
Bachelor thesis
Computing Science

Radboud University

An Extended Algorithm for Learning
Serial Compositions of Mealy Machines

Author:
Reinier Joosse
R.Joosse@student.ru.nl

4698649

First supervisor/assessor:
prof. dr. F.W. Vaandrager
F.Vaandrager@cs.ru.nl

Second assessor:
prof. dr. M.I.A. Stoelinga

m.i.a.stoelinga@utwente.nl

July 4, 2019

Abstract

Some systems which convert input sequences to output sequences consist of
two subsystems, A and X, where the input is given to A, the output of A is
used as input for X, and the output of X is returned. Abel & Reineke [2]
developed an algorithm that, given such a composition for which a model of
A is known, learns a model that is equivalent to the behavior of X that can
be observed in the composition.

We propose a generalization of this algorithm that can also solve the
case where some outputs of A are returned immediately as the output of the
composition instead of being forwarded to X. The algorithm is compared
to the original algorithm and to a black-box learning algorithm which learns
a model of the entire composition. Experiments we performed in which
models of three industrial systems are learned in a composition show that
the new algorithm is an improvement in terms of run time and the number
of required output queries.

Acknowledgments

I would like to thank Frits Vaandrager, without whose ideas and suggested
literature my interest in this subject would not have been sparked and who
supported me during my thesis project. I would also like to thank Marielle
Stoelinga for her feedback on my thesis. Furthermore, I thank Andreas Abel
and Jan Reineke, whose initial research enabled me to elaborate on this
subject and who provided me with an implementation of their algorithm,
which served as the basis for most of my experiments. Lastly, I would like
to thank the other (anonymous) people who supported me and reviewed my
writings.

2

Contents

1 Introduction 4
1.1 Preliminaries . 7

2 Problem Statement 9

3 Algorithm 11
3.1 Overview . 11
3.2 Creating a Mealy machine from an observation table 14

3.2.1 States . 14
3.2.2 Transitions . 15

3.3 Optimizing the observation table 15
3.4 Output queries for the right machine 17
3.5 Correctness . 22

4 Experiments 25
4.1 Test cases . 25
4.2 Implementations . 27
4.3 Results . 28

5 Related Work 31

6 Conclusion 32
6.1 Future work . 32

A Appendix 36

3

Chapter 1

Introduction

Software or hardware components sometimes need to be redesigned to make
them more efficient or to make them fit into new programming frameworks.
During such a process, an important goal is that the behavior of the re-
designed component is exactly the same as that of the old component. To
ensure this, it is necessary to know exactly how the old system responds to
all possible inputs. This behavior can be represented by a model. It can be
tedious to construct such a model manually, especially when the user is not
familiar with the system, as each possible input combination may result in
different outputs.

Instead of trying to make a model manually, it can be constructed auto-
matically by applying model learning techniques [16]. Active model learning
algorithms, such as Angluin’s L* algorithm [3] (or Rivest & Schapire’s im-
provement [14], or any other of its improvements; see [8] for an overview),
can learn a model of a System Under Learning (SUL) assuming that it is
possible to ask output queries and equivalence queries.

In an output query, the learner asks how the SUL responds to a given
input sequence. This can be answered by providing the input sequence to the
SUL and recording which outputs it returns. An equivalence query answers
the question whether a given hypothesis model is equivalent to the SUL.
If it is not, a counterexample must be returned (i.e. an input sequence for
which the hypothesis and the SUL return different output sequences). If a
model of the SUL is not already available, equivalence queries are usually
approximated by comparing the results of the two systems for many output
queries: if a counterexample cannot be found after an extensive search, the
hypothesis and the SUL are assumed to be equivalent.

The number of output and equivalence queries used by a model learning
algorithm should be as small as possible to decrease the run time. While
a single output query may not take very long, the total run time is greatly
affected if the learning process requires many of them. For example, biomet-
ric passports allow only one input symbol per second to prevent brute-force

4

Figure 1.1: A composition of a smartphone app and a coffee machine.

attacks [1]. In such cases, using millions of output queries can increase the
learning time to the point that it is unfeasible to complete the learning pro-
cess. A single equivalence query may also take a long time depending on the
method of approximation.

For more extensive background reading on model learning, refer to [3,
12, 9].

To complicate matters, however, interacting with the SUL directly is
not always possible: sometimes this is only possible through an interface.
Imagine, for example, a coffee machine which can only be used by pressing
buttons in a smartphone app (see Figure 1.1). The app generates an input
for the coffee machine based on its own state and the pressed button, and
the coffee machine determines what coffee to prepare based on the input
received from the app. If we already have a model of the app’s behavior, we
may call this composition a gray box (as the app is a known white box, and
the coffee machine is an unknown black box). We cannot use a black-box
learning algorithm such as L* to learn a model of the coffee machine if the
app cannot generate all possible input sequences for the coffee machine.

It is possible to learn a model of the entire composition of the app and
the coffee machine by considering it as a black box, where the buttons in
the app are the inputs and the prepared coffee is the output. A model of
the coffee machine may then be inferred from the model of the app and the
composition [17]. If the app is complicated, however, learning the entire
composition may take too long.

Learning a model of the right system (the coffee machine) in such com-
positions, where a model of the left system (the app) is known, can be
done more efficiently using an algorithm proposed by Abel & Reineke in [2].
They consider the case when all outputs of the left system are passed as
input to the right system. The output of the right system is the output of
the composition.

Abel & Reineke’s algorithm cannot be applied to cases where some out-
puts of the left system are directly given as output of the composition,
without first passing them to the right system. In practice, this is some-
times required. For example, continuing the example of the coffee machine,
some buttons may not immediately forward the user’s request but first ask
the user for confirmation instead. Or it may occur that a company would

5

Figure 1.2: A composition A� X.

like to learn a large amount of software components with which it can only
interact through a known security mechanism which sends messages for the
SUL given some inputs, but outputs error messages for the user given other
inputs.

This thesis presents an extension of Abel & Reineke’s algorithm which
can learn a model (of minimal size) of the observable behavior of the right
system in this more general case as well, displayed in Figure 1.2, where some
outputs of A are not forwarded to X. We will call A the left machine and
X the right machine.

In [2], Abel & Reineke only test their algorithm using randomly gen-
erated test cases. This thesis compares the proposed extended algorithm
to their original algorithm as well as to a black-box learning algorithm for
learning the entire composition, implemented in the library LearnLib [9]
(namely, [15], according to LearnLib’s documentation1). Instead of using
randomly generated models, we experiment with three industrial use cases
as right machines, provided by the company ASML for the RERS 2019
challenge [10]. For the left machine, we use queuing systems of several sizes.
Furthermore, we compare the number of output queries used by the three
algorithms for an increasingly large left machine. We find that our extension
is faster than Abel & Reineke’s original algorithm in these experiments. It
also uses fewer output queries than the other algorithms for an increasing
size of the left machine. We argue that this would make our extension faster
than the LearnLib implementation outside of our experimental setup as well.

