
A machine learning approach for
recommending items in League of Legends

Author: Robin Smit
First supervisor/assessor: I.G. (Gabriel) Bucur

Second assessor: prof. T.M. (Tom) Heskes

July 3, 2019

Abstract

League of Legends is the most played video game in the world: its
player base has grown from 11.5 million monthly players in 2011 to
over 100 million monthly players in 2016. New players have to fa-
miliarize themselves with a plethora of game mechanics and concepts,
such as strategy, champion abilities and item traits.

Items are important because they provide significant advantages
to the players that buy them. They can often mean the difference
between winning and losing a match. Because the items available
are numerous and have widely varying effects, their presence adds an
enormous cognitive load to novice players.

One heavily used tool for learning the basics is the static built-
in item recommender, which suggests a fixed set of items for each
champion. This system is non-adaptive to specific situations and does
not give an indication of what impact an item will have.

This work addresses these flaws by exploring the possibility of cre-
ating an item recommender system that adapts to specific situations
and provides recommendations for items that have the greatest impact
on chances of winning the game.

To achieve this, we build a prediction algorithm based on artificial
neural networks to predict the winning team of a League of Legends
game. We will then explore several potential measures of feature im-
portance. Finally, we use LIME as a method locally approximate our
classifier and explain its predictions. These explanations are the basis
for our recommendations.

1

1 Introduction

1.1 What is League of Legends?

League of Legends is a multiplayer online real time strategy game, in which
ten individuals match up for battle against each other in teams of five. In
such a game, each player controls a virtual character called a ‘champion’. The
goal of a match is for a player and allied team to destroy a building called
the ‘Nexus’, located in the enemy base before the allied Nexus is destroyed.

The teams start the game in two opposite corners of the map [Figure 1],
where their bases are represented by the large blue and red circles. The teams’
bases are connected via three lanes, where multiple defensive structures called
’towers’ are placed (represented by the smaller blue and red dots). In order
to conquer the enemy base, all towers in at least one lane must be destroyed.
After this criterion has been met, a team can enter their enemy’s base to
destroy two more towers and ultimately the enemy Nexus.

Located between the lanes are sections of the map called the jungle. The
jungle contains extra pathways between the lanes, as well as monsters that
provide additional resources and bonuses when slain. The gold rewarded by
killing jungle monsters can provide an early advantage that could be extended
to a significant lead later in the game. The fog of war1 that covers the jungle
poses the threat of an enemy emerging from it. This can create sudden
one-versus-two situations known as ganks. These aspects play an important
strategic role in a League of Legends match.

Figure 1: Map of a typical MOBA (multiplayer online battle arena)

1Fog of war refers to the area that is unseen by a team: the opposite of vision. Vision
is granted by allied champions, towers and some items.

2

1.2 Phases

A typical League of Legends match can be divided into three phases: early-
game (also called ’laning phase’), mid-game and end-game [1, 2].

The laning phase is the first phase of any League of Legends game. It is
where the champions of both the allied and enemy team decide which lane
they will primarily defend and exploit until the next phase of the game. The
main objective of this first phase is to earn gold and levels while denying
these as much as possible to the opponents. Gold and experience can be
obtained by killing minions that spawn in each lane, as well as monsters in
the jungle. Usually, a team of five players will take positions across the map
as follows:

• One champion in the top lane

• One champion in the middle lane

• Two2 champions in the bottom lane

• One champion roaming the jungle

In the second phase (mid-game), champions leaving their initial lane
(‘roaming’) and ganking play a major role. When given the opportunity,
champions will start roaming and seek to gank and kill enemies across the
map. This creates a window of opportunity to take small objectives such as
towers and jungle monsters (e.g. Dragon). Enemies that are most vulnerable
to ganks are those that leave the vicinity of the towers in their lane.

The third phase (end-game) is used for grouping and team battles. Often,
all ten players will gather near a major objective (such as Baron Nashor 3)
and fight until one team emerges victorious. The team that wins the battle
often gets to take one or more major objectives, thereby making a significant
step towards becoming the victors of the match.

1.3 Learning to choose items

During the match, the player has various ways to earn in-game-currency
(‘gold’) that may be spent on in-game items. These items [3] provide positive
effects to the player’s champion and/or to its allied champions (or negative
effects to enemies) and last for the duration of the match. A champion can

2This is done to create a numbers advantage near the pit of the Dragon, a jungle
monster that gives additional bonuses to the team that slays it.

3Baron Nashor is the most powerful jungle monster and grants a powerful bonus to the
team that slays it.

3

own a maximum of six items at any one time during a match. Different items
have different effects, and some items may suit certain circumstances better
than others.

New players may ask themselves: ”In which ways do the item choices im-
pact my chances of winning the match?” Variables that influence the decision-
making process for buying items by skilled players often include the interac-
tions between items and champions’ abilities, as well as the positioning and
behaviour of both allied and enemy champions during the game.

To maximize their champion’s chances of winning the match, new players
will have to learn what items to buy and when to buy them. They may find
guidance from more experienced players, use the static built-in recommender
system, or –over the course of multiple matches– learn by trial and error what
type of items fit certain situations.

