
Bachelor thesis
Computing Science

Radboud University

Increasing the Perceptual Image
Quality of Adversarial Queries for

Content-based Image Retrieval

Author:
Sam Sweere
s4403142

First supervisor/assessor:
Prof. Martha Larson
m.larson@cs.ru.nl

Second supervisor:
MSc. Zhuoran Liu
z.liu@cs.ru.nl

Second assessor:
Prof. Lejla Batina
lejla@cs.ru.nl

July 10, 2019

Abstract

Adversarial queries are images that have been altered such that a content
based image retrieval (CBIR) has trouble retrieving similar images while hu-
mans can still clearly perceive the contents of the adversarial query (the al-
tered image). This thesis presents a new method to create adversarial queries
for CBIR systems named CV-PIRE. This method takes human color per-
ception into account, when altering the image, by reducing perturbations in
low color variance areas and increasing perturbations in high color variance
areas. CV-PIRE outperforms previous methods based on the perceptual
difference between the original image en the adversarial query based on the
SSIM score.

Contents

1 Introduction 3
1.1 Motivation . 6

1.1.1 Safety threats . 6
1.1.2 Privacy threats . 6

1.2 Roadmap . 7

2 Preliminaries 8
2.1 Artificial neural networks . 8

2.1.1 Single layer ANN . 8
2.1.2 Multi layer neural network 11
2.1.3 Adaptive learning rate 12
2.1.4 Kernels . 13
2.1.5 Convolutional neural networks 14

2.2 Content based image retrieval 15
2.2.1 General overview . 15
2.2.2 Local feature based CBIR 18
2.2.3 CNN based CBIR . 19

2.3 Creating adversarial examples 20
2.3.1 Intuition . 20
2.3.2 Adversarial examples for CBIR systems 22

2.4 Recent work . 22
2.5 Image processing techniques and color perception 25

2.5.1 Color spaces . 25
2.5.2 Human color perception 26
2.5.3 Gaussian kernel . 27

3 Approach 28
3.1 Intuitive insight . 29
3.2 Pixel color variance . 30

3.2.1 Gaussian kernel . 30
3.2.2 Algorithm to calculate the pixel color variance 31
3.2.3 Pixel color variance image 32

3.3 Generating adversarial examples 33

1

3.3.1 Saving adversarial queries 35
3.3.2 Determining the hyperparameters 35

3.4 Other algorithms for comparison 36
3.4.1 SD-PIRE . 36

4 Experimental results 38
4.1 Evaluating adversarial queries 38

4.1.1 Measuring the performance of CBIR 38
4.1.2 Determining perceived image quality 39
4.1.3 Data . 39

4.2 Determining the hyperparameters of CV-PIRE 41
4.2.1 Pixel color variance hyperparameters 41
4.2.2 Iterations . 42
4.2.3 Threshold multiplier 42

4.3 Results . 44
4.4 Detailed comparison . 46
4.5 Comparison between CV-PIRE and SD-PIRE 47

4.5.1 Visual differences . 51
4.6 Convergence rate . 52

5 Conclusion 53
5.1 Conclusion . 53
5.2 Discussion and outlook . 53

5.2.1 Robustness . 53
5.2.2 Different datasets . 53
5.2.3 Multiple CBIR systems 54
5.2.4 SSIM and human color perception 54
5.2.5 CIE94 instead of CIEDE2000 54
5.2.6 Speeding up the calculations 54

6 Acknowledgements 55

A Appendix 59
A.1 SSIM formula . 59
A.2 mAP compared to iterations for CV-PIRE 60
A.3 More detailed results . 61
A.4 PIRE with a higher learning rate 62

2

Chapter 1

Introduction

One of the biggest tech developments in the last decade is machine learning.
A majority of this development is constituted by neural network frameworks
and a part of this are convolutional neural networks (CNN). One of the
tasks they perform exceptionally well is image classification. While these
CNNs are inspired by the way the human brain processes images, they,
however, seem to not achieve this task in a similar matter. In the article
[1] it is argued that classifiers based on modern machine learning techniques
are not learning the underlying properties that define what they are trying
to classify. Instead it seems like these algorithms have found a way to
be successful at classification without using the underlying properties that
determine the correct output label. For example, a CNN classifier can be
trained to classify trucks. Such a CNN can come to the conclusion that
something can only be a truck if its red, since it has only seen trucks that
were colored red. The moment it is shown an image of a green truck it will
not classify it as a truck. While for humans color is not the defining property
of a truck and they will, therefore, still clearly see a truck. This difference in
perception makes these algorithms prone to so called “adversarial attacks”.
By changing pixels in the image that are essential for these CNNs to perform
their classification, but do not substantially change the image for humans,
one can fool such an algorithm to classify the image as something else, while
for a human the content of the image has not changed substantially. The
paper [2] demonstrates this property, by shifting the colors of an image and
in turn getting different output classifications, as is shown in figure 1.1.

3

Figure 1.1: Demonstration image from [2]. A low resolution sample image
of a truck from the CIFAR10 dataset, on the left side the original image,
on the right three color-shifted versions of the same image. All classified
differently by the VGG16 [3] network (a CNN classifier) trained on the
CIFAR10 dataset.

One field in computing science where machine learning has become an im-
portant factor is in content-based image retrieval (CBIR). Given a query
image (an input image) a CBIR system can find images that have visually
similar contents. In contrast to a CNN classifier, it is not mandatory for a
CBIR system to have seen the contents of the query image before, since it
does not classify the image, but instead finds images with visually similar
content. This property could enable social media platforms to track users
based on their uploaded images. These CBIR systems could retrieve similar
images, using information connected to these retrieved images to pinpoint
the location where the uploaded photo was taken, potentially violating the
users privacy.

To protect the privacy of a user, he/she could change the image into an
adversarial query, as demonstrated in [4]. This means altering the image
in such a way that humans still perceive it clearly, but when presented to
a CBIR system it returns the wrong results as it has difficulties retrieving
the content. This idea is illustrated in figure 1.2. One way to create an
adversarial query is by perturbing (altering) pixels in an image in such a way
that a CBIR system performs really poorly [4]. However, the perturbation
of pixels can be quite noticeable to the human eye and results in the image
looking “noisy”. It is therefore interesting to see if there is a way to do these
perturbations in such a way that they become less noticeable to the human
eye, while still creating a good adversarial query for CBIR.

4

Figure 1.2: An image query (top left) and the corresponding adversarial
query image (bottom left). On the right are the top 3 retrieved images by
a CBIR system. For the original query image the CBIR correctly retrieved
the top 3 images, as shown in green. The adversarial query image looks
almost identical to the human eye but the CBIR incorrectly retrieved the
top 3 images, as shown in red.

In this paper we research this problem and propose a solution. In total
making the following contributions:

• We motivate why it is important to research adversarial attacks on
CBIR systems.

• We propose a new method to determine the noticeability of a pixel
perturbation within an image based on the color variance around a
pixel.

• We propose a new method, named CV-PIRE, that is able to generate
adversarial queries for CBIR systems while maintaining good percep-
tual image quality.

5

1.1 Motivation

1.1.1 Safety threats

In the paper “Robust Physical-World Attacks on Deep Learning Visual Clas-
sification” [5] it is shown that it is possible that physically altering road signs
can generate adversarial queries for classification algorithms. Self driving
cars using such a classification algorithm miss-classified the altered ”Stop”
sign to a ”Speed Limit 80” sign and would therefore not stop. While for hu-
mans the altered stop sign was still clearly perceived as a stop sign. While
in this research a classifier was used, it is imaginable that self driving cars
will use some CBIR algorithms. For developers or researchers building these
CBIR based implementations for self driving cars or other high risk appli-
cations, it would be crucial to know how vulnerable their implementation is
to adversarial attacks in order to keep their system safe.

1.1.2 Privacy threats

One possible application of CBIR systems, as mentioned before, is to find
and track people who have posted pictures online. When someone uploads
a photo on for example a social media platform, he usually has the intention
to share this with friends. Most likely it is not their intent to make himself
vulnerable to being monitored or tracked by automated systems. When the
uploaded photo contains a clear description or meta-data such as geolocation
coordinates, it is relatively easy for the social-media platform to track this
person with this data. The paper [6] demonstrated how they where able
to retrieve private addresses of celebrities using photos from social media
platforms including YouTube and Twitter. However, a person can choose
not to include geolocation meta-data or clear descriptions. In this case the
social media platform can make use of a CBIR system. Running the per-
son’s photo through a CBIR system will result in photos that have visually
similar content. If the content of these similar photos is known, for exam-
ple through description or geolocation meta-data, the social media platform
could assume that the photo was taken in the vicinity of the same location.
This information can consequently be used to track and monitor the user,
endangering his privacy. In [7] it is demonstrated how geolocation of videos
shared on Flickr can be retrieved by extracting visual features from frames
of the video and other metadata. The extraction of visual features in this
research is comparable to how a CBIR system extracts information from an
image.

If instead of uploading the original photo the user removes the geoloca-
tion metadata and generates an adversarial query of his photo, the perfor-
mance of such a CBIR system system in finding images with visually similar
content could decrease to an unusable level, rendering it useless for tracking
or monitoring purposes and thereby securing the user’s privacy.

6

1.2 Roadmap

This thesis is structured as follows:

• We discuss preliminary information on how content based image re-
trieval works and how to generate adversarial queries for these systems.
As well as discussing image processing approaches, color spaces and
human color perception (Chapter 2).

• We explain the intuition behind our proposed method CV-PIRE. Where
pixels perturbed in low color variance regions seem to be more perceiv-
able than perturbations in high color variance regions (Section 3.1).

• We propose a new method to determine the noticeability of a pixel
perturbation within an image based on color variance (Section 3.2).

• We propose a new method that is able to generate adversarial queries
for CBIR systems while maintaining good perceptual image quality
(Section 3.3).

• We discuss ways to analyse the performance of adversarial queries
(Section 4.1).

• We discuss and analyse different practical aspects of generating adver-
sarial queries using our proposed method CV-PIRE (Section 4.2 and
4.6).

• We evaluate and compare the performance of adversarial queries gen-
erated by CV-PIRE compared to related methods (Section 4.3, 4.4
and 4.5).

• We conclude this thesis and give an outlook to further research (Chap-
ter 5).

7

Chapter 2

Preliminaries

In this chapter some subjects that are required to understand the research in
this thesis are discussed. First, a short overview of artificial neural networks
including convolutional neural networks is given in section 2.1. Next, the
working of content based image retrieval is discussed in section 2.2. In sec-
tion 2.3 the creation of adversarial queries on neural network based systems
is discussed. In section 2.4 recent work on content based image retrieval and
adversarial queries that are relevant for this research are discussed. Finally,
in section 2.5 image processing techniques and the perception of (digital)
colors are discussed.

2.1 Artificial neural networks

This thesis is not about artificial neural networks (ANN), but systems that
make use of them. Therefore, it is necessary that we explain the basics of
ANN’s first. A full overview on how artificial neural networks (ANN) work
is beyond the scope of this thesis, we will therefore give a short overview
of each element crucial for making ANN’s work. If you are new to neural
networks the book An Introduction to Neural Networks by Kevin Gurney
[8] discusses almost every part of this section in detail.

2.1.1 Single layer ANN

A fully connected single layer ANN (also known as a perceptron) consists
of input nodes and output nodes that are fully connected, with every con-
nection having its own weight w as illustrated in figure 2.1. These networks
operate as a feed-forward network where the outcome y is generated by
multiplying the weights w with the corresponding input x and applying an
activation function g, thus y = g(wTx).

