BACHELOR THESIS
COMPUTER SCIENCE

Fia:

a
e\’a Ny
'S
orre®

MiNe €

RADBOUD UNIVERSITY

Continuations in functional
programming languages

Author: First supervisor/assessor:
Janne van den Hout prof. dr. Herman Geuvers
s4610431 herman@cs.ru.nl

Second assessor:
dr. Freek Wiedijk

freek@cs.ru.nl

June 25, 2018



Abstract

Continuations and operators that are able to use these continuations, provide an elegant way
of manipulating the control flow of programs. In this thesis we define a language containing
an operator callcc that can capture its own continuation. Using the language, we define and
evaluate programs to show how exceptions and backtracking are achieved with callcc. Next,
we give a translation into continuation-passing style based on Plotkin’s CPS translation [12]
which eliminates the callcc operator. Just as Plotkin, we also define a colon translation that
reduces some of the administrative redexes introduced by the translation. In addition we
evaluate a translated program and assert that it evaluates to the same as the untranslated
program. We observe that Plotkin’s indifference theorem does not hold for our translation
and propose a solution.



Contents

1 Introduction 2
2 Preliminaries 3
2.1 A-calculus . . . ..o 3

2.2 Call-by-value . . . . . .. . 4
2.3 Call-by-name . . . . . .. .. 4
2.4 Evaluation contexts . . . . . . . .. 5

3 miniFP™" 7
3.1 Syntax . . . ... e 7
3.2 Operational semantics . . . . . . . . . . . . ... 8
3.3 Typing miniFP* . . . . 9

4 Continuations 12
4.1 callec . . . .o 13
4.2 Continuation-passing style . . . . . . . . . ... L Lo 16
4.2.1 CPS translation . . . .. .. .. oo 18

4.2.2 Reducing administrative redexes . . . . .. .. ... ... 21

4.3 Discussion . . . . . ..ol 25

5 Related Work 27
6 Conclusions 28
A Appendix 31
A.1 Example Harper and Lillibridge . . . . . . . ... ... ... ... ....... 31
A.2 Proof of Proposition 3.3.1 . . . . . . . . ... 34
A.3 Type derivation of list_iter and find . . . . . . . . ... ... ... ... 37
A4 Evaluation of findone . . . . . . . . .. 40
A5 Evaluation of print_all . . . . . . . . . . 46
A.6 Proof of Proposition 4.2.1 . . . . . . . ... 50
A7 Proofof Lemma 3 . .. .. . .. ... 55
A.8 CPS translation of find_one . . . . . . . . . .. ... 57



Chapter 1

Introduction

Continuations represent the program state of a program at any point during its evaluation.
A continuation can therefore be seen as a representation of the rest of the program that is
yet to be evaluated.

The programming language Scheme treats continuations as first-class objects. This makes
it possible to capture the current continuation using the operator call/cc. The captured
continuation saves the current program state. If later on the captured continuation is invoked,
the earlier saved state is restored.

(+ 2 (call/cc

(lambda (continuation)
(+ 5 (continuation 4)))))

Using the call/cc operator, programs like the one above can be written. This program eval-
uates to 6.

Because continuations can be used to restore an older program state, they make it possible
to jump to different places in the program. As a result continuations can be used to encode
control mechanisms such as exceptions and backtracking in a language.

In this thesis we will study continuations and operators that can manipulate them. We are
therefore going to define a small language miniFPT which will contain an operator callcc that
is similar to the operator call/cc in Scheme. Furthermore, we define an operator throw that
is used to invoke a continuation.

In Chapter 4 we introduce continuations which will be highlighted by some examples.
Furthermore, the operator callcc will be explained in detail. We will look at the program
mentioned above again and show how the result 6 is obtained. We will also evaluate other
programs containing the operator to demonstrate how callcc can be used to model exceptions
and backtracking. Next, we will define a translation into continuation-passing style for the
terms of miniFPT. This translation will be based on the translation Plotkin defined in [12].
The translation eliminates the callcc- and throw-terms. However, it introduces a lot of ab-
stractions that make it difficult to establish a relation between reductions in the source term
and reductions in the translated term. We will look at Plotkin’s colon translation that aims
to solve this problem. Moreover, we extend the colon translation to the terms of miniFPT.
Using this extended colon translation we will translate a program into continuation-passing
style and compare its evaluation with the evaluation of the untranslated program.



Chapter 2

Preliminaries

2.1 M-calculus

In the 1930’s Alonzo Church developed the A-calculus initially as a foundation for mathematics
[2]. Later it became evident that the A-calculus provides a simple model for computation.
The simplicity arises from the fact that functions in the A-calculus are “anonymous”, meaning
the functions do not have names and also only have one input. We will briefly summarize the
A-calculus here. For a complete definition we refer to Barendregt [1].

Definition 2.1.1. The A-calculus consists of A-terms that are constructed recursively from
an infinite set of variables and can take one of the following forms:

e a variable =
e an abstraction Az.M where M is a A-term

e an application M N where M and N are both A-terms
The syntax of A-terms M and N in the A-calculus can therefore be given by:
M,N :=2a | AXe.M | MN
Definition 2.1.2 (S-rule). The most basic form of computation in the A-calculus is (-
reduction. If an application is of the form (Az.M) N it can be rewritten using the S-rule.

(A.M) N — M [z + N]

N is substituted for every occurrence of the variable z in M. The term (Ax.M) N is called
a redex, a reducible expression, because it can be rewritten by the S-rule to M|z < NJ.

Example 2.1.1. Consider the term (Az.\y.y x)((Az.x) 1)(Az.z) and assume we added inte-
gers to the A-terms. Next, we will show the reduction steps. The redexes being reduced at
each step are bold.

Az Ay.y z)((Az.x)1l)(A\z.z)
= (A\y.y (Az.x)l))(Az.2)
= (Ay.y 1)(Az.x)
- (Az.x)l
— 1



In the first step the redex (Az.Ay.y )((Az.x) 1) reduces to (Ay.y ((Az.z) 1)) by substi-
tuting ((Az.z) 1) for every occurrence of z in (A\y.y z). In the second step ((Az.z) 1) reduces
to 1. (Az.x) is then substituted for y and finally (Az.z) 1 reduces to 1 which does not reduce
any further.

As the reader may have noticed there are other redexes that we could have chosen in the
different reduction steps. For example, at the beginning ((Az.x) 1) could have been reduced
first. Also, in the second step we could have substituted (Az.z) for y instead of reducing
((Az.x) 1) first. The choice which redex will be evaluated can be fixed in a reduction strategy.
Next, we will look at the call-by-value and call-by-name reduction strategy.

2.2 Call-by-value
When evaluating call-by-value, the A-terms are differentiated into terms and values.

Terms: M,N w=x | Ae.M | MN
Values: v =\ M

Definition 2.2.1 (Call-by-value SOS). The call-by-value structural operational semantics
(SOS) assure that S-reduction is only performed if the right part of the application is a value.
Furthermore, there are no reductions under a A-abstraction.

M — M N — N’
MN — M'N v N —=uv N

If the left part M of an application M N is not an abstraction, evaluation first proceeds with
M. We write M — M’ to express that M reduces to M’ by one of the three rules above.
The whole application M N thereby reduces to M’ N. The case that M is an abstraction is
similar; N is reduced until it eventually becomes a value and the S-rule can be applied.

(M. M) v — Mz + v]

Example 2.2.1. We will consider the term from Example 2.1.1 again and evaluate it call-
by-value assuming that the integer 1 is a value.

Az Ay.y ) ((Az.x)l)(Az.2)
= Az Ay.y )1(\x.z)
- (Ay.y 1)(Az.x)
- (Az.x)l
— 1

Using the call-by-value semantics we can see that the only redex in the original term is
(Az.x) 1. This term is not a value yet and therefore the 5-rule cannot be applied to (Az.\y.y )

((Az.z)1).

2.3 Call-by-name

Call-by-name is an other reduction strategy where S-reduction is performed as soon as pos-
sible. There is no notion of terms that are values. The syntax of the A-terms is therefore the
same as in Definition 2.1.1.



Terms: M,N ==z | \e. M | MN

Definition 2.3.1 (Call-by-name SOS). -reduction can be performed whenever the left part
of an application is an abstraction. If this is not the case then the left part is evaluated.

M — M’
MN — M'N

Example 2.3.1. We will look at Example 2.1.1 again and evaluate the term call-by-name
where the integer 1 is added to the terms of the A-calculus.

(Ax.M) N — Mz + N]

Az Ay.y z)((Az.x)1l)(A\z.z)
= (Ay.y (Az.x)1)) (Az.x)
- (Az.x)((Az.x)1)
- (Az.x)l
— 1

2.4 Evaluation contexts

Another way to define the call-by-value semantics of A-terms is by using evaluation contexts
described by Felleisen and Hieb in [4].

Definition 2.4.1 (Evaluation contexts). An evaluation context is “a term with a hole”.
E:=[]|EM|vE

We write F[a] to indicate that the hole [-] in the evaluation context E has been replaced with
the term a.

To define reduction we will use the naming “head reduction” Leroy [9] uses in his lecture
slides.

Definition 2.4.2 (Head reduction). We define head reduction as the reduction of a term
a using a set of head reduction rules. As the terms only consists of A-abstractions and
applications, the only head reduction rule is the g-rule.

(Az.a) v = a [z < v]
Because the evaluation is call-by-value, the argument to the abstraction has to be a value.

Definition 2.4.3 (Reduction). We define reduction as the head reduction of a term inside
the hole of a context.

a—d
Ela] — E[d]

If the term a, that is plugged into the hole of the context F, reduces by head reduction to a
term a’ then we can replace the hole in E by a'.



Example 2.4.1. We will evaluate the term from Example 2.1.1 using evaluation contexts.

E[(Az.x) 1)] with £ = (Az.\y.y z)[-](A\z.x)
— E[1] with E = (Az.\y.y z)[-](Az.x)
= Ei[(Ax.\y.y x) 1] with By = [[](Az.x)
— Ei[Ay.y 1] with Ey = [[](\z.z)
= Ey[(A\y.y 1)(A\z.z)] with Ey = []
— Er[(Az.x) 1] with Ey = []
— Eb[1] with Ep = []

At the beginning the term (Az.Ay.y x)((Az.z) 1)(Az.z) corresponds to the evaluation con-
text £ = (Ax.\y.y z)[](Az.xz). The hole [-] denotes the redex we are reducing, in this case
((Az.z) 1). Using B-reduction the term reduces to 1. Since we cannot reduce 1 any further
we take the following redex (Ax.\y.y z) 1. However, this means that the evaluation context
has changed. The hole in the context now denotes the new redex (Az.Ay.y z) 1. After the
fourth reduction we are finished because 1 is a value and does not reduce further and Es only
consists of a hole.



Chapter 3

miniFP™

In this chapter the language miniFP™ is defined. We will first give its syntax and call-by-value
operational semantics. We then continue with typing miniFPT. The syntax of miniFP* and
the operational semantics are an extension of the definitions in the lecture slides of Leroy
[9, 10]. Given miniFP* we will define a new language miniFP.

3.1 Syntax

We will now give the syntax of miniFP*. Since we want miniFPT to evaluate call-by-value,
terms and values have to be distinguished.

Definition 3.1.1 (miniFPT). We define the terms and values of miniFP™ as follows.

Terms:

a,b,c:=10

| Succ(a)

10

| None

| Some a

| true

| false

| =

| \z.a

| ufAx.a

| ab

la + b

| Cons(a,b)

| Nil
|letz=vina

| if ¢ then a else b
| match a with Nil — b | Cons(cy,c2) — ¢
la; b

successor of a

variable

abstraction
recursive function
function application
addition

list constructor

empty list

pattern matching

composition



| zero? a check for zero
| callec a

| throw a b

Values: v ::= 0 | Succ(v) | () | None | Some v | true | false | Nil | Cons(v1, v2)

| Ax.a | pfdz.a

The language miniFP is defined as the language miniFPT without the terms callcc @ and throw
ab.

3.2 Operational semantics

We now define the call-by-value operational semantics of miniFPT using evaluation contexts.

Definition 3.2.1 (Evaluation contexts). For miniFP* we define the following evaluation
contexts.

E:=[]|Eb|vE|E+b|v+ E|Succ(FE) | Some E | Cons(E, b) | Cons(v, E)
| match E with Nil — b | Cons(cy,c2) — ¢ | if E then a else b | zero? E
Definition 3.2.2 (Reduction rules). We define head reduction rules and context reduction
rules for miniFPT. The context reduction rules are defined for the terms callcc and throw as
they operate on the whole context. The composition a ; b is evaluated by rewriting it to

(Ax.A\y.y) a b. This way a is evaluated for possible side effects that might occur when using
operators such as callcc and throw. The result of a, however, will be thrown away.

Head reduction rules:

(Az.a)v — alzx + v
(ufAx.a)v —alf < pfAxr.a,z <+ ]
0+0 —0

0 4 Succ(v) — Succ(v)

Succ(v) + 0 — Succ(v)

Succ(vy) + Succ(va) — Succ(Succ(vy + v2))
let z =vina — alz < v

if true then a else b —a

if false then a else b —b

match Nil with Nil — a | Cons(c1,c2) — ¢ —a

match Cons(by,be) with Nil — a | Cons(cy,c2) — ¢ — cley = by, e + bo]
a;b = (Az.A\y.y) ad

zero? 0 — true

zero? v — false ifv#0

Context reduction rules:
Elcallcc a] — FEla (Az.Elx])]
Elthrow k a] —ka



Definition 3.2.3 (Reduction). For miniFP™ we define reduction as either the reduction of
the whole context using one of the context reduction rules, or as the head reduction of a term
inside the hole of a context:
a—a
Ela] = E[d]
The operational semantics for miniFP are the same as for miniFP™ except miniFP does not
have the context reduction rules regarding callcc and throw.

3.3 Typing miniFP*

In this section we will type the terms of miniFPT. That is for each term a we want to have
a : 0 where o is the type of a. Therefore the types possible in miniFP* are defined first.

Definition 3.3.1 (Types).

Types: 7,0 == nat | bool | list | unit | Maybe 7 | 7 cont | var | 11 — 72
Variables: var = «a|f
Polymorphism: poly = Yovar.poly | T
Context: r n= - | DT

nat is the type of 0 and the natural numbers being generated from applying the successor
function to 0. The terms true and false have type bool. Nil and Cons(a, b) are of type list and ()
has type unit. We use Maybe 7 to give a type to None and Some a. Furthermore, we introduce
a continuation type 7 cont which indicates that the continuation expects something of type
7 and which also hides the return type of the continuation. This type is used when defining
the types of callcc and throw. Since miniFPT contains let-expressions which we want to have
polymorphic types, type variables and quantification over types are defined. Furthermore, we
define a function type 71 — 79 where 7 is the type of the argument and 7 the return type of
the function.

The types for the terms of miniFP are the same except that the type 7 cont is not needed
since there are no callcc- or throw-terms in miniFP.

We now introduce typing contexts I' which are sets of x : 7; mappings from variables to
types. Using the typing context the typing relation between the terms of miniFP™ and the
types is defined as follows.

'Fa:r
The typing relation indicates that a has type 7 in the context I'. a is called well-typed if a : 7
can be produced using typing rules. A typing rule has the following form.
Fll—CLlZTl Fnl—anZTn
'Fa:r

The statements above the line are the premises that have to be fulfilled in order to obtain
the conclusion I' - a : 7. The typing rules for miniFP™ are defined as follows.

Definition 3.3.2 (Typing rules). The typing rules can be divided into azioms and inference
rules. Axioms are typing rules without premises whereas inference rules have one or more
premises.

Axioms:



'F0: nat 0 I' F true : bool rue I' - false : bool Salse
TF():unit ™ TF None: Maybe 7 "™ TF Nil: list ™
Inference rules:
r:Tel . FFa:r7 come
Tkaz:7 7 I' - Some a : Maybe 7
I'Fa: nat suce I'Fa: nat o
I' - Succ(a) : nat I F zero? a : bool ~“”
I'Fa: nat I'Fb: nat  dd I'Fa: nat CEb: list .
I'a+b: nat I' - Cons(a, b) : list
x:oka:7 I'ta:o0—71 FFb:J:app
TFita:o—r @ I'tFab: 7
Nfio—>mnaxioka:T | 'ta:o FI—b;T:Comp
ufira:o—r1 e I'Fa;b: 7
I'Fa:7cont—T - callee I'Fa: ocont 'Fb: o throw
I'kecallecca: 7 I'Fthrowabd: 7
I'FVa.o elim 'Fa:o agl
I'ka:ofa+ 7] I'ka:Voo o
' c: bool l'ca: 7 Fl—b:T:if
'Fif cthenaelseb: 7
I'Fv: Va.o Iz:Va.okb: T agl ot ol
F'Fletz=vinb: 7 Py
' 1: list F'kFe:r I'a:nat,b: list - f:7 "
‘matc

I' F match [ with Nil— e | Cons(a,b) — f : T

The typing rules for miniFP are the same as for miniFP™ except for the callcc- and throw-typing

rules.

Harper and Lillibridge state in [6] that polymorphic let-terms in a language containing
callcc are only well-typed if the bound expression is a value. In Appendix A.1 we give the
example of Harper and Lillibridge of a term eg : bool with the property that the term evaluates
to 0 which is, however, of type nat. The term eg is a term of the form let z = a in b where a

is not a value and contains a callcc.

10



Having typed miniFP™ we can prove that every term can be uniquely decomposed into a
context and redex.

Proposition 3.3.1. For all terms t € miniFPT, if -t : o and t € Values then there exists a
unique E with either

1. t = Ele] and e reduces by head reduction
2. t = Elcallcc u] and E|callcc u] reduces by context reduction
3. t = E[throw u v] and E[throw u v] reduces by context reduction.

