize one or
more aesthetics. Some examples of such aesthetics are:

• Minimizing edge crossings.

• Minimizing bends in edges.

• Maximizing symmetry.
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2.1.2 Planar graph

A graph is planar if it can be embedded in the plane. This means that it
can be drawn in such a way that edges may only intersect in their endpoints,
the nodes. Planar graphs can be characterized with Kuratowski’s theorem.
This theorem states that a finite graph can only be planar when it does not
contain a subgraph that is a subdivision of K5 (complete graph of five nodes)
or K3,3 (complete bipartite graph of six nodes, where three nodes connect
to the other three).

Figure 2.3: K5 and K3,3

A subdivision of a graph is a graph that is the result of a sequence of edge
subdivisions. Edge subdivision is an operation where an edge {v1, v2} is
deleted from a graph and two new edges {v1, v3} and {v3, v2} are added as
well as the new node v3. This basically means splitting an edge into two
pieces by introducing a new node, as illustrated in Figure 2.4.

Figure 2.4: Before (left) and after (right) edge subdivision.

Maximum planar subgraph

When working with a non-planar graph, it is often useful to find a planar
subgraph. The maximum planar subgraph problem [4], is defined as follows:
given a graph G, find a planar subgraph of G with the maximum number of
edges.

The maximum planar subgraph problem is known to be NP-complete.
This means there exists no known algorithm that can solve this problem
in polynomial time. However, there are various approximation algorithms
for this problem. One of these is finding a maximal planar subgraph: A
subgraph G′ of a non-planar graph G is a maximal planar subgraph if G′

is planar and adding any edge not present in G′ results in a non-planar
subgraph of G [15].
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2.2 Entity-relationship diagrams

An entity-relationship diagram (E/R diagram) is a visual representation of
an entity-relationship model (E/R model). E/R models were introduced
in 1976 by Chen [5]. They are used to describe relations between different
entities within a data set. E/R diagrams are often used as a tool for database
design, because they represent the structure of a relational database very
well.

Figure 2.5: Example of an E/R diagram.

In his book on database systems, Garcia-Molina [12] describes them as fol-
lows: in an entity-relationship model, the structure of data is represented
graphically by an entity-relationship diagram using three basic elements:

1. entity sets,

2. relations,

3. attributes.

2.2.1 Entity sets

An entity is some object and an entity set is a collection of similar entities.
In his book, Garcia-Molina uses the example of a database with movies,
stars in the movies and the studios that produce movies. A movie is an
entity and the set of all movies is an entity set. Likewise, stars and studios
are entity sets.
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2.2.2 Relations

Relations describe a connection between two (or sometimes more) entity
sets. Following the example from the book, the relation Stars-in connects
stars to movies. The intent of this relation is that a movie entity m is related
to a star entity s if s appears in m.

2.2.3 Attributes

Attributes, associated with entity sets are properties of entities of that set.
For example the entity set Movies might have the attributes title and length.

2.3 Entity-relationship diagram drawing

There exists no single ’correct’ way of drawing E/R diagrams. You can find
different graphical representations of E/R models. However, all of these are
some form of a graph in a plane. The difference lies in what parts are drawn
and how they are drawn. There is the original notation, as introduced by
Chen [5]. In his notation, entity sets are drawn as rectangles and relations
have a diamond shape. Entity sets are connected to relations with lines.
This can be seen as the entity sets and relations being the nodes of a graph,
and the lines between them the edges. In the original paper, Chen does
not mention a specific shape for attributes, but when talking about Chen’s
notation, they are often drawn with an oval shape and connected to entity
sets (or relations) with lines. See Figure 2.5 for the example diagram from
Chen’s paper.

Another notation type is the SSADM style [25]. With this style of nota-
tion, relationships are drawn as lines, no diamond shapes are used. Another
difference with Chen’s notation style is the way in which the cardinality of
relationships is indicated. For our E/R diagram drawings we will use the
SSADM notation. We will not draw attributes, because a lot of attributes
can make an E/R diagram look unclear. A common way to include at-
tributes is to put them within the rectangle of an entity set. However, we
will omit them completely as we want to focus on the positioning of nodes
and edges.

2.4 Open Graph Drawing Framework

For all implementations we are using the Open Graph Drawing Framework
(OGDF) [6]. This is a C++ library of algorithms and data structures for
graph drawing. We chose this framework because it contains implementa-
tions for a lot of graph drawing algorithms that we might want to use. Some
of these implementations are rather complex and would take a lot of time
to implement ourselves.
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Chapter 3

State of the art

3.1 Graph drawing algorithms

As stated before, a lot of work has already been done in the field of au-
tomated graph drawing [7]. Because drawing an E/R diagram is basically
drawing a specific type of graph, it is good to know what types of algo-
rithms for graph drawing exist. The first step in answering our research
question is to get to know these existing algorithms. We will describe the
basic ideas and workings of some important types, or categories, of graph
drawing algorithms.

