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Abstract

Model learning can in many ways be helpful to current software develop-
ment practices, but needs improved efficiency to be used on large systems.
Checking conformance of the hypothesized model with the System Under
Learning, is still a hard problem. A new method for conformance checking
based on symbolic execution is proposed. This method is compared to con-
formance checking using adaptive distinguishing sequences and mutation-
based fuzzing. Mutation-based fuzzing is clearly more efficient, however
some possible improvements upon the method are proposed.
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Chapter 1

Introduction

Nowadays, software systems are becoming increasingly complex [23]. This
complexity comes at the cost that software developers often cannot compre-
hend the complete system anymore. Even smaller programs often have too
many corner cases or assumptions to be completely comprehended. Model
learning can offer a solution. By creating a model of a program, software
developers can easily check if the program conforms to its specification [14],
analyse its behaviour or find vulnerabilities [11]. In addition, model learning
can aid in the automated testing of software [27].

In practice however, it is not feasible to learn models of large systems.
The modeling techniques are not efficient enough to quickly model large
systems and existing tools are not yet easily applicable [20].

A lot of research attention has been directed towards improving the
feasibility of model learning, but determining whether a learned model re-
sembles the subject program (closely enough) or should be refined is still
a hard problem. This problem, which is called an Equivalence Query in
the Minimally Adequate Teacher framework proposed by Angluin [3], has
traditionally been solved by methods with a high running-time complexity
and which are only guaranteed to be correct if the model of the subject
program is under a given size limit [15]. Recently however, succesfull white
box strategies for equivalence checking have emerged [34]. These strategies
do not only execute the program to find out its behaviour, but also examine
the machine code and/or source code of a program, for example through
coverage analysis.

Checking if the learned model conforms to the subject program can be
done by repeatedly executing a program with varying input sequences and
verifying if the observed responses match the predicted ones. For this pro-
cess to be as efficient as possible there should be as few as possible test cases
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on basis of which can be confirmed (or disproved) that the learned model is
correct.

Symbolic execution is a technique where a program is executed with
symbolic values and where all possible ways a program can execute are con-
sidered by building an execution tree and constraining the symbolic values
in each branch. Symbolic execution is a contender for efficient test case gen-
eration, since white box methods have an information advantage over black
box methods. Additionally, a lot of research has been done on symbolic
execution, with a lot of mature tools as a consequence. By concretizing the
symbolic values of symbolic execution, test cases for the Equivalence Query
can be created in an efficient manner.

This thesis focuses on symbolic execution as a new method for test case
generation for equivalence checking. It is compared with adaptive distin-
guishing sequences [24], a state-of-the-art black box method for equivalence
checking that uses a decision tree to distinguish states, and fuzzing [11],
which is a bug finding technique that can generate test cases for equivalence
checking. Fuzzing can generate test cases through mutating input sequences
in a smart way and it is a new and promising white box equivalence checking
method.
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Chapter 2

Preliminaries

2.1 Model learning

Model learning is the distilling of properties or behaviours out of a subject
matter in order to create a model that describes the subject. When applied
to software, this can be useful for example to check if an implementations
adheres to its specification [14], to compare the behaviour of various pieces
of software [31], or to find bugs and vulnerabilities in a program [11].

The subject that learning is applied to is called the System Under Learn-
ing (SUL). In other literature the term System Under Test (SUT) is also
used.

Many systems (programs, protocols, etc.) can be modeled by finite state
machines (FSM). Systems where the output solely relies on the state the
system is in and the given input, and which have a finite number of states,
can be modeled by Mealy machines and are called reactive systems. A Mealy
machineM is defined as a tuple (I,O,Q, q0, δ, λ) where I is the (finite) input
alphabet, O is the (finite) output alphabet, Q is the set of states, q0 is the
starting state, δ : Q × I → Q is the transition function and λ : Q × I → O
is the output function [26]. Informally, a Mealy machine is a deterministic
finite automaton that consumes an input symbol and produces an output
symbol on each transition. Figure 2.1 is an example of a Mealy machine.

In this thesis model learning will be applied to reactive systems [18] that
can be modeled by Mealy machines. Unlike transformational systems, which
are systems that first receive all their input, then go on to process it and
finally produce their output, reactive systems are interactive. Reactive sys-
tems respond to their inputs and can also be continuous or parallel. Reactive
systems are harder to model, as their behaviour cannot be fully described
by a mathematical function or relation [33], making it an interesting class
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Figure 2.1: A Mealy machine with I = {0, 1} and O = {A,B,C,D}.

of programs for model learning research.