Proof. The proof is by induction on ¢ and a case analysis of t.
As an example we will give the proof for the case ¢ = Cons(a,b). For the complete proof see
Appendix A.2.

Case Cons(a,b) :

a ¢ Values : From induction there exists a unique E’ with either 1. a = E’[¢/] and ¢’
reduces by head reduction or 2. a = F’[callcc ¢] and E’[callcc ¢] reduces by context
reduction or 3. a = E’[throw ¢ d] and E'[throw ¢ d] reduces by context reduction.

1. Then there exists a unique F and e such that Cons(a,b) = E[e] and e reduces
by head reduction. Because E = Cons(E’,b) and e = ¢’

2. Then there exists a unique E such that Cons(a,b) = E|[callcc u] and Fl[callcc u]
reduces by context reduction. Because E = Cons(E’,b) and u = ¢, we
have Flcallcc ¢] = Cons(E’[callcc ¢], b) which reduces by context reduction to
Cons(E'[c (\x.E|x])],b) .

3. Then there exists a unique F such that Cons(a, b) = E[throw u v] and E[throw u
v] reduces by context reduction. Because E = Cons(E’,b), u = cand v = d, we
have E[throw ¢ d] = Cons(E’[throw ¢ d], b) which reduces by context reduction
tocd.

a € Values : The proof is the same as for the case a ¢ Values only now the induction
is over b.

O

In Proposition 3.3.1 for every term it was proved that it can be uniquely decomposed into
a context and a redex. For every term this was also proved for the case that the term does
not contain a callcc or throw. Therefore it follows that the unique decomposition property
also holds for the terms of miniFP.

11



Chapter 4

Continuations

In this chapter we will introduce continuations. The content presented is based on the lecture
slides of Leroy [10]. To introduce the concept of continuations we will, just as Leroy, use an
example. Consider the small program p = (142)+3. When evaluating p, we will first evaluate
the subexpression (1 + 2) and then continue by adding 3 to the result. The continuation of
(14 2) is the rest of the computation that needs to be done to obtain the overall result of p.
In the case of our example the rest that needs to be done is to add 3.

Definition 4.0.1 (Continuation). In general, the continuation of a subexpression e of a
program p is the computation that needs to be done after e has been evaluated in order to
obtain the result of p. The continuation is a function that takes as argument the value of the
subexpression and yields the value of the whole program.

continuation : value of e — value of p

Looking back at our example the continuation of (1 + 2) is the function (Az.z + 3). After
(1 4+ 2) has been evaluated its value 3 will be passed as argument to the continuation which
will add 3 and so compute the overall value 6 of the program.

We can also think about continuations using evaluation contexts. Let the program p be
equal to the evaluation context E with a subexpression e that replaces the hole.

p=E[e] with E=..[]..

If e reduces then the continuation of e is Az.E[z]. The result of e will be passed as argument
to the continuation which in turn will pass it to the hole of the evaluation context.

Example 4.0.1. Consider again the program p = (1 +2) + 3.

p=01+2)+3 = E[1+2] with E=[]+3
= =343 = Eq[3 + 3] with By = []
— 6

The continuation of (14 2) is the function Az.E[z| which is the same as Az.x + 3. The contin-
uation takes the result of (1 + 2) as input and passes it to the hole of the evaluation context
thereby leaving the program p; = 3 + 3 over for evaluation. The continuation of p; takes

12



the result of (3 + 3) and passes it to the hole of the evaluation context. So the continuation
becomes Az.Fj[z] and since the evaluation context is only the hole, the continuation is equal
to the identity function Axz.x. The continuation gets passed the result 6 of p; and because it
is the identity function it just returns 6 which is the overall result of the program p.

4.1 callcc

The functional programming language Scheme has an operator call-with-current-continuation
or call/cc for short. call/cc takes as argument a function. This function is then applied to
the continuation of the call/cc. If during evaluation of the function body the continuation is
applied to an argument the current continuation is thrown away and the continuation of the

call/cc is restored. The argument passed to the continuation becomes the result value of the
call/cc.

For the language miniFP™ we defined a similar operator callcc that gets hold of its continua-
tion. This continuation is then passed to the argument of callcc which is a function expecting
a continuation. Furthermore, we defined the operator throw to invoke a continuation on an
argument. The semantics for callcc and throw were defined as follows.

Elcallcc ] — Ela (Ax.Elz])]
Elthrow k a] —ka

callcc is evaluated by supplying a continuation to the function a. The continuation supplied
is the current continuation of the callcc, which is (Az.FE[z]). This way callcc saves the current
context and makes it possible to invoke it again later. throw, on the other hand, throws away
the current context. By passing a to the continuation k, throw reinstates the context saved
by the continuation k.

Example 4.1.1. We will consider the program from the introduction again. The program
has slightly changed to fit the syntax of miniFP™.

2 + callecc (Ak. 5+ (throw k 4))

We will show that the program evaluates to 6.

E[2 + callec (Ak. 5 + (throw k 4))] with E = [
= FEj[callcc (Ak. 5+ (throw k 4))] with E; =2+ []
— Eq1[(Ak. 5+ (throw k 4)) (Ax.E4[z])] with By = 2 + [
— Eq[5 + (throw (A\z.E4[z]) 4)] with By = 2 + [
= Esthrow (Az.Eq[z]) 4] with Fp =2+ 5+ [
— (\z.Eq[z]) 4
— B[4] with By = 2 + []
= FE3[2 +4] with E3 =[]
— Es[6] with B3 = []

13



By evaluating callcc its continuation is passed as argument to the function of callcc. The
continuation (Az.FEi[x]) or (Az. 2+ z) is to add the result of the callcc to 2. When evaluating
throw the current context Es is thrown away. And the context Fy that was initially saved by
the callcc is restored with 4 being passed as argument. This way the result value of callcc is
4. And the overall result becomes 6.

Type of callcc and throw

We will now look in more detail at the types of callcc and throw. callcc has the type (7 cont —
7) — 7. It expects a function of type 7 cont — 7. The argument to this function is the
continuation of the callcc. Because the return type of callcc is of type 7 the continuation
expects an argument of this type. The type of the continuation is therefore 7 cont.

throw has the type o cont —+ ¢ — 7. Two arguments will be passed to throw, a contin-
uation with type o cont and an element of type o. throw will apply the continuation to the
element which yields a type 7 that is the type of the result of the further computation.

Example 4.1.2. To demonstrate the effect of using callcc we will consider the list_iter and
find program Leroy [10] defines in his lecture slides. The two programs and their types are
defined as follows.

list_iter : (nat — unit) — list — unit
list_iter := plist_iter \f.\list. match list with Nil — ()
| Cons(hd,tl) — f hd ; list_iter f ti

find : (nat — bool) — list — Maybe nat
find := Ap.Al. callcc (Ak. list_iter (Az. if p x then
throw k& (Some x) else ()) I ; None)

The list_iter program takes a function and a list as input. It will iterate over the list and
apply the function first to the head of the list and then continue by recursively calling the
list_iter program again with the tail of the list. In case the list supplied to the program is
empty (Nil), the program returns (). This corresponds to the return type of list_iter which is
unit and () is of type unit. If the list is not empty, the composition f hd ; list_iter f tl is
executed. As defined in the semantics the first part is only evaluated for possible side effects.
So for the overall type to be unit, the second part of the composition list_iter f tl also has to
be of type unit. This is the case, because of the recursion list_iter will eventually be called
with an empty list and return () of type unit.

We will now look at the find program. The find program takes two arguments. The first
argument is a predicate function that checks whether a natural number fulfills that predicate.
The function is therefore of type nat — bool. The second argument is the list that possibly
contains an element fulfilling the predicate. The body consists of a callcc. Inside the callcc
function the list_iter program is called on the list and on a function that checks whether the
current element of the list fulfills the predicate. If this is the case, throw will pass that element
to the continuation which will make the element the result of the callcc. The overall return
type of find is therefore Maybe nat. This means the type of callcc has to be of type Maybe
nat and its continuation k£ of type Maybe nat cont. Following the callcc type inference rule

14



the function passed to callcc is of type Maybe nat cont — Maybe nat. The argument of the
function will become the continuation of callcc and is therefore of type Maybe nat cont. The
body of the function then has type Maybe nat. It consists of a composition of a call to the
list_iter program and None. The second part of the composition needs to correspond to the
overall type Maybe nat of the body. This holds because None is of type Maybe nat.

Now for the first part of the composition recall the type of the list_iter program.

list_iter: (nat — unit) — list — unit

Because list_iter has unit as return type the first part of the composition is of type unit as well.
However, we also want to be able to return an element, other than None, of type Maybe nat
that we have found in the list. The callcc and the throw in the function supplied to list_iter
make it possible to return an element of type Maybe nat from inside the list_iter which would
normally return () of type unit.

(Az. if p x then throw k& (Some x) else ())

Because of the type of list_iter the function needs to have type nat — unit. This means that
throw & (Some z) inside the if statement is of type unit. However, if we look at the type
inference rule for throw we see that this type is not relevant. Because Some z is of type
Maybe nat and k is of type Maybe nat cont we can just pass Some x to k& which recall is the
continuation of the callcc. This way callcc returns the Some z which is of type Maybe nat
from within the list_iter program. For the complete type derivation for list_iter and find see
Appendix A.3.

Furthermore, in Appendix A.4 we evaluate a program find_one that executes the find
program on a list and a predicate function that checks if an element is Succ(0).

find_one = let list_iter = plist_iter. A f.Alist. match list with Nil — ()
| Cons(hd,tl) — f hd ; list_iter f ti
in (let find = Ap.Al. callcc (Ak.list_iter (Ax. if p = then
throw & (Some x) else ()) I; None)
in find (Az.zero? Pred ) Cons(Succ(Succ(0)), Cons(Succ(0), Nil)))

The evaluation steps show how once Succ(0) is encountered throw restores the context saved
by the callcc. The result Some Succ(0) is passed to this context, thereby making Some Succ(0)
the overall result of the program.

Example 4.1.2 as well as the complete evaluation of the program find_one in Appendix
A .4 show that callcc can be used to model exceptions. If an element that fulfills the predicate
is found the current context and thereby the rest of the list is thrown away and the context
saved by the callcc is restored. The result value of callcc becomes the element found in the
list.

Furthermore, callcc can be used to implement backtracking. With regard to the find_one
program this would mean resuming iteration over the list after an element fulfilling the pred-
icate is found. This is achieved by adding a second inner callcc to the find program.

find :=Ap.Al. callcc (Ak. list_iter (Az. if p x then
callcc (AK'. throw k (Some (x, k') else ()) I; None)

15



The continuation captured by this inner callcc saves the current context during iteration and
thereby the current position in the list. By invoking this continuation, iteration over the list
resumes starting from the saved position.

In Appendix A.5 we evaluate another program print_all that Leroy [10] defines in his
lecture slides and that makes use of the modified find program to print all the elements
fulfilling the predicate function.

print_all = let list_iter = plist_iter \f.Alist. match list with Nil — ()
| Cons(hd,tl) — f hd ; list_iter f tl
in (let find = Ap.Al. callcc (Ak. list_iter (Az. if p x then
callcc (AK'. throw k (Some (x, k')) else ()) I; None)
in (let printall = Ap.Al.match find p [ with None — ()
| Some (z, k) — print_string = ; throw k ()
in printall (Az.zero? Pred x) Cons(Succ(0), Cons(Succ(0), Nil))))

The evaluation shows how the two continuations captured by the callcc’s make it possible
to jump between printing and iterating over the list. If an element fulfilling the predicate is
found throw invokes the continuation of the outer callcc with the element passed as argument.
However, at the moment an element was found the inner callcc captured another continuation
which saved the context and thereby the position in the list. After a found element is printed
this continuation is invoked and iteration over the list resumes from the saved position. This
way both Succ(0) values in the list are printed.

4.2 Continuation-passing style

Using continuations we can transform every term ¢ into a function whose argument will hold
the continuation of the term. After the computation of ¢ is finished the result is passed to
the continuation. The term ¢ is said to be written in continuation-passing style or CPS for
short.

Example 4.2.1. Consider the factorial function and assume that we have defined a Pred
function that returns the predecessor of its argument and a Mult function that multiplies its
two arguments.

FAC = pf. Ax. if zero? x then Succ(0) else Mult = f(Pred x)
Translated into continuation-passing style the factorial function becomes:

FACcps =pf Ax.\k. if zero? z then k Succ(0)
else f(Pred z)(A\v.k (Mult z v))

The translation into continuation-passing style has given the function f an extra argument
k which holds the continuation. In the case that x = 0, we can just pass Succ(0) to the
continuation k. In the case that x # 0, we recursively call the factorial function. As f takes
two arguments we supply a new x namely Pred z and a new continuation (Av.k (Mult z v)).
This continuation will get passed the result of f Pred x. The result will have to be multiplied
with the current value of x first, before the overall result is being passed to the continuation

k.

16



We are now going to evaluate FAC.,s 3 (Ai.i). For readability we will abbreviate the
natural numbers.

1 = Succ(0)

2 = Succ(Succ(0))

3 = Succ(Succ(Succ(0)))

6 = Succ(Succ(Succ(Succ(Succ(Succ(0))))))

Only the essential reduction steps will be shown. We use — to denote that we are doing
multiple reductions.

E[(puf Az Ak, if zero? x then k 1 else f(Pred x)(Av.k (Mult x v))) 3 (Ai.7)]
with F = []
—  Eqif zero? 3 then (Xi.i) 1 else FAC,,s(Pred 3)(Av.(Ai.i) (Mult 3 v))]
with By = []
— E3[FAC.ps(Pred 3)(Av.(Ai.i) (Mult 3 v))]
with Ej = [
—  Ey[if zero? 2 then (Av.(Ai.i) (Mult 3 v)) 1 else
FAC ps(Pred 2)(Avi.(Av.(Ai.i) (Mult 3 v)) (Mult 2 v1))]
with By = [
— E5[FACps(Pred 2)(Avi.(Av.(Ai.i) (Mult 3 v)) (Mult 2 v1))]
with E5 = []
—  Egif zero? 1 then (Avi.(Av.(Ai.i) (Mult 3 v)) (Mult 2 v1)) 1 else
FAC ps(Pred 1)(Ave.(Avy.(Av.(Ai.d) (Mult 3 v)) (Mult 2 v1)) (Mult 1 vg))]
with Fg = []
— E7[FAC.ps(Pred 1)(Avg.(Avy.(Av.(Ai.d) (Mult 3 v)) (Mult 2 v1)) (Mult 1 vg))]
with E7 =[]
—  Eglif zero? 0 then (Ave.(Avi.(Av.(Ai.d) (Mult 3 v)) (Mult 2 v1)) (Mult 1 v2)) 1 else
FAC ps(Pred 0)(Avs.(Ava.(Avr.(Av.(Ai.i) (Mult 3 v)) (Mult 2 v1)) (Mult 1 v2)) (Mult 0

v3))]
with Fg = []
% Eo[(Ava.(Avr.(Av.(Nid) (Mult 3 v)) (Mult 2 v1)) (Mult 1 v5)) 1]
with Eg = []
— FEy[(Avy.(Av.(Ni.i) (Mult 3 v)) (Mult 2 v1)) (Mult 1 1)]
with Fg = []
% Eo[(Mw.(Mi.i) (Mult 3 v)) (Mult 2 1)]
with Eg =[]
2 Eo[(Mi.i) (Mult 3 2)]
with By =[]

17



= Ey[(\i.i) 6]
with Eg = []
— Ey[6]
with Ey = []

We can see that the last call to FAC.,s gets passed the continuation (Avg.(Avy.(Av.(Ai.é) (Mult 3
v)) (Mult 2 v1)) (Mult 1 v2)) which multiplies all the intermediate results. In the end, we see
that the result 6 of the FAC.,s program gets passed to (Ai.i) which was the initially supplied
continuation.

4.2.1 CPS translation

In this section we are going to extend the translation into continuation-passing style from
Leroy’s [10] lecture slides to the terms of miniFP™. The translation is based on Plotkin’s [12]
CPS translation and eliminates callcc- and throw-terms. Therefore the translated terms are
terms of miniFP.

Definition 4.2.1 (Plotkin’s CPS translation). The translation function [-] takes a term of
miniFP™ and translates it into a term in continuation-passing style. Furthermore, we define
a function |-| that translates values.

0]=0
[true| = true
|false| = false
0=0
|None| = None
|Some v| = Some |v|

‘Succ(v)| = Succ(v])

INil| = Nil
|Cons(vy, v2)| = Cons(v1] ,|va])
|Az.a| = Az.[d]
lpf x.a|l = pf Az [a]

[v] = Ak. k |v]
[x] = A\k. k

[Some a]] = Ak. [a] (Avg. k Some vg)

[zero? a] = Ak. [a] (Avg. k zero? vg)

[Succ(a)] = Ak. [a] (Avg. k Succ(v,))

[Cons(a,b)] = Ak. [a] (Avg. [b] (Avp. k& Cons(vg,vp)))
[a + b] = Ak. [a] (Mvg. [0] Avp. & (vg + wvp))

[a; b] = Ak. [a] (Avg. [b] (Avp. k wvp))
[a b] = Ak. [a] (Avg. [b] (Avp. v vy k))
[if ¢ then a else b] = Ak. [c] (Ave. if v, then [a] k else [b] k)

18



[let x = v in a] = Ak. let x =|v|in [a] k
[match [ with Nil — e | Cons(a,b) — f] = Ak. [I] (Av;. match v with Nil — [e] &
| Cons(a,b) — [f] k)
[callecc a] = k. [a] (Af. f k k)
[throw a b] = Ak. [a] (Ave. [B] (Avp. va vp))

As mentioned before, the function a supplied to callcc expects a continuation as argument.
When translated to continuation-passing style, a therefore becomes a function expecting two
arguments. Its own argument and a continuation, which for the case of callcc are the same.
This is why [a] is applied to (Af. f k k).