8

Figure 2.1: Illustration of a single layer ANN with 4 input nodes and 3
output nodes.

Training goal

We want to find the optimal parameters θ such that the network gives the
desired output as often as possible, where θ are modifiable parameters such
as the weights w or the input x. To do this we need to determine a function
that describes how good the output y of the network is compared to the
known correct output t. We call this function the loss function l. With this
loss function we can determine a cost function J that describes how well
the network performs on multiple inputs x. The goal to train the network is
done by finding the parameters θ such that the cost function J is minimized.
Or in other words the goal of learning is to find the optimal parameters θ∗

such that:
θ∗ = argmin

θ
J(θ) (2.1)

Cost function

Before we can determine a cost function J , we need to determine a loss
function l. One of the most common loss functions is the Euclidean loss
given by:

l(y, t) =
1

2
||y − t||22 (2.2)

The the resulting cost function, also called the mean squared error (MSE),
is defined by:

J(θ) =
1

2N

N∑
n=1

l (yn, tn) (2.3)

With N the number of presented inputs, yn the prediction (output) of input
n and tn the known target output of input n.

9

Gradient descent

Now that we know what our learning goal (equation 2.1) is given a cost
function J we need a way to update the parameters θ such that the learning
goal is achieved. We want to find the minimum of the cost function, the
way we do this is by looking at the slope of the cost function J in respect
to the parameters θ. By following the slope downwards in small steps we
could eventually reach a (local) minimum. This procedure is called gradient
descent. The gradients of the cost functions are found by:

∇J =

(
∂J

∂θ1
, . . . ,

∂J

∂θk

)T
(2.4)

Where k is the number of parameters the network contains.
To apply gradient descent we need to calculate ∇J and therefore ∂J

∂θi
.

To demonstrate the application we use a single layer fully connected ANN
with an arbitrary activation function g, weights w and inputs x. Where the
goal is to train the network, thus to update the weights w (thus θ = w).
The outcome of such network is given by:

y = g(wTx) (2.5)

Choosing the MSE cost function and using the sum and product rules we
get:

∂J

∂wi
=

1

N

∑
n

∂l

∂wi
(2.6)

Choosing the Euclidean loss function and using the chain rule this becomes:

∂J

∂θi
=

1

N

N∑
n=1

(yn − tn) g′
(
wTxn

)
xi,n (2.7)

Where g is the activation function, yn the outcome of the network for input
xn, tn is the known desired outcome and N is the total amount of inputs.
Using this we can update the parameters in a gradient descent step:

θ ← θ − ε∇J (2.8)

Where ε is called the learning rate that determines how big the steps are.

Argmax function

The process of finding optimal parameters θ to maximize a function is often
referred to as argmax. This can be implemented when having a network,
for example a NN, where the only part of the network that changes is the
parameters θ. Usually these parameters are the weights w of a network or

10

Figure 2.2: Illustration of a multi layer NN with 4 input nodes, one hidden
layer with 3 hidden nodes and 3 output nodes.

the inputs x. Using the theory previously given for ANN’s the goal becomes
to find optimal parameters θ∗ such that:

θ∗ = argmax
θ

J(θ) (2.9)

Instead of using gradient descent we can know use gradient ascent, since
we are trying to find the maximum. This algorithm is exactly the same as
gradient descent except the gradient step, this becomes:

θ ← θ + ε∇J (2.10)

Here we use a + instead of a − since we want to ascent.

2.1.2 Multi layer neural network

So far, we have discussed single layer neural networks. For more complex
tasks we can combine multiple single layer neural networks to create a multi
layer neural network, in figure 2.2 such a multi layer NN is shown. In
this example the network only has one hidden layer, but this can of course
be increased to any amount. These multilayer NN’s can be trained using
the backpropagation algorithm, which essentially does gradient descent over
multiple layers.

11

Figure 2.3: Example of a non-convex surface of a cost function.1

2.1.3 Adaptive learning rate

For gradient descent and backpropagation we need to set a learning rate.
This learning rate determines how big the parameter updates are after each
iteration. The goal is to find a minimum of the cost function that is as low
a possible, ideally the global minimum.

For single layer NN’s we are guaranteed to find the global minimum using
gradient descent, this is because it is a convex problem, that is, the down-
ward gradient always points to the global minimum. In this scenario choos-
ing a bigger learning rate could decrease the amount of iterations needed to
find the global minimum. However, with a high learning rate it could also
step over the minimum. In this case we want to have a smaller learning rate
to do more precise steps.

For multi layer NN’s finding the global minimum using backpropagation
is not guaranteed, since it is a non-convex problem (see figure 2.3). In that
case it is possible to get stuck in a local minimum. To increase the chance
we find the best possible minimum we want to have a learning rate that is
not too big, since it could step over the minimum, but also not too small,
since it could get stuck in a undesirable local minimum.

One way to tackle this problem is by changing the learning rate while
training with the use of an adaptive learning rate function. Such a function
could decrease the learning rate based on the gradient such that at the
beginning the steps are big enough such that calculation is faster, but at the
end the learning rate is small enough such that a minimum can be reached.
One of the most popular algorithms for adaptive learning rate is ADAM [9].

1Image from: https://www.codeproject.com/articles/175777/
financial-predictor-via-neural-network

12

https://www.codeproject.com/articles/175777/
financial-predictor-via-neural-network

Figure 2.4: Example of a 3x3 kernel. Figure 2.5: Example of the application of a 3x3
convolutional kernel.2

2.1.4 Kernels

In image processing a kernel is a small matrix that is applied to a certain
part of the image, for example in figure 2.4 a 3x3 kernel on a 6x6 image is
shown. This kernel is used to do calculations around a specific pixel. Such
a kernel can be scanned over the image such that this calculation is done on
every pixel in the image.

In CNN’S these kernels are used to do convolutions between a kernel and
an image. These kernels contain values that are multiplied with the image
at the location of the kernel. The values of the outcome of the multiplication
are stored in a new image as demonstrated in figure 2.5. Depending on the
values and size of the kernel this can highlight certain patterns in the image,
such as lines or contrast changes.

Figure 2.6: Example of Max-Pooling and Average-Pooling.3

2Image from: https://www.saama.com/blog/different-kinds-convolutional-filters/
3Image from: https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53

13

https://www.saama.com/blog/different-kinds-convolutional-filters/
https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Figure 2.7: Illustration of a convolutional neural network.4

2.1.5 Convolutional neural networks

The kernels described in section 2.1.4 can be used to create convolutional
layers. Convolutional layers learn and apply these kernels as demonstrated
in figure 2.5. By applying such a kernel for every possible location in a matrix
we get a new matrix. We can apply multiple different kernels on one input
matrix to get a feature map. The feature map represents specific features,
for example lines or corners. Since these kernels are trained, the network
will find the kernels and thus features that more valuable for predicting
the correct outcome. Convolution also allows for features to be detected
independent of their location in the image. Usually in a convolutional neural
network (CNN) we use multiple kernels, after which there is a feature map
consisting of the same number of matrices as there where kernels. Usually
we want to do multiple convolutions after each other, since this enables the
network to detect more complex features. In order to reduce the complexity
of the network and increase the generalization of feature detection we want
to do pooling between two convolutions. Pooling reduces the dimensions
of a matrix by taking the average (Average-Pooling) or maximum value
(Max-Pooling) over a region as demonstrated in figure 2.6. Finally, after
the convolution layer and or pooling layers we can connect a number of fully

4Image from: https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

14

https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

connected layers. These are the same as a previously described multilayer
neural network with as input the convolution or pooling layer. An example
of such a CNN making use of convolution layers, pooling layers and fully
connected layers is shown in figure 2.7. The first CNN with backpropagation
was introduced by [10].

2.2 Content based image retrieval

Image search aims to efficiently and accurately retrieve images from a large
database given a textual description or a visual example. Traditionally this
has been done using the metadata that is attached to the images, like titles
and tags. However, textual information can be inconsistent or absent; there-
fore, content based image retrieval (CBIR) could be more reliable. CBIR
retrieves content information from the images themselves. This content in-
formation can substantially be used for the image search. This technique
has made advancements in the last decade. In this section we will give an
overview of how CBIR works and the different approaches that can be taken.

2.2.1 General overview

The goal of content based image retrieval is to get the best matching image
based on content from a background database given a query. The challenge
that needs to be solved is thus how to compare the images in the database
to the query. To do image comparison we need to have a way to transform
the image and query into a feature space that can be compared, i.e., an
image representation. This feature space could represent visual features of
the image, such as textures, color layout, etc .. The goal is to minimize
the impact of the parts of the image that are not likely to be important
for responding to a query and image transformations (rotation, translation,
resizing, illumination, etc...) while having the visual content of the image
that could be important when responding to a query well represented in the
feature space.

When we say that two images have the same content we, as humans,
usually mean the semantic content. For example, if we see two images
containing very different looking chairs we could still say that they contain
the same content. But for a CBIR system, it can be hard to group these
together since the chairs themselves look very different, it therefore has to
learn a notion of what a chair is to successfully pair them together (similar
to the truck example in chapter 1). This is part of a more general challenge
in machine learning, namely the “semantic gap” problem, where there is
a difference in having a system that is good at statistically predicting the
outcome versus understanding the what the outcome should be. Currently,
the best performing CBIR solutions do not directly determine and use the
semantics of an image but use visual feature matching methods instead.

15

Figure 2.8: General framework of content-based image retrieval. Inspired
by [11].

General flowchart

The core flowchart of CBIR is illustrated in figure 2.8. There are two main
parts, the indexing stage and the query stage. The indexing stage starts with
having a background image database, from which images will be retrieved.
To be able to to retrieve images, they have to be represented into a feature
space, usually in the form of a vector. In order to increase the comparison
speed, done at the image scoring phase, this vector has to be of a fixed-length
and be compact, from now on we will refer to it as the compact vector.
Reducing the size of the feature space, in the form of a compact vector,
could also be beneficial for accuracy of the retrieved images, since with a
reduced feature space less important features are not taken into account.

The query stage starts with the query formation, the query describes
what we want to retrieve. This query is transformed to a compact vector
with the same structure as the compact vectors used in the indexing stage.
Next, this compact vector is compared to the compact vectors of images in
the background database. Based on the similarities a score is calculated.
Finally, we can select the desired retrieved images based on the score. If we
want to find the most similar images we select the images with the highest
score.

Image query

The query describes what we want to retrieve. It can be formulated in
different ways, such as keywords, an image example [12] or a sketch [13] as
illustrated in figure 2.9. In this research, we will use query by example, where
given an image query we want to find images that have similar content in
them. From now on we will assume the CBIR makes use of query by example
image.

16

Figure 2.9: Illustration of the query by keyword, query by example and a
query by sketch. Adapted figure from [11].

Feature extraction

As mentioned before, we need to represent the image in a feature space such
that it can be compared. Usually, this is done by comparing visual features,
and first, the visual features are extracted from the image. Early CBIR
algorithms commonly used global features to describe the image content.
They combined properties like color, shape, texture and structure to a single
representation [11]. These methods worked well for finding duplicate images
in large databases [14], but generally do not work well when background
clutter is present. This changed in 2003 with the introduction of SIFT
[15]. From 2003 to 2012 the big breakthroughs in CBIR were achieved using
SIFT-based feature extraction, which we will discuss in section 2.2.2. This
changed in 2012 when the classifier AlexNet [16] outperformed the previous
best results by a large margin using a deep learning based method. Since
then, research on CBIR has mainly focused on using deep learning based
methods for feature extraction [17], we will call these CNN based CBIR
systems from now on and they will be discussed in section 2.2.3. In figure
2.10 the pipelines of SIFT and CNN based CBIR are illustrated.

