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Abstract

In this thesis we compare two nonparametric regression methods that construct
confidence bands around a function. The ability of the two methods to esti-
mate future values of a time series is compared in a simulation study when
given data containing autocorrelation, heteroscedasticity, and missing data. We
found that the autoregressive wild bootstrap (AWB) method outperforms the
Gaussian process regression (GPR) method when data contains both autocor-
relation and heteroscedasticiy, and no portions of the data were missing. The
GPR method either performs equally well or outperforms the AWB method
when data contains autocorrelation, large portions of missing data, and no het-
eroscedasticity. Additionally, we use the GPR method on a real life ethane
emissions time series in which large portions of the data are missing.
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Chapter 1

Introduction

Regression is a statistical method that uses data to investigate the relation
between independent variables and a dependent variable. Additionally, it can
be used as a prediction tool that estimates the value of the dependent variable
for future values of the independent variable. When the relationships between
variables can not be expressed by a linear function, linear regression will not
give us an accurate depiction of the system. Instead of assuming a certain
shape, nonparametric regression attempts to learn the entire function without
assuming what shape it is.

In this thesis we are mainly interested in the application of nonparametric
regression to time series: a series of observations indexed by time. Time series
are used for example in climatology, economics, signal processing, and pattern
recognition. Time series data comes with some inherent challenges: autocor-
relation refers to the phenomenon where error terms at some time point are
influenced by the error terms of previous time points. Furthermore, data shows
heteroscedasticity when the degree of variance in the data changes over time.
Lastly, portions of the data might be missing due to recording device failures.
In the case of weather observations for example, portions of the data are often
missing due to cloud coverage.

Friedrich et al. (2020) proposed the autoregressive wild bootstrap (AWB)
method, which constructs confidence bands around a function. Confidence
bands represent a region of functions in which it is believed the actual func-
tion exists with some level of confidence. They tested the performance of the
method on data containing autocorrelation, heteroscedasticity, and data sets
where large portions of data were missing.

An alternative Bayesian approach to nonparametric regression is Gaussian
process regression (GPR). This approach has been used for example by Kaufman
et al. (2010) and Murray-Smith and Girard (2001). In this paper, we study how
well this method handles autocorrelation, heteroscedasticity, and missing data
in the context of climate applications. We do a simulation study in which we will
apply both the AWB and GPR method to time series containing autocorrelation,
heteroscedasticity, and missing data. We will construct confidence bands that
extend past the existing observations and compare the ability of the two methods
to accurately estimate future values of the function. Additionally, we will apply
the GPR method to a real life ethane emissions data set in which 70% of the
data is missing.
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Chapter 2 describes the AWB method and the GPR method. In Chapter
3 we do a simulation study where we compare the two methods. In Chapter
4 we apply the GPR method to a real life climate time series, and Chapter 5
concludes.
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Chapter 2

Methods

In Section 2.1 we discuss the autoregressive wild bootstrap (AWB) method
proposed by Friedrich et al. (2020). Section 2.2 discusses Gaussian Process
Regression (GPR). Several other nonparametric regression methods exist, which
we do not consider in this thesis: decision tree learning can be used to create
regression trees. A method based on this is investigated in Chaudhuri et al.
(2002). Observations about an object defined on the branches of the tree lead
to the object’s target value in the form of a real number, defined on the leaves
of the tree. Furthermore, local polynomial regression creates a model by fitting
multiple smaller models to subsets of the data, building up a larger function.
The basic method is discussed in Fan et al. (1993), and a version considering
autocorrelation in Xiao et al. (2003).

2.1 Autoregressive wild bootstrap

Friedrich et al. (2020) proposed the autoregressive wild bootstrap (AWB) method
that constructs confidence bands around a function. In Section 2.1.1 we explain
the basic bootstrapping technique and discuss confidence bands. Section 2.1.2
describes how the AWB method addresses autocorrelation and heteroscedastic-
ity. Finally, Section 2.1.3 describes the construction of confidence bands and
how it handles missing data.

2.1.1 Bootstrapping and confidence bands

The foundation of the AWB method is the bootstrapping technique. It is a
resampling method that relies on sampling with replacement. As an example,
assume we only have a single sample available. Values from this sample are
drawn at random, possibly more than once, and are put in a new sample called
a bootstrap sample. The bootstrap sample has the same size as the original
sample, but is very likely to be different. Some values might have been picked
more than once, while others have not been picked at all. This process is
typically repeated a large number of times, resulting in a collection of many
bootstrap samples. The method is used in statistics to determine the value of
some parameter of a population, such as its variance or prediction error. It is
also often used to create error bars, which are bar charts indicating the error of

4



some measurement.
In cases where we can not simply draw multiple samples from the population,

the one sample is all the information we have to learn from. Here bootstrapping
is particularly useful. An example situation is the measurement of temperature
in a particular location over time. We can not turn back time and measure the
temperatures again to draw another, different sample.

When estimating any statistic, arguably the belief we have in the accuracy
of the estimation is of utmost interest. Confidence intervals provide a measure
of certainty regarding the statistic we are estimating. For instance, when esti-
mating a single real-valued number, a confidence interval describes the range in
which we believe this number to exist with some level of confidence. In the case
of functions, confidence bands are used to express our beliefs about the function.
Figure 2.1 shows an example confidence band for the following system:

yt = m(t) + ε(t)

The black marks are the noisy observations yt and the solid blue line is the
underlying function m(t). The blue shaded area is the confidence band. It
represents the space of possible functions in which it is believed, with some
level of confidence, the underlying function m(t) exists. As the confidence band
is extended to future time points (past t = 1.0), it gradually grows wider, as it
becomes less confident in its prediction.

Figure 2.1: Confidence band

2.1.2 Autocorrelation and heteroscedasticity

The AWB method aims to construct confidence bands around a function de-
scribing time series data. The method addresses two inherent challenges for
this type of data, namely autocorrelation and heteroscedasticity. With auto-
correlation, the error term at a certain time point is influenced by the error
terms of previous time points. When the degree of variance in the data changes
over time, this is called heteroscedasticity. Many statistical tests assume that
there is no autocorrelation and heteroscedasticity in the data. For example,
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the ordinary least squares (OLS) method used in linear regression assumes the
errors are independent and identically distributed over the entire time period.
As a result, these tests become invalid when data contains autocorrelation or
heteroscedasticity.