The problem with the first approach is that new players would already
need to know someone that could offer this guidance. These more experi-
enced players could provide tailored advice to the newer player as the game
progresses and even offer an explanation on the decisions being made. The
biggest limitation is availability: not all players have an already knowledge-
able group of friends, or their help cannot be solicited when needed.

The second approach is the built-in item recommendation system, which
lists a fixed set of items for each champion and is readily available throughout
the game. This system, however, does not take into account many of the
subtleties in a match – it is not adaptive to specific situations. An ideal
set of items does not depend only on which champion is played, but also on
the enemy team and their items and abilities. The ideal set of items is not
static, but continually changes as the game evolves. Another limitation of
the current recommendation system is that does not offer any indication of
which items can impact the game most at a given time.

In this work we will address these deficiencies by suggesting an recom-
mender system that is adaptive and specifies the effect that item recommen-
dations have on the chances of winning the match.

In order to give an indication of the importance of the items being pur-
chased within a League-of-Legends match, we will first attempt to answer
the question: ‘To what extent do items predict the probability of winning a
League of Legends match?’ Additionally, we will determine what other (if
any) variables of a match are important for predicting the win/lose probabil-
ity of a team. Finally, we pose the question ‘How can we use this information
to generate item recommendations?’ and explore a possible solution.

In the process of answering these questions we will learn about designing
and implementing an artificial neural network (ANN) [4]. We will also look
into feature selection and variable importance in the context of ANNs. Later,

4

we will use LIME (an explanation algorithm) to explain the behaviour of our
ANN locally. We can use these explanations to make item recommendations
to League of Legends players.

In section 2 we provide an overview of how we collect and pre-process
our data. We show which features are available and how we construct our
data sets. In section 3 we explain how and why we use ANNs. We then go
on to explore potential ways to determine the importance of features in the
data, presenting our results along the way. Section 4 describes a method for
recommending items to players at different stages of the game. We conclude
with a discussion of our proposed method and offer some suggestions for
future work in section 5.

2 Data

2.1 Data Collection

Riot Games, the creators of League of Legends, provide an API [5] through
which information on specific matches can be requested. There are three
types of requests that are useful for building a data set:

1. A Match-request: Using a matchId (a numeric identifier), request gen-
eral information about that specific match. This includes a list of all ten
participants and their summonerIds (numeric identifiers for accounts).

2. A Timeline-request: Using a matchId, request a second-by-second overview
of the events in the game.

3. A MatchHistory-request: Using a summonerId, request a list of matchIds
corresponding to matches played on this account.

While we are downloading the raw data, we switch back and forth between
sending Match-/Timeline-requests and sending MatchHistory-requests. When
a response to a Match-request is received, we can expand our current database
of players with the participants in that match. These participants’ summonerIds
can in turn be used to request new matchIds. This process of alternating be-
tween types of requests allows us to gradually download match data from the
Riot API and grow the data set that we’ll use for training a neural network.

In order to be able to train and re-train neural networks often and rel-
atively quickly, we have decided to use only a set of 1000 unique matches
and their corresponding 1000 timelines. All of these 1000 matches have been
played on the North-American League of Legends server. The patch number
is 7.17.200.3955 for each match.

5

League of Legends has a tier system that groups players with approxi-
mately the same level of skill within the same tier. The rank distribution
of the League of Legends player base [6] is as shown in [Table 1]. Our data
set approximates that distribution, meaning that the majority of our games
were played by players in the tiers Bronze through Platinum.

Tier LoL player base Our data
Challenger 0.02% 0.00%
Grandmaster 0.05% 0.00%
Master 0.07% 0.10%
Diamond 3.90% 3.64%
Platinum 12.17% 13.82%
Gold 28.08% 27.41%
Silver 35.22% 37.53%
Bronze 17.71% 17.50%
Iron 2.78% 0.00%

Table 1: Comparison between the overall distribution of ranked players in
League of Legends and the distribution of our data.

2.2 Data preprocessing

2.2.1 Raw data

Our raw data consists of 1000 match objects and their corresponding 1000
timeline objects.

Match objects contain general information about the match, such as gameId
and gameDuration. Some important variables in the match object pertain to
the teams, whereas others are specific to the participants. For instance, each
team has the boolean variable win, which we will use as a target variable for
our prediction algorithm later. Other indicators of the lead of a team over
another can be given by variables such as towerKills and baronKills.

Variables that are significant for each participant of a match are their
items and their match performance metrics. The latter consists of variables
such as kills, deaths, assists4, goldEarned and championLevel. There
are many more variables that pertain to other combat scores, such as the
total amount of damage done to and by the player for each different type of
damage. This work will not focus on this last category of variables.

4The number of assists indicates how many times a player has helped an ally kill an
opponent.