Image retrieval

With the features extracted from the query image it is time to compare them
to the features of the images in the database. However, one problem is that
the image database can be quite large. When we want to retrieve an image
it could be infeasible to compare all visual features, therefore we need to
extract a limited number of features and encode those in a smaller represen-
tation (usually a fixed sized compact vector). This smaller representation

17

Figure 2.10: Illustration the SIFT and CNN pipelines. Adapted figure from
[17].

also causes that only the more important features remain present, resulting
in better generalization of retrieval process. Next, this smaller representa-
tion is used to do the image comparison, based on the similarity, a score is
calculated using an assignment function. One assignment function that is
often used is approximate nearest neighbor (ANN) [18]. When we want to
retrieve the most similar images we select the images with the highest score.

2.2.2 Local feature based CBIR

Local feature extraction consists of interest point detection and local region
description. Interest points are points that can be found even after the image
has been altered using various transformations. There are multiple methods
to find interest points, where in the previous decade SIFT [15] has been
most popular and successful since the local features it finds are generally
more invariant to translation and resizing than previous methods.

The first step of a local feature based CBIR is to extract the local fea-
tures. This process could yield thousands of these features, resulting in
a feature vector that would be too long to do retrieval on a large image
database since the comparison of the feature vectors between two images
would take to much processing time. Also a a long feature vector would
not generalize well. To tackle this problem the features can be transformed
into a fixed-length compact vector. One way is by the Bag-of-Visual-Words
(BoVW) model [12]. This is usually implemented using a form of k-means
clustering, where the k defines the size of the compact vector. Using this
implementation, keypoints that are similar are in the same cluster and are
regarded to be the same. Finally, the resulting vector is compared to the
vectors of the images in the database using for example the approximate

18

nearest neighbor [18] method.

2.2.3 CNN based CBIR

In the last few years, CNN based CBIR methods have received the most
research attention and are slowly replacing SIFT based methods [17]. There
are multiple configurations possible for CNN based CBIR, we will discuss
pre-trained CNN models since this is the same as the CBIR model used in
this research.

Pre-trained CNN Models

When looking at the structure of CNN’s they can be viewed as a set of
layers that do convolution and pooling and at the end connected to a fully
connected NN (see figure 2.7 and section 2.1.5). These convolution layers are
sensitive to certain visual patterns as demonstrated in [19]. On the lower
layers, these patterns are more primitive, like edges, squares and circles.
On the higher level layers, more elaborate patterns start to appear, like
dog faces or complex brick patterns. These lower layers can be compared to
SIFT based methods, since they observe the same kind of patterns. However,
the complex patterns that the higher level layers track is something SIFT
based methods are unable to do. This enables CNN based CBIR methods
to outperform SIFT based methods.

When working with CNN’s that are used for similar tasks, there is some
representations of these convolution layers, i.e., the patterns used for classi-
fication can be used for feature extraction. Thus instead of starting with a
completely untrained CNN you can start with a CNN that is already trained
for a different but similar task and then retrain the network to do image re-
trieval. By fine-tuning of the network. Popular pre-trained networks are
AlexNet [16], VGG [3] and ResNet [20] trained with ImageNet [21].

Feature extraction

One way is to add a fully connected NN layer to a CNN (similar to figure
2.7), the outcome of the fully connected NN layer can than be used as the
feature representation [16]. This fully connected NN layer is connected to the
last convolution layers, combining all the information from these patterns
to form a compact feature vector.

More recent proposed CNN based CBIR methods also use lower level
convolution layers [22] [23] [24]. Here, a consideration can be made what
layers to use. Lower convolution layers contain patterns similar to SIFT
while higher convolution layers contain more complex patterns.

19

Figure 2.11: An adversarial example applied to GoogLeNet [26]. Altered
figure from [1].

Image retrieval

Finally, the feature information has to be encoded to a short fixed sized
compact vector that can be used for the comparison. There are generally
two ways this is done. The first is by encoding. This is done similarly to how
SIFT features where encoded Bag-of-Visual-Words (BoVW), but instead of
using the keypoints, the values of the last convolution layer or pooling layer
of the CNN feature extractor are used. The second option is to use a pooling
layer [22] [24] to go from the found features straight to the compact vector,
this has the added benefit that they are less sensitive to the location of
the found features compared to BoVW, since the convolutional layers find
patterns in certain areas of an image.

2.3 Creating adversarial examples

In 2014 Szegedy et al. [25] made the discovery that several machine learning
models where vulnerable to “adversarial examples”. In chapter 1 this term
is already introduced, for completion we will repeat it here. Adversarial
examples are examples (such as images) that are only slightly altered but
result in different outcomes when analysed by the machine learning model.
Further in this research the term adversarial query is mostly used, this is an
synonym for adversarial example. They also found that the same adversarial
examples are often misclassified when tested on different machine learning
classifiers that use different methods. Thus it looks like there is something
intrinsic about how most modern machine learning algorithms work that
make them vulnerable to adversarial examples.

2.3.1 Intuition

What makes these machine learning methods vulnerable to adversarial ex-
amples? In chapter 1 a crude example was given in how changing the color

20

of a truck can create an adversarial example (figure 1.1), with the intuition
that in the training set of such classifier there where probably more red
trucks than green ones. However, this example is a bit too simple and does
not explain how smaller changes to an image that do not change the color
of the whole image can still generate an effective adversarial example. In [1]
two explanations to why adversarial examples work are described. One for
linear machine learning models and one for deep learning methods.

Adversarial examples on linear machine learning models

For simplicity we consider a linear machine learning model consisting out
of a fully connected ANN (see figure 2.1 and section 2.1). Let us consider
small perturbations η (small changes) that are made to the inputs x creating
an adversarial input x̃ = x + η. Now consider what happens when this
perturbation η is propagated through the network with weights w:

wT x̃ = wTx+ wT η (2.11)

The activation in one node of the output layer of the NN will grow by wTi η,
where wi are the weights connected to that node. We can increase this
activation by choosing the perturbations to be η = εsign(wi), where ε is the
relative size of the perturbation. This will cause every weight connection to
the specific output node to grow positively. If the NN has a small number of
input nodes, thus n is small, all the combined maximised perturbations η will
not change the activation of the output node i substantially. However, this
activation grows linearly with n, thus with more input nodes the activation
will grow while the perturbations η are still very small. This shows that
a sufficiently large NN is potentially vulnerable to adversarial examples.
An implementation of this technique is demonstrated in figure 2.11, where
a picture of a panda is perturbed creating a picture that is classified as
a “gibbon”, whilst these perturbations are so small that they are barely
perceivable. In [1] they also give a reason why these adversarial examples
can seem counter-intuitive: ”We live in three dimensions, so we are not
used to small effects in hundreds of dimensions adding up to create a large
effect.”.

Adversarial examples on deep neural networks

For deep neural networks there is not a simple explanation why they are
vulnerable to adversarial examples, it could be argued that theoretically
they should be able to resist adversarial examples, since the universal ap-
proximator theorem [27] guarantees that a neural network with at least one
hidden layer can represent any function as long as the hidden layer is suf-
ficiently large, i.e., there could exist a function that is implemented as a

21

multilayer NN that is resistant to adversarial examples. This, however, as-
sumes that the human perception of adversarial examples is representable
by a function. The universal approximator theorem also does not guarantee
that a network can be trained to find such a function. Despite this, it has
been shown that a multi layered NN can be trained to be more resistant to
adversarial examples [25][28]. This can be done by, for example, including
adversarial examples into the training data. There are multiple methods
that can be used to create adversarial examples for deep neural networks.
One method is to use a similar technique as previously described for linear
machine learning models [29], by looking how input data propagates through
the network. Using this knowledge we can find how to precisely alter the
input such that a specific outcome is achieved. This method, however, needs
full access to the internals of the network.

Another way is by changing the input and only looking at the output
of the network, one can then observe how different inputs change the out-
put. This information can then be used to create adversarial examples [30].
This is called the “whitebox” method, since one does not have to know the
internal workings of the network, but does need to have access to the net-
work in order to generate adversarial examples. When a method does not
need any access to a network to generate adversarial examples, it is called
a “blackbox”” method.

There are two different goals when making adversarial examples, tar-
geted and un-targeted. Targeted adversarial examples aim to get a specific
outcome when presented to a network, i.e. they want to “steer” the outcome.
Un-target adversarial examples aim to get any outcome except the correct
one, generally the amount of perturbations needed to achieve un-targeting
is less.

2.3.2 Adversarial examples for CBIR systems

Generating adversarial examples for CBIR based systems is a new field of
study. This research is based on (one of the) first published techniques
for creating adversarial examples for neural based CBIR systems [4] named
PIRE (perturbations for image retrieval error). In section 2.4, we will explain
how PIRE creates adversarial examples for CBIR systems.

2.4 Recent work

This section elaborates on work that is related to this research. The work
is about a state of the art CBIR system that we will use, a method to
create adversarial queries for CBIR systems and reducing the noticeability
of perturbations when generating adversarial queries.

22

Fine-tuning CNN image Retrieval with No Human Annotation

In [24] a CNN image retrieval model is proposed that achieves state of the art
performance. This model starts with a pre-trained network like ResNet101
[20] or AlexNet [16]. Next, the network is fine-tuned using a method called
structure-from-motion (SfM). This method takes unordered images and at-
tempts to create all possible 3D models. If it can successfully create a 3D
model with a set of images they are considered to be matching. This en-
ables a better selection of matching images and non-matching images with-
out needing any human annotation. Finally, the final convolutional layers
of the fine-tuned CNN are connected to a novel pooling layer. This pooling
layer consist out of a generalized-mean (GeM) with trainable pooling pa-
rameter. They show that this outperforms non-trainable pooling layers and
that the results of their CBIR system outperform previous state-of-the-art
approaches.

Towards imperceptible and robust adversarial example attacks
against neural networks

In [30] a method is described to generate adversarial examples for CNN
classifiers that are less perceptible to the human eye and are more robust
under transformations like JPEG compression, Gaussian blurring, contrast
and brightness changes. In this work, they describe a targeted attack, where
they want to generate an adversarial example that will classify to a prede-
termined outcome. To do this they use a whitebox technique, that is, the
CNN classifier and the image query are available, but the contents of these
are not known. Their approach works as follows, first they calculate what
the impact is when a specific pixel in the image is perturbed, next they
sort these and select the pixels that have the most impact. The impact is
defined by how big the adversarial effect is versus the human perception
of perturbing that pixel, which they want to minimize. They perturb the
pixels with the most impact and repeat all the steps until the desired adver-
sarial effect has been reached. The human perception of how noticeable a
perturbation would be is determined by the standard deviation around the
to be perturbed pixel.