In [6] Harper and Lillibridge showed that let-terms have to be translated to Ak.let x =
|v| in @ in order to be well-typed. We will therefore also use this translation instead of the
more intuitive translation Ak. [v] (Az. [a] k).

Example 4.2.2. To demonstrate Plotkin’s CPS translation we are going to translate the
term (Az.z) 0 into continuation-passing style.

[(Az.z) 0] = Ak. [Az.z] (Avg. [0] (Avp.vg vy k))
= M. (k1. by |(Az. @)]) (Ava. (M2 k2 [0]) (Avp.vq vp k)
= Ak, (Mk1. k1 (Ax. [z])) (Avg. (Mka. ko 0) (Avp.vg vp k))
= Mk. (Ak1. k1 (M. (Mks. k3 |z]))) (Ave. (Aka. k2 0) (Avp.vg vp k))
= Mk. (Ak1. k1 (Az. (Mks. ks x))) (Avg. (Aka. k2 0) (Aup.vg vp k))

To execute this program we apply it to the identity function and then perform S-reductions.
We omit the evaluation context because we are merely performing S-reductions and the
context therefore only corresponds to a hole.

(/\k (/\kl kl (/\1' (/\kg. k3 .CC))) (/\’Ua. ()\kg. kg 0) ()\’Ub. Va Vb k)))()\ll)

— (Ak1. k1 (M. (Mks. k3 x))) (Avg. (Mka. k2 0) (Avp. vg vy (A7)
= (Avg. (Mka. k2 0) (Avp. vg vy (NinD)))(Az. (Aks. k3 x))

— (Aka. k2 0) (Avp. (Az. (Mk3. k3 x)) vy (Nii))

— (Avp. (Az. (Mk3. k3 x)) vp (Aid)) O

— (Az. ()\krg ks x)) 0 (Ni.q)

— (Aks3. k3 0) (Ni.i)

— (i z)

— 0

Reducing the CPS translated term applied to the identity function yields 0 and therefore the
same result as if we had reduced the untranslated term (Az.z) 0.

Having translated the terms of miniFP* into terms of miniFP using the continuation-
passing style translation, we also need to translate the types of miniFPT to fit the types of
the translated terms. Therefore, we will extend the type translation defined by Harper and
Lillibridge in [6] ! to the types of miniFP*.

'The translation is itself an extension of the type translation defined by Meyer and Wand in [11].

19



Definition 4.2.2 (Type translation). We define two mutually recursive functions |o| and &
that take a type o of miniFPT and yield a type for a translated term. The functions are
defined as follows.

elo|l=0C—=a) —a

VB.o| =VB.(0 = a) = «

o = o if o € {nat, bool, unit, list}

Maybe 0 — Maybe &

e gcont=0 — «
e 01 — 03 =01 — |09
o V.o =Vp7T

The introduced type « represents the unknown answer type of the continuation introduced
by the CPS translation.

Now that we have also defined how to translate the types we can prove that the translated
terms are well-typed.

Proposition 4.2.1. For all values v and terms M in miniFPT the following holds.
1. IfT-wv:othenT H|: @
2. IfT+ M:o thenT - [M] :]o|

WhereT =z : 7, ... .

Proof. The proof for both parts is by induction on the derivation of 'Fv:cand ' M : o
respectively and a case analysis of the terms.

As an example we will give the proofs for the cases v = Az.a and M = callcc a. For the
complete proof see Appendix A.6.

Case v = Az.a: Assuming I' - Ax.a : 0 — 7 we have the induction hypothesis IH: T,z:5F
[a] : (T = a) — a. Therefore by the abstraction rule we have I' - A\z.[a] : @ — (T —
a) — ) which by the type and value translation is T’ - |\z.a| : & = 7.

Case M = callcc a: éssurning I' I callcc @ : o we have the induction hypothesis IH: T  [a] :
locont o] =TF [a]: (6 - a—= (T = a) - a) > a) - a. We need to show
[k [callcc @] : (7 — a) — a.

f:6€Tly k:7d—aely |
Tobf:6 o Tobk:7—a :mr k:G—acly |
ToFfk:(G—a)—a o Tobk:T— :mr
Tif:6bfkk:a o
iH[a]:y = a=1H DiEANfCfRE:y |

rapp

T.k:c—ak[a] M. fkk):a
THEMe. [a] (Mf. fkk):(T—a)—a

cabs

20



y=@—o2a—(T—=a)—>a)—oa
0=0—a—(0—a) >«

I =T,k:7=a

To=T4,f:6

4.2.2 Reducing administrative redexes

The content of this section is based on Danvy and Nielsen [3] and Plotkin [12]. From Example
4.2.2 we can see that Plotkin’s CPS translation yields very large terms. The terms become so
large due to the introduced abstractions at every step of the translation. These abstractions
are called administrative redexes. Because of them a reduction in the source term does not
directly correspond to a reduction in the translated term. This makes it difficult to prove
that a term translated into continuation-passing style yields the same result as the original
term.

Plotkin therefore defined a colon translation that reduces some of the administrative
redexes. The colon translation translates a term from the original language into a term in
continuation-passing style. However, the initial abstraction of the translated term is reduced
by applying the continuation. Plotkin defined an infix operator : to write the colon translation
of the term a and the continuation K as a : K.

Definition 4.2.3 (Plotkin’s colon translation). The colon translation a : K translates the
term a and its continuation K into continuation-passing style. The function ® translates
values as follows: ®(z) = z and ®(A\x.a) = A\z.[a].

v: K=K ®(v)
vy vy K = ®(vy) ®(vg) K
vb: K =0b:(\x. P(v) z K)
ab: K =a:(Ax1. [b] (Aze. 21 22 K))
In [12] Plotkin proved the following two lemmas for the colon translation.

Lemma 1. If K is a closed value then [a] K 5 a : K.

Lemma 2. If a = b thena: K= b : K (if K is a closed value and a and b are terms).

Using the two lemmas for the colon translation, a substitution lemma and a lemma re-
garding stuck terms, Plotkin showed the correctness of the CPS translation by proving the
simulation theorem. The theorem states that evaluating a CPS translated program yields the
CPS translation of the result of the original program.

21



reduction

a > b
CPS translation l CPS translation
[a] K [b] K
administrative ] administrative
reductions %@mn' reductions
a: K b: K

Figure 1: Plotkin’s simulation diagram

The simulation theorem can be depicted by the diagram in Figure 1. It shows an indirect
correspondence between reductions in the original program and reductions in the translated
program. The correspondence stems from the fact that the colon translation reduces the
initial administrative redexes. This makes it possible to concentrate on the reduction of the
abstractions that were present in the original program. The bottom arrow points to the
middle of the arrow from [b] K to b : K to indicate that the reduction of a : K in general
results in a term that can be obtained by performing administrative reductions on [b] K.

Example 4.2.3. In this example we will first demonstrate the colon translation and then
look at Plotkin’s simulation diagram making use of the earlier defined colon translation.

Consider the term (Az. z) ((Ay. y) 0). We will first translate this term into continuation-
passing style using the colon translation.

(M. z) (A\y.y) 0) : K
=((A\y. y) 0) : (Az1. (A\z. 2) 21 K)
=P(\y. y) ©(0) (Az1. (Az. [z]) =1 K)
=(A\y. [y]) 0 (Az1. (Ax. (Aky. k1 ) 21 K)
=(A\y. (Ak2. k2 1)) 0 (Ax1. (Az. (Mk1. k1 ) 1 K)

—~~

The term (Az. ) ((Ay. y) 0) reduces in one step to (Az. z) 0 so to construct Plotkin’s simula-
tion diagram we also need the CPS translation and the colon translation of the term (Az. ) 0.
These are given by:

[()\a: 1’) Oﬂ = \k. (/\kl. kl ()\:L’ ()\]CQ. kQ a:))) ()\Ua. ()\kg. ](Ig 0) (/\vb.va Vp k))
(Ax.x2) 0: K = (A\x. (Mka. k2 x)) 0 K

We will omit the CPS translation of (Az. z) ((Ay. y) 0) because it is evident that there is no
correspondence between a reduction of the translated term and the reduction in the original
term due to the many administrative redexes.

We will now construct Plotkin’s simulation diagram to relate the reduction steps.

22



reduction

(Az. ) ((My. y) 0) (Ax.x2) 0
CPS translation CPS translation
[(Az. z) ((Ay. ) O)] K [(Az. z) O] K

Avg ()\kd ks 0) (/\vb. va Uy K))) K

Ldmin, ey, k1 (Az. (M. ko 2))) (Ma.
administrative admin, Ag. (Mks. k3 0) (Avp. vg vy K))
reductions Az, (Aka. ko x))

=(
(
(
()\ k‘g ) ()\Ub. Vg Up K))
(
(
(

S (Vs kg 0) (Avp. (A (ko by 2)) vy )

on

ek . .

yed! administrative
reductions

()\y. ()\kg. k’g y)) 0 ()\.Tl.

(Az. (Mky. ky @) 21 K) (Az. (ko ko 2)) 0 K

As we can see the reduction of the colon translation of (Az. z) ((Ay. y) 0) reduces the \y-
abstraction. This reduction corresponds to the reduction happening in the original term. The
reduction of the colon translation does not yield the colon translation of (Az. x) 0. Instead it
yields a term that can be obtained by performing administrative reductions on [(Az. z) 0] K.
This term again needs to be further reduced to obtain the colon translation of (\z. z) 0.

We can see from Example 4.2.3 that reasoning about the translated terms is difficult. It is
only possible via the colon translation. Even so the reductions corresponding to original re-
ductions are mixed with administrative reductions. Using Plotkin’s original colon translation
we will give an extension of it to the terms of miniFP™.

Definition 4.2.4 (Extended colon translation). Instead of Plotkin’s function ® we will make
use of the value translation function |-| defined in Definition 4.2.1.

v: K=K |v|
r: K=Kz
vy vgt K =|vy] |vg] K
vb:K=0b:(\z. [v] z K)
ab: K=a:(Ar1. [b] (A\z2. 1 22 K))
Some a: K =a: (Ax. K Some x)
zero? a: K =a: (\x. K zero? x)
Succ(a) : K =a: (Ax. K Succ(z))
Cons(a,b) : K = a: (Ax1. [b] (Aze. K Cons(z1,x2)))
a+b:K=a:(Az1. [b] (Aze. K (21 + x2)))



K =a:(Az1. [b] (A\x2. K x2))
if cthen a else b: K = c: (A\z. if x then [a] K else [b] K)
etz =vina: K =letz=|v| in [a] K
match { with Nil = e | Cons(a,b) — f : K =1 : (\z.match z with Nil — [e] K
| Cons(a,b) — [f] K)
callcca: K =a: (\f. f K K)
throw a b: K = a: (Azxy. [b] (A\xa. 1 22))

a;b:

The colon translation eliminates callcc- and throw-terms. The translated terms are therefore
also terms of miniFP.

For the extended colon translation we show that Plotkin’s Lemma 1 holds, i.e. we prove
that reducing administrative redexes in the CPS translated term yields the colon translation
of the same term.

Lemma 3 (Extended colon translation). If K is a closed value then [a] K = a : K.

Proof. The proof is by induction on a and a case analysis of a. As the proof is straightforward
we will give as an example the proof of the case that a = a1 as. For the complete proof see
Appendix A.7.

Case a = a1 as :

[[(Il ag]] K= ()\k‘ [[al]] ()\l‘l [[ag]] ()\l’g r1 T2 k‘))) K
— [[al]] ()\xl [[CLQ]] ()\1’2 Tl T2 K))

5 oar: (. [ao] (Ax2. 21 x2 K)) by induction hypothesis of a;
=a1 a9 K

O]

Furthermore, the terms produced by the colon translation are also well-typed. From
Proposition 4.2.1 we know that a CPS translated term [a] is well-typed and in general has
type (@ — a) — a. We also know that a continuation K has the type @ — «. Therefore
the application [a] K is well-typed. From Lemma 3 it follows that a CPS translated term
[a] applied to a continuation K reduces to the term produced by the colon translation. It
therefore holds that the terms produced by the colon translation are also well-typed.

Using the extended colon translation we will translate the earlier defined find_one program
into continuation-passing style. If we compare the evaluation of the translated program
in Appendix A.8 and the evaluation of the untranslated program in Appendix A.4 we see
that the first reduction of the translated program corresponds to the first reduction in the
original program. In both cases the let-expression is reduced and the list_iter program is
filled in for the variable list_iter in find. Due to the administrative redexes that the colon
translation did not remove, the following reductions do not correspond. We can also see
that both the untranslated and the translated find program evaluate to Some Succ(0). The
find_one example shows that it is possible to use a translation into continuation-passing style
to eliminate the operators callcc and throw in a program but at the same time preserve their
semantics.

24



4.3 Discussion

During the evaluation of the CPS translated find_one program we notice that the redex
zero? 0 is positioned at the end of the term.

E[(Avs. (Avgg. if veg then...else...) zero? v3) 0] with E = [/]
—  E[(Avgo. if vy then...else...) zero? 0] with E = [
= Fjszero? 0] with Ey = (Avgg. if vy then...else...) []
—  Esltrue] with Ey = (Avgg. if vy then...else...) []
= E[(Avy. if vy then...else...) true] with E = []

As miniFP uses the call-by-value evaluation contexts from Definition 3.2.1, zero? 0 is reduced
to true first, before it gets passed to the if-statement.

However, Plotkin’s indifference theorem [12] states that [a] (Ai.i) evaluates in the same
manner in call-by-value and call-by-name. Since the semantics for miniFP are fixed to evaluate
call-by-value, zero? 0 is evaluated first. But if we change the semantics to evaluate call-by-
name, zero? 0 will be substituted into the if-statement immediately and reduced later. So the
indifference theorem does not hold for our translation, as the evaluation for both reduction
strategies is not the same.

The problem can be traced to the CPS and colon translation of zero? a.

[zero? a] = Ak. [a] (Az. k zero? x)
zero? a: K =a: (\x. K zero? x)

In both translations the term zero? = gets passed to the continuation. It therefore always
ends up at the end of the term and there will be two possible reductions, either to reduce
zero? z first or to substitute it immediately.

To solve this problem the translations of zero? a would have to be slightly changed.

[zero? a] = Ak. [a] (Ax. zero? x k)
zero? a: K =a: (Ax. zero? x K)

The only difference between the translations is that now the continuation is positioned at the
end of the term. However, this also means that zero? z must reduce to a function expecting
a continuation. So the semantics of miniFP regarding zero? x would also have to be changed
to the following:

zero? 0 — Ak. k true
zero? v — A\k. k false if v #0

zero? x now reduces to a function that expects a continuation. Either true or false will then
be passed to this continuation.
If we would translate the find_one program using the new translation the term from the

25



beginning and the following reductions will be different.

E[(Avs. zero? v (Avgg. if vg then...else...)) 0]

—  E[zero? 0 (Avgp. if vy then...else...)]

= Es[zero? 0]

—  Eb[A\k. k true]

= E[(M\k. k true) (Avgg. if vgg then...else...)]
—  E[(Ava. if vog then...else...) true]

| (Avgg. if vy then...else...)
| (Avgg. if vy then...else...)
with £ = [-

=[]
=[]
=
=
]
with £ = []

Because the continuation of zero? z is at the end of the term, after we substitute 0 for vs,
the only redex is zero? 0. Which reduces by the new reduction rule to Ak. k true. The “if-
continuation” then gets substituted for the k. We obtain the same term as in the beginning
only now the term evaluates the same way in call-by-value and in call-by-name.

26



Chapter 5

Related Work

In [14] Reynolds gives a detailed description of the history of continuations. The concept of
continuations was discovered multiple times by different individuals. Reynolds believes this
was due to the many settings in which continuations appear.

Without explicitly mentioning them, continuations had been present in the implementa-
tion of Algol 60 making it possible to jump out of blocks. Furthermore, in retrospect also
Landin’s SECD machine [7] made use of continuations. Landin had shown a correspondence
between some of the semantics for Algol 60 and the A-calculus [8]. For his newly defined
language he then gave a call-by-value interpreter which was the SECD machine. The ma-
chine consists of a stack, environment, control and dump component. The dump stores the
remaining computation to be done and can therefore be seen as a continuation. When Landin
showed the correspondence between Algol 60 and A-calculus he introduced the J-operator to
model the jumps possible in Algol 60 [8]. The J-operator was able to capture its continuation
and can therefore be seen as a predecessor of the call-with-current-continuation operator of
the Scheme language.

The first actual mention of continuations was 1964 by van Wijngaarden during a confer-
ence. He also described a translation into continuation-passing style. However, continuations
and continuation-passing style did not become widely known until the 1970’s when Plotkin
[12], Reynolds [13] and Fischer [5] defined them.

Today many existing CPS translations are based on Plotkin’s call-by-value translation
[12]. However, Plotkin’s CPS translation introduces many administrative redexes that make
it difficult to prove properties of the translation. Plotkin therefore defined a colon translation
that reduces the administrative redexes. Using this new translation he established a relation
between reductions on source terms and terms translated to continuation-passing style.

Many different CPS translations have been defined that try to minimize the number of
administrative redexes produced by the translation. In [3] Danvy and Nielsen defined a CPS
translation as well as a modified colon translation which removes more administrative redexes
than Plotkin’s original colon translation. Using their CPS translation they give a direct proof
for Plotkin’s simulation theorem, relating a reduction in the source term to one or more
reductions in the translated term.