6

Timeline objects provide an overview of all the events that happen in a
League of Legends match. Each event has a timestamp variable and a type.
We will later use transaction events (type ∈ {ITEM PURCHASED, ITEM DESTROYED,
ITEM SOLD, ITEM UNDO}) to calculate a players’ inventory at a given time dur-
ing the game. We will also use the events BUILDING KILL and ELITE MONSTER KILL

to mark when typical phases of the match start/end.
Timeline objects additionally contain some information on each player’s

progression into the game. Every 60 seconds, variables such as position,
currentGold, totalGold, level, xp and minionsKilled can provide insight
into where a player stands with respect to the opposing team.

2.2.2 Extracting a game state

After the raw data (matches and timelines) is loaded, we have the final state
of the game (in a Match object) and all events from the start leading up to
the final state (in a Timeline object). In order to extract the game state at
a timestamp t ∈ [0, gameDuration], all events in the interval [0, t] have to
be considered. As an example: to calculate the items of a player, we start
with an empty inventory and record all events occurring up to timestamp t
that are of type ITEM PURCHASED, ITEM SOLD, ITEM UNDO or ITEM DESTROYED

for that player. We do this for all features we use as input for the neural
network.

2.2.3 Splitting the game into phases

We define four particular timestamps based on the events in a game [1, 2]:

• Tstart is the start of the game. At this stage in the match, nothing has
happened yet.

• Tearly is the timestamp at which the first tower is conquered in the
match. The loss of a tower and increased roaming potential mark the
end of early game, transitioning the match into the mid-game phase.

• Tmid is the first timestamp at which Baron Nashor (a jungle monster
that gives a powerful team bonus) is killed in the match.

• Tend is the latest time at which the winner of a match is undecided –
within 60 seconds of a match’s gameDuration.

The data structure we use allows extracting a game state from a (match,
timeline)-pair. Doing so requires specifying a timestamp argument t ∈
[0, Tend], which is the in-game time. Using t = Tend for each match, we

7

get a data set for which we expect the neural network to perform well: near
the end of the game, it is usually evident which team is winning. From a
later result we will see that this is indeed the case.

Let Dstart, Dearly, Dmid and Dend be the data sets that correspond to
the timestamps Tstart through Tend. Note that the events that define Tearly

and Tmid may not happen in each match: some games end quickly, before
the mid/end-game even starts. If, for example, a match is forfeited before
the fall of any tower, we do not add a game state for that match to Dearly.
As a result, the data sets Dearly and Dmid are slightly smaller compared to
Dstart and Dend. Out of our 1000 matches, in 971 cases at least one tower is
conquered. Baron Nashor is slain at least once in 686 of all games. Thus,
we have |Dstart| = 1000, |Dstart| = 971, |Dmid| = 686 and |Dend| = 1000.
In most games, the first tower is killed at approximately 40% of the game
duration [Figure 2a] and the first Baron Nashor is killed around 90% into the
game [Figure 2b].

(a) (b)

Figure 2: Histograms showing at which percentage of a game significant
events (left: tower kills, right: Baron Nashor kills) happen for the first time.
The height of a bar indicates in how many matches an event happens first near
the percentage (p) of the game shown on the x-axis. Example: when in a 40
minutes long game the first tower falls at 06:48 (=17% of the gameDuration),
that match contributes to the height of the bar that spans 15%-20% in graph
(a).

8

2.2.4 Feature normalization

The datasets are standardized using the scale method from sklearn.preprocessing.
To initialize the neural network’s weights and biases we use random values.
How small these values should be depends on the scale of the inputs and
the number of inputs. Without normalization, it might take a long time for
the neural network to converge, or it might converge to a suboptimal local
minimum. Standardizing the data removes the problem of scale dependence
of weight sizes.

3 Neural network setup & results

Our research question necessitates solving the following classification prob-
lem: given a game state, which team will win the match? To answer this
question, we will build a neural network that gives a distribution of the
probability of winning for team0 and team1.

There are various reasons as to why ANNs are well suited to this prob-
lem. They are able to generalize by learning patterns from the input that is
provided to them. This is important because the number of possible inputs
is enormous in comparison to the number of matches that we will provide as
a training set.

Neural networks can handle highly non-linear and complex relationships.
This is important for our problem because we expect the relation between the
inputs and probability of winning the game to be complex and non-linear.
ANNs also do not require the data to fit a certain distribution, which is an
advantage because of the non-parametric nature of our input data.

Another reason for using neural networks is scalability. ANNs are well
suited to complex problems with a lot of data. League of Legends is an
intricate game and this work will only focus on a very small part of it. Fu-
ture expansions of this work, however, may need to train classifiers on data
sets containing millions of game states. We will discuss possible paths for
continuation of this project in the last section.

One of the disadvantages of neural networks is that they are considered
’black boxes’, meaning that it is hard to understand what causes a neural
network to come up with its output. This work will explore some potential
measures of variable importance in order to learn which features influence
the output of a predictor.

The implementation we will use is the MLPClassifier from sklearn,
where MLP stands for Multi-Layer Perceptron. A perceptron is the basic
‘building block’ of an artificial neural network. It uses weights, a bias term

9

and an activation function to determine their output from given input. When
we create multiple ‘layers’ (groups) of perceptrons and connect them, using
the outputs of one layer as input for the next layer of perceptrons. The first
layer in such a network is called the input layer, and the last is called the
output layer. All layers in between are called hidden layers.