Who’s Afraid of Adversarial Queries? The Impact of Image Mod-
ifications on Content-based Image Retrieval

In [4] a whitebox method to create un-targeted adversarial queries for CBIR
based systems is proposed. Our solution CV-PIRE is build upon this tech-
nique. In this section we will only discuss the general idea of PIRE, we
will discuss the details of PIRE in section 3.3 since our method CV-PIRE is
based on this. PIRE makes use of an unsupervised learning method, where
the goal is to maximize the distance of the compact vector representation

23

Figure 2.12: Illustration of one iteration of the PIRE [4] pipeline.

generated by the CBIR system between the image query and adversarial
query. This is done as follows:

• PIRE starts with generating a random vector with the same dimen-
sions as the image query, this vector contains the perturbations that
cause the adversarial effect. Since the perturbations will become quite
noticeable when the perturbations are too big, every perturbation has
to be within a perturbation vector range that limits the maximum
perturbation.

• The next steps are iterated T times, the steps that are repeated are
illustrated in figure 2.12.

• Create Adversarial Query: The perturbation vector is added onto the
image query to create the adversarial query.

• Calculate and Compare: The compact vector of the image query and
the adversarial query is determined by the CNN of the used CBIR
system and the distance between these two compact (feature) vectors
is calculated.

• Update Perturbations: Based on the distance, the perturbations are
updated using argmax (see section 2.1), such that the distance be-
tween the compact vectors is maximized.

After T iterations the adversarial query is finished. Using this approach the
authors of [4] were able to reduce the performance (mAP) of the GeM [24]
CBIR from 74.42% to 2.31% on the Oxford-5k [31] dataset.

24

2.5 Image processing techniques and color percep-
tion

2.5.1 Color spaces

A color space specifies a way to numerically describe colors. Digital images
consist of an array of pixels. These pixels each have their own color, these
colors have to be numerically represented in color spaces.

RGB color space

The RGB color space is the most used color space in modern computers.
This color space describes the red, green and blue values of a pixel. In
the standard format, 8-bytes are dedicated to saving one of these colors
values, thus the values range from 0 to 255. The format of these colors is
in the form of (R,G,B). Since computer screens work with light the colors
are additive. Thus (255, 255, 255) is white, (0, 0, 0) is black and (255, 0, 0)
is red. The reason the RGB color space is the standard when working
with digital colors is that digital screens and cameras work with these three
values. For every pixel in a screen there is a red, green and blue element
and for every pixel in a camera sensor there is also a red, green and blue
element. However, this does not mean that it is the best color space for
every application. One downside of the RGB color space is that it is not
visually uniform for humans, i.e., equal distances between two colors are not
always perceived similarly.

CIELAB color space

To tackle this problem the CIE (International Commission on Illumination)
introduced in 1979 the CIELAB color space [32]. This color space uses
three variables to save the color data, L∗, a∗ and b∗. Where L∗ represents the
lightness of the color, a∗ green-red component and b∗ blue-yellow component.
The distance between two colors in the CIELAB color space is closer to the
human perception of the color difference than the distances in the RGB color
space.

25

#f06e50 #f0a01e

RGB Euclidian distance = 48.00
CIEDE2000 = 25.59

#96fa1e #64fa50

RGB Euclidian distance = 48.00
CIEDE2000 = 6.63

Figure 2.13: Comparison between RGB Euclidean color difference and
CIEDE2000 [33] on two different color pairs. The values are linearly nor-
malized, where 100 the maximum color difference.

2.5.2 Human color perception

There are different methods to save color values of pixels within digital
images. These methods are also called color spaces. The most common
color space for digital images is RGB (see section 2.5.1). When we want to
compare the color difference between two pixels within the RGB color space,
we calculate the Euclidean distance between the Red,Green and Blue values
of the two pixels, see equation 2.12.

distance =
√

(R2 −R1)2 + (G2 −G1)2 + (B2 −B1)2 (2.12)

However, this does not consistently correspond with the human perception
of color difference. In figure 2.13 two color comparisons are shown. When
calculating the color difference using the Euclidean distance within the RGB
color space we get the same score. While clearly for humans the color differ-
ence between the red and orange colors is greater than the color difference
between the two shades of green.

To get a numerical color distance that is more closely related with
how humans perceive color difference CIELAB introduced the CIELAB
color space [32] (section 2.5.1). Throughout the years improvements on
the CIELAB color space were made, notably the CIEDE2000 algorithm [33]
that improved on the performance of blue colors and a better scaling factor
for grey colors, CIEDE2000 outperformed CIELAB by a large margin, there-
fore it has been adopted to be the international standard for color-difference
calculation. Note that CIEDE2000 is not a color space but an algorithm
that given two colors represented in the CIELAB color space it returns the
human perceived numerical color difference, where 0 is no color difference
and 100 is the maximal perceivable color difference.

In figure 2.13 it is demonstrated how the CIEDE2000 color difference
score better resembles human color perception compared to the Euclidean
distance in the RGB color space.

26

0.077847 0.123317 0.077847

0.123317 0.195346 0.123317

0.077847 0.123317 0.077847

Figure 2.14: 3x3 Gaussian kernel with a standard deviation σ = 1.

2.5.3 Gaussian kernel

A Gaussian kernel is a kernel that consists of a Gaussian distribution. Pixels
closer to the origin are given more weight than pixels further away (see
section 2.1.4 on how kernels work). The distribution of such a Gaussian
kernel is calculated with equation 2.13.

Gauss(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (2.13)

Where x and y are the pixel distance from the origin and σ is the standard
deviation. In figure 2.14 such a Gaussian kernel with σ = 1 is shown.
In this case, the dimensions of the kernel are 3x3 (n = 3). In the ideal
scenario the kernel size is as large as the image. However, practically, smaller
kernel sizes (n = 3, 5, 7, ...) are chosen for computational reasons. For a
standard deviation σ ≥ 1 the Gaussian distribution approximates 0 for pixels
further away. For example, using equation 2.13: Gauss(x = 3, y = 3, σ =
1) ≈ 0.00002, this is the same ,value of the corners for a kernel with size
n = 7. Therefore choosing larger kernel sizes when σ ≥ 1 will usually not
significantly impact the results,.

27

Chapter 3

Approach

In this chapter we will explain all the different elements that contributed
to the creation of our solution CV-PIRE for generating adversarial queries.
First, we will outline the intuitive insight behind our solution (section 3.1).
Based on this, an algorithm is proposed that calculates the how noticeable
a perturbation on a specific pixel in the image will be (section 3.2). This
algorithm is then used to determine the perturbation threshold (how much
any single pixel may be perturbed), this is then used to generate the ad-
versarial query (section 3.3). Finally, we will discuss the methods that are
going to be used to evaluate our solution CV-PIRE (section 4.1).

(a) Original image. (b) Image with two
perturbations.

(c) Two perturbations
circled.

Figure 3.1: A cropped image query from the Oxford-5K [31] data set. On
the left side the original query image is shown, the middle image contains
two of the perturbations of the same magnitude, in the right image the
perturbations are circled.

28

(a) Adversarial query generated by
PIRE [4].

(AP = 1.63, SSIM = 0.775)

(b) Adversarial query generated by our
color variance solution CV-PIRE.

(AP = 0.465, SSIM = 0.883)

Figure 3.2: Adversarial queries generated by PIRE and our solution. The
image originates from the Oxford-5K [31] dataset. The AP and SSIM score
are added for completeness (these definitions will be discussed in section
4.1).

3.1 Intuitive insight

In figure 3.1 three images are visible. In the middle image, two identical
perturbations are added. We would argue that the perturbation in the
sky is more noticeable than the perturbation on the building. This could
be explained by the difference in color variance, i.e., the amount of color
difference around a pixel, as this is much lower in the sky than on the
building. This results in the perturbations in the sky being more noticeable
than the perturbations on the building. We see a similar effect when an
adversarial example is created from the same image query using PIRE [4] as
shown in figure 3.2a. Even though the maximum perturbation per pixel is
the same for the whole image, we would argue that people would notice the
perturbations in lower color variance regions like the sky the most. But the
perturbations in higher color variance regions like on the wall of the building
are almost imperceptible. The paper [30] discussed in section 2.4 also works
with the concept that perturbations in higher color variance regions are most
likely less perceptible to the human eye, however, they do not consider color
perception.

This leads to a new set of possibilities regarding the creation of adversar-
ial query images for CBIR systems. What would happen if the perturbations
in low color variance regions are reduced and the perturbations in high color
variance regions are magnified? What if this could be done in such a way
that the adversarial query image performs as well or even better than the
ones generated with PIRE [4] (figure 3.2a), while at the same time being
less noticeably altered to the human eye. With this question as a starting

29

point we developed a method that generates adversarial queries that are
less noticeable to the human eye. An example is shown in figure 3.2b. Our
method is called CV-PIRE1 (Color Variance based Perturbations for Image
Retrieval Error).

3.2 Pixel color variance

In order to take the color variance within an image query into account we
first need a way to calculate these. In this section the method to calculate
the color variance around every pixel in an image query is explained.

3.2.1 Gaussian kernel

When generating adversarial examples every pixel has a perturbation thresh-
old, the maximum amount the pixel may be perturbed (see section 3.3).
When perturbing a pixel its surrounding pixels are of importance for the
human perception (see section 3.1). Therefore, we take the human per-
ceived color difference of the surrounding pixels into account. However, if
we would only do this for the directly neighboring pixels we could get the
situation where two pixels next to each other have extremely different pixel
color variance and thus could have very different perturbations, this could
be quite noticeable. For example, if there is a bird far away in the sky in an
image query. This bird is so far away that it only resembles one black pixel
in the image. However, this one black pixel has a color difference compared
to its surrounding blue pixels (the sky). When taking only the direct neigh-
boring pixels into account the pixel color variance compared will be quite a
bit bigger than the color variance of the surrounding pixels. This could lead
to the scenario where the one black “bird” pixel is perturbed a lot more than
its surroundings and therefore become quite noticeable. Therefore we want
to take more of the surrounding pixels into account. This results in the situa-
tion that two pixels next to each other cannot have extremely different pixel
thresholds, reducing extreme perturbations compared to its neighbouring
pixels. The amount of surrounding pixels we take into account when calcu-
lating the pixel threshold we call kernel size n. For example, n = 5 means
that we use a 5x5 kernel, thus taking the pixels with maximum distance
of 2 around the origin pixel into account. To keep detail in the adversarial
query image we want to prioritize the pixels closer to the origin, therefore we
use a Gaussian kernel (explained in section 2.5.3). Exploratory experiments
confirmed the need for the Gaussian kernel.

1Source code and results available at: https://github.com/SamSweere/CV-PIRE

30

https://github.com/SamSweere/CV-PIRE

Algorithm 1: Pixel color variance “without edge cases”

Input: Image query img; Pixel location (xi,yi) ; Kernel size n;
Standard deviation σ;

Output: Pixel color variance for the pixel on location (xi, yi);
Calculate the max distance;
d = bn2 c;
x = xi − d;
y = yi − d;
totalV ar = 0;
Access every surrounding pixel within max distance d;
while x ≤ xi + d do

while y ≤ yi + d do
Calculate the Gaussian distribution contribution;
g = Gauss(|x− xi|, |y − yi|, σ);
Calculate the CIEDE2000 pixel difference;
diff = CIEDE2000(Px,y, Pxi,yi);
Calculate the total color variance, taking the root mean
square;
totalV ar = totalV ar + (diff ∗ g)2;
y = y + 1;

x = x+ 1;

Complete the root mean square calculation;

pV =
√

totalV ar
n2 ;

Return the pixel color variance;
return pV ;

3.2.2 Algorithm to calculate the pixel color variance

All the elements to formulate an algorithm to calculate the color variance
around a pixel have now been introduced, and brought together in algorithm
1. In this algorithm img represents the image query, (xi,yi) represents the
origin pixel location of which we want to know the color variation compared
to its surrounding pixels based on the kernel size n and σ represents the stan-
dard deviation of the Gaussian distribution. The algorithm loops through
every pixel that is within the kernel range. For each of these pixels it calcu-
lates the color difference compared to the origin pixel (the pixel on (xi,yi))
using the CIEDE2000 algorithm [33] (see section 2.5.2) and multiplies this
number with the Gaussian distribution value based on the distance. Finally,
of all these values the root mean square is calculated, this is the final pixel
color variance pV for the pixel on location (xi,yi). Note that at one point
in algorithm 1 the color difference of the origin compared to itself is calcu-

31

Figure 3.3: An image query from the Oxford-5K [31] data set (left) has pixel
color variance (right). The pixel color variance was calculated with n = 5
and σ = 1.

lated (CIEDE2000(Pxi,yi , Pxi,yi)). One might be alarmed that calculating
the difference with itself would cause problems. But since we are comparing
the perceived difference between the same pixel the outcome of CIEDE2000
is zero. Therefore, it does not contribute to the accumulated color variance
pV .