27



Chapter 6

Conclusions

In this thesis we have looked at continuations and their uses in programs. We have defined
the language miniFPT that contains an operator callcc and throw. We described the semantics
of miniFP™ using evaluation contexts and typed the terms.

miniFP™ was used to write programs that make use of continuations and callcc. The evalu-
ation steps of these programs were described in detail to highlight the usage and functionality
of callcc. The program find_one showed that exceptions can be achieved by saving the current
context with callcc. If later in the program the specified exception occurs, throw restores the
context saved earlier by callcc. The current context will be thrown away. The result value of
the exception will become the result of the callcc. The evaluation of the print_all program
showed that backtracking can be achieved by using two callcc functions. One captured the
printing context and the other one captured the current position in the list. The alternating
invocation of the two captured continuations made it possible to print an element and then
resume iteration over the list.

In Chapter 4 we introduced continuations and gave a translation into continuation-passing
style for the terms of miniFPT. The translation is based on Plotkin’s CPS translation. It
was proved that the translated terms are well-typed. We saw that the terms generated
by Plotkin’s CPS translation contain many administrative redexes that make it difficult to
relate a reduction in the original term to a reduction in the translated term. Using the
colon translation, however, Plotkin showed that it is possible to proof the correctness of
the translation. We have extended Plotkin’s colon translation to the terms of miniFP™ and
used it to translate the find_one program into continuation-passing style. Comparing the
evaluation of the translated and untranslated program we could see a correspondence in one
reduction due to the colon translation. Furthermore, we saw that the translated program
evaluates to the same as the untranslated program. However, during the evaluation of the
translated find_one program we noticed that Plotkin’s indifference theorem does not hold
for our translations. To solve this problem the translation of the term zero? a as well as the
semantics of miniFP regarding zero? a would have to be changed.

28



Bibliography

1]

[10]

[11]

[12]

[13]

Henk Barendregt. Lambda calculi with types. In Handbook of logic in computer science,
pages 117-309. Oxford University Press, 1992.

Alonzo Church. An unsolvable problem of elementary number theory. American Journal
of Mathematics, 58(2):345-363, 1936.

Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS transformation. In
FoSSaCS, volume 2303 of Lecture Notes in Computer Science, pages 98-113. Springer,
2002.

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theor. Comput. Sci., 103(2):235-271, 1992.

Michael J. Fischer. Lambda-calculus schemata. Lisp and Symbolic Computation, 6(3-
4):259-288, 1993.

Robert Harper and Mark Lillibridge. Polymorphic type assignment and CPS conversion.
Lisp and Symbolic Computation, 6(3-4):361-380, 1993.

Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308-320, 1964.

Peter J. Landin. Correspondence between ALGOL 60 and Church’s lambda-notation:
part I. Commun. ACM, 8(2):89-101, 1965.

Xavier Leroy. MPRI 2-4 Functional Programming languages Part I: interpreters and op-
erational semantics [pdf slideshow], 2016-2017. Retrieved from https://xavierleroy.
org/mpri/2-4/semantics.pdf.

Xavier Leroy. MPRI 2-4 Functional Programming languages Part III: program transfor-
mations [pdf slideshow|, 2016-2017. Retrieved from https://xavierleroy.org/mpri/
2-4/transformations.pdf.

Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-calculi
(summary). In Logic of Programs, volume 193 of Lecture Notes in Computer Science,
pages 219-224. Springer, 1985.

Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci., 1(2):125-159, 1975.

John C. Reynolds. Definitional interpreters for higher-order programming languages.
Proceedings of 25th ACM National Conference, 2:717-740, 1972.

29



[14] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation,
6(3-4):233-248, 1993.

30



Appendix A

Appendix

A.1 Example Harper and Lillibridge

In this section we will discuss the example Harper and Lillibridge present in [6]. In the
example the term ey demonstrates why the let-bound terms have to be restricted to values.

eo = let f = callcc (A\k. Az. throw & (Ay. z)) in (Az. Ay. y) (f 0) (f true)

If we type ey we obtain the type bool. The function f has the type Va.ao — « and can
subsequently be used as a function of type nat — nat and bool — bool. However, evaluating
eo results in 0. Because the term that f is assigned to is not a value, we start by evaluating
the callcc. This way the current continuation is saved. Later f 0 is evaluated which invokes
the continuation passing (Ay. 0) as argument. Thus f becomes (Ay. 0). Then (Ay. 0) true
reduces to 0.

To prevent this the let-bound terms are restricted to values.

31



ddo.

oMUY

leu:zvy=971

V= 0OA [ T=T]T

looq : it = %]

looq: @l =27

0D (jooq = j00q) : ‘T = L]

jooq < j0oq : (0 f) (A fix "wy) 471
ddo. 1leu: f 471 squ. 1009 € 1009 < jeu : fi-fixy "oy 4 7]
“:EH reu:g4"g wage. YEU ST FEUC JRERA 2.%. [00q < [00q : fi iy {1eu: T V]
' " w—OOA: [ 47T oo, 1009 1 fi 4 j00q : fitS]

Y120+ 0OA: S " jooq: fi‘ST > o0q:fi

ddo.

AD -

@

[ooq : (enu3 f) (0 f) (fi “fix "wy) ur ((% “fix) § moayy “xY "yY) 2ded = [ 19| 4 I

QNDN&\QQN” . . . . 3 . . . . .
aaw, 10093 N3 £) (0 f) (A iy "2¢) 40 = vOA: ST 1 % ooq ‘o, 0T P OA ((z fix) 3 moays -z "yY) 29||e> 4 T
00q : 343 £ 4 7T (D) - j0oq « 00q : (@ *fi) § MOy} "wY "Y) 2|[ed 4 T

[0oq : amuy o ¥ T wngo. 1909 1009 : JRERA m%“ [00q < |00q 4 1U0d (]ooq «— [00q) : (T “fiY) ¥ MOyl "TY "HY o I

.csmr 0+ 0p: f 47T 2.?. [00q < 00q : (% "fiY) ¥ MOJyl "TY - 0D (j0ooq < [00q) : Y ‘T

TSP oA S — joog : (x i) 3 moay3 100q : T ‘T
Ec” [o0oq < [00q : T “fiy 4 2] o, 3u0D (looq < [0o0q) 1y 4 2]
iva, 10091 T 100 : fi'e] " 213 30 (jooq  [00q) :
€12 |00q: T

100 yJo adA],

32



VA g
VA qim
Ve g
VA qim

[
[
[
[

(enua [) (0 f) (fi fix ~ay) w [] = [ 39] = T

(ena3 ((@ “fix) ([2]% "wy) moays ~ax)) [] (A Y "aY) = & qamm
(enaa ((z fix) ([2]Tg ~2x) moays “ax)) [] (i -fix ~2x) = &7 qm

UTeWaI SO[ILI UOIPONPal YT,

[o]7a
[ena (0 “AiY)]vg
[(en13 (0 *fx)) (0 (0 “Aix)) (A “fix "2x)]7g
[(enua [) (0 f) (A fix ~ax) ur (0 “fix) = J 3°(]7q
[(0 .méwﬂl
(0 “fix) ([x]*a "2x)«
[(0 “fix) ([z]tg "2Y) MmoIyd|er
[0 ((z “fix) ([z]'7 ")) Mmoayy "zY)|eg=

[(enaa ((= i)

T8

T
*

[]=27 wnm  ([2]tg 2x) moays ~xy)) (0 (= fix) ([x]Tg xy) moayy -ax)) (fi fix "wY)]|%q
[]= 27 unm [(Gnaa f) (0 f) (A -fix ~2x) ur (2 fix) ([2]Tg 2Y) modyd oy = f R|[eg=
(enay f) (0 f) (fifix ~ax) ur [] = f 391 = T qa
(e f) (0 f) (fifix ~ax) ur [] = [ 18] = T qim
(e f) (0 f) (fi-fix "zy) w [[] = [ 18] = T qym
[] =& qnm [(Gra1 f) (0 f) (A -fix ~xx) ur ((2 fix) 3 moays -z "yY) 23|82 = f ||z

Dulg =39

=4

[(z -fiy) ([z]tqg ~zy) moyy oy T
[([z]7 ~2x) ((z fix) § moayy "z “yY)] T
[((z “fix) 5 moayy wy "y ) 29||ed] 7=

‘pesuerpun

"oNeA © jou SI J/ 0} pPouSIsse WIId) dY) 9SNBI( SIXOIUOD INO PUIIXS 0} ARy om ojdurexo SIy} Ioq

:09 Jo uoryenyeayq

33



A.2 Proof of Proposition 3.3.1

Proposition 3.3.1. For all terms t € miniFPT, if =t : o and t € Values then there exists a
unique E with either

1. t = Ele] and e reduces by head reduction
2. t = Elcallcc u] and E|callcc u| reduces by context reduction
3. t = E[throw u v] and E[throw u v] reduces by context reduction.

Proof. The proof is by induction on ¢ and a case analysis of ¢.

Case Cons(a,b) :

a ¢ Values : From induction there exists a unique E’ with either 1. a = E’[¢/] and ¢’
reduces by head reduction or 2. a = E’[callcc ¢] and E’[callcc ¢ reduces by context
reduction or 3. a = E’[throw ¢ d] and E'[throw ¢ d] reduces by context reduction.

1. Then there exists a unique E and e such that Cons(a,b) = E[e] and e reduces
by head reduction. Because E = Cons(E’,b) and e = ¢’

2. Then there exists a unique E such that Cons(a,b) = FJ[callcc u] and Fl[callcc u]
reduces by context reduction. Because EF = Cons(E’',b) and u = ¢, we
have Flcallcc ¢] = Cons(E’[callcc ¢], b) which reduces by context reduction to
Cons(FE'[c (\x.E|x])],b).

3. Then there exists a unique F such that Cons(a, b) = E[throw u v] and E[throw u
v] reduces by context reduction. Because E = Cons(E’,b), u = cand v = d, we
have E[throw ¢ d] = Cons(E’[throw ¢ d], b) which reduces by context reduction
to ¢ d.

a € Values : The proof is the same as for the case a € Values only now the induction
is over b.

Case zero? a :

a € Values : Take E = [] and e = zero? a and zero? a reduces by head reduction.
Now we show that E is unique. Suppose there is another context E and term é
for which zero? a = E'[é]. E can only have one other possible form:

1. E = zero? []
Then € = a but a does not reduce. So E can not be of the form and E.
So FE is unique.

a ¢ Values : From induction there exists a unique E’ with either 1. a = F’[¢/] and ¢’
reduces by head reduction or 2. a = E’[callcc ¢] and E’[callcc ¢] reduces by context
reduction or 3. a = E’[throw ¢ d] and E'[throw ¢ d] reduces by context reduction.

1. Then there exists a unique E and e such that zero? a = Ele] and e reduces by
head reduction. Because F = zero? E’ and e = ¢'.

2. Then there exists a unique E such that zero? a = Flcallcc u] and Flcallcc u]
reduces by context reduction. Because E = zero? E’ and u = ¢, we have

Elcallcc ¢] = zero? E’[callcc ¢] which reduces by context reduction to zero? E'[c

34



3. Then there exists a unique E such that zero? a = E[throw u v] and E[throw u v]
reduces by context reduction. Because E = zero? E', u = ¢ and v = d, we
have E[throw ¢ d] = zero? E’[throw ¢ d] which reduces by context reduction to
cd.

Case Succ(a) : From induction there exists a unique E’ with either 1. a = E’[¢/] and ¢/
reduces by head reduction or 2. a = E’[callcc ¢] and E’[callcc ¢] reduces by context
reduction or 3. a = E’[throw ¢ d] and E'[throw ¢ d] reduces by context reduction.

1. Then there exists a unique E and e such that Succ(a) = E[e] and e reduces by
head reduction. Because E = Succ(E’) and e = ¢'.

2. Then there exists a unique E such that Succ(a) = E|callcc u] and Elcallcc u| re-
duces by context reduction. Because E = Succ(E’) and u = ¢, we have E|callcc ¢] =
Succ(E'[callcc ¢]) which reduces by context reduction to Succ(E'[c (Azx.E[z])]).

3. Then there exists a unique E such that Succ(a) = E[throw u v] and E[throw u v]
reduces by context reduction. Because E = Succ(E’), u = ¢ and v = d, we have
E[throw ¢ d] = Succ(E’[throw ¢ d]) which reduces by context reduction to ¢ d.

The proof for the case Some a is similar.

Case a ; b : There exists a unique F with a ; b = Ele] and e reduces by head reduction.
Because E' =[] and e = a ; b.

Case if ¢ then a else b :

¢ € Values : Take E =[] and e = if ¢ then a else b which reduces by head reduction
because c is of type bool so either true or false. Now we show that FE is unique.

Suppose there is another context E and term ¢ for which if ¢ then a else b = E[¢].
FE can only have one other possible form:

1. E =if [] then a else b }
Then € = ¢ but ¢ does not reduce. So E cannot be of the form and E.

So F is unique.

¢ € Values : From induction there exists a unique E’ with either 1. ¢ = E’[¢/] and ¢’
reduces by head reduction or 2. ¢ = E’[callcc d] and E’[callcc d] reduces by context
reduction or 3. a = F’[throw d e] and E’[throw d €] reduces by context reduction.

1. Then there exists a unique E and e such that if ¢ then a else b = Ele] and e
reduces by head reduction. Because E/ = if E’ then a else b and e = €'.

2. Then there exists a unique E such that if ¢ then a else b = E|callcc u] and
Elcallcc u] reduces by context reduction. Because E = if E’ then a else b and
u = d, we have E[callcc d] = if E'[callcc d] then a else b which reduces by
context reduction to if E'[d (Ax.E|x])] then a else b.

3. Then there exists a unique E such that if ¢ then a else b = E[throw u v] and
Elthrow u v] reduces by context reduction. Because E = if E’ then a else b,
u =d and v = e, we have E[throw d e] = if E'[throw ¢ d] then a else b which
reduces by context reduction to d e.

35



Case a b :

a ¢ Values : From induction there exists a unique E’ with either 1. a = E’[¢/] and ¢’
reduces by head reduction or 2. a = E’[callcc ¢] and E’'[callcc ¢] reduces by context
reduction or 3. a = E’[throw ¢ d] and E'[throw ¢ d] reduces by context reduction.

1. Then there exists a unique E and e such that a b = E[e] and e reduces by
head reduction. Because E = E’ b and e = €.

2. Then there exists a unique E such that a b = E|callcc u] and E|callcc u| re-
duces by context reduction. Because E = E’ b and u = ¢, we have E[callcc ¢] =
FE'[callcc ¢] b which reduces by context reduction to E'[c (Az.E[z])] b.

3. Then there exists a unique F such that a b = E[throw u v] and E[throw u v]
reduces by context reduction. Because E = E’ bju = ¢ and v = d, we have
El[throw ¢ d] = E'[throw ¢ d] b which reduces by context reduction to ¢ d.

a € Values and b ¢ Values : The proof is the same as for the case a ¢ Values only
now the induction is over b.

a,b € Values : Take E = [-] and e = a b which reduces by head reduction because a is
a function type and b of the corresponding argument type. Now we show that F
is unique. Suppose there is another context E and term é for which z = E [€]. E
can have two possible forms:

1. E=a[]
Then é = b but b does not reduce. So E cannot be of the form.
2. E=1[]b

Then é = a but a does not reduce. So E cannot be of the form.

So FE is unique.
Case a + b : The proof is similar to the proof for the case a b.

Case match list with Nil — a | Cons(hd,tl) — b : The proof is similar to the proof of the
case if ¢ then a else b.

Case let z = v in b : Take E' =[] and e = if ¢ then a else b which reduces by head reduction.

Case callcc a : There exists a unique E with callcc a = FEJcallcc u]. Because E = [-] and
u = a. Then Flcallcc a] reduces by context reduction.

Case throw a b : There exists a unique E with throw a b = E[throw u v]. Because E = [,
u=a and v = b. Then E[throw a b] reduces by context reduction.