The MLPClassifier class from sklearn implements such a multi-layer
perceptron. It is a supervised learning algorithm that can be trained to
classify data that is not linearly separable.

The parameters that we use for training the classifier are: solver="adam",
hidden layer sizes = (20, 20, 20), learning rate init = 0.01, tol = 0.01,
max iter = 1000, alpha = 0.1 and shuffle = True.

3.1 Cross-validation

Each of our data sets Dearly through Dend is split into a training set and a
test set (sometimes called ’holdout’) at a ratio of 6:4. In order to validate
our results we use 5-fold cross-validation on the training sets. Five so-called
’folds’ are created: we subdivide the training set into five parts. The neural
network is then trained five separate times. During each cycle, one of the
five parts is assigned the role of validation set. The neural network is trained
on the remaining four parts and then we compute the accuracies on the
validation set.

At the start of a game, both teams should have virtually the same chance
of winning the match. As the game progresses we expect one of the teams
to build up a lead over their opponents, eventually leading to a victory of
the match. As mentioned earlier, our neural network hits an accuracy of
approximately 97% using all features for data set Dend. Similarly, using
Dstart (corresponding to the start of the game) we get an accuracy of 50% —
no better than randomly guessing the winning team. These results indicate
that our classifier is working as expected.

3.2 Feature selection

Initially, we looked at only a very small subset of features: kills, currentGold,
totalGold, levels, minions, building kills, building deaths, tower kills

and tower deaths. We selected these features because, when significantly
different between opposing players/teams, they indicate a lead that could
potentially lead to a victory. Training the neural network on just these nine
features resulted in an accuracy of 96% (using the Dend data set).

To find out to what extent these nine variables have predictive power, we
also trained nine classifiers, each using only one feature (instead of all nine

10

features simultaneously) [Table 2]. Note that the amount of minions killed
by a player is significantly less important for determining the winner than
any of the other eight features.

3.3 Combining features

The first five features mentioned above (namely kills, currentGold, totalGold,
levels and minions) are player-specific statistics. When used for each of
the ten players individually, those five features produce 50 separate input
variables. We tried combining these variables. Our first step is to group the
variables by team (e.g. by calculating team0 kills and team1 kills instead
of using a different kills variable for each player). Our second step is to
use the relative difference between teams instead of absolute values (such as
team gold delta instead of team0 gold and team1 gold). We used Dend as
our data set for training. A comparison of the results is shown in [Table 2].

Both of these steps yielded a slight increase in accuracy for predicting the
winning team, even though the total number of input variables was reduced.
This shows that the predictive power of the features is given by the relative
difference in metrics between the teams instead of absolute values. At the
same time only team-level aggregate metrics are sufficient whereas individual
player metrics do not improve the accuracy of the classifier.

11

Feature name (X)
Accuracy using
playerj {X} for
j ∈ {0, 1, 2, ..., 9}

Accuracy using
teami {X} for

i ∈ {0, 1}

Accuracy using
team {X} delta

kills 88.9% 90.6% 92.0%
currentGold 87.4% 89.4% 91.9%
totalGold 94.0% 95.8% 96.8%
levels 90.0% 91.6% 93.2%
minions 53.5% 60.5% 65.9%

building kills — 93.1% 93.4%
building deaths — 93.3% 93.0%
tower kills — 93.0% 93.5%
tower deaths — 93.8% 93.0%

Number of input variables 10 2 1

Table 2: Predictive power of single preselected features as indicated by the
accuracy of neural network classifiers trained on game states from Dend. In
the first column, we train the classifier on ten variables representing indi-
vidual metrics of the same feature for each player. In the second column,
we aggregate these variables with respect to the two teams, and then train
a classifier on these two aggregated variables. Finally, in the last column,
we compute the difference (delta) between the team aggregate values and
then train a classifier on this single variable. For example, in the first row,
a classifier was trained initially on ten variables (player0 kills through
player9 kills), then on two aggregated variables (team0 kills, which is
the sum of player0 kills through player4 kills, and team1 kills, which
is the sum of player5 kills through player9 kills), then finally on a sin-
gle variable (team kills delta, which is the difference between team0 kills

and team1 kills). Note that the last four features are team-based, so we
cannot attribute them to individual players.

3.4 Prediction using items only

3.4.1 Using variance to select items

When all values of a variable are the same within a data set, we cannot deduce
a relation between a predictor and the target variable. In other words: zero-
variance variables have no predictive power. As an exploratory step, we will
entertain the possibility that conversely, high-variance variables have more
predictive power.

We had a look at the variance of the input variables and we selected the

12

twenty items with the highest variance [Table 3]. The nature of these items
varies. Some are basic trinkets5: they are free and everyone gets them [7].
However, players can choose to switch between the different types of basic
trinkets. Some high-variance items are cheap starter items, such as Cloth
Armor. Others are high-tier (’finished’) items, such as Blade of the Ruined
King.