Hence, we address two research questions in this thesis:

• How can Abel & Reineke’s algorithm be extended to make it possible to
learn compositions where some outputs of the left machine are directly
given as output of the composition instead of being passed to the right
machine?

1https://github.com/LearnLib/learnlib/wiki/Learning-Algorithms-in-LearnLib#

extensiblelstarmealy

6

• How does this extension compare to the original algorithm and to
learning the composition as a black box in industrial use cases in terms
of run time and number of required output queries?

Section 1.1 will present some required definitions, after which Chapter 2
follows with a formal definition of the problem that must be solved by the
algorithm required in the first research question. Chapter 3 presents this
algorithm by explaining how Abel & Reineke’s original algorithm works and
presenting how we extend this algorithm such that it can solve our problem.
Next, Chapter 4 will answer the second research question by presenting
appropriate experiments and their results. Chapter 5 outlines the literature
related to this thesis and Chapter 6 concludes.

1.1 Preliminaries

This section presents some definitions necessary for understanding the fol-
lowing chapters.

Definition 1. A (deterministic) Mealy machine is a six-tuple (Q,Σ,∆,
δ, λ, q0) where Q is a finite set of states, Σ is a finite set containing all
input symbols (the input alphabet), ∆ is the (finite) output alphabet, δ is
a (partial) transition function with signature Q × Σ → Q, λ is a (partial)
output function with signature Q×Σ→ ∆ and q0 ∈ Σ is the initial state [7,
p. 43]. Let M be the set of all Mealy machines.

Definition 2. A transition of a Mealy machine (Q,Σ,∆, δ, λ, q0) ∈M is a
four-tuple (q, q′, i, o) ∈ Q×Q×Σ×∆ such that δ(q, i) = q′ and λ(q, i) = o.
Here, q is called the origin state, q′ is the destination state, i is the consumed
input symbol and o is the produced output symbol.

Because every transition must have both an origin state and an input
symbol, it is meaningless if only one of δ(q, i) and λ(q, i) is defined. There-
fore, we require that δ(q, i) ↓ ⇔ λ(q, i) ↓. If, for some q ∈ Q and i ∈ Σ, the
functions are not defined, then there is no transition for input i from state
q.

An example of a Mealy machine can be seen in Figure 1.3. Circles denote
states and arrows denote transitions: an arrow from a state labeled 1 to a
state labeled 2 annotated with i/o denotes a transition (1, 2, i, o). The
initial state is indicated by an unlabeled incoming arrow.

Nondeterministic Mealy machines may have multiple transitions for the
same combination of state and input symbol. Such Mealy machines do not
have a λ function; the codomain of their δ function is P(Q×∆), returning
sets of tuples containing the destination state and the output symbol. Other
definitions are changed accordingly.

7

Figure 1.3: A Mealy machine.

Definition 3. A Mealy machine (Q,Σ,∆, δ, λ, q0) is input-complete if δ(q, i)
and λ(q, i) are defined for all q ∈ Q and i ∈ Σ.

The empty sequence is denoted by ε. The concatenation of two se-
quences w and v is also a sequence and is written as wv. For example, the
concatenation of the sequences a and bcd is written as abcd. Sets can be
extended to sets of finite sequences using the Kleene star [7, p. 28] (e.g.
{a, b}∗ = {ε, a, b, aa, ab, ba, bb, . . . }). For example, Σ∗ is a set of input
sequences and ∆∗ is a set of output sequences.

Definition 4. Given a Mealy machine M = (Q,Σ,∆, δ, λ, q0), let λ∗M : Q×
Σ∗ → ∆∗ be its extended output function, defined as follows:

λ∗M (q, ε) = ε

λ∗M (q, iw) = λ(q, i)λ∗M (δ(q, i), w)

We abbreviate λ∗M (q, w) as λ∗M (w), also called the output query.

The output query gives the output sequence a Mealy machine produces in
response to a given input sequence. For example, to run the input sequence
ijji on the Mealy machine in Figure 1.3, we start in the initial state, take
the i/o transition to state 2, the j/p transition to state 1, the j/o transition
to state 1 and finally the i/o transition to state 2. The output sequence is
thus opoo.

Definition 5. Two Mealy machines M = (Q,Σ,∆, δ, λ, q0) and M ′ =
(Q′,Σ′,∆′, δ′, λ′, q′0) are equivalent if Σ = Σ′ and λ∗M = λ∗M ′.

The size of a Mealy machine refers to the size of its set of states. A Mealy
machine is minimal if there does not exist an equivalent Mealy machine with
fewer states.

Definition 6. An equivalence query for a Mealy machine M is a function
EQM : M→ Σ∗ ∪ {⊥} such that EQM (M ′) = ⊥ if M and M ′ are equiva-
lent; if they are not equivalent, a distinguishing sequence EQM (M ′) = w is
returned such that λ∗M (w) 6= λ∗M ′(w).

8

Chapter 2

Problem Statement

The problem solved by the algorithm proposed in this thesis is as follows.
Suppose that we have a Mealy machine C which is composed of two

deterministic, input-complete Mealy machines A and X, written as C =
A � X. We will call A the left machine and X the right machine. Any
input to C is passed to A. Some outputs of A are subsequently passed
as input to X, in which case the corresponding output of X is the output
of C. All other outputs of A are directly given as output of C. A visual
representation is given in Figure 1.2. Formally,

A := (QA,ΣA,∆A, δA, λA, q0A)

X := (QX ,ΣX ,∆X , δX , λX , q0X)

C := (QA ×QX ,ΣA, (∆A \ ΣX) ∪∆X , δ, λ, (q0A , q0X))

where

δ((qA, qX), i) :=

(δA(qA, i), δX(qX , oA)) if oA ∈ ΣX

(δA(qA, i), qX) otherwise

λ((qA, qX), i) :=

λX(qX , oA) if oA ∈ ΣX

λA(qA, i) otherwise

oA := λA(qA, i)

To make it clear which outputs originate from A and which originate
from X, we require that (∆A \ ΣX) ∩∆X = ∅.

In such a composition, not all states of X may be reachable if not all
possible input sequences in Σ∗X can be generated by A. In such cases, we
cannot learn X completely because we cannot query it directly. We can only
learn the behavior of X that is visible in the context of the composition.

Definition 7. Two Mealy machines X1 and X2 are right-equivalent in the
context of a Mealy machine A = (Q,Σ,∆, δ, λ, q0) if ∀w ∈ Σ∗, λ∗A�X1

(w) =
λ∗A�X2

(w).