Algorithm 1 only works when the pixel location (xi, yi) has a minimal
distance of d = bn2 c from the edge of the image. To calculate the color
variance closer to the edge of the image the same steps are performed, but
when a pixel on location (x, y) is out of bounds we skip this pixel. Note
that if a pixel is skipped the final root mean square calculation becomes

pV =
√

totalV ar
c , where c is the number of pixels that contributed to the

totalV ar (that where not out of bounds).

3.2.3 Pixel color variance image

Using algorithm 1 we can now calculate the pV (pixel color variance) for
every pixel in an image query. When we have all the pV’s we linearly
normalize these values, where 1.0 is the biggest pV of the image query and
0.0 is no pV at all. The reason for normalization is that in an image query
with little color differences we still want to do perturbations, if we would
not normalize the pixel color variance values could become too small to do
any significant perturbations resulting in a weak adversarial query. After
calculating all the pV’s of an image query and normalizing them we can
visualise the outcome as an image as shown in figure 3.3, this also helps in
getting some insight on where the perturbations will take place.

32

Algorithm 2: Color Variance based Perturbations for Image Retrieval
Error (CV-PIRE)

Input: Image query img; Color variance matrix cV ; CBIR feature
function f ; Threshold multiplier m; Iterations T ;

Output: Generate adversarial image query;
Get the final per pixel threshold matrix;
pT = cV · m

255 ;
Get the with and height of the image;
w = with(img);
h = height(img);
Generate a random matrix between −1 and 1 with the same
dimensions as the image and multiply it with the pixel threshold;
v = random(−1, 1, h, w) ∗ pT ;
Update i = 0;
while i < T do

Determine the distance between the perturbed image img + v
and the original image img according to the CBIR feature
function f ;
v = argmax

v
||f(img)− f(img + v)||22;

Make sure the perturbation v stays within the pixel threshold pT ;
v = clip(v,−pT ,pT);
i = i+ 1;

Return the perturbed image as the adversarial query;
return img + v;

3.3 Generating adversarial examples

The method to generate the adversarial queries is presented in algorithm 2,
this algorithm is build on PIRE [4] (see section 2.4). The algorithm starts
by calculating the pixel threshold matrix pT . This 2-d matrix contains the
maximum perturbation values for every pixel in the image. The dimensions
of the pixel threshold matrix pT is the same as the image query img. The
pixel threshold matrix pT is calculated using:

pT = pV · m
255

Where pV is the color variance matrix for the image query img. This is
obtained by calculating the pixel variance pV for every pixel in the image
query img using algorithm 1 and linearly normalizing these values as dis-
cussed in 3.2.3. m is the threshold multiplier, this variable scales the pixel
threshold, the larger this variable the bigger the pT values, thus resulting
in bigger perturbations. Next, a matrix v with the same dimension as the

33

image query img containing random values in the range of {pT ,−pT } is
generated. This matrix v contains the perturbations for every pixel in the
image. v is iteratively optimized using the objective functions :

maximize ||f(img)− f(img + v)||22 (3.1)

Where the absolute values of perturbation matrix v have to be pairwise
smaller or equal to the pixel matrix pT . The optimization process will
stop after T iterations. f is the CBIR feature extraction function. This
function returns the CBIR specific vector representation of an image query
(see section 2.2). Our solution is designed assuming that the CBIR model is
available. In this research we are using the GeM model [24] (see section 2.4),
GeM is a state of the art CNN image retrieval model. The specific structure
we are using was based on the ResNet101 [20] pre-trained on ImageNet
[34] and fine-tuned on 120k Flick images by using a structure-from-motion
pipeline. The argmax

v
function works by first calculating the loss function:

l = ||f(img)− f(img + v)||22 (3.2)

This results in the cost function:

J(v) =
1

2
||f(img)− f(img + v)||22 (3.3)

The cost function results from applying the mean squared error (MSE) given
in equation 2.3 in section 2.1 with N = 1, y = f(img + v) and t = f(img).
Since the CBIR feature function f and the input image img are fixed we
can use gradient ascent (see section 2.1). To do this we first calculate the
cost gradient ∇J of the cost function 3.3 based on v. Knowing the gradient
of the cost function ∇J in respect to v we can update v using:

v ← v + ε∇J (3.4)

Where ε is the learning rate. To increase the computation time and precision
the adaptive learning rate algorithm ADAM [9] is used (see section 2.1.3).
After updating the perturbation matrix v we have to make sure that all
new perturbation values are still within the maximum pixel threshold pT .
Therefore we clip the perturbation matrix using:

v = clip(v,−pT ,pT) (3.5)

When working with a neural based CBIR model like GeM [24] the image
query needs to be normalized to the mean and standard deviation of the
dataset the model was trained on to get the best results. Finally, when the
adversarial image query is generated this image has to be de-normalized to
its original mean and standard deviation.

34

3.3.1 Saving adversarial queries

Some pixels of the resulting adversarial query can have very small pertur-
bations. When saving such an image query these small perturbations may
disappear due to a limited number of bits used in the image format. How-
ever, it is crucial that the adversarial queries remain adversarial when saved.
Therefore we can enlarge the small perturbations in such a way that they re-
main present when saved. In this research, the adversarial queries are saved
in an unint8 JPEG format, this means that for every pixel 8 bits are used.
If a perturbation is so small that it would be rounded away when saved in
this format, we enlarge it just enough such that it is retained when saved.
In this case we change the return statement of algorithm 2 to:

return img + enlargeToImage(v);

Where the enlargeToImage() is the function that enlarges the perturbations
such that they remain.

3.3.2 Determining the hyperparameters

In order to implement the CV-PIRE method there are hyperparameters
that have to be chosen. For the pixel color variance (pV) (algorithm 1) the
kernel size n and standard deviation σ have to be chosen. We are going
to first determine the standard deviation σ. This influences how big the
importance of the pixels further away from the origin is when calculating
the pixel color variance. Next, the kernel size n will be determined, this
has to be sufficiently large such that there is no significant difference with
an even bigger kernel size. This is because the Gaussian distribution factors
(determined by σ) make pixels that are sufficiently far away from the origin
practically zero, thus there are no benefits for having a bigger kernel size.

For CV-PIRE (algorithm 2) the hyperparameters are the threshold mul-
tiplier m and iterations T . The threshold multiplier m determines how big
every perturbation can maximally be. If the perturbations are bigger, we
expect that the adversarial query will perform better at fooling the CBIR
system, however, with bigger perturbations we also expect that the per-
ceived image quality will be lower, since bigger perturbations probably are
easier to spot for the the human eye. In this research, the goal is to hide
the actual content in the image query for the CBIR system. Therefore we
will choose the threshold multiplier m such that the adversarial queries of
a specific dataset will perform equally bad on the CBIR system as ran-
dom guessing. If we would choose the threshold multiplier m so large that
the resulting adversarial queries will perform worse than random guessing,
someone who knows that the images are adversarial could look at the im-
ages that are deemed least similar by the CBIR and retrieve information
this way, since in this scenario on average the adversarial queries will score
worse than random guessing.

35

Finally, we have to choose the iterations T , we will set this hyperparam-
eter such that the performance of the adversarial query has converged, after
which there is no use in doing more iterations.

One hyperparameter that also has to be chosen but is not present in
algorithms 1 and 2 is the starting learning rate of the ANN (used in the
argmax

v
function). This has to be chosen before determining the threshold

multiplier m and iterations T . The learning rate influences how big the
perturbations are in each iteration. The consideration that has to be made
is to set it sufficiently large such that not too many iterations T have to be
done, but that the image quality of the adversarial queries is still as good
as with a smaller learning rate. Having to do a lot of iterations can be
impractical due to the increased computing time.

3.4 Other algorithms for comparison

When evaluating the adversarial queries generated by CV-PIRE it is impor-
tant to compare it to other methods that generate adversarial queries for
CBIR systems. In this research we will compare CV-PIRE with PIRE [4]
(see section 2.4) and SD-PIRE.

3.4.1 SD-PIRE

For comparison we developed another method to generate adversarial queries
named SD-PIRE (Standard Deviation based Perturbations for Image Re-
trieval Error). This method is motivated by [30] (see section 2.4), in which
they suggest to use the standard deviation to determine how noticeable a
perturbation on a pixel will be. In this method, instead of the color variance
cV (see algorithm 2) the variance of a pixel using the standard deviation
of its surroundings is calculated. First, the image is converged to greyscale,
most commonly the luminance conversion from RGB to greyscale is used.
This conversion takes into account that humans do not perceive all colors in
the same intensity. For our implementation we used the luminance conver-
sion values as recommended by the International Telecommunication Union
(ITU) [35], this results in equation 3.6.

Y = 0.2126 ·R+ 0.7152 ·G+ 0.0722 ·B (3.6)

Where Y is the luminance and R,G and B are the red, green and blue
channels of the RGB image. For a pixel xi the standard deviation SD(xi)
is calculated using equation 3.7.

SD(xi) =

√√√√ ∑
xk∈Si

(xk − µ)2

n2
(3.7)

36

Where Si are the pixels in the n ∗ n kernel with as origin pixel xi, µ is the
average value of the pixels in the region and n is the size of the kernel. This
method has one parameter, namely the kernel size n. Since this method
does not take into account how far away pixels are from its origin xi, the
resulting adversarial image becomes quite blurred when choosing a large n.
Therefore, a kernel size n has to be chosen such that SD-PIRE generates
sufficiently good adversarial queries while still keeping the perceived image
quality as good as possible.

37

Chapter 4

Experimental results

4.1 Evaluating adversarial queries

The goal of this research is to create effective adversarial queries with the
highest possible perceptible image quality. Thus the adversarial queries need
to be evaluated by:

• A metric that measures the accuracy of the retrieved images by the
CBIR. Ideally a retrieved image has the same chance of being rele-
vant as a randomly chosen image from the background dataset. This
would make the information retrieved by the CBIR useless and thus
protecting the privacy of the owner of the image.

• A metric that measures the perceptual image quality of the adversarial
query, we want this to be as high as possible.