Training the neural network on these twenty high-variance items gives us
an accuracy of 60%.

Item name Tier Variance
Warding Totem (Trinket) 1 3.21
Ninja Tabi 2 1.48
Mercury’s Treads 2 1.45
Total Biscuit of Rejuvenation 1 1.12
Oracle Alteration 1 0.94
Farsight Alteration 1 0.92
The Black Cleaver 2 0.87
Control Ward 1 0.81
Sorcerer’s Shoes 2 0.75
Infinity Edge 2 0.74

Table 3: Ten items with the highest variance, sorted by variance in our
data. Higher-tier items require one or more item from the previous tier and
additional gold.

3.4.2 Using variable importance to select items

Here we take a quick sidestep from training our MLPClassifier from sklearn

and instead use an ExtraTreesClassifier [8]. This classifier maintains a
list of features ranked by their relative importance. We use this list and
again take the twenty highest ranked items [Table 4]. This list still contains
some starting items (e.g. Doran’s Blade), but consists mainly of finished
high-tier items.

Taking these features back to our neural network, it achieves an accuracy
of 61% using just these items.

5Trinket items are used for managing vision around the map, either granting vision to
the allied team or showing enemy wards. There are two types of basic trinket items: the
’Warding Totem’ and the ’Oracle Lens’. At the start of the game, players get the Warding
Totem item for free.

13

Item name Tier Importance
Infinity Edge 2 0.047
Lost Chapter 2 0.042
Rapid Firecannon 3 0.038
Rabadon’s Deathcap 2 0.033
Liandry’s Torment 3 0.031
Guardian Angel 2 0.030
Doran’s Blade 1 0.026
Negatron Cloak 2 0.019
Redemption 3 0.019
Frostfang 2 0.018

Table 4: Ten items with the highest importance, sorted by importance ac-
cording to ExtraTreesClassifier. Higher-tier items require one or more
item from the previous tier and additional gold.

3.4.3 Items owned vs. items bought

Up to this point, we have only considered what is in the players’ inventories
in a certain game state. In the time before that, it is possible the player
buys and uses an item that gets destroyed. The item would not appear in
the game state, but still have an effect on the game. Examples of such items
are consumables like the Health potion or others like the Cull [9].

For this reason we explore the accuracy of our classifier with the items
bought (up to the given timestamp) and compare it to the results we obtained
using the items owned (at the given timestamp) [Table 5]. This comparison
shows a slight improvement of using the amount of items bought by a team
over the amount currently owned, but only for Dend.

Data set
Accuracy using
Items owned

Accuracy using
Items bought

Dstart 50.25% 49.75%
Dearly 53.37% 51.16%
Dmid 63.35% 59.05%
Dend 69.10% 73.30%

Table 5: A comparison of the accuracy of classifier predictions using items
owned versus items bought for different data sets

14

3.4.4 Results using all items in our data

In the best-case scenario our neural network achieved an accuracy of 73%
using just items as input features. This is using the data set Dend, which is
the set of game states at a point where each match is finished. Even though
there is some predictive power in the items bought by the players, there is
not nearly as much as in the amount of gold a player (or team) has gathered
during the match.

In section 4 we will create a measure of variable importance by using
LIME, an explanation algorithm.

3.5 Other classifiers

In addition to the MLPClassifier class provided by sklearn, we tried some
other classifiers. These are the results using the full set of features (using
item data and other fields) for each of the four data sets (Dstart through
Dend) [Table 6]. These results indicate that different classifiers perform very
similarly when all features are used as input. When just the items are con-
sidered as features, other classifiers perform slightly worse than the neural
network [Table 7].

Classifier Dend Dmid Dearly Dstart

MLPClassifier 97% 81% 67% 50%
GradientBoosting 97% 81% 65% 51%
RandomForest 98% 80% 69% 50%
ExtraTrees 97% 78% 69% 51%

Table 6: Accuracies of classifiers using all features (items as well as perfor-
mance metrics)

Classifier Dend

MLPClassifier 70%
GradientBoosting 65%
RandomForest 68%
ExtraTrees 62%

Table 7: Accuracies of classifiers using items only

15

3.5.1 GradientBoosting

Gradient boosting ([10], chapter 10) is a sequential ensemble ([10], chapter
16) technique where newly added weak learners (decision trees) ‘learn’ from
their predecessors’ mistakes. Using gradient descent, this method tries to
minimize the loss (given by a loss function) when adding trees.

The parameters that we used for training the GradientBoostingClassifier
are: n estimators = 100, learning rate = 1.0, max depth = 1 and
random state = 0.

3.5.2 RandomForest

For training the RandomForestClassifier ([10], chapter 15) from sklearn,
a multitude of of decision trees are constructed. Each tree is built from a
sample drawn (with replacement) from the data set. During construction of
these decision trees, nodes are split based on the best split from a random
subset of features (not all features).

The parameters we used for training the RandomForestClassifier on the
data are: n estimators = 3000, max depth = 10 and random state = 0.