3.1.1 Force-directed graph drawing

A commonly used type of algorithm is called force-directed graph drawing.
The idea stems from a paper by Eades [8] and is as follows. Each edge is
replaced with a spring to form a mechanical system. The nodes are then
placed in some initial layout and let go so that the spring forces move the
system to a state of minimal energy. Algorithms based on this idea are also
called spring embedders and belong to the straight line graphic standard.
Different versions that use the same basic idea have been proposed over
the years. As mentioned by Fruchterman and Reingold [11], force-directed
algorithms perform well with the following aesthetic criteria:

• Distributing vertices evenly.

• Keeping edge lengths uniform.

• Reflecting inherent symmetry.

An example of a spring embedder can be seen in Figure 3.1. Each edge is
modeled as a spring and after applying the appropriate forces a layout is
formed.
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Figure 3.1: Spring embedder

3.1.2 Planar graph drawing

An aesthetic criterion that is often associated with appealing and readable
graphs is the following:

• Minimizing edge crossings.

Because of this, a common theme within graph drawing algorithms is find-
ing a planar representation of a graph. The first step in finding a planar
representation is to test whether a given graph is planar. The first algo-
rithm to be able to do this in linear time was given by Hopcroft and Tarjan
[14]. After determining that a graph is indeed planar the graph can than
be embedded in the plane. An example of a planar embedding algorithm is
one introduced by Boyer and Myrvold [2]. Their algorithm uses depth-first
search to define an order in which to add edges to embedded biconnected
components. Partial embedded connected components are merged to form
a complete planar embedding.

To be able to apply a planar graph drawing algorithm to a non-planar
graph, you first have to planarize that graph. Planarization of a non-planar
graph is done in two steps:

1. Finding a planar subgraph.

2. Reinserting removed edges.

Ideally we want to find a maximum planar subgraph. However, as this prob-
lem is NP-complete, this is commonly approximated by finding a maximal
planar subgraph (an example algorithm is presented in [3]). When we have
a planar subgraph, some edges from our original graph are removed. We
reinsert these edges and introduce dummy nodes at the crossings to make
sure we keep the graph planar. These dummy nodes can be removed after
a planar graph drawing algorithm has been executed.

3.1.3 Orthogonal graph drawing

As discussed before, there is a distinction between straight-line and orthog-
onal graph drawings. In [24], Tamassia et al. present a general approach
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for creating an orthogonal graph drawing. Their approach consists of the
following steps:

1. Planarization:
The first step is finding a planar representation, if the graph is non-
planar, this means first planarizing it as described in chapter 3.1.2.

2. Orthogonalization:
In this step the planar representation is transformed into an orthogonal
representation.The sequence of angles along each edge is specified.

3. Compaction:
The final step determines the metrics of the drawing, the size of the
area used and the length of edges.

An algorithm that follows this approach is presented by Batini et al. [1].
This algorithm is one of the very few that is specifically designed with E/R
diagrams in mind. They assume that the criteria listed below make a pleas-
ant E/R diagram drawing. As these are assumptions, they acknowledge that
research has to be done to test their relevance in a real scenario.

1. Minimization of crossings between edges.

2. Minimization of the global number of bends in (edge) lines.

3. Minimization of the global length of edges.

4. Equality of the length of edges between relationship boxes and related
entity boxes.

3.2 Aesthetic criteria

Basically every paper that introduces a graph drawing algorithm mentions
some aesthetic criteria. However, the choice of criteria is not often substan-
tiated with research or proof. Also, often no method of measuring how well
a certain criteria has been accomplished is given. Research has been done to
validate some criteria and to find out which criterion has the most impact
on the readability of graphs. We give an overview of these studies.

The first study to address the effect of aesthetics on the general under-
standing of graphs is by Purchase et al. [20] and tries to validate three
aesthetics. This was done by performing empirical studies of human un-
derstanding of graphs drawn using various aesthetics. The aesthetics were
formulated as hypotheses.

• bends

Increasing the number of arc (edge) bends in a graph drawing decreases
the understandability of the graph.
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• crossings

Increasing the number of arc (edge) crossings in a graph drawing de-
creases the understandability of the graph.

• symmetry

Increasing the local symmetry displayed in a graph drawing increases
the understandability of the graph.