As stated in Section 2.1.1, bootstrapping involves the creation of many boot-
strap samples that are derived from the original sample. In the context of non-
parametric regression of time series data, the original sample y refers to the
vector of observations indexed by time, i.e. y = [(t1, y1), (t2, y2), ..., (tn, yn)].
Throughout this thesis we will use bold notation to refer to a vector, e.g. y is
the vector of observations. The bootstrapping technique creates a new vector
called a bootstrap sample y∗ using observations y as follows, for each time point
t:

y∗t = m̂

(
t

n

)
+ ξ∗t ,

where ξ∗t is an independent, identically distributed (i.i.d) bootstrap error sam-
pled from a normal distribution with mean 0 and variance 1, denoted as ξ∗t ∼
N (0, 1). The bootstrap error can be considered as the noise in the bootstrap
sample. Our bootstrap sample y∗ will thus look as follows:

y∗ = [(t1, y
∗
1), (t2, y

∗
2), ..., (tn, y

∗
n)]

The term m̂
(
t
n

)
is the Nadaraya (1964), Watson (1964) estimator. With non-

parametric regression we are trying to estimate the underlying function m(t) of
a noisy function indexed by time: yt = m(t) + ε(t), where m(t) is not restricted
to linear functions. The Nadaraya-Watson estimator estimates the value m(t)
for each time point t by looking at surrounding observations y. We will denote
this vector of estimates for all time points as m̂. This vector is often referred
to as an estimator. For time point t, m̂( tn ) is defined as:

m̂(τ) =

∑n
t=1K

(
t/n−τ
h

)
yt∑n

t=1K
(
t/n−τ
h

) , τ =
t

n
∈ (0, 1] (1)

where h is the bandwidth parameter, and K is some kernel function. Both
need to be chosen and kept the same for the estimation of all time points. The
bandwidth is a real number that defines how far along the x-axis from τ we
should take points into account for the estimation. The implementation of the
kernel defines how the weights that are put on the values of the observations
are distributed. The uniform kernel for example places equal weight on all
observations in the interval, and estimates the value m̂(τ) simply as the average
of the yt values that reside in the specified interval. Using the uniform kernel,
m̂(τ) becomes:

m̂(τ) =

∑n
i=1 1(|ti − τ · n| ≤ h)yt∑n
i=1 1(|ti − τ · n| ≤ h)

, τ ∈ (0, 1)

The numerator sums up the yt values that correspond to the time points within
the interval. The denominator counts the number of observations that exist in
the interval. The resulting estimate m̂(τ) is the average of the values around
time point τ . Other kernels, such as the Epanechnikov kernel chosen by Friedrich
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et al. (2020), place decreasing weight on yt values as we move further away from
τ .

So far we have seen how the regular bootstrapping technique creates boot-
strap samples in the context of nonparametric regression. The wild bootstrap,
proposed by Wu et al. (1986), is an extension to the regular bootstrapping
technique that is suited especially well when dealing with heteroscedastic data.
When data is heteroscedastic, the conditional variance can change over time.
That is, the noise in the data is dependent on the time point t. This results in
points being spread out differently along the y-axis over time. An example of
heteroscedastic data is shown in Figure 2.2.

Figure 2.2: Heteroscedastic data

When there is more variance at a certain time point t, there is a higher
chance that the actual value yt is further away from the estimation m̂(t). To
compensate for this difference in estimation accuracy between low variance and
high variance, the wild bootstrap finds the residual ẑt = yt − m̂(t) at each
time point and multiplies it with the generated bootstrap error ξ∗t . The wild
bootstrap thus creates a bootstrap sample y∗ as follows, for each timepoint t:

y∗t = m̂

(
t

n

)
+ ẑt ∗ ξ∗t ,

where ẑt is the residual, and ξ∗t is the generated bootstrap error.
Note however that the regular bootstrap and wild bootstrap generate the

bootstrap errors ξ∗ as i.i.d random variables. Consequently, any dependence
between different timepoints in the data is inherently destroyed. Instead, to
account for autocorrelation in time series data, the autoregressive wild bootstrap
method generates the bootstrap errors as follows:

ξ∗t = γ ∗ ξ∗t−1 + v∗t , (2)
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where ξ∗0 ∼ N (0, 1) and υ∗t ∼ N (0, (1− γ2)).

From the term γ ∗ ξ∗t−1 in (2) we can see that the bootstrap errors are con-
structed in such a way that their value in part consists of the value of the
bootstrap error at the previous time point, and implicitly also all other previ-
ous time points. Here γ is the autoregressive parameter of the AWB method,
which is a number between zero and one.

The term v∗t is sampled from a normal distribution with mean zero and
variance (1 − γ2). If γ is set higher, generally we would expect there to be
more autocorrelation, which means past values have a higher influence. By
setting the variance of the normal distribution of v∗t to (1 − γ2), the value of
v∗t will be smaller (positive or negative) for higher γ. As a result, the balance
between the influence of the two terms in equation (2) is shifted more towards
the autoregressive term γ ∗ ξt−1 when γ is set higher.

The AWB method thus handles heteroscedasticity by multiplying the boot-
strap error at each timepoint with the residual, and handles autocorrelation by
constructing the bootstrap errors in such a way that they are dependent on the
bootstrap errors of previous time points.

2.1.3 AWB confidence bands

Next we will discuss how the autoregressive wild bootstrap constructs confidence
bands around a function, and how it handles missing data in the process.

In the AWB method the original Nadaraya-Watson estimator described in
equation (1) is adjusted to account for missing data. The process D is intro-
duced, which equals 1 if value yt has been observed, and returns 0 if it is missing:

Dt =

1 if yt is observed

0 if yt is missing

With the addition of Dt, m̂(τ) becomes:

m̂(τ) =

∑n
t=1K

(
t/n−τ
h

)
Dtyt∑n

t=1K
(
t/n−τ
h

)
Dt

(3)

We can see that both the numerator and denominator now only take into account
the time points for which an observation was made.

The method starts off by creating estimator m̃ using the Nadaraya-Watson
estimator in equation (3) with observations y and bandwidth h̃ = 2h

5
9 Bühlmann

et al. (1998). Next, the residuals ẑ are obtained by computing the difference
between observations y and the estimator m̃. For each time point t:

ẑt = yt − m̃
(
t

n

)
A bootstrap sample y∗ is then constructed as follows: for each time point t,

y∗t = Dt ∗
[
m̃

(
t

n

)
+ ξ∗t ∗ ẑt

]
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The process D causes the bootstrap value y∗t to be 0 if there was no observed
value for time point t. This means the structure of the original sample, including
the missing data structure, is maintained when creating the bootstrap samples.
While the values for missing observations will be zero in the bootstrap sample,
these will not be taken into account in the estimation due to the implementation
of the Nadaraya-Watson estimator in equation (3).