9

Now, the problem statement is as follows. Suppose that we know the
internal structure of A (i.e. we know QA, ΣA, ∆A, δA, λA and q0A) but we
do not know the structure of X (we only know ΣX). We cannot directly ask
output or equivalence queries for X, but we can ask output and equivalence
queries for the composition C.1 The task is to construct a minimal Mealy
machine model that is right-equivalent to X using this information.

1We will later show that we can obtain answers to λ∗X and EQX by defining them in
terms of λ∗C and EQC .

10

Chapter 3

Algorithm

The algorithm we propose learns a Mealy machine of minimal size of the
behavior of the unknown right system (X) in a composition A � X. It is
the same as Abel & Reineke’s algorithm presented in [2], except that the
output and equivalence queries are realized in a different way. This chapter
will explain the entire algorithm, including the modified way of performing
output and equivalence queries, but only the method of performing output
and equivalence queries is new in this chapter. The other aspects of how
the algorithm works were already presented in [2], where they are described
more extensively.

In the first section, an overview will be given of how the algorithm works.
The second and third section explain the original algorithm by Abel &
Reineke in more detail, which is used in our approach. Section 3.4 presents
our new method to realize the output queries. The chapter concludes with
a section about the correctness of our approach.

3.1 Overview

To discover the behavior of X, the algorithm first comes up with a number of
input sequences for X for which it observes the output using output queries.
The results of the output queries are stored in a data structure called the
observation table. The observation table maps input sequences for X to the
corresponding output sequences of X.

Because Mealy machines do not give any output for the empty input
sequence, we will only consider non-empty input sequences. Each input
sequence can be split into two parts: a (possibly empty) prefix and a suffix.
The rows of the observation table are labeled with prefixes of input sequences
forX and the columns with suffixes. The cells contain the last output symbol
that X gives for the input sequence obtained by appending its column’s
suffix to its row’s prefix. A cell in an observation table in a row with prefix
w and in a column with suffix v will contain the last symbol in the result of

11

i j ii

ε o o p

i p p p

j o o p

ji p p p

Table 3.1: An observation table for the Mealy machine in Figure 1.3. The
input alphabet is {i, j}; the output alphabet is {o, p}.

λ∗X(wv).

An example of an observation table for the Mealy machine in Figure 1.3
is shown in Table 3.1. To determine the symbol in the cell in the third row
and the third column, we have to calculate λ∗X(jii), since we append the
row’s prefix (j) to the column’s suffix (ii). If jii is not a valid output
sequence of the left machine, we put ⊥ in the cell. Otherwise, looking at
Figure 1.3, we use the following transitions:

• (1, 1, j, o)

• (1, 2, i, o)

• (2, 2, i, p)

We obtain the output sequence oop, hence λ∗X(jii) = oop. We put the last
symbol from this output sequence into the cell. Therefore, the cell contains
p.

From a full observation table, a hypothesis Mealy machine for X is con-
structed, which is then compared to X using an equivalence query. If the
hypothesis is equivalent to X, we are done. Otherwise, we refine the obser-
vation table using the returned counterexample. Two questions arise here:

1. How do we perform output queries for X?

2. How do we perform equivalence queries for X?

We start with the first question. To fill the observation table, we have
to know the outputs of X for given input sequences. A problem we face
with the composition is that we cannot directly perform output queries for
the right machine. Since we know the structure of A, however, we can
find specific input sequences for A which cause X to get the desired input
sequence (see Section 3.4). It is not always the case that all possible input
sequences for X can be generated by A. For those input sequences, it is
impossible to observe the corresponding output sequence of X. Cells in the
observation table where this is the case will contain ⊥ cells.

12

From a correct observation table, the algorithm can construct a hypoth-
esis Mealy machine that exhibits all observed behavior (see Section 3.2). If
the observation table did not contain all relevant behavior of X, it needs
to be refined further. To find out whether this is the case, the algorithm
needs an answer to an equivalence query for this hypothesis. This leads to
the second question.

Our problem statement dictates that we cannot directly perform an
equivalence query for a hypothesis of X, but only for the composition. One
way to implement equivalence queries for X is by expressing them in terms
of the equivalence query for the composition A� X as follows. The hypoth-
esis H is composed with A into the composition A � H. This hypothesis
composition is used as a hypothesis in an equivalence query for the actual
composition, A � X. If A � H is equivalent to A � X, then H must
also be equivalent to X in the context of A. Otherwise, the equivalence
query will generate an input sequence c that distinguishes the hypothesis
composition from the actual composition.

This counterexample c is an input sequence for the composition (and for
A), not for X. To convert c into an input sequence that distinguishes H and
X, we first calculate c′ = λ∗A(c). Since, in our composition, some outputs of
A are directly given as the output of the composition while others are first
passed to X, c′ may contain symbols which are not passed to X. The input
sequence that distinguishes H and X is therefore obtained by removing all
symbols which are not in the input alphabet of X from c′.

This way of performing equivalence queries by using equivalence queries
for the composition demonstrates that it is possible to implement equivalence
queries for X, although it may not be the most efficient method.

To summarize, to construct a Mealy machine representing X’s behavior
in A � X, one could in theory start with an observation table containing
all symbols in ∆X as columns and only ε as a row and follow the following
sequence of actions:

1. Construct a Mealy machine H from the observation table of X.

2. Perform an equivalence query for A � H. If a counterexample c is
returned, then add the sequence of inputs of X in λ∗A(c) as a row to
the observation table and go back to step 1. Otherwise, return H.

In practice, however, performing many equivalence queries takes too much
time. To reduce the number of equivalence queries, we can try to capture
more of X’s behavior in the observation table before constructing a Mealy
machine and performing an equivalence query. Abel & Reineke [2] presented
a number of ways to do this (see Section 3.3).

Section 3.2 describes how the algorithm constructs a hypothesis for X
from an observation table; Section 3.3 explains how it extends the obser-
vation table before doing so, to obtain more information first. These two

13

sections reiterate the procedures which the algorithm inherits from [2], where
they are described more extensively. Subsequently, Section 3.4 explains how
output queries for the right machine are answered in our new setting to fill
the observation table.

3.2 Creating a Mealy machine from an observa-
tion table

Here, we will describe how to construct a Mealy machine from an observa-
tion table: first, how to find the states, and subsequently how to find the
transitions. This section summarizes the method to do so described in [2]
and does not add anything new.

3.2.1 States

The rows of an observation table can be thought of as states in a Mealy
machine. The prefix of a row is the input sequence which causes the Mealy
machine to end up in that state. It is possible that following different input
sequences brings a Mealy machine to the same state due to loops. For
example, in Figure 1.3, using both i and ji we end up in state 1. Because
we would like to learn a minimal Mealy machine that explains the behavior
of the system, we must identify all sets of rows which represent distinct
states instead of creating a new state for every row. In Table 3.1, the rows
labeled ε and j represent state 1 of Figure 1.3 and the rows labeled i and
ji represent state 2. A set of rows which represent the same state is called
an equivalence class.