Subjects had to answer graph-theoretic questions about experimental graphs
within a certain time limit. The study confirms the first two hypotheses.
The results show that minimizing edge bends and edge crossings do indeed
help with understanding a graph. The third hypothesis is not confirmed,
the results are inconclusive.

Another study trying to improve upon these results was done by Pur-
chase [18]. She claims this study is superior to the previous one, because
five aesthetics are considered (instead of three), attempts were made to
place a priority order on the relative importance of the aesthetics, and the
experiments were run online. Another important improvement is the fact
that both the time taken to complete questions about a drawing as well as
the number of errors were measured. The previous study only measured
the amount of errors. Two more hypotheses were added to the previously
mentioned three.

• orthogonality

Fixing nodes and edges to an orthogonal grid increases the under-
standability of the graph.

• angles

Maximizing the minimum angle between edges leaving the nodes in a
graph drawing increases the understandability of the graph.

The results of this study show that the crossings aesthetic affects graph
readability the most. The bends hypothesis is supported for the time that
was needed to answer the questions and the symmetry hypothesis is sup-
ported in regard to the number of errors made. The orthogonality and
angles criteria had no impact on the subjects’ graph reading.

These studies both tried to validate aesthetics for the understanding of
general graphs. While E/R diagrams are a type of graph, this does not nec-
essarily mean that these results also apply to E/R diagrams. No comparable
empirical study has been done to determine the impact aesthetics have on
E/R diagrams. However, such a study has been done for UML class dia-
grams [21], which has some similarities to E/R diagrams. As the previous
studies have already shown that the edge crossings aesthetic has impact on
the understandability of a graph, this was not one of the aesthetics in this
research. The first part of the study included the following aesthetics:
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• minimize bends,

• node distribution,

• uniform edge lengths,

• (consistent) direction of flow,

• orthogonality.

After this first part a second experiment was done, and two more heuristics
were added based on the results from the first part:

• edge length,
Edge lengths should be short, but not too short.

• symmetry.

After conducting two experiments, little to no concrete results were ob-
tained. It seemed that only the bends criterion had a little impact on the
understandability of a UML class diagram. But even that may be due to
other factors influencing the diagrams that were used for this experiment.

While there has not been a study on the effect these criteria have on
E/R diagrams, research has been done on the effect different E/R diagram
notations have on the understandability. In [22], Purchase et al. conducted
an empirical study to find out whether Chen [5] or SSADM [25] E/R diagrams
are easier to comprehend. See Figure 3.2 for a comparison of both notations.

The subjects’ task was to match a given textual specification against a
set of diagrams. They were also asked whether or not each diagram correctly
represented the textual specification. Both correct and incorrect diagrams
from each of the notations could be found in the set of diagrams. The number
of errors and the time it took to answer were measured. Subjects were also
asked which notation they preferred for the representation of cardinality,
participation, and relationships and for the overall diagram.

The study shows that the SSADM notation is faster overall, and also
faster for cardinality identification and relationship naming operations. Over-
all, the SSADM notation was slightly preferred, and significantly preferred
regarding the representation of cardinality. These results show that the
SSADM notation is easier to understand than the Chen notation.
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Figure 3.2: left: Chen notation, right: SSADM notation
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Chapter 4

Measuring criteria

Aesthetic criteria are a common theme when discussing graph drawing algo-
rithms. However, newly introduced algorithms often do not include methods
to measure how well a certain drawing has incorporated a criterion. The
criteria tend to be mentioned informally and there is no standard way to
measure them. This problem has been identified and addressed by Purchase
[19]. She introduces metric formulae for seven aesthetic criteria. These for-
mal, objective metrics are scaled to return a value between 0 and 1 for each
of the criteria.

We have selected four out of the seven formulae and have implemented
them. Three were left out because they don’t apply to E/R diagrams. We
have added one formula that was not included in the original work. We will
now describe the formulae (as presented by Purchase) and how we imple-
mented them.

4.1 Bends promotion

For some of the calculations, an auxiliary graph drawing needs to be defined.
A graph drawing D(G) with polyline edges is transformed into a drawing
D′(G) with only straight-line edges. This is done by turning all bend points
in D(G) into nodes in D′(G) and is therefore called bends promotion. Figure
4.1 shows the code used to implement bends promotion. We iterate over all
bend points and use edge subdivision to introduce a new node and split the
edge into pieces. When we want to keep our original graph, we call this
function on a copy of our graph.
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void BendPromotion (Graph& G, GraphAttr ibutes& GA) {
List<edge> edges ;
G. a l lEdges ( edges ) ;

while ( ! edges . empty ( ) ) {
edge e = edges . popFrontRet ( ) ;
DPolyl ine bends e = GA. bends ( e ) ;
node s = e−>source ( ) ;
node t = e−>t a r g e t ( ) ;

while ( ! bends e . empty ( ) ) {
DPoint p = bends e . f r on t ( ) ;
node n = G. newNode ( ) ;
GA. x (n) = p .m x ;
GA. y (n) = p .m y ;
edge e = G. newEdge ( s , n ) ;
s = n ;
bends e . popFront ( ) ;