Now that we have a bootstrap sample y∗, we find bootstrap estimator m̂∗

using equation (3) again at each time point, this time with the bootstrap sample
y∗ instead of observations y. We now have an estimator m̂∗ that describes this
particular bootstrap sample. This process is typically repeated many times,
and we end up with a collection of many bootstrap estimators each describing
a different bootstrap sample. Friedrich et al. (2020) suggest to create B = 999
bootstrap samples and estimators. These estimators together provide us with
the tools we need to create the confidence bands.

In the construction of the confidence bands, a statistic of interest is the
residual value of each of the bootstrap estimators. The residual value of a
bootstrap estimator m̂∗ for a certain time point τ is m̂∗(τ) − m̃(τ). We now
have a single estimator m̃, and 999 bootstrap estimators m̂∗, each describing
one of 999 bootstrap samples. Using estimator m̃(τ) and our collection of 999
bootstrap estimators, we can find α-quantiles of this statistic.

Quantiles are normally used as cut points in a distribution that divides the
space into intervals with equal probabilities. In this case, an α-quantile defines
a cut point such that α% of bootstrap residuals fall below this cut point, and
(1 - α%) fall above this cut point.

Let m̃(τ) be the estimator used with y, using bandwidth h̃. The α-quantile
of the bootstrap statistic m̂∗(τ)− m̃(τ) for a time point τ is defined as:

q̂α(τ) = inf{u ∈ R : P∗[m̂∗(τ)− m̃(τ) ≤ u] ≥ α}, (6)

which means q̂a(τ) is the smallest real number u, such that the fraction of boot-
strap residuals m̂∗(τ)−m̃(τ) that is smaller than or equal to u, is larger than α.
In practice, q̂a(τ) is the residual of some bootstrap estimator m̂∗ such that α%
of all bootstrap estimators have an equal or smaller residual value. Intuitively,
if we were to judge the accuracy of an estimator only on its residual, then we
could say q̂α(τ) is the residual of the (α∗B)-th ‘best’ bootstrap estimator m̂∗(τ)
out of all B estimators. For example, if α = 0.05 and B = 100, then q̂0.05 is the
residual of the 5-th best bootstrap estimator.

Using equation (6), pointwise confidence intervals are constructed as follows,
for each timepoint τ ∈ (0, 1]:

I(τ) = [m̂(τ)− q̂1−α/2(τ), m̂(τ)− q̂α/2(τ)]

To further illustrate the meaning of the α-quantiles, if we take α = 0.05, we find
q̂α/2 = q0.025 and q̂1−α/2 = q0.975. The interval [q0.025, q0.975] then contains the
residuals of 95% of bootstrap estimators m̂∗, where 2.5% fall below the interval,
and another 2,5% fall above it.

With pointwise confidence intervals we look at the points of a function indi-
vidually. The band consists of intervals for each time point such that its corre-
sponding value is believed to exist within its respective interval. When we are
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looking at a time series containing autocorrelation, we are more interested in
simultaneous confidence bands. As opposed to looking at each time point in-
dividually, with simultaneous confidence bands the individual observations are
considered as having occurred as one connected process. With simultaneous
confidence bands we state that the function as a whole exists within this band
with some level of certainty. Because of this larger implication, simultaneous
confidence bands are often wider than its pointwise counterpart. Simultaneous
confidence bands are constructed using the procedure proposed by Bühlmann
et al. (1998). First find αs:

αs = arg minαp∈[1/B,α]|P∗[q̂αp/2 ≤ residual ≤ q̂1−αp/2(τ),∀τ ∈ G]− (1− α)|.

where residual = m̂∗(τ)− m̃(τ).

The resulting αs is the value αp ∈ [1/B, α] for which the ratio of bootstrap
estimators m̂∗(τ) whose residual is inside the interval [q̂αp/2, q̂1−αp/2] is closest
to (1 - α), the target confidence level. G is a subset of the set of total time
points. Having found αs, the quantiles q̂αs/2 and q̂1−αs/2 along with m̂(τ) are
used to create the simultaneous confidence bands for the underlying function
m(τ). For each τ :

I(τ) = [m̂(τ)− q̂1−αs/2, m̂(τ)− q̂αs/2]

With the resulting confidence band we state that the function m(τ) is believed
to exist within this band with (1 - α) certainty.

2.2 Gaussian Process regression

An alternative approach to nonparametric regression called Gaussian process
regression performs Bayesian inference over the function space. The method
uses a Gaussian process to define a prior distribution over this function space.
In Section 2.2.1 we discuss the Gaussian distribution and Gaussian processes,
which form the foundation of Gaussian process regression. In Section 2.2.2 we
discuss the role of kernels in GPR. Finally, in Section 2.2.3 we see how the GPR
method constructs confidence bands around a function.

2.2.1 Gaussian distribution and Gaussian processes

The Gaussian or normal distribution is a very common continuous probability
distribution. The Gaussian distribution is useful because of the Central Limit
Theorem. The theorem states that averages of independently drawn random
variables become normally distributed when the number of samples is sufficiently
large. For example, when we throw three fair dices repeatedly, the average of the
three throws will become normally distributed if we throw often enough. Figure
2.3 on the next page shows this. Note that this is the case even though a single
dice throw on its own is not normally distributed. The normal distribution
occurs very often in nature. For example: income, height, IQ, and shoe size are
all normally distributed.

More generally, when multiple factors have either some positive or negative
influence on some outcome, it will rarely be the case that all factors have a
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positive outcome or all factors have a negative outcome. More likely there will
be a mix of positive and negative influences. This results in more outcomes
where the result is close to the average, and less outcomes that are far away
from this average. Then if we consider for instance the temperature value at
a given time to be the result of many different influences, we can consider this
value as being a single sample of a normally distributed random variable.

Figure 2.3: Normal distribution

The multivariate normal distribution is the extension of the normal distribu-
tion to multiple dimensions. It consists of multiple random variables, where each
individual random variable represents a dimension and is normally distributed.
Additionally, every linear combination of these random variables is also joint
normally distributed. Joint normally distributed intuitively means that com-
bining the two random variables results in a new single random variable that is
normally distributed as well.