2.1.1 The MAT framework

In this thesis, model learning is done in the minimally adequate teacher
(MAT) framework [3].

The MAT framework consists of two components. First, there is an
entity called the Learner, which tries to construct a model of the SUL. Sec-
ond, there exists a Teacher, which has inherent knowledge of the SUL. The
Learner doesn’t interact with the SUL directly, but gains knowledge on the
SUL only through the Teacher. The Learner can do this by asking two types
of questions: Membership Queries and Equivalence Queries.

With a Membership Query the Learner asks whether a certain property
or behaviour is part of the SUL. It does this by asking if an input sequence
is accepted by the machine (for learning deterministic finite automata) or
asking what output corresponds with a given input sequence (for learning
Mealy machines). Using these Membership Queries the Learner can build a
hypothesis of the model.

In the second type of query, an Equivalence Query, the Learner can share
its hypothesis with the Teacher and ask for a counterexample. This is called
conformance testing. When a counterexample is provided, the Learner starts
to refine its hypothesis to incorporate this newfound behaviour. When no
counterexample is provided, the Learner considers its hypothesis to be cor-
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rect. By iterating this procedure until no counterexample is provided the
Learner can create a complete model of the SUL.

2.1.2 Conformance testing

The MAT framework supposes that the Teacher has a sound and complete
model of the SUL. In reality however, the Teacher does not have complete
information on the SUL, and may not always be able to answer Equiva-
lence Queries correctly. Even in cases where a SUL is implemented based
on a specification in the form of a Mealy machine, there is not necessarily a
correct model of the SUL, because the implementation may differ from the
specification.

To solve this problem, algorithms have been developed which create a
test suite based on the hypothesized model of the SUL. The test suite can
then be run on the SUL, provided that it is resettable, to check if the model
predicts the outcome of all tests correctly. Some algorithms, like the W-
method [9] for example, provide a complete test set under the assumption
that the minimal number of states in the model is lower than a given bound.
I.e., if the model conforms to the SUL for all tests in the suite, either the
model is correct, or more states are needed than the given bound. In a
black box setting, there is no standardized or correct way of establishing
this bound.

The number of tests required for a complete test suite scales rapidly with
a growing number of states and a growing input alphabet. The worst case
complexity of the W-method and similar methods is O(km−n+1n3), where
k is the number of input symbols, m is the number of states in the model
underlying the SUL and n is the number of states in the hypothesized model
[12].

Another conformance checking method, the adaptive distinguishing se-
quences (ADS) method [24], is derived from the W-method and relies on
finding adaptive distinguishing sequences to generate its test cases. An
adaptive distinguishing sequence is a decision tree that is used to distin-
guish states of a Mealy Machine. In this decision tree, each state can be
reached through one sequence of input and output symbols that uniquely
identifies that state. It generates smaller test suites than the W-method,
but is not always applicable. However, Moerman [28] provides a simple
adaptation, the hybrid-ADS method. This method combines ADS with the
HSI-method [30]. This combined method can always be applied.

For many realistic use cases however, developing a test suite for check-
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ing complete conformance is unfeasible [20]. Possible solutions are using a
mapper as an intermediary between the Learner and Teacher [2] or checking
for approximate conformance. Using a mapper can greatly diminish the size
of the input alphabet by taking a group of inputs for which the behaviour
in the SUL is equal and presenting them to the Teacher as just one symbol.
For example, suppose a SUL takes an 8-bit int as input, with the behaviour
being equal for all inputs less than 10 and the behaviour being equal for all
inputs equal to or greater than 10. Naively, there are 256 input symbols
that should be evaluated. Using a mapper, a model can be learned using 2
input symbols.

White box conformance testing methods

Methods like the ADS-method or W-method do not use any information
about the SUL to work, but base their test suite solely on the provided
hypothesis. Such methods, that do not require more information about the
SUL than the responses to queries, are called black box conformance testing
methods. Contrary to these methods, white box conformance testing meth-
ods utilize more information about the SUL to test the provided hypothesis.
White box methods can also rely on source code, machine code, control flow
graphs, etc., to test the hypothesis.