The columns of the observation table are useful when we want to de-
termine whether multiple rows should be seen as the same state. Suppose
that we have two rows: one with the prefix a, which leads to state q, and
one with the prefix b, which leads to state r. If q and r can be considered
to be the same state, then any input sequence processed by the SUL after
reaching that state must result in the same output (since it is deterministic).
In other words, for any suffix s, λ∗(q, s) = λ∗(r, s) (provided that both as
and bs can be generated by the left machine).

Since the columns of the observation table contain suffixes, two rows will
be considered as the same state if they contain the same output symbols for
the same columns, except in columns where one of the rows has ⊥. Such rows
are called compatible. In an equivalence class, all rows must be compatible.

The algorithm uses a SAT solver to create a partition of the rows in
the observation table such that every partition part is an equivalence class,
using the same approach as in [2]. How the problem is converted into a
satisfiability formula will not be described here; the details can be found
in [2].

14

3.2.2 Transitions

In addition to the states, the transitions of the Mealy machine must be
determined.

Definition 8. Given a row in an observation table with prefix p, a successor
row under an input symbol i is a row in the observation table with prefix pi.

If a row corresponds to an origin state, then its successor row under an
input i is the destination state when taking the transition labeled with the
input i. The generated output is in the column labeled i of the row of the
origin state.

For example, in Table 3.1, the row labeled with the prefix ji is the
successor row of the row labeled j under the input symbol i. Suppose that
the row labeled j represents state 1 and the row labeled ji represents state
2. Then, the corresponding transition is (1, 2, i, o).

As explained, we do not use rows as states, but equivalence classes in-
stead. In the context of equivalence classes, this means: for each equivalence
class c and input symbol i, if there is a row in c (with prefix p) which does
not have ⊥ in the column labeled i and which has a successor row under
i, then there is a transition from c to the equivalence class which contains
the successor row, with the input symbol i and the output symbol in the
i-column of the row with prefix p.

For example, in Table 3.1, consider the equivalence class containing the
rows labeled ε and j, and consider the input symbol j. There is a row
in this equivalence class which does not have ⊥ in the column labeled j:
for example, the row labeled ε. Additionally, this row has a successor row
under j, namely the row labeled j. Hence, we get a transition from this
equivalence class to itself (as j is in the same equivalence class) with the
input symbol j. In this case, the successor row is in the same equivalence
class, so the transition has the same destination state. The output symbol
of this transition can be found in the j-column in the row labeled ε: it is
o. We can see that this corresponds to the transition (1, 1, j, o) (since the
equivalence class represents state 1).

3.3 Optimizing the observation table

This section describes how the algorithm extends the observation table be-
fore performing an equivalence query. If we have a more complete model
of the system before performing an equivalence query, we have to do fewer
equivalence queries before we have a correct hypothesis. The optimizations
described here are repeated from [2].

The first optimization will prevent us from wrongly assigning two rows to
the same equivalence class (i.e. assuming that they represent the same state).
The algorithm learns a deterministic Mealy machine, which implies that for

15

each origin state q and input symbol i, there can only be one transition
(q, q′, i, o). As described before, a transition is added when one of the rows
(with prefix p) in equivalence class q has a non-⊥ value in the column i, and
the row with prefix pi is in equivalence class q′. Hence, to make the resulting
Mealy machine deterministic, we must ensure that in each equivalence class,
for all rows p which have a non-⊥ value in a column i, all rows pi must
be in the same destination equivalence class. For example, considering the
equivalence class in Table 3.1 with the rows ε and j again, the successors
under input symbol i (namely the rows labeled i and ji) must be in the
same equivalence class.

Since all rows in an equivalence class are compatible, a way to work
towards this property before creating a partition is making sure that for all
pairs of compatible rows in the observation table and for each input symbol
i, the successors of both rows under i are also compatible. This property of
the observation table is called consistency. If two compatible rows do not
have compatible successors under some input symbol i, then this means that
there is some column labeled with the suffix s in which the successor rows
have different output symbols. Hence the column is would distinguish the
originally compatible columns. Adding this column to the observation table
will prevent us from assuming that the rows belong in the same equivalence
class.

As a second optimization, we can use the fact that the Mealy machine
we are learning is input-complete: each state has an outgoing transition for
each input symbol, although not all of those transitions may be reachable in
the right machine in a composition (if no output sequence can be generated
by the left machine such that this transition is used). Hence, for each input
symbol i and equivalence class c, if there are rows in c (with prefix p) for
which pi is a valid output of the left machine, then there must be a successor
row under input i in the observation table for at least one of those rows.
This property is called closedness for partitions. If a partition is not closed,
then a row with the mentioned prefix pi can be added to the observation
table.

For Table 3.1, let us assume that any input sequence for the right machine
can be generated by the left machine. The equivalence class with the rows
ε and j satisfies the closedness property: for example, considering the row
labeled j and the input symbol j, jj is a valid output of the left machine,
so there must be a successor row for any row of this equivalence class under
input symbol j. This is indeed the case, as the row labeled j is a successor
under the input j for the row labeled ε. However, the equivalence class with
the rows i and ji does not satisfy the closedness property, as it does not
have a successor equivalence class under either i or j.

Finally, it may be possible to create many different partitions from an
observation table, which translate into different hypothesis machines. If we
have not learned all relevant behavior of the right machine yet, some of

16

the hypotheses might not be equivalent in the context of the composition.
This implies that at least one of the possible hypotheses is incorrect. Before
performing an equivalence query for a composition of the left machine with
a hypothesis, we can generate all possible partitions and check whether all
hypothesis machines are equivalent in the context of the composition, using
the fact that we know the structure of the left machine and of the hypotheses.
If not all hypotheses are equivalent in the context of the composition, a
counterexample can be generated (an input sequence for the composition
for which the outputs of the hypotheses differ). Such a counterexample can
be translated into an input sequence of the right machine (by processing it
using the left machine and filtering the outputs that are passed to the right
machine) and added as a row to the observation table.

3.4 Output queries for the right machine

To fill the observation table, we have to perform output queries for X, the
right machine. We cannot directly perform such output queries, however.
We can only access X through the composition, so we need to define the
output query for X in terms of the output query of the composition.

To do so, we first note that in the composition, the right machine can
only process input sequences that originated as output of the left machine.
Hence, to perform an output query for an input sequence w on X, we need
to cause the left machine to output a sequence such that w is passed as input
to X. The input sequence w is then processed by X and we can derive its
output from the output of the composition.