3.5.3 ExtraTrees

The ExtraTreesClassifier [8] from sklearn is similar to RandomForestClassifier.
The distinction lies in the way thresholds for splits are computed. Thresholds
are generated randomly for each feature in the random subset of all features.
The best of these is then used as threshold for the split condition.

The parameters we used for training the ExtraTreesClassifier on the
data are: n estimators = 1000, max depth = 3 and random state = 0.

16

4 Recommending items to players

4.1 LIME as a potential feature importance indicator

LIME [11, 12] stands for Local Interpretable Model-Agnostic Explanations.
It is an algorithm that can be used to explain the predictions of a classifier
or regressor. By creating an explainer for our neural network, LIME can give
insight into which variables are important. The algorithm takes our classifier
and a single data point (a game state) as input. It then trains a simplified
(linear) model that approximates the classifier. The output of the LIME
algorithm is a list of ‘reasons’ and their contribution to the prediction of
the classifier. These contributions are based on the weights of the simplified
model and we will later refer to them as ‘LIME scores’.

In our case, when we use all available features (not just items) LIME in-
dicates that the amount of penta-/quadrakills in a match is a very important
indicator of the winning team. These types of multikills often create windows
of opportunity to take important objectives that eventually lead to victory.

When we consider only the items in our data set, LIME gives us an indica-
tion of which items play an important role in predicting the outcome of that
match. As an example, we take a look at the match with gameId=2585566722

(which was randomly selected). For this match’s corresponding game state
in Dend, our classifier predicts that the first team will win with probability
1.9682 ∗ 10−10. Indeed, the second team is the winner of this match and tak-
ing a closer look at the game state used as input tells us why: the winning
team is up in items, gold, kills and levels. The wealthiest player on the losing
team has less gold than the poorest on the winning team [Figure 3].

17

Figure 3: Overview of match 2585566722. The column header K/D/A stands
for kills, deaths and assists. assists indicate how many times a player
has helped an ally kill an opponent.

In this case, according to LIME the items that influence this prediction
the most are Rabadon’s Deathcap, Liandry’s Torment and Blade of
the Ruined King. These items are not owned by any of the players in this
match, but they are strong late-game items. They can potentially level the
playing field or snowball the leading team to victory.

Another item that stands out in the LIME-explanation is that the pres-
ence of Boots of Speed on the losing team is an advantage to the winning
team. Boots of Speed are a tier 1 item and can be upgraded by paying extra
gold. Four players on the winning team have already done so, versus two on
the losing team. LIME picks up on this, pointing out the mobility advantage

18

of the winning team.
By ’giving’ the losing team two Rabadon’s Deathcaps, Liandry’s

Torments and Blades of the Ruined King (granted, that is a lot) and
running the prediction algorithm again, their chances to win increase all the
way to 75.6%.

4.2 General description of the recommender system

Let D be one of our data sets (D ∈ {Dstart, Dearly, Dmid, Dend} and let x ∈ D
be one of the game states. Then calling the predict proba method of our
trained classifier (passing data point x as an argument) will return a tuple
of probabilities: predict proba(x) = (p, 1 − p). Here p is the predicted
probability that the first team will rise to victory from game state x, and
1− p is the predicted probability that the second team will win the match.

The next step is to use LIME to generate an explanation for this pre-
diction. Doing so will give an list of contributing factors to the prediction,
paired with the responsible feature. An example of the first five items of such
a list is shown in [Table 8].

Reason LIME score
Hunter’s Talisman ∆ ≤ 0.00 -0.28
Trinity Fusion ∆ > 0.00 0.25
Sapphire Crystal ∆ > 0.00 0.22
Maw of Malmortius ∆ ≤ 0.00 0.20
Zhonya’s Hourglass ∆ ≤ 0.00 0.17

Table 8: Example of a list of contributing factors to a prediction (p =
0.99379711, 1 − p = 0.00620289). LIME scores are weights to those con-
tributing factors: they indicate which feature changes will have the most
impact on the prediction. The features are item deltas (∆), indicating the
relative difference between items owned by team0 and team1.

As the final step, for each of the items mentioned in the table we derive
two hypothetical game states: one where team0 has purchased the item (game
state x0) and one where team1 has purchased the item (game state x1).
We run the prediction algorithm again, producing a two new tuples of win
probabilities: predict proba(x0) = (p0, 1 − p0) and predict proba(x1) =
(p1, 1− p1). This means that when team0 has bought an extra item in game
state x0 (with respect to x), their ‘gain’ in win chance is p0 − p. Similarly,
if the item is purchased by team1 instead, the winning probability for team1
increases by (1− p1)− (1− p) = p− p1.

19

As an example we have taken the items mentioned in Table 8 and calcu-
lated the teams’ potential increases in win probability by buying those items
[Table 9].

Item bought
team0 win

chance gain
team1 win

chance gain
Hunter’s Talisman -2.92% -0.50%
Trinity Fusion 0.60% 7.30%
Sapphire Crystal 0.61% 40.40%
Maw of Malmortius 0.61% 18.81%
Zhonya’s Hourglass 0.60% 9.47%

Table 9: Overview of how much each team stands to gain (in terms of win
probability) by buying the item in the first column. Features were selected
based on LIME scores [Table 8].