An example of such a method is mutation-based fuzzing. This technique
starts with some inputs (typically the input alphabet in a model learning
context) and can mutate this input with a number of rules, such as concate-
nating two inputs. In the American Fuzzy Lop, a fuzzing tool [36], coverage
analysis of the binary on which fuzzing is applied can distinguish which in-
puts cause execution to go in less traversed parts of the binary; these inputs
are therefore more interesting. These inputs are saved to a queue and fuzzed
again to create more and more “interesting” inputs. In this way, efficient
test suites can be generated [22, 34].

Model learning without a mapper is somewhat in between black box and
white box model learning. It does not need any information about the inter-
nals of the SUL to function, but it may suppose some knowledge of the SUL
on beforehand to create the input classes. However, tools that automatically
configure the mapper are being researched [1]. Automatic configuration of
the mapper would place the technique in the black box category.
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2.2 Symbolic execution

Symbolic execution is a technique used for analysing source code and soft-
ware binaries. The technique is sometimes named differently and is syn-
onymous to terms such as “Automated Binary Analysis”. The technique is
extensively used in security-oriented research to quickly find bugs or vul-
nerabilities in examined source code or binaries [32]. Symbolic execution is
also used in software development, for example to test if division by zero or
a null-pointer dereference can occur in the tested software [35].

Symbolic execution on a binary inspects the machine code of a program.
In symbolic execution, paths that the execution of a program takes are
traced and the corresponding conditions on which the paths are taken are
saved. Examples of the uses of symbolic execution are using the paths to
create a control flow graph in order to find unwanted behavior, and finding
code that is unreachable, through checking if there are actual solutions to
the constraints on a path.

For using symbolic execution in this research the angr framework was
chosen. This framework was chosen because it supports loading binaries (in
contrast to tools that require access to source code), it is open source and
it has a free license.

2.2.1 How symbolic execution works

Symbolic execution starts with an execution path with only unconstrained
symbolic values. The symbolic execution engine will start at the program
entry point to step through the program, evaluating all instructions and
building the program state on the go.

When an if-statement or loop is encountered, the execution path will
branch. In one execution path the condition of the if-statement or loop is
true, so that path is constrained with the condition evaluating to be true.
Likewise, the other path is constrained with the condition evaluating to be
false. Both branches will be stepped through by the symbolic execution
engine. The engine can use a selection strategy to try and evaluate more
interesting or promising paths over less interesting or promising paths, or it
can step through all paths equally.

2.2.2 An in-depth example

Consider the following code:
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#include <s t d i o . h>
int main ( )
{

// S ta r t
int input ;
s can f ( ”%d” , &input ) ;

i f ( input > 343) {
// Path A
p r i n t f ( ”Access denied ” ) ;

} else {
// Path B

i f ( input < 345) {
// Path B.1
p r i n t f ( ”Access granted ” ) ;

} else {
// Path B.2
p r i n t f ( ”Access denied ” ) ;

}
}

}

When compiled, this binary will have some equality check of the input
variable and the value 343. After the check, a conditional jump will occur.
Here the execution path branches. All constraints on the path are copied to
both path A and B, while the constraint input > 343 is added to path A
and the constraint ¬(input > 343) is added to path B. In path B another
jump occurs, causing it to split into path B.1 and B.2. Again, constraints
are added. For simplification, no paths are taken into account that could
stem from the scanf or printf functions apart from the paths under “nor-
mal” execution. See the execution path tree for an overview.

Start

{}

A

{input > 343}
B

{¬(input > 343)}

B.1

{¬(input > 343), input < 345}
B.2

{¬(input > 343), ¬(input < 345)}

9



Note that prior knowledge of the source code of the program is unnec-
essary for using symbolic execution.

2.2.3 angr’s inner workings

In its documentation [13], angr is described as “a multi-architecture binary
analysis toolkit, with the capability to perform dynamic symbolic execution
and various static analyses on binaries.” Under the hood, the framework
consists of multiple modules, most notably: angr (the main module), CLE,
Claripy and PyVEX.