It is not always possible to generate all possible input sequences for X
as output of A. For such input sequences, it is not possible to do an output
query. As a consequence, it is not possible to learn the behavior of X for such
input sequences. This is why we can only learn a model of the observable
behavior of X in the context of A and not a model of X itself.

Now, the task at hand is to cause A to output a sequence such that w,
the input sequence of our output query, is passed as input to X. We can do
this by examining the (known) structure of A and finding an input sequence
for A that achieves this.

In case all output symbols of A are passed to X, which is the case in [2],
we can use the following straightforward method for this. We know a Mealy
machine model of A. In this model, we perform a depth-first search starting
from the initial state, exploring transitions that have the desired output
symbols as their output. Once we have found a path of transitions for which
the corresponding output sequence equals w (the desired input for X), we
can use the input sequence corresponding to the same path of transitions as
input sequence for A to cause it to output w. If such a path does not exist,
no input for A exists such that it outputs w.

17

Figure 3.1: An example of how to find an input sequence which generates
the output sequence ab.

For example, consider Figure 3.1 as the left machine (A). To find an
input sequence which generates the output sequence ab, we start in the
initial state, perform a search and find the transition path which corresponds
to the input sequence xy. We can then input xy to the composition to cause
ab to be passed to X. But we cannot find out how X responds to the input
sequence ba as there is no path of transitions in this left machine which
corresponds to the output sequence ba.

In the more general case, outputs of A are either passed as input to X
or directly given as the output of the composition, without being processed
by X. Consider the Mealy machine in Figure 3.2a as the left machine. The
output p is not passed to X but given as the output of the composition. We
can generate the input sequence st for X by using the input sequence baba.
This will actually generate the output sequence pspt, but since the p is not
passed to X, the input sequence for X will be st. Here, we cannot apply
the depth-first search strategy explained above. We would get stuck in the
first state as there is no available transition which generates s.

We will call the output symbols of A which are passed to X visible
outputs, and those which are instead directly given as the output of the
composition hidden outputs (they are hidden from the perspective of X).
Similarly, visible transitions are transitions which produce a visible output
and hidden transitions are transitions which produce a hidden output.

To perform output queries in this more general case, we take the follow-
ing approach. We construct a (nondeterministic) Mealy machine called the
transitive closure machine. This machine has the same states as A. It does
not have hidden transitions; instead, from any state q, it is possible to use
any transition from A of which the origin state is either q or a state which
can be reached following a path of hidden transitions (corresponding to an
input sequence of hidden inputs h) starting in q. These transitions have
the same destination state, input symbol and output symbol as the original
transitions. In addition, they are annotated with the input sequence h.

18

(a) A Mealy machine model for
A, for the case when not all out-
puts are passed to X. The out-
puts r, s and t are passed to X,
but p is not.

(b) The transitive closure machine for
the Mealy machine in Figure 3.2a.

Figure 3.2: A Mealy machine and its transitive closure machine.

Figure 3.2b shows the transitive closure machine corresponding to the
machine A in Figure 3.2a. The transitive closure machine may informally
be thought of as a model of A seen from the perspective of X. From this
perspective, some transitions require multiple input symbols. For example,
to produce t, the input sequence bba is required. To produce the output
sequence st, the input sequence baba must be given to A. As illustrated, we
can use this machine to find out for which input sequence A produces any
desired input sequence for X. We can use this to perform output queries for
X.

To construct the transitive closure machine, we must first know for each
state which other states are reachable with hidden transitions. Let T be
the hidden transition relation, namely qTr means that either q = r or there
exists a hidden transition from q to r. Then its transitive closure is T+,
namely qT+r means that there is a path of zero or more hidden transitions
from q to r.

We can calculate T+ by running a variant of the Floyd-Warshall algo-
rithm [5] on a graph, where the nodes are the states of A and the edges
are the hidden transitions. Algorithm 1 shows how to calculate the transi-
tive closure. In addition to computing T+, we have to remember for each
(q, r) ∈ T+ the input sequence represented by the hidden transitions we
took to get from q to r. This sequence is stored in the d matrix for each
pair of states, instead of the length of the path, which the original Floyd-
Warshall algorithm uses. When, in Floyd-Warshall’s algorithm, the entries
in the matrix are compared to see whether a shortest path exists between

19

two nodes, we compare the length of the sequences stored in the matrix. In
the transitive closure machine, we will annotate the transitions with these
input sequences.

Q← states in A;
d← n× n matrix where n = Q.size, with all cells initially ⊥;

foreach hidden transition (q, q′, i, o) do
d[q][q′] ← i

end
foreach q ∈ Q do

d[q][q] ← ε
end

foreach k ∈ Q do
foreach q ∈ Q do

foreach q′ ∈ Q do
if length(d[q][k]) + length(d[k][q′]) < length(d[q][q′])
then
d[q][q′] ← concatenate(d[q][k], d[k][q′])

end

end

end

end
Algorithm 1: Calculating the transitive closure. Let length(⊥) return
positive infinity.

After running the algorithm, the matrix d will contain for each pair of
states (q, r) a shortest input sequence which follows a path of hidden tran-
sitions from q to r, if one exists. For the example in Figure 3.2a, assuming
that the outer loop takes the states from Q in numerical order, Table 3.2
shows the d matrix after the iterations of the outer loop of the algorithm.

To construct the transitive closure machine from the matrix, we use the
same set of states as A. For each state q (row of the matrix), we look up
which other states (q′) are reachable with hidden transitions (columns with

1 2 3

1 ε b ⊥
2 ⊥ ε b

3 b ⊥ ε

(a) Initialization

1 2 3

1 ε b ⊥
2 ⊥ ε b

3 b bb ε

(b) After k = 1

1 2 3

1 ε b bb

2 ⊥ ε b

3 b bb ε

(c) After k = 2

1 2 3

1 ε b bb

2 bb ε b

3 b bb ε

(d) After k = 3

Table 3.2: The d matrix after iterations of the transitive closure algorithm.
The rows represent origin states; the columns destinations.

20

a non-⊥ value). All visible transitions in A with q′ as their origin state
are added to the transitive closure machine with q as their origin state.
Algorithm 2 shows this procedure.

A← the original left machine;
M ′ ← new Mealy machine;
M ′.Q← A.Q;
M ′.initial state← A.initial state;
foreach q ∈ Q do

foreach q′ ∈ Q do
if d[q][q′] 6= ⊥ then

foreach visible transition (from, to, input, output) where
from = q′ do

if M ′ does not contain transition (q, to, input, output)
then
addTransition(M ′, (q, to, input, output),
d[q][q′]);

end

end

end

end

end
Algorithm 2: Constructing the transitive closure machine.
addTransition(m, t, a) adds the transition t to the Mealy ma-
chine m and annotates the transition with a.