}
edge e = G. newEdge ( s , t ) ;
G. delEdge ( e ) ;

}
}

Figure 4.1: Bends promotion

4.2 Bends (Nb)

The bends aesthetic criterion tries to minimize the number of bends in edges.
The metric for bends is based on the total number of edges before (m) and
after (m′) bend promotion. The total number of bends can also be calculated
from these values: b = m′ −m. The number of edges is scaled against the
total number of edge segments after bend promotion, so we calculate the
bend criterion as follows: Nb = m

m′ .

double BendCriter ion (Graph& G, GraphAttr ibutes& GA) {
double m = G. edges . s i z e ( ) ;
BendPromotion (G, GA) ;
double m2 = G. edges . s i z e ( ) ;

return m / m2;
}

Figure 4.2: Implementation of bend metric
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4.3 Crossings (Nc)

The goal of the crossings aesthetic criterion is to minimize edges crossing
paths with each other. The metric for crossings is based on the total num-
ber of edge crossings, this number is scaled against an upper bound, (an
approximation) of the number of possible crossings. The calculations are
based on a straight-line drawing, so for this metric we use the auxiliary
graph generated from bends promotion.

We first calculate the number of theoretically possible crossings (call).
This means the number of crossings if every edge were to cross every other
edge. However, there are edge crossings that are known to be impossible.
In a straight-line drawing of a connected graph with no more than one edge
between nodes, adjacent edges cannot cross. The number of these impossible
crossings is:

cimpossible =
1

2

n′∑
j=1

degree(uj)(degree(uj)− 1)

where n′ is the number of nodes in D′(G). This number is subtracted from
the total number of crossings we calculated. The number of crossings we
have after this subtraction (c) is scaled against this upper bound so that 1
represents the maximum crosslessness. The implementation of this metric
is showed in Figure 4.3

double Cro s s i ngCr i t e r i on (Graph& G, double c ) {
double m = G. edges . s i z e ( ) ;
double c a l l = (m ∗ (m − 1) ) / 2 ;

double c impo s s i b l e = 0 ;
for ( node n : G. nodes ) {

double sum = n−>degree ( ) ∗ (n−>degree ( ) − 1) ;
c impo s s i b l e += sum ;

}

c impo s s i b l e = c impo s s i b l e / 2 ;
double c max = c a l l − c impo s s i b l e ;

double Nc = 1 ;
i f ( c max > 0) {

Nc −= ( c / c max ) ;
} else Nc = 0 ;

return Nc ;
}

Figure 4.3: Implementation of crossings metric
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4.4 Edge orthogonality (Neo)

Purchase splits the notion of orthogonality in a graph drawing into two
seperate measurements. The first one is edge orthogonality. The extent to
which edges and edge segments follow the lines of an imaginary grid.

We calculate the edge deviation factor (δi) for each edge segment i. (δi)
is the angular deviation of edge segment i from the horizontal or vertical
grid lines and is calculated as follows:

δi =
min(θi, |90◦ − θi|, 180◦ − θi)

45◦

where θi is the positive angle between edge segment i and the x-axis. As
we are using edge segments, we will use the auxiliary graph drawing D′(G).
The average edge deviation factor of all edge segments is subtracted from 1
so that 1 means a drawing with maximum edge orthogonality.

double EdgeOrthoCriter ion (Graph& G, GraphAttributes& GA) {
double sum = 0 ;

for ( edge e : G. edges ) {
node s = e−>source ( ) ;
node t = e−>t a r g e t ( ) ;

double s x = GA. x ( s ) ;
double s y = GA. y ( s ) ;

double t x = GA. x ( t ) ;
double t y = GA. y ( t ) ;

double ang le =
abs ( atan2 ( s y − t y , t x − s x ) ∗ 180 / PI ) ;

Array<double> va lue s =
{ angle , abs ( 90 . 0 − ang le ) , abs (180 . 0 − ang le ) } ;

double ∗ dev i a t i on = min element ( begin ( va lue s ) , end (
va lue s ) ) ;

∗ dev i a t i on = ∗ dev i a t i on / 45 ;

sum += ∗ dev i a t i on ;
}

double avg = ( ( 1 . 0 / G. edges . s i z e ( ) ) ∗ sum) ;
return 1 .0 − avg ;