A Gaussian process is a collection of random variables indexed by time (e.g.
a time series) or space, such that every subcollection of those random variables
has a multivariate normal distribution. If we think of individual values of a
function as normally distributed random variables, then Gaussian processes can
be used to describe a distribution over a function space, where each dimension
represents the possible values a measurement at a certain time point can take
on. Gaussian Process Regression (GPR) uses Gaussian processes to define the
prior probability distribution over the function space.

2.2.2 Kernels

Nonparametric regression aims to construct confidence bands around the un-
derlying function f(t) of the following system:

yt = f(t) + ε(t)
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Here we have changed the notation of the underlying function m(t) from to f(t),
which is a more commonly used notation in GPR literature.

If we define f as the vector of function f(t) applied to each time point:

f ≡ [f(t1), f(t2), ..., f(tn)]T ,

then GPR assumes f is a sample of the Gaussian process prior distribution:

f ∼ GP(µ,K)

This distribution is defined by a mean vector µ and a covariance matrix K.
The mean vector µ is often taken to be a zero vector for simplicity, but can be
specified as a function itself as well. Note that setting the mean of the prior
distribution to a zero vector does not imply that the mean of the posterior
distribution is only allowed to be a zero vector as well.

Because the prior distribution does not yet take into account the actual
observations, test time points T∗ need to be chosen randomly for which we can
define the prior distribution. The entries of the covariance matrix K of this
distribution is defined by the evaluation of some kernel function K on each pair
of test time points. Matrix K is illustrated in Figure 2.4.

Figure 2.4: Covariance matrix K

t∗1 t∗2 . . . t∗n

t∗1 K(t∗1, t∗1) K(t∗1, t∗2) . . . K(t∗1, t∗n)

t∗2 K(t∗2, t∗1 K(t∗2, t∗2) . . . K(t∗2, t∗n)

. . . . . . . . . . . . . . .

t∗n K(t∗n, t∗1) K(t∗n, t∗2) . . . K(t∗n, t∗n)

The use of kernel function is slightly different in GPR than in the autore-
gressive wild bootstrap. The AWB method uses a kernel to estimate m(t) by
computing a weighted average of the yt values in some interval around t. In
GPR, a kernel is used as a covariance function that takes as input two val-
ues and returns their similarity. For example, the linear kernel specifies the
covariance between two time points t and t′ as:

KLin(t, t′) = σ2 ∗ t ∗ t′,

where σ2 is the variance parameter of the kernel.

As the mean vector is often taken to be a zero vector, the selection of the
kernel K plays a crucial part in Gaussian process regression. The choice of
kernel defines the covariance matrix of the prior distribution. To see the effect
of the choice of kernel on the prior distribution, we draw three samples from
each prior distribution resulting from a different kernel choice. The samples
are displayed in Figure 2.5 on the next page. A sample can be obtained from
the prior distribution by choosing a number of test input points T∗, obtain the
covariance matrix K(T∗,T∗) by using our covariance function on all pairs, and
generate vector f∗:

f∗ ∼ N (µ,K(T∗,T∗))
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where µ is the mean vector. The resulting vector f∗ is a sample of the Gaussian
process prior distribution.

Figure 2.5

A useful characteristic of kernels is that they can be combined into new
kernels by multiplying and adding existing kernels together. Three example
kernel combinations are shown in Figure 2.6. For instance, multiplying a linear
kernel with another linear kernel results in a quadratic kernel. A linear kernel
combined with a periodic kernel results in samples that show periodicity and
growing amplitude as we move away from the origin.

As the prior distribution is the initial basis we start our process off with,
being able to combine kernels thus allows us to create custom kernels that might
give us a better starting point. Defining the prior distribution by choosing a
kernel is essentially providing the GPR method with an educated guess to take
into consideration.

Figure 2.6

2.2.3 GPR confidence bands

After having chosen the kernel and finding the prior distribution, the next step
is the incorporation of our observations. Let us first assume we have noise-free
observations. This implies y = f , as noise is not part of the system. Then the
joint distribution of our observations f, which we will call training outputs, and
the test outputs f∗ sampled from the prior distribution is:[

f

f∗

]
∼ N

(
0,

[
K(T,T) K(T,T∗)

K(T∗,T) K(T∗,T∗)

])

13



Here T is the set of training time points and T∗ is the set of test time points.
K(T,T∗) denotes the covariance matrix of size n x n∗, where n is the number
of observations or training points T, and n∗ is the number of test points T∗.
The covariance matrix of this joint distribution is thus one matrix consisting of
four submatrices. Our objective now is to restrict this joint prior distribution
to contain only those functions that match the observed measurements. This
corresponds to conditioning the joint prior distribution on the observations,
yielding the conditional or posterior distribution f∗|T∗,T, f :

f∗|T∗,T, f ∼ N (µ,K), where:

µ = K(T∗,T)K(T,T)−1f ,

K = K(T∗,T∗)−K(T∗,T)K(T,T)−1K(T,T∗).

In Appendix A we discuss how the equations for µ and K were derived.

Now we move on to the more realistic case in which we only have noisy ob-
servations yt = f(t) + ε(t), where ε(t) is some i.i.d error with variance σ2

n. The
new covariance matrix for these noisy observations y is:

Cov(y) = K(T,T) + σ2
nI

where I is the identity matrix, in which diagonal entries are 1 and all other
entries are 0. Adding the term σ2

nI ensures that the noise is considered, by
adding the variance σ2

n to the diagonal of the covariance matrix K(T,T).
Taking into account the noise, we obtain the new joint distribution of obser-

vations y and test outputs f∗:[
y

f∗

]
∼ N

(
0,

[
K(T,T) + σ2

nI K(T,T∗)

K(T∗,T) K(T∗,T∗)

])

The new posterior distribution is then found:

f∗|T∗,T,y ∼ N(f̄∗, cov(f∗)), where

f̄∗ = K(T∗,T)[K(T,T) + σ2
nI]−1y,

cov(f∗) = K(T∗,T∗)−K(T∗,T)[K(T,T) + σ2
nI]−1K(T,T∗).

A practical implementation of Gaussian process regression by Williams and
Rasmussen (2006) is given in Algorithm 1 on the next page. For improved
ease of reading, K = K(T,T) and k∗ is the vector of size n consisting of the
covariances between test point t∗ and the n training points T.

As the inversion of matrices is an expensive computation, the method uses
Cholesky decomposition to find K[T,T + σ2

nI]−1. In steps two and four, ‘\’ is
the backslash operator, which solves a system of linear equations.