This concludes the method of how the transitive closure machine is con-
structed. It is used when performing an output query for X, λ∗X(w). The
procedure is similar to the search on A in the case without hidden outputs.
To cause A to produce the input w for X, a depth-first search is performed
on the transitive closure machine, exploring the transitions with the required
output symbol. If a valid transition sequence v is found, the corresponding
input sequence is represented by the inputs (with annotation inputs) of the
transitions. Next, v can be used in an output query for the composition.
If the transitive closure does not have a matching transition path, λ∗X(w)
cannot be answered.

The output sequence of the composition includes the hidden outputs. To
find the answer to λ∗X(w), they need to be removed from the composition’s
output sequence.

We can now define the output query for the right machine X in terms
of the output query for the composition A� X as follows:

λ∗X(w) =

⊥ if f(w) = ⊥

e(λ∗A�X(f(w))) otherwise

21

where f(w) performs a search on the transitive closure for a path of tran-
sitions for which w is the corresponding output sequence. If no such path
exists, f returns ⊥. Otherwise, it returns the input sequence for A repre-
sented by the path of transitions. Here, each transition constitutes a part of
the input sequence created by appending its input symbol to its annotation;
and e extracts the result of λ∗X(w) from the output of the composition by
removing all occurrences of symbols in ∆A \ ΣX (hidden outputs) from the
sequence.

If there are no hidden output symbols, the transitive closure machine
is the same as A: there are no hidden transitions or annotations. In that
case, using this definition of λ∗X simplifies to using its original definition, as
we perform a depth-first search on A using the f function. Furthermore, e
will be the identity function as there are no symbols in ∆A \ ΣX . In the
other extreme, if there are no visible transitions, λ∗X(w) = ⊥ for all w as
f(w) will always return ⊥ because the transitive closure does not have any
transitions. In other words, A cannot cause any input sequence of X. This
makes it impossible to learn the behavior of X.

This concludes our approach to answering output queries for X.

3.5 Correctness

Here, we will argue that the algorithm presented in this thesis is correct.
We will assume that equivalence queries are not approximated but always
give the correct answer. If this is not the case, the algorithm will not always
give a correct result.

The correctness of our approach relies on the correctness of Abel &
Reineke’s algorithm. We assume that their approach is correct using the
following lemma:

Lemma 1. Abel & Reineke’s algorithm learns a minimal Mealy machine
model X ′ for a system X if a subset S of the input sequences for X can be
observed in output and equivalence queries.

For the output queries, this means that it is possible to answer output
queries for any w ∈ S. For the equivalence queries, it means that an equiva-
lence query for a hypothesis H will find a counterexample that distinguishes
H and X if such a counterexample exists in S. If a counterexample exists
that is not in S, the desired answer to the equivalence query is that H and
X are equivalent.

The resulting Mealy machine, X ′, may not be equivalent to X, but at
least we have that ∀w ∈ S, λ∗X′(w) = λ∗X(w).

Abel & Reineke prove the correctness of their approach in [2].

To prove the correctness of our extension, we have to prove the following
theorem:

22

Theorem 1. Our extension of Abel & Reineke’s algorithm learns a Mealy
machine model X ′ that is minimal and right-equivalent to X in the com-
position A � X, given that a Mealy machine model of A and the input
alphabet of X are known, and given that it is possible to answer output and
equivalence queries for the composition A� X.

The requirement that the modelX ′ our extension learns is right-equivalent
to X in the context of A can be rephrased as follows: X and X ′ must gen-
erate the same output sequence for all input sequences for X which can be
generated as output of A. We use this set of input sequences as the set S in
Lemma 1. For the system X in the lemma, we use the X we want to learn
in our composition.

The only remaining requirement for applying the lemma is that we can
answer output and equivalence queries for X considering only the subset
of input sequences S. We argue that this requirement is satisfied using
Lemma 2 and Lemma 3.

Lemma 2. Using our extension to Abel & Reineke’s algorithm, we can
correctly answer output queries for X for any input sequence in S.

We realize output queries for X using the construction described in Sec-
tion 3.4. Let w be any input sequence in S. By the definition of the com-
position, if, in the composition, A outputs all symbols from w in sequence
(possibly along with hidden outputs), X is given the input sequence w. The
output of the composition will then be λ∗X(w) (interleaved with the hid-
den outputs, if any). Hence, removing all hidden outputs from this output
sequence will indeed result in the correct answer to λ∗X(w).

Our approach to realizing output queries causes A to output the sequence
w (possibly with hidden outputs) by using the transitive closure to find an
input sequence for A such that it does so, and using this in an output
query for the composition. We now need to argue that our method using
the transitive closure indeed generates an input sequence for A such that it
outputs w (possibly with hidden outputs).

In the transitive closure machine, from any state, it is possible to use
any transition that is possible in A, either from the same state, or from a
state that is reachable using hidden transitions. It is constructed by find-
ing for each state the set of states that is reachable from that state with
hidden transitions using the Floyd-Warshall algorithm. The correctness of
this reachability analysis follows from the correctness of the Floyd-Warshall
algorithm.

The transitions in the transitive closure machine are annotated with the
input symbols from the hidden transitions in A necessary to reach the state
where the transition with the desired visible output symbol can be used.
Therefore, if a path can be found in the transitive closure machine with w
as the visible part of its output sequence, the input sequence corresponding

23

to this path (including the annotations) is an input sequence for which A
generates an output sequence with w as its visible part. If, on the other
hand, no such path can be found, then no input sequence for A exists such
that it generates w.

This concludes the reasoning behind Lemma 2.

Lemma 3. Using our extension to Abel & Reineke’s algorithm, we can
answer equivalence queries for X for any hypothesis H which will return
a counterexample if one exists in S, and indicate that they are equivalent
otherwise.

Our algorithm answers equivalence queries for X by translating them
into equivalence queries for A� X. If H is not right-equivalent to X in the
context of A, then as a consequence of the definition of right-equivalence,
A � H is also not equivalent to A � X. But if H and X are equivalent,
then A� H must also be equivalent to A� X.

A counterexample for the hypothesis A � H necessarily corresponds
to a counterexample for an equivalence query which compares H to X, as
a difference for the input sequence v between λ∗A�H(v) and λ∗A�X(v) can
only be caused in the right machine, since the left machine is the same. The
right machines only operate on the output symbols of A which are in their
input alphabet. Therefore, the sequence of symbols in the input alphabet
of X in the output sequence of A when it processes the counterexample
distinguishes H and X.

This concludes the reasoning behind Lemma 3.
We have now satisfied all requirements to apply Lemma 1. We use

Abel & Reineke’s algorithm to learn a model of X ′. By this lemma, the
resulting model is both minimal and right-equivalent to X. This concludes
the reasoning behind Theorem 1.