}

Figure 4.4: Implementation of edge orthogonality metric
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4.5 Node orthogonality (Nno)

The second part of orthogonality as defined by Purchase is the extent to
which nodes (and bend points) make use of the grid points in an imaginary
grid. To measure this, we calculate the total available grid points and what
portion of them is in use. To find the size of our imaginary grid, we calculate
the greatest common divisors of the set of vertical and the set of horizontal
differences between all geometrically adjacent nodes. Because the vertical
distance between grid points is not necessarily the same as the horizontal,
we calculate two separate gcd values. When we divide the coordinates of
the position of a node by these gcd’s, we get the position of the node in our
grid.

List<int> d i f f e r e n c e s ;
L i s t<int > : : i t e r a t o r i t ;

for ( node n : G. nodes ) {
for ( node m : G. nodes ) {

i f (n != m) {
i f (GA. x (n) == GA. x (m) ) {

int d i f = abs (GA. y (n) − GA. y (m) ) ;
i f ( d i f != 0)

d i f f e r e n c e sY . pushBack ( d i f ) ;
}
else i f (GA. y (n) == GA. y (m) ) {

int d i f = abs (GA. x (n) − GA. x (m) ) ;
i f ( d i f != 0)

d i f f e r e n c e sX . pushBack ( d i f ) ;
}

}
}

}

int gcdResultX = 1 ;
i f ( d i f f e r en c e sX . s i z e ( ) > 0) {

itX = d i f f e r en c e sX . get (0 ) ;
gcdResultX = ∗ itX ;
for ( int i = 1 ; i<countX ; i++) {

itX = d i f f e r en c e sX . get ( i ) ;
gcdResultX = Math : : gcd ( gcdResultX , ∗ itX ) ;

}
}

// The same i s done f o r the g r e a t e s t common d i v i s o r
// o f a l y−d i f f e r e n c e s .

Figure 4.5: Finding the greatest common divisor
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We align the drawing so that the node with the least value coordinates is at
the origin. We now find the nodes with the largest x-coordinate and with the
largest y-coordinate and divide these values by the gcd’s we found. These
are the width and length of the imaginary grid. Multiplying them will give
us the total number of available grid points. The final step is to divide the
number of nodes, so the number of grid points in use, by the total amount
of grid points available.

double A = (width ) ∗( he ight ) ;
double Nno = G. nodes . s i z e ( ) / A;

Figure 4.6: Calculating node orthogonality

4.6 Uniform edge lengths (Nue)

The idea behind the uniform edge lengths aesthetic is that when edges have
the same length, we get a better graph drawing. Purchase did not introduce
a metric for this aesthetic, so we will now introduce our own. The formula is
designed in the same way as the ones by Purchase, returning a value between
zero and one. Where one means that all edges have the same length.

First we calculate the average edge length of our graph drawing. Because
we want to get the lengths of full edges, we do not use an auxiliary graph
drawing here.

Lavg =
Ltotal

m
Here Lavg is the average edge length, Ltotal is the combined length of all
edges and m is the number of edges. Based on this average edge length, we
then calculate the deviation from this length for each edge, and the average
deviation.

Di = |Li − Lavg|

Davg =
1

m

m∑
i=1

Di

Where Di is the deviation from the average length for edge i and Li is the
length of edge i. As was the case with the bends metric, there is no upper
bound to scale against. Instead we scale the average deviation against the
average edge length. See Figure 4.7 for the implementation.Nue = 1− Davg

Lavg
if Davg < Lavg

Nue = 0 otherwise
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double UniformEdgeCriter ion (Graph& G, GraphAttr ibutes& GA) {
double t o t a l l e n g t h = 0 ;
for ( edge e : G. edges ) {

t o t a l l e n g t h += edgeLength ( e , GA) ;
}
double avg l ength = t o t a l l e n g t h / G. edges . s i z e ( ) ;

double t o t a l d e v i a t i o n = 0 ;
for ( edge e : G. edges ) {

t o t a l d e v i a t i o n += abs ( edgeLength ( e , GA) − avg l ength ) ;
}
double avg dev i a t i on = t o t a l d e v i a t i o n / G. edges . s i z e ( ) ;

i f ( avg dev i a t i on < avg l ength )
return 1 − ( avg dev i a t i on / avg l ength ) ;

else return 0 ;
}

Figure 4.7: Implementation for uniform edge length metric
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Chapter 5

Algorithm

In this chapter, we will describe the algorithm we used when creating our test
results. We initially planned on designing and implementing our own, new
algorithm. However, as we were researching existing literature, it became
clear that this would take a lot more time than we had available. Because
of this we chose to use an existing algorithm and implementation.