Analysis of a binary starts with loading the binary, which happens
through the CLE module. Since a binary uses addresses to enter or return
from functions, it is necessary to map the binary on a virtual address space.
Because angr can load binaries from multiple architectures, an abstraction
from the architecture is needed to perform analyses. For this, angr uses the
VEX intermediate representation that was created for Valgrind, a framework
for building dynamic analysis tools [29]. VEX abstracts the differences in
architecture, like register names, and provides an easy way for the rest of
the framework to interact with the binary. The PyVEX module exposes the
intermediate representation to the other modules.

angr emulates execution of a binary by providing a blank program state
and stepping through the intermediate representation, all the while updating
the program state. In contrast to normal execution, where each step results
in precisely one successor state, a step in symbolic execution can produce
multiple successor states. A simulation manager keeps track of all successor
states and groups active, deadended en errored states. During symbolic ex-
ecution, active states are stepped through until they either finish execution
or raise an error.

At the start of the emulation, the program state will contain uninitial-
ized memory, registers and so forth. However, during emulation concrete and
symbolic values will be added to the program state, for example by loading
a value that’s compiled in the binary into a register (a concrete value) or by
reading the contents of a file (an unconstrained, symbolic value). All these
values are implemented as Abstract Syntax Trees (AST) by angr’s solver
engine Claripy. Operations on the values, like incrementing a symbolic
value, are saved in the AST. Finally, constraints on the program state that
are found during execution, for example at an if-statement, are saved in the
solver engine.
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The solver engine uses Z3 [10], an SMT solver developed by Microsoft,
in its backend. The solver engine can determine if the constraints of a state
are satisfiable (i.e., determine if the state is reachable), it can check if a
given concrete value is a solution of a symbolic value (taking into account
all constraints on the state), and it can produce concrete solutions for sym-
bolic values.

2.2.4 Challenges of symbolic execution

Symbolic execution can work wonders in automated bug searching and pro-
gram verification [8, 4], but it still needs to overcome some challenging prob-
lems. The two main problems of symbolic execution are described below.

Path Explosion

Symbolic execution works by collecting all constraints on the program state
on a given execution path. Programs often use loops to iterate a part of
the code until a certain condition is valid. Since there is a check on the
condition in each iteration of the loop, there will be a lot of branches when
the program is symbolically executed. Since loops can iterate indefinitely,
the number of branches is infinite. Because of this it can be unfeasible to
analyze a program with symbolic execution when it uses loops, because of
the large number of branches.

Attempts at reducing path explosion have been made, for example with
state merging, where paths can be merged if the program state and next
instruction are the same. However, loops are often used to change the state
of the program on each iteration. Recently progression has been made in
analyzing programs suffering from path explosion by Avgerinos et al. [4]. In
the paper dynamic analysis (i.e. symbolic execution) and static analysis are
interchanged. The static analysis (termed static symbolic execution in the
paper of Avgerinos et al.) creates a logical formula of parts of the programs
code. By employing static analysis on loops the path explosion problem
of symbolic execution can be alleviated. For example, the node coverage,
which measures the lines of code covered by symbolic execution, improved
11.7 percentage point when using this new technique compared to “classic”
symbolic execution with the coreutils library of Debian as subject programs.

Further research is needed to make symbolic execution more feasible for
all programs.
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SMT solving

Each execution path has its state modeled by constraints. Satisfiability and
example outputs are typically produced by SMT solvers. SMT is a decision
problem for the satisfiability of an expression [6]. This expression is a logic
formula that can have all kinds of terms, which are formed through so-called
theories. Examples of theories are linear arithmetic and array theory.

SMT-solving is an undecidable problem if the expression contains non-
linear functions (e.g. exponential functions). Nevertheless a lot of effort has
been put into creating efficient and powerful SMT-solvers. Nowadays there
are some SMT-solvers that can solve many, but not all, expressions quickly.
Further improvements to these SMT-solvers would make symbolic execution
more feasible as an analysis tool for large programs.

2.3 RERS challenge

The Rigorous Examination of Reactive Systems (RERS) [16] challenge is a
challenge to solve reachability questions and LTL formulas on benchmarks
created for the challenge. The aim of the challenge is to compare various
methods to answer the questions. The benchmarks all have similar be-
haviour: the program waits for an input number, does some computations
and it produces an output number. The program does this until the pro-
gram ends or an error occurs.