O

36



A.3 Type derivation of list_iter and find

In this example we will first give a type derivation for list_iter. Then assuming the type for
list_iter we will give the type for the find program. The two programs and their types are
defined as follows.

list_iter : (nat — unit) — list — unit
list_iter :== plist_iter \f.\list. match list with Nil — ()
| Cons(hd,tl) — f hd ;list_iter f tl

find : (nat — bool) — list — Maybe nat

find := Ap. Al callcc(Ak. list_iter (Az. if p x then
throw k& (Some z) else ()) I; None)

37



D9

381 eu s py e = €]
s syt = g
HUN < Jeu : J‘pun < 3si| < (1un < jeu) : 42307251 ‘T = 1]

: - €
ddp. nun 7 f 4097981y 4 €1

wa, AR WUN 381 f 4o gs] 4 BT
€128 : 12 &S. uun < Jeu: f 4 €7 oa. HUN 1381 (MU < 3eu) : 493179S1) 4 €]
mh S }un < jeu: % . mh S HUN < 1Sl| < Atc: — Hmcv : 14971715

@

UUN < 3s1| < (Uun < eu) : g [ 297951 ¢ py f = (13 py)suo) | () = IIN yum 7s2) ydrew gsu)\f Y uapgsiyrl 4 O
HUN <= 3s1| 277 [ 42927952 py £ < (13°py)suo) | () < [IN YHM 3s2] ydrew sy 4 L]

. sqo- wun g f 0907981t py f < (12°py)suo)) | () < [IN YHm 752] yorew — asi| : 952 ‘T ]
e, MUN g [ aoprgsat py f 4381 2 1 ARU Py e o, UM O AT, S50 AT
. @ ddo. wun: py f 4¢3 ) eI 238l 1 351
C3eu: py 4] uun 3eu: [ 4 €]
o ENEETHZE o €12 uun <« 1jeu: [

:19171s1] Jo odAT,

38



x.ﬁ

22Un.

leu:x‘vy =197

U0 Jeu aqhe|y 1 ¥ ‘ET =TT

W =40

[ooq < 1eu:d‘I1=27]

2UN < 3sI| < (Uun <—1eu) :JP1S ‘T = 1]

uun < 1eu: () asjp (x swog) y Moyl usyr = d Ji "Ty o V]

T uun : () asjp (7 swog) ¥ moayy usyy = d JI 16U : TV J
wun: () 441 mou. uun : (T swog) ¥ moayl H $J . [0oq:x d 48]
" 1eu agAe|y : T dwoS — 4] JU0d 1eu 3qhely Y H 9T oo, YRUT 49T o, 100q < 3eu: dq91
oo 1eu:x 48] o S 12 3u0d 1eu aghep : y T S1>3eu:w " ¢I>100q<—1eu:d

AD

SI>1eu:x
10,

18U 3qgAhe| < 35I| + (jooq < 1eu) : (suop ¢ 7 (() asje (x swog) y Moayy usyy = d y1 "xy) 9IS Y )I2[|ed Jy-dy 4 T ]

ésm.ﬁ. 18U 3qgAe| < 11| & (SuopN ¢ 7 (() asj9 (z swog) ¥ Mmoayl usyl = d JI “TY) J917ISI| "Y' )ID||eD JY — |00q + jeu : d ‘T ]
' — 1eu aqhey : (suop ¢ 7 (() osp (z swog) i moayl usyl x d JI "TY) J9TISI| "\ )I||ed 4 1s1| : ]G
w%” 1eu aqAe|y < 1u0d 1eu aqghelp : suop ¢ 7 (() asjp (x swog) § Moyl usyy = d I "TY) JBUTISH Y o €T
duron. " 1eu aghely :auop ¢ (() esjp (% awog) ¥ moayl usyy T d i "TY) J9ITISI|  JUOD 1eU BB : 3 ‘€T
uow. Yeu aghey : duON H 7 T . nun : 7 (() s (x swog) y moayl usylr = d y1 "wy) 9ISl 4 7 T
. o, SUEIATT o Wun 38tz () 3sp (¢ awiog) i moayy uayy & d g1 aY) Jarisl 4 P T
IRy . @ Lo Wun <= 3s] < (Bun < 1eu) s aeIsl + T T

V12 1un < 1si| < (3un « 1eu) : J9173sl|

:puyy jo adAq,

39



A.4 Evaluation of find_one

In the following we will evaluate the find_one program using evaluation contexts. The pro-
gram makes use of the list_iter and find programs from Leroy [10] which are defined as follows.

list_iter :=plist_iter. A f.Alist.match list with Nil — ()
| Cons(hd,tl) — f hd ; list_iter f tl

find :=Ap.Al. callec (Ak. list_iter (Az. if p x then
throw & (Some x) else ()) I; None)

The two programs are combined into the program find_one which given a predicate and a list
will iterate over the list. If an element is encountered that fulfills the predicate the element
is returned. For better readability we abbreviate the list_iter program with iterPrg.

iterPrg :=plist_iter. A f.Alist.match list with Nil — ()
| Cons(hd, tl) — f hd ; list_iter f tl

The program find_one is given by:

find_one =let list_iter = iterPrg
in (let find = Ap.Al. callcc (Ak.list_iter (Az. if p x then
throw k& (Some x) else ()) I; None)
in find (\z.zero? Pred ) Cons(Succ(Succ(0)), Cons(Succ(0), Nil)))

As predicate we have chosen the function (Az. zero? Pred x) where Pred is the function that
returns the predecessor of its argument.

The evaluation shows that callcc saves the context Fo which is simply a hole. The first
element of the list is not Succ(0) therefore the result of the if-statement in the find program
is (). Because of the composition () gets thrown away and iteration continues over the rest
of the list. The second element of the list is Succ(0). The predicate function evaluates to
true and evaluation continues with the “true”-branch of the if-statement. throw throws away
the current context and applies the continuation (Az.Es[x]) captured by the callcc to Some
Succ(0). Some Succ(0) gets passed to the hole of Ey and since Fy was only a hole, Some
Succ(0) becomes the result value of the find_one program.

40



[suon (((IN ‘(0)22ng)suo) ‘((0)22ng)22nG)suo)y (() aspe (z swos) AEN,@R,«V MOJYY UBY1 T (X paid i049Z "TY) 41 "xY) Bad4a1) Am.@«.&«:mrﬂNT
[] = o s
[uon + ((IIN *(0)22ng)suo) *((0)22nS)2n5)su0) (() 9spp (= awos) ([2],7-Y) Mody3 usy3 = (X paid (019Z "wY) 1 "wY) Siddom] i+

“JUWINSIR S,23||ed 0} juowndIe se passed Uay) SI UOTIRNUIIUOD AT,

"G ¥XOYU0D JUOLIND oY) Bulars Aqoroyy ([Z] 4 TY) UOIRNUIIUOD ST JO PIOY $305 2D|[ed MOY 910N

[] = o umm

:ENM&/\V (suoN ¢ ((JIN “(0)22ng)suo) ‘((0)22nG)22ng)suo) (() ase (T dwog) ¥ MoIyl Uyl T (X paid j0I9Z "TY) JI "TY) Sid4en .@;«:NNT
[] = o unm

[(Buon + ((IIN *(0)22nS)suo) *((0)22nS)29nG)su0) (() 3s|p (= dWOS) & MOY3 UBYY T (X Paid {049Z “TX) 41 “TX) Budadl "X 23)|ed] 57 4=
[] = . yym

[((IN “(0)22nG)suo) “((0)22ng)2onG)suo) ((3uoN 7 (() 8s|o (& BWOG) & MOIYL USYL & (X paid (049Z "TY) JI "TY) BidsoM "yY) 22|[ed “|\)] T =
((IIN *(0)22ns)su0) *((0)22ng)2ong)suo) [ = 7 Uy
[(suoN : 7 (() aso (% swoS) 3y Moyl UYL & (X paid jO4IZ “TY) 1 "TY) Bid4an "yY) 29||ed “)Y] i ¢
(N “(0)22n5)su0) *((0)22n5)2anG)suo) [] = o7 yra
[(x poad josz ay)((auop 1 (() 9spp (z 2wiog) 3 mouys usys z d j1 "xY) BidsRm “yY) 2|[ed *)\dy)] 7=
[] = & pm
[((N *(0)22n5)su0) *((0)22n5)2nG)su0) (x paid jodez'wy)((suoN : 7 (() 3sfe (% wos) & mody3 usyy = d J1 ) Sududd HX) |82 7y dy)]o
[ = & uim
[((IN ‘(0)22ng)su0) “((0)22nG)2onG)suo) (T paid 049z TY) puly ul
(suoN * 1 (() @sje (# swog) & moayy syl = d yi “xy) Bugaan ) 20||ed |\ dy= puly 13|] i+
[] = & wim
[(((;)N “(0)22nG)suo) ¢((0)22nG)29nG)suo0) (T paid §049Z°TY) puly Ul
(duop = 7 (() asjp (z awog) ¥ Moyt usys = d i “xY) L2327957] "YX) I0]|d "]\ "dY= pulj 13]) ul BidIe1 = Ja11sl| 19||57

41



Eovuu:mvuu:mﬁavw\_n_ \..o\_wN.a«z@mH
auoN (((I'N ‘(0)22ng)suo) soayd Sidden) [| (ifiv-ay)) (Afix'ay) = o s

[() ®sl2 (((0)22nG)22nG swog) ([x], 7 TY) Moays usy3 ((0)22nS)2dnG (X paid {049z “TY) ]
auoN (((I'N ‘(0)22ng)suo) saayd Sidsen) [] (fifiv-ay)) (Afix'ay) = oo qsm

[((0)22ng)29ng (() 3sjo (= dwog) ([#] 57 wY) Moays usYy = (X paid (0IZ “xY) 1 "aY)] i =

"((0)22nG)20ng 03 31 A[dde pue ¥29yd I0J OPOD O} UI [[ 0} SARY M 9I0JPIAY], "worysodurod o) jo 3red 4SIY O YIIM SONUIIIOD WOTYRNRAR

suoN [] (firfiy-ay) = o qam
[((N “(0)22nS)su0) 43y> Buda3) (((0)22n5)22nS HoaYy2) (firfiy X)) o4
ouoN [-] (fi-fiy ) = o qum
[(IIN“(0)22nG)su0) ¥2yd Buduen < ((0)22nG)2NG >I3Y] 77 <
suoN [] (firfiy-ay) = o qum
(12 123y2 Baduaent ¢ py H3Yd <= (17 ‘py)suod | () <= IN yum ((JIN “(0)22nG)suo) ¢((0)22nG)2dnG)suo) yarew], i <
SUON [] (A-fix ) = i yym
[((IN “(0)22nG)su0) ((0)29n5)29nG)su0d (17 %499Yd Baddddt * Py 499y = (12 Py)suod | () < [IN YHm 3s2] ydrew 52X )] o =
suoN (((IN ‘(0)22ng)suo) *((0)2ang)2ang)suo) []) (firfix wy) = oo qim
(12 %99y2 Badaont & py 323yd <= (12 py)suo) | () ¢ |IN Yum 252) yorew sy o<

‘[[eD 9AISINDAI A} AQ PoIRISUAS 9POd J93I~3Isl| Y} 10] uoryejuasaidar se ureSe pasn st 84d4o1 SIOULIOYIN]

(() ®spp (% swiog) ([#] 57 TY) MOIYY UYL T (X paid JOIIZ “TY) JI "TY) = ¥I9YD 39 AJLIE[D JO SUOSEDI 104

auoN (((I'N “(0)22ng)suo) ‘((0)22n5)29nG)suo) [-]) (fifix-xy) = i qam
[(() @sp2 (2 swog)

([7] e wx) moays usys = (x paig josaz "xX) 41 aX) (17 f 42127950 - py [ < (12 °py)suod | () < IIN yum gs1] yorewgsuyx fx o9 gsii)] o=
[]= o T

42



suoN (((IN “(0)2ans)suo) []) (firfix)) (fifix:ax) = 17 qnm
[(() #sp> (z swog)
Qimm.a/\v MOIY1 UBY} = (X paid jo4oz "x\) i "xY) (13 £ 40927351) ¢ py [ + (72‘py)suo) | () < [IN YyHm 257) ;BmE.wm.s/\.x,«gmw.ﬁww.sé:mn

So9yd pue Sid491l [joq IO 9POd ) UL [[J M SIY} Op O,
“oayd yuewmngre 481y syt 03 parjdde St 84g4oH 910J0I10Y ], "uoIyIsoduIod oY) JO JUSWSD PUOIAS 9} JO UOIFRN[BAD 9} [IM ONUIFUOD A\

auoN (((IIN “(0)2ang)suo) yaya Buguan) []) (fifiv-ay) = o qym
()] gy

suoN (((IN ‘(0)22nG)su0) x9yd Buduom) []) (Afixxy) = o Yy
[() (Afixax)] g i

suoN (((1IN “(0)22ng)suo) yaayd Bugasn) [] (Ai-fix xy)) (fitfiv-zy) = o UM
(0]«

auoN (((I'N ‘(0)22ng)suo) soayd Sidden) [| (fifiv-ay)) (Afix'ay) = o qam
[() asj2 (((0)22nS)22nG swWog) AENM&,«V MOJY1 USY3 3S|ey E@@H

suoN (((IIN “(0)22nG)suo) 423y2 Biduan) (() aspe (((0)22n5)29nG dwios) ([x] 57-xY) moays uayy [] y1) (fifix-ay)) (A-fix-ay) = o yym
?m_mu;mmT

suoN (((I!N ‘(0)2anS)suod saeyd Budem) (() s (((0)22nS)2ans swos) ([z],7°wY) moays usys [-] 1) (Afix-ay)) (f-fix-ax) = o ym
[(0)2ang ¢ossz] 5=

suoN (((IIN *(0)22ng)suo) eyd Bidsan) (() #spp (((0)22n5)2ons swos) ([z] a7 xy) moayy uays [Jgosz y1) (fifix-y)) (ffixay) = o ya
[(0)22ng] 774

) (firfix-ay) =, qam
[((0)22nG)22nG paud], 7=

auoN (((I'N “(0)22ng)suod ¥aays Sigaan) (() aspp (((0)22n5)2ong swos) ([],57 wY) moays usyy [] ) (firfix-xy)) (firfiv:oy) = oo qum
[((0)22ng)22ng paid moLwN_omAl

auoN (((I'N ‘(0)22ans)suo) saayd Bigaam) (() s (((0)22n5)29nG dwog) ([2],a7°wY) modys uayy [-] y) (firfix-ay)) (Afix-zx) = oo qym

auoN (((I'N ¢(0)22ng)suod) 32ayd Sigsam) (() asp (((0)22ng)2ong swog) AEN,@H/\V Moyl uayi [Jgousz y1) (A-Aiy zy)

43



(0] T4

auoN (((I'N 23y Saddan) (() aspp ((0)22nG swog) ([z] i wy) moayy uayy [-] jossz y) (fifix ay)) (firfix)) (Arfix-ox) = oo qIm

[(0)22nS paud] ¢ d=
auoN (((1IN 3y Bagau) (() ospe ((0)22nG swog) ([x], 7 xY) moays usyy [-] y1) (fi-fiv-ay)) (fi-fix)) (fi-fix-ay) =, q qum
[(0)22ng paid \.\oLwNTLmAI
auoN (((I1N »23y2 Baddant) (() asjp ((0)2anS dwog) ([2],a7-wy) modyy uayy [-] ) (firfix-ay)) (fifix)) (Afix-ax) = o s
[(0)22nS (7 paid moLmN.&/\zimH
suoN (((IIN 3yd Biaduan) [] (firfix-ax)) (fifix)) (f-fix-ax) = o o qaM
[() 3s® ((0)29nS Bwog) ([x],7 xY) Mmoiys usy (0)2onS (X paid {04z “TY) g T4
suoN (((IIN 3y2 Siaduenr) [] (A-fix-xy)) (fi-fiy)) (frfix- o) = o i qam
[(0)22nG (() ®sje (2 swos) ([2],7 ) Mmoays usyy & (X paid (0IZ ") J "\ )] H=
suoN ([-] (fifix)) (firfix-ay) = ;i qim
[(1I'N 123Y2 Bagaen) ((0)2onS >oayd) (Ai-fix )], H
auopN ([-] (fifix)) (firfix-ay) = ;o qIm
[IIN %23y B1d4a1 ¢ (0)22NnG >428Yd] /7 ¢
auopN ([-] (fifix)) (firfix-ax) = ;o qIm
[12 %93y2 Baduont & py %23yd < (17 ‘pyy)suo) | () «= IIN yam (IN (0)22nG)suo) yarew], o7«
suoN ([] (firfiy)) (fifix-awy) = ;o qym
[(1IN“(0)22nG)suo)y (2 %29y Bagdan * py %29y «— (17 °py)suo) | () <= IIN Yam 152 yarewgsuyy )], o=
suoN (((IIN “(0)2ang)suo) [[]) (Aifix)) (fifix-ay) = | o7 qym
(

T II
[17 393Yd Bagaen ¢ py 3o9yd <= (12 py)suo) | () < |IN YHm 252] ydjew gs)\] i

‘[[e0 9AISINOAI 91} AQ PaIRISUSS 9POd Ja1-3sl| Y} I0] uoryejussardal se
posn st 814491 pue (() 8sp (2 dwog) ([#],57°TY) MOIY3} UdY} T (X paid (049Z "TY) I “xY) jussordor 0} ureSe pasn st ¥9yd

44



[] = o unm
[((0)22ng swog)] a7 ¢

"20||ed Aq IOI[IBO POARS SeM R} 5] JXOJU0D UOIJRN[BAD A1} $9103s01 pue .47 Jo y3dop oy Jo no sduml moiyi moy 9d130N

((0)22ns swos) ([z],7 2Y)+
auoN (((IIN o3y2 Siagsem) [] (Afix-wy)) (firfiy)) (ffivay) = , o qam
[((0)22ng awos) ([x] 7-xY) moyy], o7+
suoN (((IIN o3y2 Baguan) [] (Afix-ay)) (Ahy)) (f-xax) = , o qum
[() 3sl2 ((0)22ns swog) ([x] a7 wY) Mmoays uayy anay yi] ) ;7=
auoN (((IN 23y2 Baguan) (() asp ((0)22ns dwog) ([z] a7-xx) moiys usys [] y1) (firfix ) (fifix)) (Afix-ax) = o o qim
TE:S@T
auoN (((IN 123y Baddan) (() aspe ((0)2onG swog) ([x] a7 wy) moays uayy [-] 1) (firfix-xy)) (A-fix)) (f-fix-ay) = o qam
[0 \..o‘_mN_SmH
auoN (((I'N 3y Bugaau) (() 3s|2 ((0)22nG dwog) ([x] 57 2Y) moays usyy [-] jossz y) (firfixax)) (firfix)) (frfix-ay) = oo qum

45



A.5 Evaluation of print_all

In [10] Leroy defines a program printall which prints all elements in a list that fulfill a certain
predicate. The usage of callcc in this program makes backtracking possible so that after
printing an element the search for further elements that fulfill the predicate continues starting
from the last found element.