Steps three to five are repeated for each chosen test point x∗, resulting in
the mean vector f̄∗, variance vector V[f∗], and the log-marginal likelihood. The
log-marginal likelihood is a value that describes how well the obtained model is
fitting the data given the chosen kernel and its parameters.
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Algorithm 1 Gaussian process regression, Williams and Rasmussen (2006)

1: L← chol(K + σ2
nI)

2: α← LT \(L\y)
3: f̄∗ ← kT∗ α
4: v← L\k∗
5: V[f∗]← k(t∗, t∗)− vTv
6: log p(y|T) ← − 1

2yTα−
∑
i log Lii − n

2 log2π
7: return: f̄∗ (mean), V[f∗] (variance), log p(y|T) (log marginal likelihood)

If a normal distribution defines the distribution over a random variable, then
95% of the area under the curve contains the values in the range [µ − 1.96 ∗
σ, µ+1.96∗σ], where µ is the mean and σ the standard deviation. Therefore,
the bounds of the 95% confidence bands around function f can be constructed
by adding and subtracting 1.96 ∗

√
V[f∗] from the mean vector f̄∗ at each time

point:

lower bound = f̄∗ − 1.96 ∗
√

V[f∗]

upper bound = f̄∗ + 1.96 ∗
√
V[f∗]

The region within these bounds then represents the function space in which it
is believed the actual function f to exist with 95% certainty.
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Chapter 3

Simulation study

In order to compare the two methods, we do a simulation study. In Section
3.1 we discuss the setup for this simulation study. In Section 3.2 we attempt
to reproduce the results of Friedrich et al. (2020) for simultaneous coverage of
the AWB method in their simulation study. Finally, in Section 3.3 we use both
the AWB and GPR method to construct prediction bands, and compare their
accuracy.

3.1 Simulation setup

We follow the simulation setup of Friedrich et al. (2020), where the observations
y are generated as:

yt = m

(
t

n

)
+ σtut,

where m
(
t
n

)
is the underlying function we wish to construct confidence bands

around, and σtut represents the noise. The noise consists of heteroscedasticity
σt, and autoregressive error term ut. The function m(τ) is defined as follows:

m(τ) = β1τ + β2 · τ ·G(τ, λ, c),

in which G(τ, λ, c) is the transition function defined as:

G(τ, λ, c) = (1 + exp{−λ(τ − c)})−1

The function describes a shifting mean model. Parameter c defines when in
time the shift happens, and λ the smoothness of the shift. Figure 3.1 on the
next page shows the function m(τ) for β1 = -1, β2 = 2.5, λ = 10, and c = 0.9.
The chosen values result in a downward function during the first three quarters
of the process shifting to an upward trend in the final quarter. This particular
trend is interesting as it mimics the pattern expected for atmospheric ethane
time series.
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Figure 3.1: m(τ) Figure 3.2: σ(τ)

The heteroscedasticity process σ is defined as:

σ(τ) = σ0 + (σ1 − σ0)τ + a cos(2πkτ)

Figure 3.2 shows the heteroscedasticity process for σ0 = 1, σ1 = 2, a = 0.5, and
k = 4. Parameter a controls the amplitude of the waves, while k determines
the amount of waves that occur. Increasing a results in higher amplitude, and
higher k results in more waves.

The autoregressive error term ut is defined as:

ut = φut−1 + ψεt−1 + εt,

where

εt ∼ N
(

0,
(1− φ2)/4

1 + ψ2 − 2φψ

)
.

The parameter φ is the autoregressive (AR) parameter, which determines the
influence of previous values of ut on the current value of ut. Parameter ψ
is the moving average (MA) parameter of the data generating model, which
determines the influence of previous values of εt on the current value of ut. The
degree of autocorrelation in the data can thus be varied by altering the AR and
MA parameters.

3.2 AWB simultaneous coverage

A statistic that gives insights into the accuracy of a regression result is the
coverage probability. Intuitively this statistic tells us how well the method
was able to fit a confidence band to the underlying function of the observed
data. Friedrich et al. (2020) report the coverage probabilities for pointwise and
simultaneous confidence bands of the AWB method. In this section we try to
reproduce their results for the simultaneous confidence bands.

In the case of simultaneous confidence bands, the simultaneous coverage
probability is defined as the fraction of simulations in which for all t ∈ G,
where G is a subset of total time points T, it holds that m(t) is within the
simultaneous confidence band. G is a subset of the n = 200 time points T,
defined as:

G = U1(h) + U2(h) + U3(h) + U4(h),

where Ui(h) = {(i/5)− h+ j/100 | j ∈ N, 0 ≤ j ≤ (200 · h)},
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and h is the bandwidth parameter. A higher bandwidth leads to a larger set
Ui(h) and consequently a larger set G.

It is important to note that we do not measure the simultaneous coverage
of the confidence bands created by the GPR method in this section. This is
because the method discussed above is very much in line with the frequentist
way of looking at probability, where probabilities represent long run frequencies.
The Bayesian approach considers probability in the perhaps more intuitive sense,
simply as the probability of an event happening. Consequently, applying the
same evaluation method as used for the AWB on the GPR would not be in line
with its underlying intuition.

We will refer to the process of selecting the AR, MA, k, and a parameters
and generating the data for those specifications as the Data Generating Process
(DGP). For each specification of the DGP we run 100 simulations. If all t ∈ G
were within the interval, we assign that simulation the value one. Otherwise,
we assign it the value zero. The simultaneous coverage is then found by adding
up the ones and zeroes, and dividing it by the number of simulations.

Table 3.1 on the next page shows the simultaneous coverage probabilities
we found for several different specifications of the DGP, along with the average
median interval lengths in brackets. We generated data of size n = 200. The
degree of heteroscedasticity in the data was kept the same for all specifications
at k = 4 and a = 0.5. Autocorrelation was varied by changing the AR and MA
parameters of the DGP. Six different scenarios have been tested. AR0.2 means
that the AR parameter is set to 0.2, and the MA parameter is set to 0. Vice
versa, MA0.2 means that AR is set to 0 and MA to 0.2.

In addition to varying the parameters of the DGP, two parameters of the
AWB method were varied. For each of the different setups, three different
bandwidths h were used in the AWB method, and three different γ values. The
kernel used in all specifications is the Epanechnikov kernel, defined as:

K(u) =
3

4
(1− u)2 for |u| ≤ 1,

where u is the distance between two time points. The Epanechnikov kernel
places higher importance on values closer to time point t than values that are
further away.