The RERS benchmarks are the main benchmarks used in this thesis.
Because of the way all benchmarks work, their behaviour can be modeled
by Mealy Machines quite well. In this thesis both the reachability problems
and LTL-problems from RERS 2016 are used, counting 18 benchmarks in
total.
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Chapter 3

Research

3.1 Theoretical improvement of symbolic execu-
tion on equivalence checking

In this section an explanation is given of why using test cases generated by
symbolic execution could be a very efficient conformance testing method.
The described improvement is theoretical and is an overestimate of the ac-
tual improvement. Nevertheless, the described improvement may still be
close to the actual improvement when symbolic execution is applied to pro-
grams found in practice.

Model learning algorithms ensure that all input symbols are tested for
each state of a hypothesis. This means that all input symbols that can
“trigger” a given edge in the model underlying the SUL are discovered dur-
ing the learning phase, if the hypothesis has found all nodes of the model
underlying the SUL. Therefore, when doing equivalence checking it is suf-
ficient to have only one test case that triggers this edge. Even if there are
more test cases that are equal except for the last input symbol and that can
trigger the same edge in the hypothesis, it is unnecessary to test them dur-
ing equivalence checking. This is because the model learning algorithm will
have made sure that the behaviour is already supported in the hypothesis,
so using more of these test cases can not help producing a counterexample.

This shows that a complete test suite can be created with as many test
cases as there are edges in the model underlying the SUL.

In many programs, there are a lot of inputs that cause the program to
behave the same way. Black box equivalence checking techniques will not
pick up on this, because they don’t have information about which inputs
cause identical behaviour until after they have tried all inputs. Since white
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box techniques can extract this information from source code or machine
code, white box techniques can pick up on this. Because of this white box
techniques can use fewer test cases to fully test the equivalence of the hy-
pothesis and the SUL.

Now we will go on to show under which assumptions symbolic execution
can create a complete test suite for a SUL.

For a moment, let us assume that symbolic execution can produce all
possible execution paths of a program and that the SMT solver can either
solve a given set of constraints or show that they are not satisfiable (SMT
solvers are NP-complete, but we’ll forego this for the sake of the argument).
Additionally, symbolic execution should identify and merge states it has
earlier encountered by checking if all constraints and the instruction pointer
are equal. This will prevent duplicate symbolic execution of the code and
duplicate execution paths.

In efficiently programmed programs, various inputs that produce identi-
cal output when the program is in the same state will be in the same exe-
cution path. This means that when the input symbols and output symbols
belonging to an execution path are concretised, there is no other execution
path that can have the same input and output symbols when concretised.
Now each execution path corresponds with precisely one path in the model
underlying the SUL, because all execution paths show unique behaviour.
Furthermore, because the execution paths contain all possible behaviours of
the program, the corresponding paths in the model underlying the SUL will
also exhibit all possible behaviours of the program.

If we use the the concretised inputs for all execution paths, we can gener-
ate test cases that elicit all possible behaviours of the program. This means
that every edge in the model underlying the SUL is covered by the test suite.
This in turn means that we can check if all edges of the model underlying
the SUL are present in the hypothesis using this test suite.

This shows that in the situation that the assumptions made earlier are
true, symbolic execution could drastically reduce the number of queries
needed for Equivalence Checking of a model (namely, to the number of edges
of the model underlying the SUL). In reality however, symbolic execution
will not always be able to deduce all execution paths and SMT solvers can’t
solve all constraints. In addition, there may be various execution paths that
that, in the same state, map different input symbols to the same output
symbol (caused by an ineficciently programmed SUL). However, even with
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these imperfections, there may be a worthwhile reduction in the number of
test cases for equivalence checking when using symbolic execution, especially
in programs with large numbers of input symbols and few execution paths.

3.2 Experimental setup

The aim of the research is to evaluate if using symbolic execution for answer-
ing the equivalence queries during model learning is beneficial compared to
other strategies for answering equivalence queries. As such, the experiments
were carried out in three groups. The first group used symbolic execution to
create test cases for the Equivalence Oracle (the part of the learning setup
that answers Equivalence Queries). The second group used fuzzing to cre-
ate test cases for the Equivalence Oracle. The third group used adaptive
distinguishing sequences for test case generation to act as a baseline for the
other two groups.