As we have shown in Section 3.1.3 there do not exist many algorithms
specifically designed for drawing E/R diagrams. We decided to use the al-
gorithm introduced by Tamassia et al. [24] as a starting point because this
algorithm is catered towards drawing diagrams. This algorithm is partic-
ularly useful as it describes a more general approach to drawing diagrams
that we can use. The approach consists of three steps:

1. planarization,

2. orthogonalization,

3. compaction.

Following this outline, we now have to choose specific algorithms and
implementations that perform these steps. This is described in more detail
below. All of the implementations for the algorithms we have chosen are
taken from the Open Graph Drawing Framework [6]. As a result of this, we
do differ from the original algorithm a bit. The largest difference is that we
do not actually have a separate compaction stage.

While describing the algorithm we will refer to E/R models as a graph,
where the nodes of the graph represent entity sets and the edges represent
relationships. We will explain the general approach of these algorithms, but
will not go into all technical details, as this is not the goal of this thesis.
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5.1 Planarization

The first step in our algorithm is to make sure we have a planar representa-
tion. If our graph is planar, this means finding an embedding for the graph.
However in many cases the original graph may not be planar. When this
is the case, a planar representation has to be created. This process can be
separated into two parts:

1. Finding a planar subgraph.

2. Reinserting edges into our graph.

5.1.1 Finding a planar subgraph

When creating a planar subgraph, some edges of the original graph have to
be removed. We would like the number of edges that must be removed to
be as low as possible. This is because reinserting these edges will result in
edge crossings. We want the number of edge crossings to stay low.

The algorithm we have used for finding a planar subgraph is one intro-
duced by Jayakumar et al. [15]. Their algorithm uses PQ-trees and has
a time complexity of O(n2). The algorithm is based on the planarity test
by Lempel, Even and Cederbaum [16] and follows the approach for graph
planarization as described by Ozawa and Takahashi [17].

In broad terms, the algorithm builds a subgraph by adding nodes and
their outgoing edges to it. The order in which the nodes are added to the
subgraph is determined by a so-called st-numbering. The algorithm starts
with the first node and follows the st-numbering. When a node is added,
the new subgraph is tested for planarity. The planarity testing algorithm
is implemented using a data structure called PQ-trees. If the subgraph is
planar, the algorithm can continue adding nodes. When the subgraph is
not planar, some edges have to be removed in order to regain planarity.
Determining which edges should be removed is also done using PQ-trees.

5.1.2 Reinserting edges

We now have a planar subgraph, but we do not want edges to be discarded.
The next step in planarizing our graph is to reinsert the removed edges.
When reinserting edges we try to keep edge crossings to a minimum. Rein-
serting the deleted edges into the graph is done using an algorithm by
Gutwenger et al. [13]. To make sure we have a planar representation of
our graph, edge crossings are (temporarily) replaced with dummy nodes.

Embedding

The algorithm we use for inserting edges also gives us an embedding of
our planarized graph. An embedding defines the order of incident edges
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around each node. When two graph drawings have the same order they
are considered to be equivalent. A graph can have multiple embeddings, an
example of this is shown in Figure 5.1. This figure also shows that choosing
a certain embedding can have great impact on the amount of crossings in
the drawing.

Figure 5.1: Two embeddings of the same graph

Gutwenger et al. [13] takes into account that choosing the right embedding
can have great impact on the quality of a drawing. They define the edge
insertion problem as follows: Given a planar graph G = (V,E) and a pair
of vertices (v1, v2) in G, find an embedding Π of G such that we can add
the edge e = (v1, v2) to Π with the minimum possible number of crossings
among all embeddings of G. After the insertion of the previously deleted
edges we now have an embedding of the planarized graph.

5.2 Orthogonalization

Now that we have a planar embedding of the graph, the next step is to create
an orthogonal representation. Recall from Section 2.1.1 that an orthogonal
drawing maps each edge into a chain of horizontal and vertical segments.
Figure 5.2 shows an example of two different drawings, where the right one
is an orthogonal drawing of the same graph.

This orthogonalization step is done using a variation of the bend mini-
mizing algorithm by Tamassia [23]. This algorithm works by constructing a
flow network from the graph. Then a minimum cost flow in this network is
calculated and is used to embed the graph in the grid. Originally the algo-
rithm requires as input a planar graph containing nodes with a maximum
degree of four and an embedding of the graph. The algorithm as we use it
is adapted to work with nodes of arbitrary node degrees.
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Figure 5.2: Straight-line and orthogonal drawing of the same graph

5.3 Compaction

The final step of the algorithm determines the actual size and lengths of
the nodes and edges and by doing so fixes the coordinates of the drawing.
With the implementations we use from the OGDF compaction is not a real
distinct step, as it is in the original approach by Tamassia.