4.3 Usage example

In this example, we consider the match with gameId=2585584646. This
match was randomly selected from the subset of matches for which both
Tearly and Tmid are defined. We give an overview of the game states at these
timestamps and the accompanying recommendations that are given at Tearly

and Tmid.
At 15 minutes and 27 seconds into this game, the first tower falls: laning

phase ends. To get a general understanding of the current state of the
game, we make a lane-by-lane comparison of both teams using [Figure 4].

20

Figure 4: Overview of match 2585584646 after the laning phase. The column
header K/D/A stands for kills, deaths and assists. assists indicate how
many times a player has helped an ally kill an opponent.

In the top lane, team1 seems to have a clear lead: the second player is
ahead in levels, kills, items and gold but slightly behind in minions. As we
saw from an earlier result though, minions are not as good a predictor of win
probability as these other features. In the jungle, the player on team0 has
an advantage. Even though he has no kills and died once more compared
to his enemy jungler, the first player is up in levels, items and gold. The
mid laners appear to be going even: their levels and kill/death/assist-ratio
are equal and the differences in minions, items and gold are minimal. In the
bottom lane, players battle two versus two. One of the players on team0 has
five kills, which is a significant lead over the opposing players in bottom lane.

21

Given this game state, our classifier predicts a win probability of 0.21%
team0 and 99.79% for team1. According to LIME, the five features con-
tributing to this prediction the most are those shown in [Table 10]. At this
point, we would recommend that team0 purchases the Statikk Shiv next,
and team1 should purchase either a Statikk Shiv, Sunfire Cape or a
Ravenous Hydra as a close runner-up. Both teams should stay away from
the Runic Echoes enchantment.

Item LIME score team0 gain team1 gain
Statikk Shiv 0.39 96.08% 0.21%
Enchantment: Runic Echoes -0.26 -0.21% -68.65%
Ravenous Hydra 0.26 9.11% 0.20%
Sunfire Cape 0.24 22.96% 0.21%
Athene’s Unholy Grail 0.24 0.01% 0.01%

Table 10: Evaluation of item options in match 2585584646 at Tearly. Table
shows a list of five items, their importance according to LIME and potential
gain in win probability when bought by the teams. LIME scores are weights
to those contributing factors: they indicate which feature changes will have
the most impact on the prediction.

The next game state we take a look at is shown in [Figure 5]. We are
32 minutes and 45 seconds into the game and Baron Nashor has just been
slain: mid-game ends. Note that our earlier hypothetical recommendation
became reality. Statikk Shiv was purchased by both teams and neither
team has the Runic Echoes enchantment. team1 has also purchased the

Titanic Hydra, which is an item quite similar to Ravenous Hydra.

22

Figure 5: Overview of match 2585584646 after slaying Baron Nashor. The
column header K/D/A stands for kills, deaths and assists. assists indicate
how many times a player has helped an ally kill an opponent.

At this point in the game, our classifier predicts a 1.9% win probabil-
ity for team0 and 98.1% win probability for team1. The explanation and
potential gain for the most important items are shown in [Table 11]. We
would recommend to both teams that they should buy Trinity Force or

Zhonya’s Hourglass. Both teams should avoid purchasing extra Control
Wards and the Enchantment: Bloodrazor item.

23

Item LIME score team0 gain team1 gain
Salvation 0.26 4.35% 0.37%
Control Ward -0.20 -1.56% -43.31%
Trinity Force 0.20 30.32% 1.68%
Enchantment: Bloodrazor -0.19 -1.68% -39.01%
Zhonya’s Hourglass 0.19 18.25% 1.58%

Table 11: Evaluation of item options in match 2585584646 at Tmid. Table
shows a list of five items, their importance according to LIME and potential
gain in win probability when bought by the teams.

5 Discussion & Future work

In this work, we have proposed an approach for recommending items in a
League of Legends game. The result is a method for recommending that is
adaptive to the game state and can provide explanations for choosing items
in terms of estimated increases in the probability of winning.

We used ANNs to first build a classifier predicting the chances of winning
a match. These ANNs were trained on data sets in which the phase of the
game is a common factor. We then used LIME to extract the items with the
most weight in influencing the prediction of our classifiers. We estimate the
impact of buying or selling these items by running the prediction algorithm
on a game state that has an item added or removed. We recommend the
items that show the greatest improvement of a team’s win probability.

This new method is different from the current item recommender that is
built into League of Legends in that the new system can adapt to specific
situations. Recommendations will change between different phases of the
game, whereas the current recommendation system presents a list of items
that is the same for each game and fixed throughout a match. The method we
proposed can also give an explanation for each item in terms of probability
of winning the game. This is potentially useful for novice players that do
not yet have a sound understanding of the extent to which each item can
influence the game.