3.2.1 RERS benchmarks

The benchmarks from the RERS challenge of 2016 were used. There are 18
benchmarks in total; 9 benchmarks are LTL problems and 9 benchmarks
are reachability problems. The parallel problems of the challenge were not
considered. In the challenge, the objective of the LTL benchmarks is to test
validity of certain LTL-expressions, while for the reachability benchmarks
the objective is to check which errors in the source code are reachable. How-
ever, in this paper the objective for both types of benchmark is to learn a
Mealy machine of the benchmarks behaviour.

The LTL and reachability benchmarks are categorized by difficulty of the
problem and program size. Each of the categories “plain, simple”, “arith-
metic, medium” and “data structure, hard” has a small, medium and large
benchmark. Four benchmarks have an input alphabet ranging from 1 to
5, six benchmarks have an input alphabet from 1 to 10 and the remaining
eight benchmarks have an input alphabet ranging from 1 to 20.

All program behaviour is as follows: The program loops, waiting for
input and producing an output number for each input number. On each
iteration of the loop the program first reads an int as input, it changes the
state of the program and an output symbol is printed. If the entered num-
ber is not in the input alphabet, the program stops execution. The state
is kept through a number of variables. The state is changed upon input by
conditionally assigning other values to the state variables and printing an
output symbol. If the state isn’t changed, the program prints a message
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saying the input was invalid and continues the loop.

3.2.2 Test case generation with symbolic execution

To symbolically execute each of the RERS benchmarks, angr was used.
Symbolic execution began at the main entrypoint of the program and used
a breadth-first strategy to step through all execution paths. Execution paths
were collected in “live” and “deadended” stashes, with the “live” stash con-
taining paths that still have statements to execute and the “deadended”
stash containing paths that completed execution. Both stashes were used
to generate test cases.

Since the test case generation is very space intensive, symbolic execution
was run in a process limited to 40GB memory. Symbolic execution continued
until it ran out of memory. Generated test cases were saved to files and
parsed to be readable by the learning tool.

Improvements to symbolic benchmark execution

Since complexity of library and system calls is a challenge in symbolic exe-
cution [5], angr has partially implemented the C standard library to reduce
state explosion in library calls. The RERS benchmarks heavily rely on tak-
ing input from stdin by calling the scanf function, which is implemented
by angr. Since the implementation in angr has to take into account format
strings and large integers, the constraints were more complex than neces-
sary for symbolically executing the benchmarks, because the benchmarks
maximally take integers 1 to 20 as their input alphabet. The scanf proce-
dure offered by angr was modified to attune constraint complexity to the
benchmarks by reflecting the reduced input size of the benchmarks.

3.2.3 Test case generation with fuzzing

For the fuzzing group, test cases were generated by Smetsers et al. [34] and
made publicly available. The test cases were created using the American
Fuzzy Lop tool. Further information on test case generation can be found
in the paper by Smetsers et al.
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3.2.4 Test case generation with adaptive distinguishing se-
quences

Test case generation based on adaptive distinguishing sequences (ADS) is
currently one of the most efficient ways to check the hypothesis of a model
in a black-box setting [25]. Since it is not possible to generate an adaptive
distinguishing sequence for all states of all Mealy Machines, test case gen-
eration is complemented using the HSI method [30] to be able to generate a
complete set of test cases. This complemented method is called hybrid-ADS

For generating ADS test cases a tool to generate testsets developed by
J. Moerman was used [28].

3.2.5 Learning setup

To learn Mealy Machines of the benchmarks the state-of-the-art model learn-
ing tool LearnLib was used [19]. TTT was used as the learning algorithm
[21]. Membership Oracles were implemented using compiled versions of the
RERS benchmarks. Equivalence Oracles for symbolic execution and fuzzing
were implemented by reading the test cases from files and randomly ordering
the test cases to be used. ADS test cases were generated by the tool and
were randomly ordered by the tool.

To achieve comparable results between groups, test suite size differences
were eliminated by setting a query limit for equivalence checking at 500
queries. Since all testsets are randomly sampled if they’re bigger than the
limit, the results were averaged over 10 runs to account for randomness.

The main outcome measure of the experiments is the number of found
nodes in the models. A higher number of nodes signifies a model that is
more closely aligned to the actual behaviour of the program. The time
spent learning was also tracked, however the time spent on test case gen-
eration was not taken into account. Finally, the size of the queries is also
tracked by saving the number of input symbols used for learning.