The module for the orthogonalization step as implemented in the OGDF
is called OrthoLayout. With this module some settings for spacing can be
specified. For example the minimum distance between nodes and edges, or
how close an edge can attach at the corner of a node. With these settings
we can have some influence on the compaction.
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Chapter 6

Results and discussion

6.1 Results

For testing the algorithm and scoring the drawings we have used real database
models. We did not use (randomly) generated graphs, because they would
not be representative for real life E/R diagrams.

We will now show some of the drawings that the algorithm has created.
Drawings of all models can be found in Appendix A. Figure 6.1 is a model
containing information regarding students and their activities. It is a medium
sized E/R diagram, consisting of 29 nodes and 38 edges.

Figure 6.1: Student model
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The next example is a diagram of a school management system model. It is
a small E/R diagram, consisting of 15 nodes and 18 edges. The drawing in
Figure 6.3 is our largest one, this graph has 84 nodes and 140 edges.

We do not show edge labels, indicators for cardinality or symbols for the
type of relationship in our drawing. This is because the algorithm and the
metrics we used for testing focus on the positioning of nodes and edges.

Figure 6.2: School management system

Figure 6.3: Big System
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Table 6.1 shows the scores our algorithm got for each metric, tested with
a variety of models. As can be read in Chapter 4, we have tested with the
following metrics:

• Crossings (Nc)
A higher score indicates less edge crossings in the drawing.

• Bends (Nb)
A higher score indicates less edge bends in the drawing.

• Node orthogonality (Nno)
A higher score indicates that nodes make good use of a grid.

• Edge orthogonality (Neo)
A higher score indicates more edges following horizontal and vertical
paths.

• Uniform edge lengths (Nue)
A higher score indicates more edges are of (roughly) the same length.

Models 1 to 7 are taken from a large collection of industry models [26].
Model 8 is provided by the company CGI. Models 9 and 10 are taken from
templates available in Microsoft Access. Models 11 to 13 are taken from
another collection of ready-to-use data models [9].

Model Nc Nb Nno Neo Nue

1 School management system 1 0.78 0.05 1 0.18

2 Pharma & Biotech info 1 0.79 0.04 1 0.37

3 Car sales 1 0.67 0 1 0.25

4 Student behavior monitoring 1 0.82 0.58 1 0.37

5 Student Class Scheduling 1 1 0.55 1 0.58

6 Student activities 1 0.74 0 1 0.49

7 Student combined* 1 0.66 0 1 0.01

8 Big system 1 0.47 0 1 0.01

9 Access: Books 1 1 1 1 1

10 Access: Attendence tracker 1 1 0.44 1 1

11 Survey data model 1 0.51 0.04 1 0.41

12 Online shop data model 1 0.74 0 1 0.24

13 Real estate data model 1 0.71 0.01 1 0.27

Table 6.1: Results

* Model 7 is the combination of models 4, 5 and 6.
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The values in Table 6.1 have been rounded, this means that the ones for
the crossings metric do not always mean that the drawing had zero cross-
ings. For example, the big system model actually has a decent amount of
crossings (47), which can be seen in Figure 6.3. Because the crossings met-
ric is scaled against all possible crossings, the score was still 0.999706 which
gets rounded up to 1.

Nc Nb Nno Neo Nue

Average 1 0.76 0.21 1 0.4

Table 6.2: Average results for metrics

6.2 Discussion

When looking at our results in Table 6.1, the scores for the crossings (Nc)
and edge orthogonality (Neo) metric stand out. The results for edge orthog-
onality are not surprising. The algorithm we used strictly draws horizontal
and vertical edge segments. Because of this the results for this metric will
always be one.

We expected the results for the crossings metric to be better than the
others, as the main focus of the algorithm is to keep crossings low. However
we did not think we would only get the maximum score with all models.
These results show that the planarization approach of the algorithm is really
effective at keeping the number of edge crossings low. When possible, a
planar E/R diagram is created. But even with larger and non-planar models,
the algorithm still scores one.

The next best scoring metric is bends (Nb). With the exception of the
big system model, the metric scored at least above 0.5. As can be seen
in Figure 6.2, the average score of this metric was 0.76. This is a decent
score, but when looking at the generated drawings, we can easily detect
some unnecessary bends. These are mostly bends that would not have been
needed if non-orthogonal, straight lines had been used. A nice example of
this is Figure 6.1, where edges from the center node (Student) connecting to
the nodes below have a lot of bends. Most of these bends are only a result
of the orthogonal drawing style.