The program printall makes use of the earlier defined programs list_iter and find. Inside
the find program, however, a second callcc is added.

find :=Ap.Al. callec (Ak. list_iter (Az. if p x then
callcc (AK' throw k (Some (z, k') else ()) I; None)

In miniFP™ Leroy’s program printall is defined by combining the programs printall, the
modified find and list_iter into a program print_all. For better readability the code for list_iter
and find is replaced by the placeholders iterPrg and findPrg respectively. The program printall
is executed with the predicate function (Az.zero? Pred x) and list Cons(Succ(0), Cons(Succ(0),
Nil)).

print_all = let list_iter = iterPrg
in (let find = findPrg
in (let printall = Ap.Al.match find p [ with None — ()
| Some (z, k) — print_string x ; throw k ()
in printall (Az.zero? Pred x) Cons(Succ(0), Cons(Succ(0), Nil))))

As before Pred is the function that returns the predecessor of its argument. Furthermore as-
sume that the reduction rules for match are changed to accommodate for None and Some(z, k)
and that print_string is a function that prints its argument.

The evaluation shows that the use of the two callcc’s makes it possible to jump between
printing and iterating. If an element fulfilling the predicate is found, throw invokes the
continuation of the outer callcc with the element passed as argument. The context of the
outer callcc is restored and the element is printed. However, at the moment an element was
found, the inner callcc captured another continuation which saved the context and thereby
the position in the list. After the element is printed this continuation is invoked and iteration
over the list resumes from the saved position.

46



() 3 moayy ¢ z SuuisTauud «+ (y ‘x) swog | () < suoN yum [] yorew = T Yim
[puoN * (1IN “(0)22nG)su0) ‘(0)22nG)suo) (() aspp (((,4 ‘=) awog) My Moyl * Y) 23|[BD UYL T (& paid ;043 L) i “Y) Bidan | Ty

udy goryenurpuod yurid oty ([x]T7 Ty ) [red [[im om pojurid o wed SUI)oUIOs I M

52]||BD I9INO0 BT} JO JXAIU0I Y[} $9109sa1 ([x] L7 xY) osneoog pojurid st x o) UsY) (¥ ‘) swog ULIo] o) Jo ST passed jquoumsre a1y I

‘() ¥ moay1 ¢ = BuuisTauud < (y‘T) swog | () < suoN yum [-] yolew ST YPIYm T 1X0JU00 a1} 09

guoumSre st ssed [[im ([2] 147 2Y) UOTIRNUTITOD AT, "IX9U02 aures o) 01 dwmnl o) 814421l Jo worpenyesd £10as 10y dfqissod 1 soyeur ST T,
“UOTYRN[RAD S[OYM O} INOYSNOIY) UOIdUNJ oY) apisur sAeys ([z]177°2y) ‘S1d4a1l 0} [[ed AI9Ad IO0J OUIES OT[}) SUTRUIAI TOIJIUNJ 1) dSNBIIE
([] T zY) ToIyenUIIU0D 9} SoUI0da(q 44491l 913 03 passed UOTIOUNJ ST} SPISUI I ) OS ‘Y JO IUIIIMDIO AI9AS 10 PAINIISANS ST

UOTIRNUIIIOD Y], 33||eD JO UOIOUN] oY) 09 juewndre se passed s ([x]Tg7 TY) TWOIYeNUIIUOD JUSIIMD 1} ID||eD I9IN0 1) Suljenyessd Agq

() ¥ moayy ¢ = BursTuud <— (¥ ‘@) swog | () < suoN yum [-] yortew = Tz qIm

[([z] a2 (duoN * (1IN *(0)22nS)suo) *(0)2onS)suo) (() asp (((,4 ‘) BWOS) & MOY3 * ) 9]|ed USY3 T (T Paid (04RZ'TY) 1 "TY) BudsdM 4|1«
() 3 moayy ¢ = BunsTuud < (3 ‘@) swog | () < suoN yum [-] yortew = T ym

[(euonN * (1IN “(0)22nS)suo) ‘(0)2anG)suo) (() asfe (((,# ‘*) dWOSG) ¥ MmOy " X) 29|[eD UYL T (T Paid jOMRZ'TY) JI L) Buduonl “yY) 22||ed] o7«

91 03 parddns symowmSre om) oY} UI [[J oM SIOJOIS], “Sidpuly 9} [HIM SONUIIUO0D TOTYeNRAT]

[] =& wm
[() % moay3 ¢ = SuisTquud < (y ‘@) dwog | () < duoN yum ((JIN ‘(0)22nG)suo) (0)22nS)suo) (& paid ;04z"TY) Sidpuly YdIew ]«
[] =& wm
[((((IN ‘(0)22ng)su0D) ‘(0)22nG)suo) (T paid j049z'wY) ||eruld ul
() ¥ moayy ¢ = SuuisTuud < (y ‘x) swog | () <+ suoN yum ) d puly yorew )y dy = [jeauld 13]) uiBidpuyy = puy 19|) uiSigsen = RSl 1|7

‘-
Aq pojousp are sdojs uorponpal o[dIYNIN "POASIYDE ST SUTDRINIR] MOT MOT[S JeT[} ToTyen[ead o) Surmp sdoajs juejrodwr o) MOYS ATUO T[IM dAN

47



“)X09U0D A JO d[oT] a1y} ojul passed way st PPIYM (5°dy ¢()oong)swog juewnsre o) 01 FHdy woryenuryuods-jurid oty

gurd[dde Aq suoddey sty [, '22||€d I19IN0 oY} JO T4 1X0JU0D 9} SOI0)SOI PUR T4 JXOIUO0D JUDLIND ) ARMR SMOIYI MOIY]

() ¥ moayy ¢ = SuisTuud < (y‘x) swog | () < suoN yum [-] yortew = g yim
[(*°%y *(0)2an5) swog] o7+
((*°%y ‘(0)2on5) awog) Hiridy«—

() o moaya ¢ & SuuasTauud « (y ‘) awog | () < suoN yum auoN (((IIN ‘(0)22nS)suoD >aayd Biguen) [-] (A-fiy-ay)) (fi-fiy-wy) yorew = &g qym
[((*2%¢ *(0)22nS) swiog) *itdy moaya]es

“3SI[ O} UI JUSID[D POIAD SB[ Y} 0}
y9043590q 0y oyqissod 91 Surspewr £qaIot[y s1] o) ur uoryisod oY) soA®S 41 osnesaq °dy uoryenuIynod oYy SUI[[ed Oq [[IM oM
9I0J0I9 ], "JUSWID[O JUSLIND ST} IojJe SUILIR)s ISI[ oY) JO 1SOI 9] IoA0 sojeta)l Yorym (I ‘(()22nS)suo) %a3yd Sid4an Yimm
SOWINSAI UOTYeNn eAd 9s191d 910w 9 0T, T4 IXOIU0D Y} UIYIIM SOWINSII UOTyen[eAd )1 0} passed s1o8 anyea © Jr Lem ST,

"T5] 9X0UO0D JUSIIND J) SoARS 32||ed Iouul o) Aq painjdes ([x]%s xy) UOIYenuUIInod o1,

() 4 moayy * z BuasTaund «— (3 ) swog | () <= duoN yum auoN (((IIN (0)22nS)suo) s2ayd Siguem) [] (A-fixxy)) (A-fixwy) yorew = 7 qim
[([#]ezr2x) (((4(0)22ns) dwog) ¥ty moayy - Y )| % <

() o moaya * & SBuuasauud « (y ‘) dwog | () < suoN yum auoN (((IIN ‘(0)2anS)suodsteyd Biguan) [] (Afix-zy)) (fi-iy-zy) yorew = & yum
[(((1*(0)22n5) Bwiog) 3ty moays - 3y ) 23||e] %7 -

() & moayz * & Buuasaund < (i ‘) swog | () <= auoN yum suoN (((IIN ‘(0)22nG)suodiaeyd Buduan) [-] (Aifixzy)) (A 2Y) yorew = T qim
[(0)22nG (() ®sjo (((,% ‘@) swog) %y moay3 * yY) 298D Uyl & (& paid j0IdZ'TY) J "TY)] e <~

(IIN “(0)22nG)suo) 32ayd Zid4a1 ¢ (0)29nG 29y uorIsodurod

a1[} Jo 3Ted JSIT Y} [IIM SONUIUOD UOIJRN[RAD OS PUR (j2‘PY)SUOT) 9SeD PUOISS T} M sttt Sidlo1l 03 parddns 9s1] oY T,
‘[[ed 9AISINDAI A} Aq PajeIauas opod oY) 10y uorjejuasaidal se ureSe

Sugaam osn opy * (() aspp ((( % ‘m) swog) ™y moay3 * zY) 22||ed Usyl T (T pald j049Z'TY) I "TY) = YI3YD 19] A[IRPRAT 10
‘quowngre sj1 oy pordde pue ur pay[y st S4g4o} 10 0pod oy, “uoryisodwod oy jo jred ISIY O YIIM SONUIIUOD UOTJRI[RAG]

48



“)ST] 9} I0A0 SUITRISI SWINSII 0) ID||BD IOUUI 9} JO JXIIU0D 9 0} }orq

dum( woy) pue Suryyowos jurid o3 d3||ed I9IN0 9} JO 1xa3u0d 9y} 03 duml 03 a[qIssod 941 SyeU 20||ed I9UUI PUR IO Ue JO aFesn oY T,
"9ST[ 1]} JO 9SO O} IIM SNUIIUOD [[IM UOIJRN[RAN “POIOISOI JXII0D

S} PUR PAS[OAUL ST 22||ED ISUUI 91} JO UOIIRNUIIUO0D Y} SPIeMId)y "Pojurlid oq [[IM JUSTS[S S} PUR 2||Ed 190 JY) JO JX03U0D 1)
0109801 [[im My poaes o [ 9sT Ul uorysod JUSLIND 91} SI0JOIIY) PUR JXOJUOD JUILIND 9} AeM SIYJ, *DD[|ed IOUUI 9T[} JO UOIJRNUIIUO0D

ot} M 10732807 ¥y 0y passed 108 [[Im juouIS]d oY) ‘9yedrpald oY) S[[Y[NJ Jer[) JUSUIA[d Iatjjoue surejuod (|iN ‘(0)29nG)suor) sy o)

RV T pE1i )
uaaq jou pery yetyy (JIN ‘(0)22nG)SuoD) 9ST] 9] JO 1S 9} IDAO UOTIRISIT OY) T[}IM SI0JoIoT) SONUIIUO0D UOTJRN[RAY "POARS SeM IS 91}

ur uoryisod oY) YOTYM UT T3 1X09U0D A} $9103s01 °dy () yjrm posjoaur st uoryenurjuod uorsod-4siy oy () $°%y moayy Surjenyess £q

() ¥ moayr ¢ z BuuisTuud < (3 ‘r) swog | () < suoN yum suoN ([-] (A-AY)) (A-Ax TY) yortew = Vi Yym
[(]IN “(0)22ng)suo) y28yd mL_ntB_?mTﬂ
() % moaya * & SuuasTauud « (y ‘) awog | () < suoN yum auoN (((IIN ‘(0)22nS)suoD >aayd Biguan) [-] (A-fiy-ay)) (Ai-fiy-xy) yorew = &g qym
[Olea«
() by
[] = & unm
[() =% moaya] a7 <

() S°dy MmoJy1 IIM SONUIPIOD UOTJEN[RAD PUR Aeme UMOIY) ST anfea oy ‘(()2ong syurid uorpisodurod oy jo jred ISIy 91} JO UOTYRN[RAT]

: = &7 UIm
[() %%y moays ¢ (0)29ng Bus aund]ery<—

49



A.6 Proof of Proposition 4.2.1

Proposition 4.2.1. For all values v and terms M in miniFP™ the following holds.
1. IfT-wv:othenT H|: o
2. IfT'+ M:o thenT - [M] :]o|

WhereT =z :7,... .

Proof. The proof for both parts is by induction on the derivation of 'Fv:cand ' M : o
respectively and a case analysis of the terms.

Case v = 0: Assuming I' - 0 : nat, we need to show T' 0| : nat. Which is the same as
T' 0 : nat and holds trivially.

The proofs for the cases true, false, (), None and Nil are similar.

Case v = Some v Assuming I' - Some v/ : Maybe 7 we have the induction hypothesis TH:
rr ‘UI‘ : 7. Therefore by the some rule we have I' - Some ‘v" : Maybe 7 which by the
type and value translation is T |Some v’} : Maybe 7.

The proof for the case Succ(v) is similar.

Case v = Cons(vy,v2) Assuming I' F Cons(vy,v2) : list we have the induction hypotheses
IH;: I' - |vg| @ nat and IHa: T' & |ug| @ list. Therefore by the cons rule we have
T F Cons(v1],|ve]) : list which by the type and value translation is T" - |Cons(vl, vg)} : list.

Case v = Az.a: Assuming I' - Ax.a : 0 — 7 we have the induction hypothesis IH: T,z:0F
[a] : (T = a) — a. Therefore by the abs rule we have I' - \z.[a] : 7 — ((T = a) — «)
which by the type and value translation is T F|\z.a| : & — 7.

Case v = uf.Ax.a Assuming I' F uf.Ax.a : ¢ — 7 we have the induction hypothesis TH:
I.f:o=rmz:oF[a:|7f|=T,f:0 = (F—a) = a),r:or[a: (T— a)— a.
Therefore by the application of the rec rule we have ' F ufAz. [a] : 7 = ((F — a) —
«). which by the type and value translation is T F|uf.\x. a| : 7 = 7.

Case M = x:iAssuming I' - 2 : 0 we have the induction hypothesis IH: z : @ € I'. We need
toshow '+ [z] : (6 — a) = «

k:g—aecl; . r:ccli=0:75€l,k:7—oa=1H
= ~var — ‘var
I'NFk:7—« I'"kFax:7 .
Tk:e—sakFkz:a
THEMe.ka:(0— )=«

I=T,k:0—>a

Case M = Some a: Assuming I' - Some a : Maybe o we have the induction hypothesis TH:
I'F[a] : (T — a) = a. We need to show I' - [Some a] : (Maybe 7 — a) — «.

50



Vg G €Ty
k:Maybe g — acTy Tobuv,: o

Ty k: Maybe @ — o o T - Some v, : Maybe & :Some
“app

Ty F k Some v, : e

I'iEfa]: (G —a) > a=1IH ' F Avg. k Some v, : 7 — a0,
T,k : Maybe & — at [a] (\v,. k Some v,) : « o

T Mk. [a] (Avg. k Some v,) : (Maybe & — a) — «

‘abs

Ty =T,k:Maybe s — «
f2:f1,va15

The proofs for the cases Succ(a) and zero? a are similar.

Case M = Cons(a,b): Assuming I' - Cons(a,b) : list we have the induction hypotheses IH;:
T'F [a] : (nat - @) = a and IHy: T F [8] : (list = a) — a. We need to show
T F [Cons(a,b)] : (list = a) — .

Ty ] : (list = a) — o = TH; @
Tq,v, : nat = [b] (\vp. k Cons(vg,vp)) : @ -
'y [a] : (nat = @) = a =1H; 'y F Avg. [b] (Avp. k Cons(vg,wp)) : nat = «
T,k :list = at [a] (Ava. [b] (\vp. k Cons(vg,vp))) : @ o
T F M. [a] (Avg. [B] (Mvp. k Cons(vg,vp))) ¢ (list = ) — «

‘app

-abs

vg inat €' | vy tlist ey |
; — — var — . var
k:list—>aeclsy . I's v, @ nat I's oy list
= - ‘var — - -cons
@ i I'skk:list = o I's - Cons(vg, vp) : list
“app

T, vy : list = k Cons(vg, vp) © @

— ‘ab
Ta - \up. k Cons(va,vp) @ list — a

T =T,k:list >«
'y =T1,v4 : nat
I's =T, v : list

The proofs for the cases a ; b and a + b are similar.

Case M = callcc a: Assuming I' I callcc a : o we have the induction hypothesis IH: T F [a] :
|o cont — o] =TF[a]: (= a—=(—a — a) = a) = a We need to show
'k [eallec a]) : (7 — a) — a.

51



f:6€ly k:g—aecly |

fgl—f:é.wr le—ksﬁ—>a:mr k:g—=acly |
ToFfk:(0—a)—a o Tobkigoa
T, f:6Ffkk:a o
ToF[a]:y—a=IH ToFAf fhkiy

rapp

Tk:g—alk[a] M. fkk):a
TEXMe. [a] Mf. fhk):(T—a)—a

cabs

=@—oa—>@—=a)—oa)—oa
=t—oa—(@—oa)—>a

1 =T,k:T—-a«

To=T4,f:6

| & 2

Case M = throw a b: Assuming I' F throw a b : ¢ we have the induction hypotheses IH;:
TF[a]:|rcont| =TF[a] : (F = a) = a) = aand [Hy: T [b] : (F = a) — a. We
need to show T [throw a b] : (¢ — a) = a.

Ua:?—>ozef3 . vb:?efg .
Tsbhov,: 7=« o Tsboy:7T o
To,vp :TH v U cx - o
Ty [0] 1y = 1IHy TobFAvp. vy vp: T =
T1,0q:7 — at [b] (Av. va v) : ) o
TiFla):y = a=1IH; Ty F dvg. [b] Avp. vg vp) iy o

rapp

T,k:5— at [a] Ava. [b] (Avp. va v)) : «
TF Xk [a] (Ava. [b] (Avp. va vp)) : (7 = @) = «

‘abs

y=(T—=a) =«
Th=T,k:7—=a
fngl,va:7—>a
Fg—fQ,’Ubl?

Case M = a b: Assuming I' - a b : 7 we have the induction hypotheses THy: T + [a] :
o= 7| =TF [a] : (@ — (T = a) = a) = a) = a and IHy: T[] : (@ — a)—a.
We need to show I' - [a 0] : (T — a) — a.