24

Chapter 4

Experiments

4.1 Test cases

To find out how the modified algorithm performs in practice, we used experi-
ments to compare the following implementations when learning compositions
of Mealy machines:

• Our extension of Abel & Reineke’s algorithm, implemented by modi-
fying the source code of their original implementation;

• Abel & Reineke’s original implementation of their algorithm;

• A variant of Angluin’s L* algorithm for learning Mealy machines [15]
for learning the entire composition as a black box, implemented in the
LearnLib library [9].

Two sets of experiments were used.1

In the first set of experiments, we compared the run time and the number
of output queries used by the implementations when learning real-world
models. We used three Mealy machines representing queues of capacity 1
to 3 as left machines. Figure 4.1 shows an example of such a queue Mealy
machine. For each composition we tested, we generated a queue Mealy

1The tests were run on a VirtualBox virtual machine with 4 GB of memory and a 1.7
GHz Intel Core i7 processor running Ubuntu 18.04.2 LTS.

Model Number of states Input alphabet size Output alphabet size

m217 13 25 13

m34 115 20 17

m85 2220 48 38

Table 4.1: Specifications of the industrial models.

25

Figure 4.1: A queue Mealy machine that can contain at most two elements
from {a, b}. Instead of {a, b}, the queue Mealy machines we used could
contain any symbol from the input alphabet of the used right machine.

26

machine which could “contain” any input symbol of the used right machine.
As the right machines, we used three models from the company ASML
(called m217, m34 and m85). These models from ASML were provided for
the RERS 2019 challenge [10].2 Table 4.1 lists some properties about the
models from ASML. All nine combinations of left and right machines were
tested.

The number of states of a queue machine which can contain at most n
elements from a set of size s is s0 + s1 + · · · + sn. The queue can contain
0 to n elements and each queue position may contain any element from the
set. Hence, the number of states of the queue is exponentially related to
the number of elements it can contain. In the following, the size of a queue
refers to the number of elements it can contain.

The purpose of the second set of experiments was to compare the number
of output queries each tested algorithm uses as the size of the left machine
increases. We again used Mealy machines representing queues of varying
size as the left machines, but we only used the Mealy machine which can be
seen in Figure 1.3 as the right machine.

4.2 Implementations

The three tested algorithms are designed to learn different configurations of
Mealy machines. The implementations actually learned the following:

• Our extension of Abel & Reineke’s algorithm will consider the ok and
nok outputs of the queues as hidden outputs. It will learn a model of
the right machine in the context of the composition.

• Abel & Reineke’s original algorithm cannot handle hidden outputs. It
assumes that all outputs of the queue are passed to the right machine,
including the ok and nok symbols. Learning the right machine in this
setup results in a Mealy machine similar to the actual right machine
but with loop transitions on each state which echo the ok and nok

inputs.

• LearnLib’s implementation will learn the entire composition as a black
box.

For all three implementations, we realized output queries by running
them on a known Mealy machine of the SUL in memory. In a real use
case, this is not possible as such a model would not be available. (Having
a correct model defeats the purpose of learning it.) In our setup, however,
implementing the output queries this way allowed us to run our experiments

2The ASML models were downloaded from http://rers-challenge.org/2019/index.

php?page=industrialTrainingPhase.

27

faster. This made it possible to obtain statistics for learning machines that
would have taken too long to learn otherwise.

All three implementations cache the results of output queries. This pre-
vents the learner from asking the same output queries more than once.

In case a model of the to-be-learned system is not already available,
equivalence queries can be implemented in a number of different ways. To
find an input sequence on which the hypothesis and the actual machine dif-
fer (or conclude that they are equivalent), a number of output queries must
be asked to both the hypothesis and the actual machine. This can be done
with a large number of completely random input sequences or in a more so-
phisticated way. The time taken may vary depending on the implementation
choice. Because this thesis does not prescribe the way equivalence queries
are approximated, they are performed by simply comparing the hypothesis
to an already available correct model of the reference machine. While this
causes the observed run times to be much shorter than in a real use case, it
makes it possible to compare the algorithms more efficiently.

4.3 Results

Figure 4.2 shows the run times of the implementations for a queue size from
1 to 3 and the right machines. Hourglass icons in the chart indicate that
there was no result yet after five minutes. Crosses indicate that the program
crashed before reaching the five minutes mark. This chart is based on the
values found in Table A.1 in Appendix A. Table A.2 shows the corresponding
number of output queries used for the instances that returned a result.

As discussed, the output queries did not take much time in our ex-
perimental setup: they would take more time in most realistic scenarios.
Figure 4.3 shows the run times from Figure 4.2 in case each output query
would have taken an additional 0.1 second (i.e. 0.1 second has been added
for each used output query).

Figure 4.4 shows a graph of the number of output queries used by the
algorithm from this thesis and the LearnLib implementation for learning a
composition of a queue and the Mealy machine in Figure 1.3, for a variable
queue size (the second set of experiments). The corresponding data values
may be found in Table A.3. The number of output queries of the algorithm
from this thesis stays constant as the queue size increases; the output query
count of Abel & Reineke’s algorithm increases slightly for higher queue sizes.
The LearnLib implementation stands out as the relation between the queue
size and its output query count seems to be exponential.

28

Figure 4.2: The run times of the algorithms for learning the specified com-
positions.

Figure 4.3: The run times for the first set of experiments, with a tenth of a
second added for each used output query.

29

Figure 4.4: The number of output queries used by the algorithms for learn-
ing a composition of a queue and the Mealy machine in Figure 1.3, for an
increasing queue size.

30

Chapter 5

Related Work

Petrenko & Avellaneda have proposed a method to learn a model of any
component embedded in a known context using a SAT solver [13]. The
unknown part in our composition might be seen as an embedded component.
It is unclear how their algorithm performs in practice. It would be interesting
to find out how their algorithm compares to ours. This has not been done
in this thesis due to a lack of time.

In [11], active model learning is applied to a parallel instead of a se-
rial composition topology. In a serial composition, the components of the
composition each process the output of the previous Mealy machine. For
example, in our composition, the right machine processes the output of
the left machine. In contrast, in a parallel composition, the input of the
composition is passed to each of its components. Output symbols of the
composition can then be split up into an output symbol for each component
of the composition.

In this thesis, we learn a model of the right machine in a composition
using model learning. If we already have correct Mealy machine models of
the entire composition and of the left machine, but not of the right machine,
then a model of the unknown right machine can instead be derived from both
known models. Solving such equations and others is described in [17].

If we only want to verify some properties of the composition (model
checking), we might not have to learn a complete model at all. It was shown
previously that some properties in model checking can already be checked
without learning a complete model [12]. The model checking is already
done using the hypotheses generated by the model learning algorithm. Op-
timizations for this task have been developed for situations where part of
the system is known [6], such as in our composition. Alternatively, if we
want to verify some properties of the right machine’s behavior given that it
is the right machine in a composition, we can use the combination of model
checking and model learning described in [4].