4.1.1 Measuring the performance of CBIR

To measure the performance of a CBIR on a set of image queries, mean av-
erage precision (mAP) is usually used. In order to calculate the mAP, for all
the image queries in our testing dataset, the relevant images that the CBIR
can retrieve have to be known. When a CBIR processes an image query, it
tries to find the images in the dataset that are most similar. When we know
the relevant images of the image query, we can check if the images that the
CBIR system retrieved are relevant. When evaluating the performance on
a single image query we use average precision (AP). AP makes use of both
precision and recall. Precision is the fraction of the retrieved images that
are relevant. Recall is the fraction of the retrieved images that are relevant
compared to all the relevant images. AP is calculated using equation 4.1.

AP =

∑n
k=1 P (k) · corr(k)

R
· 100 (4.1)

38

Where P (k) is the precision of the top k retrieved images, corr(k) is a binary
indication if the top k image is of the correct category, where corr(k) = 1 if
the category is correct, corr(k) = 0 otherwise, n is the number of retrieved
images and R is the total number of images of the same category as the
query image.

To determine the performance of multiple image queries, the mean of
the average precision (mAP) is taken. The mAP score gives an indication
how well a CBIR performed on a set of image queries.

4.1.2 Determining perceived image quality

When determining the perceived image quality we want to compare the
original image with its adversarial counterpart. The perceptual difference
between two images can be quantified using structural similarity.

Mean structural similarity (mSSIM)

Structural similarity (SSIM) is a method for quantifying perceived image
quality by measuring the similarity between two images, introduced by [36].
In contrast to other image quality metrics like mean square error (MSE)
and peak signal-to-noise ratio (PSNR) that both calculate absolute errors
(independent of pixel location), SSIM focuses on perceptual difference by
taking luminance, contrast and structure into account. The score of SSIM
is between 0.0 and 1.0, where 1.0 is the score given when the same image is
compared. The mean structural similarity (mSSIM) is obtained by calculat-
ing the mean SSIM of multiple images. See section A.1 for the full formula
of SSIM.

4.1.3 Data

This research is focused on privacy, this privacy is violated when a user is
tracked based on their images. Tracking can be done when outdoor environ-
ments and buildings that have a distinct location can be retrieved. Based
on this we chose two industry standard datasets to test the performance of
our adversarial technique.

39

Figure 4.1: Six query images from the Oxford-5K [31] dataset.

Oxford buildings dataset (Oxford-5k)

The Oxford Buildings Dataset 1 [31] consists of 5062 images sourced from
Flickr by searching for 17 text queries of buildings in Oxford. The dataset
also contains distractor images. These images are not related to any of the
queries. For this dataset 55 query images are used for evaluation. In figure
4.1 a few of the query images are shown.

Figure 4.2: Six query images from the Paris-6k [37] dataset.

Paris dataset (Paris-6k)

The Paris Dataset2 [37] consists of 6412 images sourced from Flickr by
searching for 12 text queries of landmarks in Paris. The dataset also con-
tains distractor images. These images are not related to any of the queries.
For this dataset 55 query images are used for evaluation. In figure 4.2 a few
of the query images are shown.

1Available at: http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
2Available at: http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/

40

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Iterations

m
A

P

Threshold 10
Threshold 20
Threshold 30
Threshold 40
Threshold 50
Threshold 60
Threshold 70
Threshold 80
Threshold 90
Threshold 100

Figure 4.3: Performance (mAP) of neural-feature-based CBIR (GeM [24])
on adversarial queries generated by CV-PIRE on the Oxford-5K [31] dataset
for different thresholds and iterations. CV-PIRE used n = 5 and σ = 1.

4.2 Determining the hyperparameters of CV-PIRE

When implementing the CV-PIRE method there are some hyperparameters
in algorithms 1 and 2 that have to be determined as explained in section
3.3.2.

4.2.1 Pixel color variance hyperparameters

When determining the hyperparameters for the pixel color variance pV (al-
gorithm 1), recall that we first choose the standard deviation σ and then
the kernel size n, since the effective size of the kernel is dependent on the
standard deviation. When having a bigger standard deviation the Gaussian
distribution (see section 2.5.3) is more localized around the origin. In this
case we can use a smaller kernel, since the Gaussian distribution factor fur-
ther from the origin becomes practically zero. The opposite is true when
having a smaller standard deviation, in this case the Gaussian distribution
is more spread out and therefore we need to go further away from the origin
before the Gaussian distribution factor becomes practically zero, thus need-
ing a bigger kernel size. For the standard deviation we chose σ = 1.0, this
was experimentally chosen such that it gives enough spread such that the

41

0 10 20 30 40 50 60 70 80 90 100
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Threshold multiplier

m
A

P

Oxford-5k
Paris-6k

0 10 20 30 40 50 60 70 80 90 100
0.7

0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

Threshold multiplier

m
S
S
IM

Oxford-5k
Paris-6k

Figure 4.4: Performance (mAP) and perceptual image quality (mSSIM) of
neural-feature-based CBIR (GeM [24]) on adversarial queries generated by
CV-PIRE from the Oxford-5K [31] and Paris-6k [37] dataset for different
thresholds. CV-PIRE used n = 5, σ = 1 and T = 150 iterations.

pixel color variance is not too localized but it still contains enough detail.
For the kernel size we chose n = 5, since we did not observe any substantial
change when testing a bigger kernel size.

4.2.2 Iterations

In figure 4.3 the mAP score of the adversarial queries generated by CV-PIRE
on the Oxford-5k [31] dataset at every 10 iterations for different threshold
multipliers is visible (see the similar figure A.1 for the Paris-6k [37] dataset).
We can see that after 20 iterations the mAP score already looks to converge,
it only slightly improves afterwards. Since the convergence of CV-PIRE is
dependent on the image queries we chose to use T = 100 iterations to be on
the safe side.

4.2.3 Threshold multiplier

Finally, we have to choose the threshold multiplier m, this is the hyper-
parameter that scales how big every perturbation can maximally be. As
explained in section 3.3.2 we want to choose this threshold multiplier m
such that the retrieved images have the same chance of being the correctly
retrieved as randomly choosing images. In practice this means that we
choose m such that the mAP score is similar to an mAP score we would get
when randomly retrieving images from the background dataset.

42

We can estimate this random mAP score by randomly shuffling the rank-
ing of the retrieved images for every image query of the test dataset and tak-
ing the average of the resulting mAP scores. To get a good estimate we re-
peat this process until the random mAP score converges. Using this method
the random mAP score for the Oxford-5k[31] dataset is approximately 1.11.
For the Paris-6k [37] dataset the random mAP score is approximately 2.69.

In figure 4.4 the mAP and mSSIM score for different thresholds on the
Oxford-5K [31] and Paris-6k [37] datasets is shown. We can see that around
a threshold multiplier value of 50 the mAP is already near the convergence
point, however, when increasing the threshold multiplier the mSSIM score
decreases. We chose to use a threshold multiplier of m = 50. Note that
the mAP score is higher than the ideal random mAP score, for Oxford-5k
the mAP score for m = 50 is 5.07 instead of the ideal 1.11 and for Paris-6k
the mAP is 8.90 instead of the ideal 2.69. Although these mAP scores are
bigger they are arguably still effective.

Looking at how the mAP is calculated (equation 4.1) we can make an
estimation at how many of the top retrieved images we have to look to get
on average one relevant image for a given mAP. Assuming that P (k) = 1,
which is the same as assuming that every retrieved image is a perfect match
based on the compact feature vector, and corr(k) is only once 1, since we
want to have only one relevant retrieved image, we can calculate R given
an mAP . In the case of mAP = 5.07 (Oxford-5k) this becomes R = 19.72,
meaning that on average only one relevant image will be present in the top
19.72 retrieved images. And in the case of mAP = 8.90 (Paris-6k) this
becomes R = 11.24. Since we assumed P (k) = 1, which is highly unlikely to
happen, the actual R value will be even higher. Imagine wanting to retrieve
images with similar content and only 1 in 11.24 images of the top retrieved
images are actually similar. Based on this we argue that these mAP scores
are still good enough to consider it an effective adversarial query. However,
in edge cases, where for example we have a lot of image queries that we
know have similar content, we could extrapolate information from all the
retrieved images.

43

Oxford-5k Paris-6k

mAP mSSIM mAP mSSIM

Original 74.42 1.00 87.26 1.00

CV-PIRE (T = 100) 5.07 0.916 8.90 0.911

SD-PIRE (T = 100) 4.69 0.908 8.70 0.904

PIRE (T = 500) 4.66 0.793 9.12 0.783

Table 4.1: Performance comparison between CV-PIRE, SD-PIRE and PIRE
for the Oxford-5k and Paris-6k datasets. CV-PIRE is using m = 50 and
n = 5, SD-PIRE is using m = 50 and n = 3.

4.3 Results

The final results are shown in table 4.1 and a random sample of image queries
in figure 4.5. We can clearly see that CV-PIRE and SD-PIRE outperform
PIRE [4] based on the image quality mSSIM score with a similar mAP. The
performance of CV-PIRE and SD-PIRE is almost the same. This is not
too surprising considering that the methods use comparable techniques to
generate adversarial queries and use the same learning rate, iterations and
threshold multiplier. The only difference between CV-PIRE and SD-PIRE
is in how they determine the pixel threshold. However, this does result in
subtle differences that are in favor of both methods, we discuss this in detail
in section 4.5.

44

Original image CV-PIRE SD-PIRE PIRE

AP =84, SSIM=1.0 AP =8.5, SSIM=0.94 AP =7.7, SSIM=0.95 AP =3.8, SSIM=0.77

AP =60, SSIM=1.0 AP =0.32, SSIM=0.91 AP =0.30, SSIM=0.90 AP =0.48, SSIM=0.83

AP =83, SSIM=1.0 AP =0.68, SSIM=0.90 AP =0.74, SSIM=0.89 AP =1.1, SSIM=0.82

AP =85, SSIM=1.0 AP =26, SSIM=0.91 AP =20, SSIM=0.91 AP =22, SSIM=0.79

AP =85, SSIM=1.0 AP =1.4, SSIM=0.88 AP =1.5, SSIM=0.94 AP =1.9, SSIM=0.75

AP =74, SSIM=1.0 AP =4.0, SSIM=0.88 AP =4.1, SSIM=0.90 AP =4.3, SSIM=0.78

Figure 4.5: Randomly selected image queries form the Oxford-5k [31] and the Paris-6k
[37] datasets. On the left side the original image query is shown, on the right side the
corresponding adversarial queries generated by CV-PIRE, SD-PIRE and PIRE.

45

(a) Original image query
(AP =83, SSIM=1.0)

(b) CV-PIRE
(AP =16, SSIM=0.95)

(c) SD-PIRE
(AP =16, SSIM=0.94)

(d) PIRE
(AP =8.7, SSIM=0.78)

Figure 4.6: An image query (left) and the corresponding adversarial queries using
different methods (right). On top the full size images are shown, on the bottom the 5
times enlarged images at the location of the red rectangle. The image query is hand

picked from the Paris-6K [37] dataset. The AP and SSIM scores are based on the full
size image.

4.4 Detailed comparison

In figure 4.6 we see adversarial queries generated with different methods. When seeing
the 5 times enlarged closeups we can clearly see how the adversarial query using the color
variation to determine a threshold for every pixel (CV-PIRE figure 4.6b) is different
from a method that uses the same threshold for every pixel (PIRE figure 4.6d). Note
how CV-PIRE perturbs the pixels higher color variation regions more (in this case,
on the steel beams of the Eiffel tower) while PIRE perturbs all pixels, but the pixels
on the steel beams are perturbed to a lesser extent on average. When looking at the
full size adversarial queries of CV-PIRE (4.6b) and PIRE (4.6d), we would argue that
the perturbations of CV-PIRE are less noticeable than the perturbations of PIRE. The
differences we find are most clearly visible in the low color variance regions like the blue
sky and the green grass. The differences between CV-PIRE (4.6b) and SD-PIRE (4.6c)
are again quite small. More detailed examples are shown in section A.3.