3.3 Results

The results of the experiments can be found per group in tables 3.1, 3.2 and
3.3. The variance of the number of nodes is generally quite low in the SE
and fuzzing groups, except for problems 13, 14 and 15 of the fuzzing group.
The reason for this is unclear. The variance in the ADS group fluctuates
somewhat; for some problems there is a near-zero variance, for others it is
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almost as big as or bigger than the average. This is probably due to the
limit on the amount of queries being relatively low for ADS, causing rela-
tively big differences between runs in the number of counterexamples that
are found. For example, for problem 7, in four runs five counterexamples
were found, whereas three counterexamples were found in the other runs,
causing a relatively high variance.

The number of symbols per query is comparable for the SE (weighted
average: 6.17 symbols per query) and ADS groups (weighted average: 5.83
symbols per query). The fuzzing group shows a significant difference, aver-
aging 198.42 symbols per query. This indicates that the test cases generated
by fuzzing were around 30-fold larger than test cases in the other sets.

The time needed for learning a model was shortest for the ADS group
and longest, by a large margin, for the fuzzing group. The difference is most
likely attributable to the size of the learned model.

The number of nodes learned per strategy is visualized in Figure 3.1. It
clearly shows that the highest number of nodes was found using the fuzzing
strategy. Symbolic execution performed second best, finding more nodes
than ADS for each problem, but finding as many or fewer nodes than the
fuzzing strategy.
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RERS Problem Nodes Variance Symbols/Query Time spent (s)

1 13.00 0.00 8.23 6.95

2 21.90 0.10 7.54 8.35

3 17.40 0.27 7.91 10.95

4 115.80 16.84 5.00 69.57

5 10.40 0.27 8.57 7.92

6 25.70 6.01 8.03 43.08

7 82.30 20.23 5.84 149.61

8 34.60 7.82 7.36 58.43

9 91.40 45.38 5.06 143.11

10 15.00 0.00 8.39 6.18

11 20.44 2.03 6.56 6.84

12 21.80 0.18 5.66 9.24

13 70.00 30.67 4.63 32.96

14 82.33 10.00 4.85 48.29

15 68.50 13.83 4.99 120.80

16 76.20 19.07 4.59 103.54

17 85.50 15.61 3.91 170.67

18 72.50 11.61 5.06 141.35

Table 3.1: Results of model learning on the RERS 2016 benchmarks
using the symbolic execution strategy
Nodes shows how many nodes were learned on average when constructing a model.
Variance is the variance of the number of nodes that were learned. Symbols/Query
is the amount of symbols per query, indicating the size of the queries on average.
Time spent is the time spent learning the model, single core on an Intel R⃝i5-6600K
CPU at 3.5GHz.
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RERS Problem Nodes Variance Symbols/Query Time spent (s)

1 13.00 0.00 287.58 733.99

2 22.00 0.00 202.82 1,035.57

3 26.00 0.00 294.20 1,466.79

4 153.22 3.19 280.37 3,247.63

5 121.00 0.00 388.62 2,613.37

6 161.50 53.67 242.76 5,917.55

7 502.67 115.87 180.93 7,355.72

8 556.00 0.00 196.68 16,390.96

9 676.00 450.00 135.39 4,948.64

10 61.00 0.00 168.82 269.46

11 981.33 641.33 221.10 13,441.89

12 229.40 537.38 259.59 5,641.46

13 268.00 1,955.43 132.62 1,968.92

14 246.40 1,130.49 137.65 3,629.66

15 278.20 1,730.62 121.05 2,677.48

16 642.57 394.29 103.96 6,228.23

17 620.67 796.33 140.79 19,558.85

18 619.60 248.30 129.83 5,032.79

Table 3.2: Results of model learning on the RERS 2016 benchmarks
using the fuzzing strategy
Nodes shows how many nodes were learned on average when constructing a model.
Variance is the variance of the number of nodes that were learned. Symbols/Query
is the amount of symbols per query, indicating the size of the queries on average.
Time spent is the time spent learning the model, single core on an Intel R⃝i5-6600K
CPU at 3.5GHz.
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RERS Problem Nodes Variance Symbols/Query Time spent (s)