The two lowest scoring criteria are uniform edge length (Nue) and node
orthogonality (Nno). As already noted while discussing the bends criterion,
the way edges are routed could be improved. Apart from removing unnec-
essary bends, we can also see whole parts of a drawing that can be moved
to create more uniform edge lengths. Again we look at Figure 6.1 as an
example. The bottom right part of the drawing could be moved upwards.
This would reduce the lengths of a lot of edges and increase uniformity.
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The results for node orthogonality turned out lower than expected. These
low results are the result of the way this metric is calculated (see chapter
4). The calculation of this metric revolves around a virtual grid on which
nodes are mapped. However, the algorithm does not map nodes strictly to
a grid. This can cause the size of the grid as calculated for the metric to
be exceedingly large, as if every pixel was a possible grid point. Because of
this some models score zero for this metric. This also means that the results
for this metric do not tell us much about the drawings, other than that the
algorithm fails to place nodes in a neat grid. A better measurement would
have been to simply calculate how much of the total drawing space is used.
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Chapter 7

Conclusions and future work

7.1 Literature study

From the research we have done into existing literature we can conclude
that aesthetic criteria play an important role when it comes to graph draw-
ing. However, when graph drawing algorithms are introduced, no proof of
how well the algorithm preforms and no way of measuring these criteria is
presented. This problem has been identified and metrics for some of these
aesthetic criteria have been introduced [19]. We have introduced one extra
metric and implemented a total of five metrics.

Some research has been done into the effect of aesthetic criteria on the
readability and understandability of a graph. These studies have shown that
the crossings criteria has the most impact. The usefulness of the bends crite-
ria is also confirmed, but the results are less clear than for crossings. Other
criteria that were tested did not show significant improvement in readability
and understandability of graphs. These studies focused on general graphs,
not E/R diagrams. One study looked specifically at the criteria in UML
diagrams. This research did not include the crossings criteria and only the
bends criteria showed a little impact.

No research regarding the impact of aesthetic criteria specifically for E/R
diagrams exists. There is a study that compares two notation methods for
E/R diagrams and how they impact the readability and understandability.
This research shows that the SSADM notation performs better than Chen’s
notation.

7.2 Experiment

Our own experiment shows that an algorithm is capable of drawing E/R
diagrams that get good scores when applying the metrics for aesthetic cri-
teria. The algorithm we used focuses on the crossings criterion and gets the
maximum value for all models we tested with. While the algorithm performs
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really well with crossings, the other criteria score significantly lower. The
bends criterion gets decent scores, but upon inspecting the actual drawing,
there clearly is room for improvement.

7.3 Future Work

While there already exists a lot of research in the field of graph drawing and
aesthetic criteria, there is still more that can be done.

An empirical study researching the human understanding of E/R dia-
grams drawn with various aesthetics does not yet exist. In stead of having
to answer questions about general graph theory, subjects could answer ques-
tions about the underlying E/R model. It is possible that the results of such
a study are different than those of studies where general graphs were used.
It would also be interesting to find out what is considered a good score for
each criteria. It could be that for one criterion 0.5 is already pretty good
while for another criterion only 0.9 or higher is considered a good score. As
there is not much data available this is hard to tell as of right now.

This brings us to the following point. Our research can be used to
gather more data regarding the aesthetic criteria. The implementation of the
metrics enables researchers to score their own (existing or new) algorithms
and compare them with each other and also with our results. We also think
our own research can be improved upon by testing more models, especially
larger models. Our own experiment consisted mostly of small models, with
only one really large model.

Apart from researching the aesthetic criteria and their metrics, more can
be done with respect to the actual algorithm. As we have seen, the current
algorithm only really performs well with one criterion. New algorithms can
definitely improve in a number of ways:

1. Reduce the number of bends.

2. Make edge lengths more uniform.

We also think it would be interesting to look further than the current aes-
thetic criteria. Perhaps an entirely different way to look at graphs and E/R
diagrams can be used to generate a layout in stead of using the current
aesthetics as guidelines.
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Appendix A

E/R diagram drawings

Figure A.1: School management system
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Figure A.2: Pharma & Biotech info

Figure A.3: Car sales
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Figure A.4: Student behavior monitoring

Figure A.5: Student Class Scheduling

Figure A.6: Student activities
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Figure A.7: Student combined

Figure A.8: Big system
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Figure A.9: Access: Books

Figure A.10: Access: Attendence tracker

Figure A.11: Survey data model
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Figure A.12: Online shop data model
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Figure A.13: Real estate data model
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