ToF[b]: (= a)— a=1IHy @
Ty,vq : 6 F [B] Mvp. vg vp k) = -
CEJa] iy = a=1H; Iy F Avg. [0] (Avp. vg vp k) 17y .
T,k:7— at [a] (M. [] Avp. v vp k))& o
T k. [a] (Ava. [B] (Avp. vq vp k) : (T = @) — «

‘app

-abs

52



’Uai(5€f3‘ ’Ub:(SEfg‘
————— war ———————— ‘war

fgl—vai(s‘ fgl—vbiﬁ, k:?—)aEfg.

— -app — var
@2 IskFvgu: (T—a) —a IsHEE:T—a .
‘app

To,vp:0 kv, vy k:a

— ‘abs

ol vy vy vp k:T0 — «
y=@C=>T—a) —a) o«
0=0—(T—a)—>a

M =Tk:7T—«

fg = fl, Vg * 1)
fg = fg, Vp O

Case M = if c then a else b: Assuming I" I if ¢ then a else b : ¢ we have the induction hy-
potheses THy: T F [c] : (bool = a) — a, IHy: T F [a] : (¢ — a) — « and IHs:
TH[b]: (T — a) = a. We need to show T I [if ¢ then a else b] : (T — a) — a.

ve i bool € Ty
T's F v, : bool o @ @ 5
Ty, : bool - if v, then [a] k else [b] & : « .Z.
Ty [] : (bool = ) — @ = TH; Ty F Ave. if vo then [a] k else [b] k< bool — o
T,k:7 — alk [c] (M. if v. then [a] k else [b] k) : o
T F Xk. [c] (Ave. if v, then [a] k else [b] k) : (7 — a) = «

~aos

k:E—>a€f2 .
@: ToF[a]: (G — a) = a=IH, Tobk:T—a
— “app
ok fa] k:«

k:t—oaely |
@: ToF[b]: (@ —a)— a=1IH;s Tobk:o—a |
Tobr [B] k:a "

I =T,k:7—=a
fg = fl,vc : bool

Case M = let z = v in a: Assuming ' F let z = v in a : 7 we have the induction hypotheses
IH; : ThHv|:VB5,IHy : T,x: V3.5 F [a] : (F— a) = a and B8 ¢ T. We need to show
F'Flletz=vina]: (T —a)—a

E:T—aely .
Tok[a] : (7 — a) = a = IH ToFk:T—a .
Ty Fv| : VB.& =IH; Ty,2:VBok [a] k: « "
= — ; ‘let_poly and 3 ¢ I'
Dk:T—akletx=v| ina] k:

THXk. letz=|v| in[a] k: (F = a) = «

*aovs

Elzzkz:?%a
Iy=T1,2:V5.0

93



Case M = match [ with Nil — e | Cons(a,b) — f: Assuming I - match [ with Nil — e |
Cons(a,b) — f : o we have the induction hypotheses THy: T [I] : (list — ) — «, [Ha:
TkJe]: (@ — a) — aand IHs: T,a: nat,b: list - [f] : (6 — a) — a. We need to
show T [match [ with Nil — e | Cons(a,b) — f]: (¢ — a) = a.

v ilistely |
N OO .
v :listeTy Ty, ; ¢ list = match v; with Nil — [e] & | Cons(a,b) — [f] k : « e
Ty by :list o T F Av. match v, with Nil = [e] k | Cons(a,b) — [f] & : list — « :abs
T.k:5 — ar []] (. match o with Nil — [¢] k | Cons(a,b) — [f] k) : a o
T F Ak. [I] (Av;. match v, with Nil — [e] & | Cons(a,b) — [f] k) : (¢ — a) = « o
k:7—aecTly |
@: ToF[e]: (7 —a)—a=1IH, fg}—kzﬁ—ux:mr
Tok[e] k:a o
k:g—=acly |
@: Tsk[f]l: (@— a)— a=1IH; Tsbkig—oa
Ty,a:nat,b:list[f] k:a o
Th=T,k:7—a
Iy =T, v ¢ list
I's =T'9,a : nat, b : list
O]

54



A.7 Proof of Lemma 3

Lemma 3 (Extended colon translation). If K is a closed value then [a] K = a :

Proof. The proof is by induction on a and a case analysis of a.
Case a = :
[v] K= (\k. k |v]) K
— K |v]
=v: K

Case a =z :

[z] K= (\k. kz) K
- Kz
=z: K
Case a = v1 vy :
[ur vo] K = (Ak. [i] (Az1. o] (Aza. z1 22 k))) K
— [v1] (Az1. [v2] (Aze. 21 2 K))
5oort (A [ve] (Axo. 21 29 K)) by TH of v
= (Az1. [vo] (Ax2. 21 22 K)) |v1]
— [vo] (Az2. |v1] 22 K)
RN (Aza. |vi| 22 K) by IH of ve
= (Az2. |v1] 2o K) |vg]
—|v1| |vo| K

=v1| |va| : K

Casea=vb:
[vb] K = (Xk. [v] (Az1. [b] (Ax2. 1 22 k))) K
= [v] (Azy. [b] (Az2. 21 22 K))
Sov(Azy. [B] A\zg. 1 20 K)) by IH of v
= (Az1. [b] (A\z2. 21 22 K)) |v]
— [0] (Axa. |v| x2 K)
S0 (Mg [v] 22 K) by IH b
=vb: K
Case a = a1 ay :
[[a1 GQ]] K = ()\k [[aﬂ] (/\xl. [[b]] (/\.Z’Q. X1 T2 k’))) K
— [[aﬂ] ()\.%1. [[CLQ]] ()\.1‘2. 1 T2 K))
X oay (Ax1. Jag] (Aza. z1 2 K)) by IH of a;
=ajay: K

95



Case a = Some a1 :
[Some a1] K = (Ak. [a1] (Avg. k Some v,)) K
— [a1] (Ave. K Some vy,)
N (Avg. K Some v,) by IH of a;
=Somea; : K
The proofs for the cases zero? a and Succ(a) are similar.
Case a = Cons(ay,az) :
[[Cons(al,ag)]] K= ()\k? [[al]] ()\1'1 [[CLQ]] ()\ZEQ k COHS({El,ZEQ)))) K
— [[al]] ()\1‘1 [[CLQ]] ()\SCQ K COHS(CL‘l,l‘Q)))
i> ai ()\.1‘1. [[ag]] ()\.7}2. K Cons(xl,xg))) by IH of al
= Cons(ay,ag) : K
The proofs for the cases a + b and «a ; b are similar.
Casea=letz=wvinb:
[let x =vinb] K = (Ak.let z =|v]| in[b] k) K
— let x =|v| in [b] K
=letz=|v| in 0] : K

Case a = if ¢ then aq else as :
[if ¢ then a; else as] K = (A\k. [c] (Az. if z then [a;1] k else [as] k)) K
— [c] (Ax. if z then [a1] K else [a2] K)
5 ¢ (\z. if o then [ai] K else [as] K) by IH of ¢
= if c then a1 else ay : K
The proof for the match case is similar.
Case a = callcc a1 :
[callcc a1] K = (Ak. [ai] (Af. fk k) K
— Ja1] (A f. f K K)
Soar: (M. f K K) byIHof a

=callcca; : K

Case a = throw aq as :

[throw a; as] = (Ak. [a1] (Axy. [az] (Axa. x1 22))) K
= [a1] (Az1. [az] (Ax2. z1 2))
X oa (Azq. [as] (Az2. 21 x2)) by IH of a;

= throw a1 as : K

o6



A.8 CPS translation of find_one

In this section we will translate the program find_one into continuation-passing style using
the colon translation defined in Definition 4.2.4.

find_one = let list_iter = plist_iter A f.Nlist. match list with Nil — ()
| Cons(hd,tl) — f hd ; list_iter f tl
in (let find = Ap.\l. callcc (Ak. list_iter (Az. if p x then
throw & (Some ) else ()) I; None)
in find (\z.zero? Pred ) Cons(Succ(Succ(0)), Cons(Succ(0), Nil)))

First we give the translation into continuation-passing style using the CPS translation from
Definition 4.2.1 for the list_iter program and find program. We will then give the complete
colon translation of the program find_one.

We can see that the translated program evaluates to Some Succ(0) just as the untranslated
program in Appendix A.4. Furthermore we see a correspondence between the first reduction
in both the translated and the untranslated program. In both programs the let is reduced
first and the list_iter program substituted for the variable list_iter in find.

o7



9[qRLIRA 9T} I0J PaINIIISqNS ST WrrIS0Id J91171SI| 91} PUR POONPAI ST UOISSoIdX0-19] 9} oIoym wrelidord paje[suRIIUN ) Ul UOIJONPAT }SIT
91} 0} SpPuOdsdII0d UOIONPAT JSIY A} UOTIR[SURI) UO[0D O} O} OLP JRY) IS WD 9N\ <= [IIM SUONONPAI S[dI}[NUL SJOUDD PUE SULI)
91RIPOULIUI SUWIOS MOUS ATUO [[IM oM SULIO) 93Ie[ oY) JO 9SNeddq "Sunpal ursoq am wersord o[oym oY) paje[suel) SUIARY I9)Jy

(o) (" (((%y 2o T -2ax) (((IN(0)22nG)suo) *((0)22n5)2n5)suo)y By ~Tyy) “tay) (((Py % Pa -9ax) ((((%a ¢osez Ty -fay)
((va paad &y "vax) (d Py “vyy) “Ey) “Cyx) “dy) 2y 2yY) "Pax) (puy Py 2yY) PyY) %yy) Ul [Budpuy|= puy 39| "PyY) ul [Sigaem|= 1o11s| 13]=
(o) (" [((1N“(0)22n8)suo) “((0)22n5)2on5)suo) (d paid (osez:dy) puy] ut [Sidpui|= puy 13| PyY) ur [Sigian|= Ja1r3s)| 19|=
(o) [(((1IN“(0)22n5)su0) *((0)22n5)29nG)suod) (d paid josez'dy) puly ur Bidpuy = puly 33|)] ul [Siduen| = 4o1r3si| 19|=

(22¢) = (((1IN “(0)22nG)su0d “((0)22nG)29nG)suo) (d paid ;osaz'dy) puly ul Bidpuly = puly 13|) Ul S1gJa1l = Ja1171s!] 13

‘|814puty| se oures a1[y st |puly| pue |3i44911| se owres
o1} ST |491173s!|| 910010y T, "A[oA1)oadsor Sidpuly pue Sidss1 imm urerdord puly pue Js1im1sl| o) 9)RIADIGQR [[IM om AN[Iqepest 10 “(2°2Y)
uo1OUN] AJTYUSPT ST S [[IM UOIPeNUIIUOD [RIYTUL Y], ‘Welsord suo pulf ajo[duiod o) I0] UOIJR[SURI} UO[0D 9} SAIS MOU [[IM SAN

((CC% 99 f -fx) (((((%2 82y -%ax) (suop 6y -6yy) ~Sax) (((OTy 8a La “8ay) (7 Thy ~Tiyy) ~Lay) (((ETy OTa 6a -0Tay) ((((8%y (() 6%y -62yy) esjp

82y (((€2a cea -s2ay) (((7ea swog) €8y “Teay) (z ey Teyy) ~E8yY) "Teay)(,y ey CEyy) ‘TEyY) usyl 0%a yi -0%ay)(((08y "Tea T2 -PTeay)(z "TEy
"PIEYY) Teay ) (d Tey “Teyy) 0Syy) "8eyY) twy) Loy Leyy) -Gay)(4emmisy €Ty Elyy) -Tlyy) OTyy) SyY) * yY) Ly “Ly) "9yY) *JY) %y SyY) dy=
|(suoN ¢ 7 (() @sje (z awog) Ly moays usys = d 1 ") 1A73s)| ", 4Y) 29jjed "y dy|=

|puyy|

(5t (((¥Ta Sty ~Tax) (((5ey +ta 9ta Tay) (17 ¥y “EoyY)
9ty ) (((¥ey 6la 8la -6lay) (f 9%y -9%yy) -8lay) (4ar73s1] 98y “STyy) Teyy) ~eeyy) -elay) (((6Ty STa ¥la -STay) (py Tey -Teyy) Play) (f 0%y
"02y ) “6TyY) “8Tyy) = (12 'py)suod | Sty (() L7 LTyY) < |IN ydm o yojew Tlay) (3s7) 9Ty ~9Tyy) ~STyy) “gs1)\) Viy Viyy) “f\ a090 sy
1 f aomasey py [ 4= (1 py)suod | () = 1IN ymm 457 yorewgsa [\ aap sl | =

[rearasy|

"UOTYR[SURI} ONJRA 91} SUISN PIJe[SULI} 9( O dARY PUE SON[eA aIe AJY ], "Suorssordxo punoq-19| oy} are wrerdoxd puly pue J91~1sI| 9T,

o8



Pleg Teq -Plaay)(x ey -PTeyy) Teay)((((fa josaz &y -Eax)((Va paid &y "Fax)(d Py "PyY) "EyY) “Gyy) "dY) ey "Tey\) "0fyy) "8Zyy)wY) Loy
“Leyyy) 6ax ) ((((((9Ty (((tTa 8Ty ~ETay)(((2ey L1 9Ta ~Llay)(pp €oy ~E2yy) -9Tay)(((¥ey 6la 8Ta -6Tay)(f 9%y -9Tyy) “8Tay) (4opr7st] STy ~Styy)
ey ) ey ) elay)(((6ly Sta Via -Stay)(py ey tTeyy) Vlay)(f 0%y -02yy) 61yy) “Slyy) <= (17 ‘py)suo) | Sty (() L1y "2IyY) = |IN yHm

o yojew Tlax)(2s2)9%y 9Ty ) ~Styy)gsuyx) Py Viyy) Y uoggseyl) €Ly ~€lyy) ~elyy) -Olyy) 8y\ ) .4\) 24 "24Y) “99\)"I\) 4 "9y\)]d

() = (((N

‘(0)22ng)su0)‘((0)22ng)23nG)suo?) (d paid §049z'dY) pul) JO UOTYR[SURI) UO[0D 9] ST SAO(R ULIDY A ], "@AO(R ULI9) o1[} Pap[alA ‘wreidord paje|
-SUBIIUN 97} UT UOTIONPAI 3]} 0} SPUOdSOIIOd YDIYM ¢ *** = pul} 39| 9} JO UOTIONPAI AT} SB [[oM S UOTIONPAI dATyeIIsTUTIIpe a[dryny
[] =& mm

[(((z2y) 2a Ta -2ax) (((1N *(0)22nS)suo) “((0)22n5)2anG)suo) Ty ~Tyy)

“Tay) (((8a josaz 2y ~Eax) ((Ya paid &y “vax) (d vy -vyx) €y¢) “2yy) -dx) (((((% % J /X)) (((((9% 8y -9ay) (suoN 6y -6yy) -Say) (((OTy %a la

8ax) (7 Ty Tlyy) Lay) (((eTy OTa Sa -0Tay) ((((8%y (() 62y -62yy) es|o 8y (((€%a Cea -€2ay) (((Ven swog) ey TZay) (x VEy -FEyy) -€8yY)

eeax) (4 TEy TEyY) “TEyY) uayy 0%a yi -02ay) (((OFy Plea Tea "PTeax)(x PTEy -PlEyY) -Teay) (d TEy TEyy) "0RyY) '8yY) “wy) Loy -Leyy) -Gay)

(CCCCCEmy (((Bra sty -ETay) (((oy L1a OTa 2Tay) (17 &y ey ) -9tay) (((Yey 6la 8ta -6lay) (f 9%y 92yY) -8tay) (4a92-9s1] STy ~STyY) "VeyY)

"Teyy) elay) (((6Ty STa Via -Slay) (py Tey ~Teyy) ¥lay) (f 0%y -0%yy) -6lyy) 8TyY) < (13 ‘py)suod | STy (() LTy “LTyY) « |IN yum Tt
yorew “Tlay) (gs17 9y “9Tyy) “STyy) s2)\) Py Flyy) [y uap-gsy) €hy ~Elyy) Slyy) “OTyY) “8y\)  yY) &y “yY) "94Y) X)) &y “9yY) d\)|7 <

[]=a wm

[(22x)

(" (((%y 2a Ta -2ax) (((IN (0)22nS)suo) “((0)2anG)2anG)suo) Ty ~Tyy) “tax) (((Py % Pa -ax) ((((8a jossz 2y ~Eax) ((Ya paid &y "Tax) (d Ty

THX) EyY) (ByY) tdX) Py CyX) Pax) (puy i cPyx) cPayy) ) un (((((% % o) (((((92 8 -9ax) (suoN Gy ~6yy) ~Say) (((OTy Sa 2a -Say)

(1 Th ~Tryy) ~2ax) (((@Ty OTa Ga -OTay) ((((8ey (() 6%y -62yy) asjo 82y (((£2a Tea -€2ay) (((Vea swog) €&y "Vaay) (x VEy VEyY) "E€yy) "Zay)

(L4 T8y TEy) “TEyY) uayl O%a y1 -02ay)(((0€y PTea Tea ~PTeay)(x PTey -PTeyy) “Teay)(d Tey -Teyy) -O0fy\) -8yy) “wy) L8y -Leyy) -6ax ) ((((((¢Ty

(((¢1a 8Ty ~€lay)(((%ey L1 9Ta -Llax)(jp €oy -€eyy) ~Olay)(((Vey 6la 8la “6lay)(f 9%y -9eyy) -Slay)(uoprsy) Sy ~STyY) Veyy) eeyy) -elay)

(((61y ST ¥la -STay)(py ey Teyy) "Frax)(f 0%y 0%y ) -6Tyy) 8TyY) < (12 °py)suo) | Sty (() 2T “21yY) = IN yum Tla yoew “TTay) (1s7)
Oy ~9Ty\) ~STy\) “as2)X) TV VIyY) [\ uegrgsr) €y cElyy) (Thyy) (0T ) t8yY) "LyX) Ly Ly\) 9yX) 1Y) 9y “SyY) tdY) = puly 19| "PyY)|iT