One pitfall of our proposed method for recommending items is that it
is dependent on the quality of the classifier. Bad classifiers give predictions
that have little meaning. As a consequence, recommendations based on those
predictions can be less helpful or even steer a team in the wrong direction.

Another thing to note is that the relation we are modeling (items and
winning a match) is complex and nonlinear. When we use LIME, the expla-
nations generated are based on a linear model that locally approximates our

24

classifier. As a sample data point (a game state) changes, it is probable that
the prediction of our classifier diverges from a LIME explainer (learned on
perturbations of the game state) very quickly.

5.1 Future work

A path that could be explored is making a distinction between high-rated
players and low-rated players. Players in higher tiers are usually more expe-
rienced and may be able to better take advantage of the items they buy. It is
possible that the importance of itemization is partial to the skill of the player.
We currently do not make such a distinction since our dataset contains both
high rated and low rated players.

A next step is to focus recommendations on the individual player. Our
current recommendation method groups items by team. As a result, our gen-
erated recommendations are items that the algorithm thinks a team should
purchase.

Many of the champions in the game have better synergy with a specific
subset of items. How well a champion and an item work together depends
largely on the nature of the champion and the bonuses/effects an item gives.
We did not encode this information into our data sets, but doing so may give
further insight into which players specifically can best purchase the recom-
mended items.

The 228 unique items in League of Legends that we use in our data set
all have their own set of effects. Some of those properties add bonuses to
the same statistic of a champion – for instance: if item A gives +10% attack
speed and item B gives +20% attack speed, then purchasing both A and
B would increase a champions’ attack speed by 30%. Other effect groups,
such as Armor and Armor Penetration counteract each other when owned by
champions on opposing teams. Encoding items in terms of their effects could
be the good step towards a deeper understanding of why items do (not) work
well together. Thinking of items in terms of their properties would make
sure the introduction of new items into the game requires little additional
training of the neural network.

References

[1] Auster Delaurant. Advanced game phase breakdown.
https://www.mobafire.com/league-of-legends/build/

advanced-game-phase-breakdown-223875, jun 2012.

25

https://www.mobafire.com/league-of-legends/build/advanced-game-phase-breakdown-223875
https://www.mobafire.com/league-of-legends/build/advanced-game-phase-breakdown-223875

[2] Ehsahn. Beginner’s guide to the phases of the game, and explanations of
each. http://forums.na.leagueoflegends.com/board/showthread.

php?t=642319, sep 2011.

[3] Items in league of legends. https://leagueoflegends.fandom.com/

wiki/Item.

[4] Christopher Michael Bishop. Pattern Recognition and Machine Learn-
ing, chapter 5. Springer, 2006.

[5] Riot Games. Api. https://developer.riotgames.com/

api-methods/.

[6] League of legends rank distribution. https://web.archive.org/

web/20190612021628/https://www.leagueofgraphs.com/rankings/

rank-distribution, jun 2019.

[7] Trinket (item). https://leagueoflegends.fandom.com/wiki/

Trinket_item.

[8] Louis Wehenkel Pierre Geurts, Damien Ernst. Extremely randomized
trees, mar 2006.

[9] Cull (item). https://leagueoflegends.fandom.com/wiki/Cull.

[10] Jerome Friedman Trevor Hastie, Robert Tibshirani. The Elements of
Statistical Learning. Springer, second edition, feb 2009.

[11] Carlos Guestrin Marco Tulio Ribeiro, Sameer Singh. ’why should i trust
you?’: Explaining the predictions of any classifier, feb 2016.

[12] marcotcr. lime. https://github.com/marcotcr/lime.

26

http://forums.na.leagueoflegends.com/board/showthread.php?t=642319
http://forums.na.leagueoflegends.com/board/showthread.php?t=642319
https://leagueoflegends.fandom.com/wiki/Item
https://leagueoflegends.fandom.com/wiki/Item
https://developer.riotgames.com/api-methods/
https://developer.riotgames.com/api-methods/
https://web.archive.org/web/20190612021628/https://www.leagueofgraphs.com/rankings/rank-distribution
https://web.archive.org/web/20190612021628/https://www.leagueofgraphs.com/rankings/rank-distribution
https://web.archive.org/web/20190612021628/https://www.leagueofgraphs.com/rankings/rank-distribution
https://leagueoflegends.fandom.com/wiki/Trinket_item
https://leagueoflegends.fandom.com/wiki/Trinket_item
https://leagueoflegends.fandom.com/wiki/Cull
https://github.com/marcotcr/lime

	Introduction
	What is League of Legends?
	Phases
	Learning to choose items

	Data
	Data Collection
	Data preprocessing
	Raw data
	Extracting a game state
	Splitting the game into phases
	Feature normalization

	Neural network setup & results
	Cross-validation
	Feature selection
	Combining features
	Prediction using items only
	Using variance to select items
	Using variable importance to select items
	Items owned vs. items bought
	Results using all items in our data

	Other classifiers
	GradientBoosting
	RandomForest
	ExtraTrees

	Recommending items to players
	LIME as a potential feature importance indicator
	General description of the recommender system
	Usage example

	Discussion & Future work
	Future work