1 7.70 0.23 6.93 5.89

2 13.90 1.21 6.33 6.23

3 10.50 1.83 8.01 8.23

4 53.00 51.78 6.02 28.48

5 3.40 0.93 4.18 3.43

6 2.80 0.18 4.20 3.63

7 9.90 38.77 5.90 12.19

8 2.50 0.28 4.03 3.51

9 6.80 3.73 4.61 5.99

10 12.00 0.00 6.20 3.53

11 10.44 0.28 5.61 4.90

12 11.38 0.27 7.93 6.83

13 36.22 61.69 5.62 14.04

14 25.30 23.34 6.04 12.15

15 13.30 28.23 5.73 12.37

16 32.00 7.71 7.26 37.83

17 21.60 20.71 7.04 24.17

18 2.00 0.00 3.40 2.93

Table 3.3: Results of model learning on the RERS 2016 benchmarks
using the ADS strategy
Nodes shows how many nodes were learned on average when constructing a model.
Variance is the variance of the number of nodes that were learned. Symbols/Query
is the amount of symbols per query, indicating the size of the queries on average.
Time spent is the time spent learning the model, single core on an Intel R⃝i5-6600K
CPU at 3.5GHz.
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Figure 3.1:

Problem
1Problem
2Problem
3Problem
4Problem
5Problem
6Problem
7Problem
8Problem
9

Problem
10

Problem
11

Problem
12

Problem
13

Problem
14

Problem
15

Problem
16

Problem
17

Problem
18

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,00
0

Nodes

N
u
m
b
er

o
f
n
o
d
es

in
learn

ed
m
o
d
el

b
etw

een
S
E
,
fu
zzin

g
an

d
A
D
S

S
E

fu
zzin

g
h
y
b
rid

-A
D
S

22



Chapter 4

Discussion

Based on the results described in the previous section, we conclude that
symbolic execution can improve the efficiency of conformance testing when
compared with the hybrid-ADS black box conformance testing method, but
in most cases it lags behind the fuzzing based approach. This indicates that
symbolic execution may not be as good an improvement upon conformance
checking as previously thought. However, there are some further considera-
tions when interpreting these results:

• The RERS benchmarks may not be representative for many other pro-
grams encountered in practice. The RERS problems are designed to
be hard, so that software verification and model learning techniques
can be compared. However, since many conformance testing methods
do not handle large input alphabets well, the biggest alphabet size in
the challenge is 20 symbols. In programs that do not take 20 symbols
as input, but 16-bit integers for example (having an input alphabet of
216), symbolic execution may perform much better. Additionally, the
way that state is handled in the benchmarks is dissimilar with many
programs that are not computer generated, which may be a factor why
symbolic execution is performing more poorly than other techniques.

• There are many different symbolic execution tools in use, such as
KLEE [7], SAGE [17] or Mayhem [8]. Other symbolic execution en-
gines would surely have led to different results and might have per-
formed better learning the benchmarks. For example, symbolic exe-
cution engines like KLEE operate on the source code level. Such tools
may be better able to generate interesting test cases, because they have
access to higher order information on the workings of programs than
binary level symbolic execution engines. Also, proprietary symbolic
execution engines may be more powerful than angr, due to greater
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funding for development of the tool.

• The test cases in the fuzzing group were generated by running the
fuzzing tool for the course of multiple days, while the symbolic exe-
cution test cases were generated in approximately 2 hours. Since the
Symbolic Exeuction engine used a breadth-first strategy, test cases
were generally shorter than the test cases generated by fuzzing. This
may cause nodes to be missing when learning with symbolic execution
as compared to fuzzing, because the test cases may not be long enough
to reach certain states. This problem could be solved by running sym-
bolic execution for a longer time or by employing a different strategy
for selecting the execution path to step through.

• Since the test cases of the fuzzing group were a lot longer than test
cases in the other groups, setting a limit at 500 queries may have
skewed the playing field in favor of the fuzzing group. In future re-
search, it is recommended to limit the total number of symbols used
for conformance testing instead. It is hoped that this will create a
more level playing field to compare various conformance testing meth-
ods.

Although the direct use of symbolic execution does not prove to be better
that other examined methods for equivalence checking, it may still improve
model learning by automatically creating input or output classes that a
mapper can use. Whereas many model learning problems use a small in-
put alphabet (a 20 symbol maximum in case of the RERS challenge), real
world applications often range over larger input alphabets. By using the
constraints collected by a symbolic execution engine the input space can be
partitioned. This potentially greatly decreases the alphabet size for learning
setups using a mapper, making for easy learning without the need for human
intervention to configure the mapper.
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