[]=a pmn

[(z2x) (P (% 2a Ta 2ax) (((1IN “(0)22n8)suo) ((0)2an5)2on8)suo) Ty ~tyy) “tay) (((P % Pa day) ((((fa jossz &y ~fay) ((Ta

paid €y "Fay) (d Ty TyY) “EyY) "TyY) tdY) Py CyY) Pax) (puy Ty PyY) PyY) t9yY) ul [Sidpuy|= puly 39| Py ) ul [Sidsem|= 1a1171sl| 13|

‘urersoxd puly oy} ur

99



[(€Ta ((9 (22x) “9ax)(suoN 6 -6xy) “Say) -€lay)(((€Ta 8Ly ~Elay)(((%Cy Lla 9Ta ~Llax)(jp &y -€2yY) 9Tay)
(((vey 6Ta 8Ta -6Tay)(y2eyd 9%y ~92yy) -8Tay)(4o3"pones STy -STy\) FeyY) -eeyy) -elay)(((6Ty STa V1a -STay)(py Tey -Teyy) -¥lay)(ydayd 0%y
"02yY) 6Ty ) 8Ty ) < (12 ‘py)suo) | (ETa (% (12y) -9ax)(suoN 6y -6yY) ~Say) “ETay)(() Ty "2TyY) < IN yHm (;IN ‘(0)22nS)suod) yorew]q
[] =& ymm
[(((gTa ((% (22y) "9ay)(suoN 6y -6yY) -Say) "€Tay) LTa 9Ta -LTay)((jIN ‘(0)22nS)suo) €2y -€Tyy) 9Tay) %29yd me_\vwiﬁmAﬂ
[] =& ymm
[((ETa ((% (22y) -9%ax)(suoN 6y “6yy) “Say) “ETay)(((eCy 41a 91a -LTay)((jIN ‘(0)22nS)suoD) €&y
mmv\,«v .Sa,«xgwmv\ 61 SIp .mﬁ@,«v Av_uwr_u @Nv\ .@mv\aﬂv .wﬁ@aﬂx‘_wp_\_uwzwm mmv\ .mmv\/\v .ﬂmv\,«v .va\/\v .NHQ/\VAC @Nv\ .mmv\,«v eSE Qmﬁa AAoa A@s/\v .@@Kv
chOZ @&_ m&/\v .m@<v .mHQKVAAAmmv\ L1 91 N;@/\XA__Z FAOVUU:mvaOU mw& .mmu\/\v .S@KXQ%N& 610 8Ip .mﬁ\w/\xv_umr_u wmv\ .@m&/\v .w:;\vfwu._\_uwfmm
Seyf “seyy) ey rBeyx) selax)(((2a Sea rEeay)(((Vea swiog) EEy Teax)(x FEy TEYY) “EEyY) “ERax)((22x) By tEEYY) TTEYY) usyd as|ey JilaT <
[] = ynm
[((BTa ((% (v2y) "9ay)(suoN 6y -6yY) ~Say) -Elax)(((2%y <1a 9Ta -Llay)((IN
‘(0)2ang)suo) €2y ~Eayy) -9Tay)(((Vey 6la 8Ta -6lay)(soayd 9%y ~9%y\) "8lay)(4edrpanes ey ~SCyY) "TayY) -Geyy) “Zlay) ((0)22n5)29nG $23yd] 7 -
[] = unm
[((9 (22¢) “9ax)(suoN 6y “6yY) -Say)(((ETa 8Ty ~ETay)(((Cey ~Ta 9Ta -Llay)(jg €ey ~Eeyy) -Olay) (((¥ey
6o 8Ta -6Tay)(320yd 9%y -9%yY) -8Tay)(4ep-panes STy ~Styy) Teyy) -eeyy) -elay)(((6Ty STa Via ~STay)(py Tey “Teyy) "Play) (soayd 0%y -0CyY)
"6TyY) 8TyY) « (12 ‘py)suod | ((9a (22x) ~9ax)(suoN 6y -6y ) “Sax)(() L&y “21yy) = IN yum ((IIN ‘(0)22nG)suo) ‘((0)22nG)2onG)suod yorew]s
[] =7 wim
[((((9a (z2¢)
“9ax ) (suo Gy “6yy) “fax) 8a La -Sax)(((IN ‘(0)22nS)suo) ‘((0)22nG)2ang)suo) Ty ~Tlyy) ~Lay)(((82y (() 6%y -62yY) aspe 82y (((Eea ea ETay)
(((vea swiog) €8y "Teax)(x Vey Fey\) “E8yY) “Seax)((22x) S8y T8y "Ly uaya 0 g1 -0cay)(((OFy Tea T PLeay)(x Ly -Pieyy) “teay)((((%a
gosaz &y “fax)((Fa paid By Tax)(d Ty yX) “EyY) ey )dy) Ty ey 0Ry) seyy) ) (((((Sfy (((FTa Sty -elay) (52 41a 9ta -2lay) (13 €y
€25y ) 9Ty ) (((Vey 6Ta 8Ta -6Tay)(f 9%y -9%y\) “8Tay)(uagr ps) STy ~SeyY) "Veyy) -eeyy) -elay)(((6Ty €Ta Via -STay)(py Tey -Teyy) -Vlay) (f 0%y
02y ) “6Lyy) “8IyY) <= (13 ‘py)suod | STy (() 41y “LTyY) < IN ydm TTa yojew “Tlay)(zs1) Oy ~9Lyy) STyY) gs17\) Viy Viyy) [\ uopgsu)] o
[] =& wm
[(((z2x) 2a Ta -2ay)(((IN (0)22nS)suo) ‘((0)22nS)
2ong)suo) Ty Ty ) ~Tax)((((% % £ /) (((((9% 8y -9ay)(suoN 6y 6yy) -Sax)(((0Ty 8a La -Say)(] Ty ~Tlyy) ~2ay)(((Cly OTa 6a -0Tay)((((8%y
AC @Nv\ .mm&/\v as|p wmv\ AAAMNQ e .mm@/\XAAwNQ wrcomv mm& .ﬂma,ﬂxuﬁ wmv\ .wm&:«v .mm&/\v .NN@/\X*& mm& .Nmu\,«v .ﬁmv\/\v uayl 02n, | .ONQKVAAAOM&

60



[] =g g

[0 g0z (((ETa (ETa ((9 (22¢) "9y )(suoN Oy -6y ) “Say) -€lay) -Elay)(((%ey Lta 9la Llay)(IN Eey ~€ayy) "9Tay)

(((vey 6Ta 8Ta -6Tay)(yooyd 9%y -92yy) -8lay)(4o3 panes STy -STyy) FeyY) -2eyy) -elay)(() 62y -62yy) asp ((£Ta (€Ta ((% (12y) 92y )(suopN

Gy -6y ) “ay) “Elay) -€Tay)(((%ey LTa 9Ta ~LTay)(IN €2y “€Cyy) -9Tay)(((¥ey 6Ta 8Ta “6Tay)(¥29yd 92y 9%yy) -8Tay) (493 penes STy -ty )
ey ) teyy) ~Tlay)(((€2a et -Eeay)(((T2a swog) £8y "Feax)((0)2ang ey TEyY) “EEyY) “Teay)((11y) FEy -TEyY) “TEyY) uayy 0% yi -0%ay)|a -

[]=a pm

[0 (B2 gosaz (((ETa (€Ta (9 (22y) "92y)(suoN 6y ~6yY) ~Say) -€ay) ~ETay)(((%ey LTa 9Ta -Llay)(IN €2y €2y ) ~9Tay)(((7ey

6T 8Ta ~6Tay)(3oayd 92y ~9ZyY) “8Tay)(4oH-panes 92y ~Sayy) "Veyy) ~eyy) -elay)(() 6%y 62yy) asp ((€Ta (€Ta ((9 (v2y) "9ay)(suoN 6y

"y ) “Say) -€lay) -€lay)(((Cey LTa 9Ta Llay)(IN &ey -€2yY) -9Tay)(((V2y 6Ta 8Ta -6Tay)(329yd 9%y -9%yy) -8Tay)(4e-pones Sey -SCyy) -Feyy)
"eey\) "eray)(((2a e -geay)(((Vea swog) €€y "Teax)((0)22nG VEy "VEyY) “€8yY) “Clay)((21y) T8y "TEyY) TTEyY) uayy 0% 41 "0%ay) -fay)|g=

: Ama N..O\_WNAAAMHD AmHQ AA®§ AN@<V .w@KVAwCOZ mv\ mu\,ﬂv .m§<v .m?ﬁ«v .mHQKVAAANN& LI 91 hﬁDKVA__Z mwu\ .mm&,«v .m::\KVAAAvN&

6Ta 8T -6Tay)(3oayd 9%y ~92yY) *8Tay)(4e3panes S8y -STyy) Teyy) ~Teyy) -Tlay)(() 62y -62yy) aspp ((€Ta (ETa ((9 (22¢) -%ay)(suoN 6y *6yy)

“Sax) “Elay) -€lay)(((%ey La 9T ~Llay)(jIN €2y “€2yY) -9Tay)(((Vey 6la 8la -6lay)(y2oyd 92y -92yy) -8lay)(4e3-panes STy -STyy) FeyY) -Teyy)

.NHQKVAAAmNQ 44 .mm@/\VAAAwNQ mrcomv mm& .wmb,«xmcvuu:m wmv\ .wm&:«v .mm&/\v mm@/\xmsfmv mmv\ .mm&/\v .Hm&:«v uayl 02n, H .om@/\v .m§<v — Hm s
(0]

[] (8o gosz(((€Ta (€Ta ((9 (v2y) "9ay)(suoN 6y ~6yY) -Say) -€Tay) -€lay)(((%Cy Lla 9Ta -Llay ) (NN €2y -€2yy) ~9Tay)(((7ey

6o 8Tq -6lay)(y2oyd 92y -92yy) -8lay)(4e3-panes STy -STyy) Feyy) -Teyy) -Tlay)(() 62y -62yy) aspp ((Ela (£la ((9 (22y) "9ay)(suoN 6y “6yY)

“Say) -€lay) -€Tay)(((%ey Lla 9Ta -Llay ) (NN €2y -€eyy) -9Tay)(((Vey 6Ta 8la -6lay)(y2eyd 98y -9%yy) ~8Tay) (493 panes Sty -STyy) -Tiyy) -Teyy)

.NHQKVAAAmNQ e .mm§4v2ﬁ¢m§ wrcomv mmv\ .wNQKVAAOVUUJW wmv\ .wm&,«v .mmv\,«v NN@KVAASNKV Nmu\ .va\,«v .Hm&,«v uaya 0Zn H .ONQKV .mgaﬂv = Hm Um
[(0)22ns paid] 7=

[]=a pm

:OVUUJW paid Amé NO\_wNAAAmﬂé AmH:\ Qwa Asfﬂv .w@KVchoz ®v\ mv\/\v .mbbﬂv .mH©<v .mHQKVAAANNu\ LT 91 hﬁQKVA__Z mmv\ .mm.@\/ﬂv .@HQKV

(((vey 6la 8o -6lay)(yoeyd 92y "92yy) -Slay)(4e3-panes S8y -Seyy) ¥eyy) "Teyy) ~elay)(() 62y “62yy) asp ((£la (€la ((% (22Y) "9ay)(suop 6y

"y ) “Say) -€lay) -€lay)(((Cey LTa 9Ta Llay)(IN Eey -€2yY) -9Tay)(((V2y 6Ta 8Ta -6Tay)(329yd 9%y “9%yY) *8Tay) (4o pones ey STyy) -Feyy)
eyy) ~elax)(((€2a cea -Eeay)(((Vea swog) €8y T2ay)((0)2onS ey TEyY) -€8yY) “Teax)((11x) Ty “CEyY) “TEyY) usyy 0% y1 -0Zay) “Eay )| <

[ = o wim

[((Eta (Eta (9 (1) -9ax)(auoN By “6yY) ~Say) “Elay) -Elax) (((5ey
Lo, 9t ~LTax ) (IIN €2y ~€2yY) “9Tay)(((Vey STa 8la -6lax)(32ayd 9%y -9%yY) “8Tay)(sen"panes Gy ~Styy) “Vay\) ~2eyY) Tlay) (0)2oNG %I9Yd| <~

[] =& wm



[] = ysm  [(0)22nG swog]s
[]=a yym  [((0)22ng swog) (22)]7 <
[]=a ym  [((0)22n5 swog)(Eea (1-2y) €2y )] i 4
[]=a un
:Amm@ can, .MNQKVAAAwNQ wEomv mmv\ .wmb\,«xmovuu:m wmv\ .ﬁmv\,«v mwv\/\v mma/\VAAss,«v va\ mw@\/\XMT
[]=a ymnm
?Amg AmS
((%a (z2x) -9ax)(suoN 6y “6yy) -Say) “Elay) ~Elay)(((2ey LTa 9T -Llax)(IN €2y €2yY) 9Tay)(((Vey STa 8Ta -6Tax)(xdayd 9%y -9%yy) "8Tay)
Tw”_._\ﬁw>mm mmv\ .mmv\,«v .wmv\,«v .va\,«v .Nﬂa,«XAAmma [44e} .mmb\,«x:wN@ wEomv mmv\ %N@,«xﬁovuu:m wmv\ .wmv\/\v mwv\,«v NNQKXA@NKV va\ .mmv\aﬂv ﬁmv\/\ZMT
[] =& yim
?Ams Ams AA@Q ?f«v .wa,«VAmcoZ mu\ .@v\,«v .ma/\v .mg/\v .mg/\XQmmw\ LTp 91p .NSKX__Z mwu\
"€2yY) 9Tay ) (((7ey 6Ta 8Ta -6Tay)(329yd 9%y “9%yy) *8Tay)(4en-panes G2y ~Seyy) Feyy) -Geyy) ~elay)(() 6%y -6eyy) aspe ((Ela (€Ta ((9% (21Y)
“9ay ) (suop 6y “6yy) “Say) "€lay) “Elay)(((5ey Lla 9la “Llay)(jIN €8y "€eyY) 9tay)(((¥ey 6a Sla *6lay)(3oayd 9%y *9%yY) “Slay)(4e3-panes Sey
"Sey\) Veyy) ety eray)(((5%a tea -geay)(((Vea awog) €&y ¥eax)((0)oong TEy VEYY) “EEyY) “Tlay)((1ay) TRy "TEYY) “TEyY) uayl anuy pg <
[]=a yn
?:\_p AAAmHQ AmHQ Qwa Asfﬂv .®©,«VA®:OZ mv\ av\/\v .m§<v .mHQKV .mHQ,«XAANNo\ LIn 91 hﬁa/\VA__Z mmv\ .mmv\,«v
“9tax ) (((¥exy STa STa ~6Tay)(32ayd 92y ~92Y) "STay)(4e-panes 2y ~Styy) ¥ayy) ceyy) -elay)(() 6%y 62y ) aspp ((Ta (8t ((% (22¢) "9Y)
(suop 6y ~6yy) “Say) -€lay) -€ay)(((%ey LTa 9T ~Llay) (N oy €2y ) -9Tax)(((Vey 6Ta 8Ta -6lay)(spayd 9%y -92yY) -8Tay) (1911 panes Sty STy )
ey ) tgeyy) telay)(((Eea e -gay)(((Vea swog) €y Teax)((0)2onG VEY TEyY) “EEyy) “eay)((2ey) TEy tTEYY) "TEYY) uayy 0%a yi 0%y )=
[ (((eTa (£Ta ((9a (r2y) “9ay)(suoN 6y -6yy) -Say) “Elax) -€Tay)(((2ey LTa 9Ta -Llay)(IN €%y -€2yY) -9Tay)
(((v2y 6la 8t -6lax)(soeyd 9%y 9%y ) "8lay ) (JoH-pones ey -Seyy) "Veyy) -Teyy) lax)(() 62y -6eyy) aspe ((£1a (Ela ((% (v2y) -9ay)(suoN 6y
"6y ) Sax) Eray) tElax)(((%ey Lla 9Ta ~2lay)(IN €2y tEeyy) -OTay)(((Vey 6Ta Sta -6lay)(soayd 9%y ~92yY) ~STay)(4911-panes Sty ~SeyY) Feyy)
"eeyx) elay)(((€2a e -€2ay)(((Ven swog) €€y ~T2ax)((0)2onG ey "FEyY) “EEyY) Clay)((2ey) ey "TEyY) “TEyY) uayl O%a yi -0%ay) = Ziy M
[onuy)e=
: AAAmHQ AmHQ 2@@ Asf«v .w@/\vmwcoz mv\ mu\/\v .m\f«v .mﬁf«v .mﬁfﬂxgmmv\ L1n 91n .NHQ/\X__Z mm& .mmv\,«v .@HQ,«V
(((very 6Ta 8Ta -6Tay)(3oayd 9%y -9%yY) “8Tay)(4o1-panes Sy -Seyy) “Feyy) -2eyy) ~elay)(() 6%y -62yy) asp ((£Ta (£Ta (% (22¢) %) (suop 6y
"6y ) “Say) “€lay) -€lay)(((%ey Lla 9la -Llay)(IN &0y -€2yY) ~9Tay)(((Vey 6Ta 8Ta ~6Tax)(¥2ayd 9%y -9%yy) “8Tay)(4od-panes Sty ~Syy) Fayy)
.va\,«v .NAQKXAAMND\ [44e} .MNQKVAAQ\N@ wrcomv mmv\ .ﬂma/\xﬁovuu:m ﬂmv\ .wmv\,«v .mmv\,«v NNQKVAA@;\V mmv\ Nmu\,«v .amv\,«v usy3 02n, 4 .om@<v — Nm M
[0 josRz|eT=

62