The values we found generally match the values found by Friedrich et al.
(2020). When our median width had some difference with theirs, the corre-
sponding coverages differed proportional to the difference in width. This makes
sense, as a confidence band with a smaller width will generally result in lower
coverage, and wider bands will result in higher coverage. For each specification
we ran 100 simulations while Friedrich et al. (2020) ran 5000 simulations. We
ran 100 simulations for each specification because we had a time constraint.
Running significantly more simulations would require parallellization, which is
outside the scope of this thesis.
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Table 3.1: AWB Simultaneous coverage and average median interval
length (in brackets) for k = 4 and a = 0.5

h DGP γ = 0.2 γ = 0.4 γ = 0.6

0.02 0 0.98 (0.563) 0.94 (0.496) 0.85 (0.410)

AR0.2 0.91 (0.526) 0.84 (0.510) 0.81 (0.447)

AR0.5 0.78 (0.478) 0.76 (0.456) 0.57 (0.423)

AR−0.5 1.00 (0.418) 0.99 (0.356) 0.94 (0.285)

MA0.2 0.95 (0.533) 0.90 (0.508) 0.79 (0.446)

MA0.5 0.92 (0.486) 0.84 (0.479) 0.82 (0.406)

0.04 0 0.98 (0.407) 0.86 (0.386) 0.84 (0.332)

AR0.2 0.76 (0.405) 0.82 (0.397) 0.70 (0.347)

AR0.5 0.58 (0.385) 0.63 (0.385) 0.54 (0.354)

AR−0.5 0.99 (0.331) 1.00 (0.281) 0.98 (0.229)

MA0.2 0.92 (0.407) 0.83 (0.401) 0.74 (0.359)

MA0.5 0.75 (0.385) 0.79 (0.378) 0.67 (0.347)

0.06 0 0.92 (0.354) 0.86 (0.338) 0.79 (0.294)

AR0.2 0.84 (0.357) 0.76 (0.352) 0.78 (0.314)

AR0.5 0.44 (0.327) 0.57 (0.339) 0.48 (0.324)

AR−0.5 1.00 (0.283) 1.00 (0.254) 0.96 (0.216)

MA0.2 0.85 (0.355) 0.77 (0.346) 0.66 (0.316)

MA0.5 0.76 (0.336) 0.78 (0.337) 0.71 (0.313)

Next we measure the coverage probabilities in the case where approximately
70% of the data is missing. For ease of comparison, we want to have 200 existing
observations for this experiment as well. With 70% missing data, this means we
will have 200 existing observations distributed over 666 time points. For this
experiment, no heteroscedasticity is present in the data. As before, we vary
the degree of autocorrelation in six different ways. Table 3.2 on the next page
shows the simultaneous coverage and average median interval lengths for these
different setups, using only bandwidth h = 0.06. A Markov chain is implemented
for the process D with the following transition probabilities:

This Markov chain leads to a missingness pattern that is representative of
the one found in the ethane emissions dataset at the Jungfraujoch station in
the Swiss Alps.

While the median interval lengths match the ones found by Friedrich et al.
(2020), the coverages we found are consistently lower than theirs. This could
be due to the difference in amount of simulations ran for each setup.
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Table 3.2: AWB Simultaneous coverage and average median interval
length (in brackets) with 70% missing data with 100 simulations

h DGP γ = 0.2 γ = 0.4 γ = 0.6

0.06 0 0.87 (0.257) 0.80 (0.239) 0.71 (0.209)

AR0.2 0.75 (0.252) 0.72 (0.240) 0.56 (0.217)

AR0.5 0.61 (0.235) 0.54 (0.225) 0.54 (0.211)

AR−0.5 0.88 (0.210) 0.86 (0.191) 0.74 (0.162)

MA0.2 0.78 (0.252) 0.70 (0.245) 0.64 (0.211)

MA0.5 0.65 (0.236) 0.70 (0.233) 0.50 (0.208)

3.3 GPR vs AWB prediction

To give us insight in the prediction accuracy of the two methods, we use both
methods to construct confidence bands for future time points. Similar to the
previous section, we divide the experiment up into two parts. Figure 3.3 on the
next page describes the setup of our experiment.

In part one we look at data that contains autocorrelation, heteroscedasticity,
and no missing data. Thus we have 200 observations, and wish to estimate the
m(t) values of the next 20 time points by extending the confidence band to these
future time points.

In part two we look at data that contains autocorrelation, missing data, and
no heteroscedasticity. We stick to a target data set size of n = 200, and again
construct confidence bands that extend to the next 20 time points. The Markov
chain defined in Section 3.2 results in approximately 70% missing data, meaning
that if we want to have 200 existing observations, we need to have an original
data set of 666 data points. As a result, in both parts of the experiment we
will have approximately 200 observations to work with, and wish to create a
confidence band that extends to the next 20 time points.

Note that we need to know the actual ‘correct’ m(t) values of the next 20
time points, i.e. the m(t) values that made up the observations y. Only if
we know these we can say with absolute certainty whether the methods have
predicted future m(t) values correctly. Therefore, in part one of our method we
generate 220 observations along with their underlying 220 m(t) values. Of these
220 observations only the first 200 are used by the two methods. In part two
we generate 686 observations along with their m(t) values, where 70% of the
observations in the first 666 time points will be missing. The last 20 existing
observations of the 686 time points are not used by the methods.
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Figure 3.3: Prediction experiment setup

3.3.1 GPR prediction bands

We will now discuss the steps necessary to create confidence bands that extend
to future time points with the GPR method.

In part one of the experiment we have generated 220 observations corre-
sponding to time points between τ = 0 and τ = 1. Because the method only
uses the first 200, only the time points from τ = 0 to τ = 0.9 will have existing
observations. The goal is to estimate the values of the next 20 time points,
which are between τ = 0.9 and τ = 1. Recall that in the first step of the GPR
method, the creation of the covariance matrix, we need to choose a set of test
time points T∗. If we choose 220 time points from τ = 0 to τ = 1, then ap-
proximately 20 will exist between τ = 0.9 and τ = 1. This T∗ will then give us
a confidence band extending past the existing 200 observations. We then find
the coverage by computing the fraction of m(t) values from 201 to 220 that are
inside the confidence bands.