46

(a) Original image. (b) CV-PIRE (n=5, σ=1). (c) SD-PIRE (n = 3). (d) SD-PIRE (n = 5).

Figure 4.7: An 8 times magnified part of an image query from the Oxford-5K [31] dataset
and the corresponding pixel variance images.

4.5 Comparison between CV-PIRE and SD-PIRE

The main difference between CV-PIRE and SD-PIRE is the way the variance around
a pixel is calculated. Where CV-PIRE uses the color difference in combination with a
Gaussian kernel to give more importance to pixels that are closer to the source, SD-PIRE
calculates the standard deviation around a pixel based on the pixel greyscale values (see
section 3.4.1). The resulting difference can be visualised using the pixel variance images
as shown in figure 4.7. We see that SD-PIRE (figure 4.7c and 4.7d) has a more blurry
look compared to CV-PIRE (figure 4.7b). This makes sense since SD-PIRE does not use
the difference of the pixel values compared to the center pixel, but instead calculates the
standard deviation of the whole area. Conversely it is also visible that CV-PIRE has
more detail in the pixel variance image, compared to the standard deviation model, even
with a bigger kernel size (n = 5). This is also why we choose to use the n = 3 kernel
size for the SD-PIRE method, since a bigger kernel size reduces the detail too much and
would therefore be an unfair comparison, as can be seen in figure 4.7d.

47

Oxford-5k Paris-6k

Threshold mAP mSSIM mAP mSSIM

CV-PIRE 50 5.07 0.916 8.90 0.911

SD-PIRE 50 4.69 0.908 8.70 0.904

49 4.48 0.909 9.08 0.906

48 4.63 0.911 9.01 0.908

47 4.72 0.913 9.13 0.910

46 4.82 0.916 9.25 0.911

45 4.84 0.917 9.72 0.913

44 5.28 0.919 9.76 0.915

43 5.33 0.921 9.82 0.917

42 5.90 0.924 10.9 0.920

Table 4.2: Performance comparison between CV-PIRE and SD-PIRE for multiple thresh-
olds after T = 100 iterations. The random guessing mAP score for the Oxford-5k dataset
is 5.88 and for the Paris-6k dataset is 8.33. CV-PIRE is using m = 50 and n = 5, SD-
PIRE is using m = 50 and n = 3.

In general we expect that having more detail in the pixel variance image will positively
affect the SSIM (image quality) score. However, a downside of having more detail in
the pixel variance image is that generally the total pixel variation values are lower, this
results in having less overall perturbations which could negatively impact the AP score.
When we look at the overall performance of both methods in table 4.1 it is noticeable
that indeed CV-PIRE has a bit of a higher mAP score and a bit of a lower mSSIM score
compared to SD-PIRE with the same threshold. Since in table 4.1 for the SD-PIRE
method for both datasets the mAP value is lower we can look at what happens to the
mAP and mSSIM score if we decrease the threshold compared to CV-PIRE. The results
are shown in table 4.2. We see that for a similar mAP for the Oxford-5k dataset SD-
PIRE has a higher mSSIM score, however, at the same threshold the mAP score for the
Paris-6k dataset has now increased more than the mAP for the Oxford-5k dataset has.
On the other hand, when SD-PIRE has the same mAP score for the Paris-6k dataset as
CV-PIRE the mSSIM is lower than that of CV-PIRE. From this information it is thus
inconclusive which one is the better method.

48

(a) Original image. (b) CV-PIRE (n = 5, σ = 1). (c) SD-PIRE (n = 3).

Figure 4.8: An 8 times magnified part of an image query from the Oxford-5K [31]. CV-
PIRE has AP = 11.2 and SSIM = 0.933, SD-PIRE has AP = 12.3 and SSIM = 0.927
both calculated on the full size image.

(a) Original image query
(AP =100, SSIM=1.0)

(b) CV-PIRE
(AP =5.7, SSIM=0.89)

(c) SD-PIRE
(AP =4.5, SSIM=0.87)

Figure 4.9: An image query (left) and the corresponding adversarial queries generated by CV-PIRE and
SD-PIRE (right). On top the full size images are shown, on the bottom the 6 times enlarged images at the

location of the red rectangle. The image query originates from the Oxford-5K [31] dataset. The AP and SSIM
scores are based on the full size image.

49

(a) Original image query
(AP =37, SSIM=1.0)

(b) CV-PIRE
(AP =4.9, SSIM=0.91)

(c) SD-PIRE
(AP =8.3, SSIM=0.92)

Figure 4.10: An image query (left) and the corresponding adversarial queries generated by CV-PIRE and
SD-PIRE (right). On top the full size images are shown, on the bottom the 4 times enlarged images at the
location of the red rectangle. The image query originates from the Paris-6k [37] dataset. The AP and SSIM

scores are based on the full size image.

(a) Original image query
(AP =85, SSIM=1.0)

(b) CV-PIRE
(AP =1.4, SSIM=0.88)

(c) SD-PIRE
(AP =1.5, SSIM=0.94)

Figure 4.11: An image query (left) and the corresponding adversarial queries generated by
CV-PIRE and SD-PIRE (right). On top the full size images are shown, on the bottom the 5 times
enlarged images at the location of the red rectangle. The image query originates from the Paris-6k

[37] dataset. The AP and SSIM scores are based on the full size image.

50

4.5.1 Visual differences

When we look at the adversarial queries generated by CV-PIRE and SD-PIRE we can
spot a few differences. In figure 4.8, 4.9, 4.10 and 4.11 some of these differences are
shown. These images are cherry-picked, we tried to pick them as objectively as possible.
When looking at the whole image in most cases the difference between the adversarial
queries generated by CV-PIRE and SD-PIRE where almost indistinguishable. However
when we look closer, we can see that in figure 4.9 and 4.10 a little more detail in the
edges and shapes is preserved and the perturbations look a little less smeared out.
This makes sense when considering the difference in the color variance (see figure 4.7).
We found that this was generally the case for practically all images in the Oxford-5k
[31] and Paris-6k [37] test sets, with the exception of one image shown in figure 4.11.
The adversarial query generated by CV-PIRE looks a bit more noisy compared to the
adversarial query generated by SD-PIRE. When looking more closely at the original
image a possible explanation can be found, it looks like the original image has some kind
of fine noise all over the image, since CV-PIRE is more sensitive to local changes this fine
noise increases the calculated color variance and thus the pixel threshold. This results
in bigger perturbations all over the image, resulting in a more noisy looking adversarial
query.

Thus far, we have compared the image quality using SSIM, however, it is debatable
how good of an image quality metric this is, since it does not take accurate human color
perception into account. We discuss this further in section 5.2.4.

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Iterations

m
A

P

CV-PIRE
SD-PIRE

PIRE

Figure 4.12: Performance (mAP) of neural-feature-based CBIR (GeM [24]) on Oxford-
5K [31] dataset for CV-PIRE, SD-PIRE and PIRE. CV-PIRE used n = 5 and σ = 1.
SD-PIRE used n = 3.

51

4.6 Convergence rate

One other benefit of CV-PIRE and SD-PIRE compared to PIRE is the convergence
rate as shown in figure 4.12. After only 25 iterations CV-PIRE and SD-PIRE already
approached the convergence point. However, PIRE needs 500 iterations to get there.
The main reason for this is the difference in the learning rate, the learning rate used for
CV-PIRE and SD-PIRE is significantly higher (5∗10−2) than used for PIRE (2.5∗10−4).
The reason for this is that if the learning rate is increased too much the image quality of
the adversarial queries generated by PIRE suffers quite a bit (for an example see figure
A.4). However, with CV-PIRE and SD-PIRE this is less the case. Therefore we chose
to use a higher learning rate and T = 100 for the amount of iterations, since the mAP
score stabilized at this point. The reason for the possible difference in convergence is
that CV-PIRE perturbates the high color variance regions more. These regions might
be more important for the CBIR system when determining the retrieval vector. A low
color variance region like a blue sky in the image is probably less important for retrieval
compared to higher color variance regions such as brick patterns on a building wall.
This could be for the simple reason that a lot of images have a blue sky, therefore it is
not a good segment of the image to do retrieval on. Therefore, we think that the color
variance regions highlight a lot of the retrieval keypoints. Perturbing these keypoints
more than lower color variance regions leads to a better adversarial query with less
overall perturbations. Since the high color variance regions are usually quite local, the
image quality is not affected much when increasing the learning rate. Using a higher
learning rate has the advantage that less iterations are needed to have the mAP score
converge, saving computing time (±100 seconds per image for T = 500 iterations and
±20 seconds per image for T = 100 on a Nvidia Tesla T4).

52

Chapter 5

Conclusion

5.1 Conclusion

In this research we worked on the problem of generating adversarial queries for CBIR
systems such that the perturbations that enable the adversarial effect are less noticeable
to the human eye. We proposed a new method called CV-PIRE to create adversarial
queries on CBIR systems that makes use of human color perception. This is done by
taking the color variation around a pixel into account when determining the maximum
amount a pixel can be perturbed. These adversarial queries are thus less perturbed in low
color variance regions and more in high color variance regions when compared to previous
works. We also proposed a method called SD-PIRE that was inspired by [30] the use of
the standard deviation of the pixel values to determine the maximum perturbation of a
specific pixel. CV-PIRE and SD-PIRE averages a higher SSIM score than PIRE when
tested on a neural based CBIR system on datasets containing buildings. The differences
between CV-PIRE and SD-PIRE are much smaller, where CV-PIRE creates adversarial
queries with a bit more detail around edges and shapes, but in scenarios where the image
query contains fine noise SD-PIRE generates better adversarial queries. Having a higher
SSIM score compared to previous works could indicate that the image quality is higher
and therefore the perturbations are less noticeable to human perception.

5.2 Discussion and outlook

5.2.1 Robustness

Since part of the perturbations done by CV-PIRE are small they could be sensitive to
image compression and or filtering, this could mitigate the adversarial effect. However, at
the same time the perturbations that are done in high color variance areas are relatively
big. Therefore, further research could be done in how robust the adversarial queries
created by CV-PIRE are. Further research could also be done in how to change CV-
PIRE such that it is less vulnerable to compression and filtering.

5.2.2 Different datasets

In this research we only tested CV-PIRE on datasets containing buildings (Oxford-5k
[31] and Paris-6k [37]). It would be interesting to see how CV-PIRE performs on datasets
that contain different kinds of settings that could be used to possibly track someone, for
example nature landscapes or more iconic content like logos and paintings.

53

5.2.3 Multiple CBIR systems

CV-PIRE generates and evaluates the adversarial queries by using only one neural based
CBIR system [24]. It would be interesting to see how well CV-PIRE generalizes when
tested on different CBIR systems. CV-PIRE could also be altered such that it generates
adversarial queries by making use of multiple CBIR systems to possibly create more
general adversarial queries.

5.2.4 SSIM and human color perception

Structural similarity (SSIM) [36] is the default method in computer vision research to
determine image quality compared to the original unaltered image. It does this by taking
luminance, contrast and structure into account. However it does not take human color
perception into account. In section 2.5.2 we demonstrated that the influence of human
color perception can be quite substantial. In this research we only used SSIM to compare
different methods in terms of perceptual image quality, but since SSIM does not take
human color perception into account, it possibly makes it a flawed method. This can
especially be seen when comparing CV-PIRE and SD-PIRE (section 4.5). There the
SSIM score did not always seem to reflect human perception of image quality.