31

Chapter 6

Conclusion

This thesis presented an extension of Abel & Reineke’s algorithm that en-
ables it to learn the right machine in our generalized composition. This could
not be done using the original algorithm by Abel & Reineke or black-box
algorithms without doing post-processing steps, as they were not designed
to learn this type of composition. For the compositions we tested, our algo-
rithm was faster than Abel & Reineke’s algorithm.

In two test cases, our algorithm was slower than the LearnLib imple-
mentation for learning the composition as a black box. Although it uses
fewer output queries, it still does not appear to scale to large systems. The
cause of this may lie in the SAT-solving approach that Abel & Reineke’s
algorithm and our extension use to find the states of the Mealy machine.

If the output queries take more time, which is likely in a realistic scenario,
our algorithm would be faster than the LearnLib implementation because
it uses far fewer output queries. This confirms the experimental results
from [2]. Figure 4.4 confirms that learning the composition requires more
output queries than learning only the right machine as the size of the left
machine increases. This can be explained by the fact that the number
of states of the composition increases as the queue size increases. As a
result, the LearnLib implementation needs to do more work as the queue
size increases, whereas our algorithm still only needs to learn the unchanged
right machine.

6.1 Future work

The run time of the learning algorithms in this thesis and in [2] may be
improved for usage outside of the experimental setup by finding better ways
to implement the equivalence queries for the right machine in compositions.
In the experiments, equivalence queries were realized with prior knowledge
of the model that must be learned. Without such a model, they can be
realized by checking if the hypothesis composition and the SUL agree on

32

a large amount of random output queries. However, if the systems are
not equivalent and the output queries are chosen completely at random,
the probability that the implementation will find a distinguishing output
sequence is low. To prevent it from wrongly assuming that the systems are
equivalent, many output queries would be necessary, which leads to a long
run time. Finding better ways to implement the equivalence query would
reduce these problems.

Moreover, it would be useful if the algorithm was improved to make it
scale better to large systems. In practice, systems are often much larger
than the ones learned in our experiments.

As mentioned, it would also be interesting to compare Abel & Reineke’s
algorithm and our extended version to the algorithm in [13], in terms of run
time, number of used output and equivalence queries and the composition
topologies it can solve.

Furthermore, it would be useful to make the algorithm capable of learn-
ing in more composition topologies by making it more generic. For example,
a composition where the left machine is unknown and the right machine is
known; a composition where input symbols are either given to the left ma-
chine or to the right machine; or a composition where the right machine also
sends some of its outputs to the left machine instead of only vice versa.

33

Bibliography

[1] Aarts, F., Schmaltz, J., and Vaandrager, F. W. Inference and
abstraction of the biometric passport. In Leveraging Applications of
Formal Methods, Verification, and Validation (2010), pp. 673–686.

[2] Abel, A., and Reineke, J. Gray-box learning of serial compositions
of Mealy machines. In NASA Formal Methods (2016), pp. 272–287.

[3] Angluin, D. Learning regular sets from queries and counterexamples.
Information and Computation 75, 2 (1987), 87–106.

[4] Cobleigh, J. M., Giannakopoulou, D., and Pasareanu, C. S.
Learning assumptions for compositional verification. In Tools and Algo-
rithms for the Construction and Analysis of Systems (2003), pp. 331–
346.

[5] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

[6] Elkind, E., Genest, B., Peled, D. A., and Qu, H. Grey-box
checking. In Formal Techniques for Networked and Distributed Systems
(2006), pp. 420–435.

[7] Hopcroft, J. E., and Ullman, J. D. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[8] Isberner, M. Foundations of active automata learning: an algorith-
mic perspective. PhD thesis, Technical University Dortmund, Germany,
2015.

[9] Isberner, M., Howar, F., and Steffen, B. The open-source Learn-
Lib - A framework for active automata learning. In Computer Aided
Verification - 27th International Conference (2015), pp. 487–495.

[10] Jasper, M., Mues, M., Murtovi, A., Schlüter, M., Howar,
F., Steffen, B., Schordan, M., Hendriks, D., Schiffelers, R.
R. H., Kuppens, H., and Vaandrager, F. W. RERS 2019: Com-
bining synthesis with real-world models. In Tools and Algorithms for
the Construction and Analysis of Systems (2019), pp. 101–115.

34

[11] Moerman, J. Learning product automata. In Proceedings of the 14th
International Conference on Grammatical Inference (2018), pp. 54–66.

[12] Peled, D. A., Vardi, M. Y., and Yannakakis, M. Black box
checking. Journal of Automata, Languages and Combinatorics 7, 2
(2002), 225–246.

[13] Petrenko, A., and Avellaneda, F. Conformance testing and infer-
ence of embedded components. In Testing Software and Systems (2018),
pp. 119–134.

[14] Rivest, R. L., and Schapire, R. E. Inference of finite automata
using homing sequences. Information and Computation 103, 2 (1993),
299–347.

[15] Shahbaz, M., and Groz, R. Inferring Mealy machines. In FM 2009:
Formal Methods (2009), pp. 207–222.

[16] Vaandrager, F. W. Model learning. Communications of the ACM
60, 2 (2017), 86–95.

[17] Yevtushenko, N., Villa, T., Brayton, R. K., Petrenko, A.,
and Sangiovanni-Vincentelli, A. L. Compositionally progressive
solutions of synchronous FSM equations. Discrete Event Dynamic Sys-
tems 18, 1 (2008), 51–89.

35

Appendix A

Appendix

m217 m34 m85

1 8 28 timeout

2 11 45 error

3 timeout error timeout

(a) Using the new algorithm

m217 m34 m85

1 timeout timeout timeout

2 43 timeout timeout

3 timeout timeout timeout

(b) Using Abel-Reineke

m217 m34 m85

1 6 32 timeout

2 11 111 error

3 59 timeout error

(c) Using LearnLib

Table A.1: The run times in seconds for specified queue sizes and right
machines.

36

m217 m34 m85

1 8518 123565

2 8518 123565

3

(a) Using the new algorithm

m217 m34 m85

1

2 3766

3

(b) Using Abel-Reineke

m217 m34 m85

1 52137 1039265

2 190066 2734674

3 500154

(c) Using LearnLib

Table A.2: The number of output queries for specified queue sizes and right
machines.

New algorithm Abel-Reineke LearnLib

1 10 23 103

2 10 38 277

3 10 73 691

4 10 76 1272

5 10 79 2568

6 10 82 5048

10 10 94 75188

Table A.3: The number of output queries used by the three algorithms
when learning a composition of a queue and a two-state Mealy machine, for
increasing queue sizes.

37