In part two there are only existing observations for time points from τ = 0
to τ ≈ 0.97

(
666
686

)
. In this scenario we choose 686 time points T∗ from τ = 0 to

τ = 1 and construct the confidence bands. Approximately 20 time points will be
within τ ≈ 0.97 and τ = 1. We now find the prediction coverage by computing
the fraction of m(t) values from 667 to 686 that are inside the confidence bands.

For the GPR method, a kernel function K needs to be chosen. With our
choice of kernel, we define the covariance matrix of our prior distribution. The
flexibility of the GPR approach becomes apparent when deciding on a kernel.
When plotting the generated data, certain characteristics are clearly visible
without yet looking at the specific values of the observations.
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Figure 3.4: Example data

Figure 3.4 shows data generated with parameters k = 4, a = 0.5, AR = 0,
MA = 0.2. A certain degree of seasonality is visible, and there is lots of noise
present in the data. We can find our kernel by choosing separate kernels to
handle some of the individual characteristics specifically, and combine them
using multiplication and addition.

The basis of our kernel will be the Radial Basis Function (RBF) kernel, also
known as the Squared Exponential (SE) kernel. It is defined as:

KRBF (t, t′) = σ2exp

(
− (t− t′)2

2l2

)
,

where σ2 is the output variance. Every kernel contains this parameter. It
describes the average distance away from the mean function. Parameter l is
the lengthscale, which describes the length of a ‘wiggle’ in the function. Figure
2.5 in Section 2.2.2 shows possible samples from a prior distribution resulting
from the RBF kernel. The RBF kernel is a commonly used kernel for Gaussian
Processes, because it can be used to model a wide variety of functions.

To handle the periodicity in the data, we use a combination of the periodic
kernel KPER with the KRBF kernel. Multiplying the periodic kernel with the
RBF kernel allows the function to be periodic, but does not restrict the function
to be periodic in the exact same manner for the entire range of the function. The
‘waves’ are allowed to vary in amplitude and length over time. This combination
of the two kernels is called the Locally Periodic Kernel and is defined as:

KLocalPer(t, t′) = KPer(t, t′) ∗ KRBF (t, t′)

= σ2exp

(
−2sin2(π|t− t′|/p)

l2

)
exp

(
− (t− t′)2

2l2

)
,

where σ2 is again the variance, p is the distance between two repetitions, and l
is the lengthscale parameter.

To take into account the noise into the data, we use a white noise kernel. It
is defined as:

KWhite(t, t
′) = δ(t, t′) ∗ σ2,
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where δ(t, t′) is the Kronecker delta, which is 1 if t = t′, and 0 otherwise. σ2 is
the variance. We find our final kernel by adding the three kernels specified so
far together:

KFinal = KRBF +KLocalPer +KWhite

This kernel has a total of six parameters: two coming from KRBF , three from
KLocalPer and one from KWhite.

The practical implementation of Gaussian Process Regression given in Al-
gorithm 1 Williams and Rasmussen (2006) returns the mean vector, variance
vector, and log-marginal likelihood. The log-marginal likelihood tells us how
well the model is fitting the data given the chosen parameters. To find appro-
priate values for these parameters, we maximize the marginal likelihood. This
also means that it is not absolutely necessary to base the kernel decision on
the plotted data. One can simply try out multiple kernels, and maximize the
log-marginal likelihood for each of the kernels. The final kernel can then be
chosen simply by taking the kernel with the highest log-marginal likelihood, i.e.
the kernel resulting in a model that best fits the observed data.

Once we have found suitable parameter values, we use the mean vector and
variance vector to construct the confidence bands as described at the end of
Section 2.2.3. We use the python package GPflow from Matthews et al. (2017)
for the GPR method.

3.3.2 AWB prediction bands

Now we will discuss how confidence bands can be created using the AWB
method.

If we only give the existing 200 observations to the AWB method, it would
create a confidence band for these time points only. In order to extend this band
to future time points, we need to supply 220 time points to the method. We
can ensure the method does not take into account values y201 to y220 by setting
the last 20 values of the missing data process D to zero: D201, . . . ,D220 = 0.
This way, the AWB will construct confidence bands for all 220 time points, and
will not take into account the last 20 yt values in the process. Similarly, for part
two of the experiment, we supply the method with all 686 time points, and set
D667, . . . ,D686 to zero.

Note that a sufficiently high bandwidth needs to be chosen in order to suc-
cessfully create the prediction bands. In the Nadaraya-Watson estimator de-
scribed in equation (3) in Section 2.1.3, the bandwidth parameter of the esti-
mator specifies the range around t from which we should take into account the
yt values for the estimation. If the bandwidth is chosen such that this range
is too small and consequently there are no existing observations inside it, no
estimation can be made for this t, as the denominator of the estimator will be
zero.

Table 3.3 on page 25 shows the prediction coverage and median interval
length of the created confidence band for both methods in part one of our ex-
periment. As in the previous section, we have six different specifications of
the degree of autoregression in the data generating process (DGP). The het-
eroscedasticity is kept the same throughout all specifications at k = 4 and
a = 0.5. For the AWB method we use two bandwidths, h = 0.10 and h = 0.12.
We vary the γ parameter in the same way as before, using γ = 0.2, 0.4, and
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0.6. For both methods we run 25 simulations for each specification. We only do
25 simulations because we have a time constraint. In order to do significantly
more simulations, it would be required to use parallellization. This is however
outside the scope of this thesis.

The AWB method with bandwidth h = 0.10 outperforms the GPR method
throughout all specifications of the DGP and all choices of γ in part one of our
experiment. The GPR method creates considerably smaller confidence bands
in all scenarios, resulting in lower coverage. This shows the GPR method has
severe difficulties handling data that is both autocorrelated and heteroscedastic
in comparison to the AWB method. When the DGP is set to have no auto-
correlation, the GPR method also seems to have problems. This signifies that
heteroscedasticity on its own in time series is difficult for the GPR method.