5.2.5 CIE94 instead of CIEDE2000

CV-PIRE uses the CIEDE2000 [33] algorithm, however, for large images the computa-
tional time to calculate the pixel color variance becomes troubling for practical use. It
takes around 4.5 minutes per Oxford-5k [31] dataset image query while utilizing all 8
cores, 16 threads on a CPU. For this reason it could be more beneficial to use the CIE94
[38] algorithm instead when implementing CV-PIRE in a practical application. This
algorithm does the same as CIEDE2000 but with a lower perceptual uniformity, but the
calculations are less complex and thus faster. The final adversarial queries will probably
only differ by a small amount when using CIE94 [38], since it only slightly changes how
the pixel color variation is calculated. Since our research was focused on generating the
best possible adversarial queries we did not explore how the results would differ when
using the CIE94 algorithm.

5.2.6 Speeding up the calculations

In this research, the focus was put into creating adversarial queries with the best possible
perceived image quality. This, however, resulted in long computation times. To give an
impression, 4.5 minutes to calculate the color variation in one image using 8 cores and 16
threads on a modern CPU and 1.5 minutes to generate the adversarial query on a Nvidia
T4 GPU. It could be feasible to drastically improve the computation time by using for
example CIE94 (as discussed in section 5.2.5) and reducing the amount of iterations. We
can see in figure 4.3 that even after T = 10 iterations the mAP is already nearing the
convergence point, this is 10 times less than was used in this research. These speed up
methods will most likely reduce the perceived image quality, but to what extend could
be minimal.

54

Chapter 6

Acknowledgements

This research was partially conducted on the Dutch national e-infrastructure with the
support of SURF Cooperative.

55

Bibliography

[1] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations (ICLR), 2015.

[2] H. Hosseini and R. Poovendran, “Semantic adversarial examples,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 1614–1619, IEEE, 2018.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in International Conference on Learning Representations
(ICLR), 2015.

[4] Z. Liu, Z. Zhao, and M. Larson, “Who’s afraid of adversarial queries? the impact
of image modifications on content-based image retrieval,” in ACM International
Conference on Multimedia Retrieval (ICMR), ACM, 2019.

[5] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1625–1634, IEEE, 2018.

[6] G. Friedland and R. Sommer, “Cybercasing the joint: On the privacy implications of
geo-tagging.,” in USENIX Conference on Hot Topics in Security (HotSec), pp. 1–6,
USENIX, 2010.

[7] M. Larson, M. Soleymani, P. Serdyukov, S. Rudinac, C. Wartena, V. Murdock,
G. Friedland, R. Ordelman, and G. J. Jones, “Automatic tagging and geotagging
in video collections and communities,” in Proceedings of the 1st ACM international
conference on multimedia retrieval, p. 51, ACM, 2011.

[8] K. Gurney, An Introduction to Neural Networks. Bristol, PA, USA: Taylor & Fran-
cis, Inc., 1997.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Inter-
national Conference on Learning Representations (ICLR), 2014.

[10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[11] W. Zhou, H. Li, and Q. Tian, “Recent advance in content-based image retrieval: A
literature survey,” arXiv preprint arXiv:1706.06064, 2017.

[12] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object match-
ing in videos,” in IEEE International Conference on Computer Vision (ICCV),
p. 1470, IEEE, 2003.

56

[13] Y. Cao, H. Wang, C. Wang, Z. Li, L. Zhang, and L. Zhang, “Mindfinder: interactive
sketch-based image search on millions of images,” in Proceedings of the 18th ACM
international conference on Multimedia, pp. 1605–1608, ACM, 2010.

[14] B. Wang, Z. Li, M. Li, and W.-Y. Ma, “Large-scale duplicate detection for web
image search,” in 2006 IEEE International Conference on Multimedia and Expo,
pp. 353–356, IEEE, 2006.

[15] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[16] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-
shelf: An astounding baseline for recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 806–813, IEEE, 2014.

[17] L. Zheng, Y. Yang, and Q. Tian, “Sift meets cnn: A decade survey of instance re-
trieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 5, pp. 1224–1244, 2018.

[18] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the
curse of dimensionality,” in Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 604–613, ACM, 1998.

[19] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision, pp. 818–833, Springer, 2014.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[22] G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval with integral max-
pooling of cnn activations,” in International Conference on Learning Representa-
tions (ICLR), 2016.

[23] L. Zheng, Y. Zhao, S. Wang, J. Wang, and Q. Tian, “Good practice in cnn feature
transfer,” arXiv preprint arXiv:1604.00133, 2016.

[24] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning cnn image retrieval with no hu-
man annotation,” IEEE transactions on pattern analysis and machine intelligence,
2018.

[25] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” in International Conference
on Learning Representations (ICLR), 2014.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

[27] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

57

[28] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” stat, vol. 1050, p. 9, 2017.

[29] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and ac-
curate method to fool deep neural networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2574–2582, IEEE, 2016.

[30] B. Luo, Y. Liu, L. Wei, and Q. Xu, “Towards imperceptible and robust adversarial
example attacks against neural networks,” in Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[31] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with
large vocabularies and fast spatial matching,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1–8, IEEE, 2007.

[32] A. R. Robertson, “Historical development of cie recommended color difference equa-
tions,” Color Research & Application, vol. 15, no. 3, pp. 167–170, 1990.

[33] M. R. Luo, G. Cui, and B. Rigg, “The development of the cie 2000 colour-difference
formula: Ciede2000,” Color Research & Application, vol. 26, no. 5, pp. 340–350,
2001.

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition chal-
lenge,” International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[35] R. I.-R. BT.709-6, “Parameter values for the hdtv standards for production and
international programme exchange,” June 2015.

[36] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Transactions on Image
Processing, vol. 13, no. 4, pp. 600–612, 2004.

[37] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in quantization:
Improving particular object retrieval in large scale image databases,” in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2008.

[38] R. McDonald and K. J. Smith, “Cie94-a new colour-difference formula,” Journal of
the Society of Dyers and Colourists, vol. 111, no. 12, pp. 376–379, 1995.

58

Appendix A

Appendix

A.1 SSIM formula

Structural similarity (SSIM) [36] is a method for quantifying perceived image quality by
measuring the similarity between two images. The SSIM score is calculated by taking
multiple windows of both images. We are measuring the SSIM between two windows x
and y with size NxN , where these windows are on the same location of the two images.
SSIM takes luminance l, contrast c and structure s into account. The functions for these
parts are given by:

l(x, y) =
2µxµy + c1
µ2x + µ2y + c1

(A.1)

c(x, y) =
2σxσy + c2
σ2x + σ2y + c2

(A.2)

s(x, y) =
σxy + c2

2

σxσy + c2
2

(A.3)

With:

• µx the average of x

• µy the average of y

• σx the covariance of x

• σy the covariance of y

• σ2x the variance of x

• σ2y the variance of y

• σxy the covariance of x and y

• c1 and c2 a variable defined by c1 = (k1L)2 and c2 = (k2L)2, with L the dynamic
range and k1, k2 constants (by default k1 = 0.01 and k2 = 0.03

These parts can be combined using a weighted combination to get the SSIM score:

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ] (A.4)

Where the weights α, β and γ are by default all set to 1. Finally, the mean is taken of
all the windows to get the final SSIM score.

59

A.2 mAP compared to iterations for CV-PIRE

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Iterations

m
A
P

Threshold 10
Threshold 20
Threshold 30
Threshold 40
Threshold 50
Threshold 60
Threshold 70
Threshold 80
Threshold 90
Threshold 100

Figure A.1: Performance (mAP) of neural-feature-based CBIR (GeM [24]) on adversarial
queries generated by CV-PIRE from the Paris-6K [37] data set for different thresholds
and iterations. CV-PIRE used n = 5 and σ = 1.

60

A.3 More detailed results

(a) Original image query.
(AP =72, SSIM=1.0)

(b) CV-PIRE.
(AP =0.68, SSIM=0.94)

(c) SD-PIRE.
(AP =0.64, SSIM=0.93)

(d) PIRE.
(AP =0.46, SSIM=0.79)

Figure A.2: An image query (left) and the corresponding adversarial queries using
different methods (right). On top the full size images are shown, on the bottom 4 times
enlarged images at the location of the red rectangle. The image query originates from
the Oxford-5K [31] dataset. The AP and SSIM scores are based on the whole image.

(a) Original image query
(AP =78, SSIM=1.0)

(b) CV-PIRE
(AP =0.95, SSIM=0.89)

(c) SD-PIRE
(AP =0.90, SSIM=0.88)

(d) PIRE
(AP =1.2, SSIM=0.77)

Figure A.3: An image query (left) and the corresponding adversarial queries using
different methods (right). On top the full size images are shown, on the bottom the 5
times enlarged images at the location of the red rectangle. The image query originates
from the Oxford-5k [31] dataset. The AP and SSIM scores are based on the full size

image. The text is readable in the original image and in the adversarial query
generated by PIRE, however in the adversarial queries generated by CV-PIRE and

SD-PIRE the text in the image substantially harder to read.

61

A.4 PIRE with a higher learning rate

(a) (AP =0.29, SSIM=0.69) (b) (AP =4.2, SSIM=0.62)

(c) (AP =0.13, SSIM=0.59)
(d) (AP =2.5, SSIM=0.65)

Figure A.4: Four adversarial queries generated by PIRE [4] with a learning rate of
5 ∗ 10−2 (the same learning rate used by CV-PIRE and SD-PIRE) after T = 500
iterations. The left two images where randomly sampled from the Oxford-5k [31]
dataset and the right two images where randomly sampled form the Paris-6k [37]

dataset.

62

	Introduction
	Motivation
	Safety threats
	Privacy threats

	Roadmap

	Preliminaries
	Artificial neural networks
	Single layer ANN
	Multi layer neural network
	Adaptive learning rate
	Kernels
	Convolutional neural networks

	Content based image retrieval
	General overview
	Local feature based CBIR
	CNN based CBIR

	Creating adversarial examples
	Intuition
	Adversarial examples for CBIR systems

	Recent work
	Image processing techniques and color perception
	Color spaces
	Human color perception
	Gaussian kernel

	Approach
	Intuitive insight
	Pixel color variance
	Gaussian kernel
	Algorithm to calculate the pixel color variance
	Pixel color variance image

	Generating adversarial examples
	Saving adversarial queries
	Determining the hyperparameters

	Other algorithms for comparison
	SD-PIRE

	Experimental results
	Evaluating adversarial queries
	Measuring the performance of CBIR
	Determining perceived image quality
	Data

	Determining the hyperparameters of CV-PIRE
	Pixel color variance hyperparameters
	Iterations
	Threshold multiplier

	Results
	Detailed comparison
	Comparison between CV-PIRE and SD-PIRE
	Visual differences

	Convergence rate

	Conclusion
	Conclusion
	Discussion and outlook
	Robustness
	Different datasets
	Multiple CBIR systems
	SSIM and human color perception
	CIE94 instead of CIEDE2000
	Speeding up the calculations

	Acknowledgements
	Appendix
	SSIM formula
	mAP compared to iterations for CV-PIRE
	More detailed results
	PIRE with a higher learning rate