Table 3.4 on page 26 shows the prediction coverage for both methods for
part two of our experiment, in which data contains autocorrelation and large
portions of missing data. For all specifications of the DGP, the GPR method
performs either equally well as the AWB, or outperforms it. Additionally, the
width of the band produced with GPR is smaller, meaning the GPR is able to
do a more confident prediction.
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Table 3.3: AWB vs. GPR Prediction coverage and median interval
length (in brackets) for k = 4 and a = 0.5

h DGP γ = 0.2 γ = 0.4 γ = 0.6

AWB AWB AWB GPR

0.10 0 0.846 0.916 0.89 0.666

(1.351) (1.521) (1.464) (0.847)

AR0.2 0.774 0.856 0.864 0.608

(1.373) (1.528) (1.475) (0.850)

AR0.5 0.772 0.992 0.89 0.742

(0.898) (1.470) (1.611) (1.074)

AR−0.5 0.898 0.858 0.988 0.514

(1.327) (1.478) (1.570) (0.761)

MA0.2 0.822 0.858 0.824 0.598

(1.440) (1.478) (1.421) (0.847)

MA0.5 0.668 0.83 0.876 0.662

(1.213) (1.357) (1.556) (0.888)

0.12 0 0.746 0.734 0.814 0.666

(1.107) (1.116) (1.296) (0.847)

AR0.2 0.502 0.812 0.784 0.608

(0.980) (1.267) (1.312) (0.850)

AR0.5 0.79 0.726 0.754 0.742

(1.085) (1.123) (1.245) (1.074)

AR−0.5 0.802 0.894 0.954 0.514

(1.013) (1.157) (1.197) (0.761)

MA0.2 0.668 0.714 0.812 0.598

(1.094) (1.128) (1.181) (0.847)

MA0.5 0.746 0.762 0.572 0.662

(1.057) (1.190) (1.032) (0.888)
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Table 3.4: AWB vs. GPR Prediction coverage and median interval
length (in brackets) for 70% missing data

h DGP γ = 0.2 γ = 0.4 γ = 0.6

AWB AWB AWB GPR

0.10 0 1.0 0.948 1.0 1.0

(1.023) (0.994) (1.042) (0.912)

AR0.2 0.988 0.964 0.96 1.0

(0.951) (1.110) (1.045) (0.905)

AR0.5 0.942 0.926 0.99 0.992

(1.047) (1.045) (1.011) (0.795)

AR−0.5 1.0 1.0 0.96 1.0

(0.928) (1.036) (1.011) (0.796)

MA0.2 0.96 1.0 0.96 1.0

(0.974) (1.151) (1.009) (0.915)

MA0.5 0.984 0.948 0.938 1.0

(1.122) (1.018) (0.995) (0.823)

0.12 0 0.768 0.91 0.886 1.0

(0.816) (0.921) (0.910) (0.912)

AR0.2 0.722 0.834 0.712 1.0

(0.838) (0.862) (0.879) (0.905)

AR0.5 0.87 0.832 0.944 0.992

(0.819) (0.908) (0.934) (0.795)

AR−0.5 0.894 0.954 0.892 1.0

(0.891) (0.956) (0.847) (0.796)

MA0.2 0.96 0.808 0.744 1.0

(0.858) (0.922) (0.907) (0.915)

MA0.5 0.878 0.76 0.834 1.0

(0.819) (0.839) (0.915) (0.823)
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Chapter 4

Real life application

In this chapter we apply the Gaussian process regression method to a real life
ethane emissions time series. Ethane emissions are a regularly used measure
of pollution in the atmosphere. The data for this time series was derived by
Franco et al. (2015) from observations made at the Sphinx Observatory at the
Jungfraujoch station in the Swiss Alps between September 1994 and August
2014. There are a total of 2260 points over the approximately 20 year time
period, meaning the average number of observations per year is 112.6. This
further underlines the importance of using a nonparametric regression method
that handles large portions of missing data well.

A kernel needs to be chosen for the GPR method. We look at the observed
data and make our decision based off of the characteristics we see. Figure 4.1
shows the entire time series, containing all observations from September 1994
to August 2014. Immediately a degree of periodicity is visible in the data.

Figure 4.1

As the density of the data points is quite high, we zoom in on a subset of
the data to get a closer look. Figure 4.2 on the next page shows the first 200
observations of the time series, which were made between September 1994 and
February 1997.
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Figure 4.2

The seasonal pattern becomes even more clear. However, by looking at
the complete data set, we can see that the amplitude of the waves differs over
time. Additionally, it might very well be the case that the length of the waves
changes as well. Therefore, we select the Locally Periodic kernel, which allows
the waves to vary over time. The locally periodic kernel is the multiplication of
the periodic kernel and the RBF kernel, defined as:

KLocalPer(t, t′) = KPer(t, t′) ∗ KRBF (t, t′)

= σ2exp

(
−2sin2(π|t− t′|/p)

l2

)
exp

(
− (t− t′)2

2l2

)
,

It is also clear that there is lots of noise in the data, as drawing a single smooth
function through the points is very much impossible. For this we add the white
noise kernel:

KWhite(t, t
′) = δ(t, t′) ∗ σ2,

We take as basis for our kernel the RBF kernel, and end up with the same kernel
as used in our simulation study:

KFinal = KRBF +KLocalPer +KWhite

Note that even though we have based our kernel choice on the characteristics of
the plotted data, this is not strictly necessary for the GPR method. A kernel can
be chosen simply by trying out multiple kernels and maximizing their respective
log-marginal likelihoods, and choosing the one with the highest log-marginal
likelihood.

We again use the python package GPflow Matthews et al. (2017) to construct
the confidence band. For the subset of 200 observations the confidence band is
shown in Figure 4.3 on the next page.
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Figure 4.3

When applying the method to the entire time series, a few random restarts
were used. The obtained result is shown in Figure 4.4.

Figure 4.4

Franco et al. (2015) have estimated a linear function for this time series.
They found a decreasing linear trend until 2009, followed by an increasing linear
trend. Friedrich et al. (2020) used the AWB method on the ethane emissions
time series, finding the same broken trend, but additionally finding two local
peaks in 1998 and 2002-2003. The use of a nonparametric regression method
such as the AWB has allowed for the detection of these local peaks, as the
function is not restricted to be linear. They argue that the local peaks could be
explained by boreal forest fires which took place during both these peaks. In
Figure 4.4 we can see that the GPR method detects these local peaks in 1998
and 2002-2003 as well, as seen by the sudden increase in both the lower and
upper bound of the confidence band, immediately followed by a decrease again.
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Chapter 5

Discussion

In this thesis we compared the ability of two nonparametric regression methods
to construct confidence bands around a function describing a time series. We
evaluated the prediction accuracy of the AWB and GPR method in a simulation
study. The AWB method outperforms the GPR method when autocorrelation
and heteroscedasticity are present in the data, and there is no missing data.
The main problem for the GPR method seems to lie in the heteroscedasticity,
as when autocorrelation is removed, the issue remains. Therefore, when het-
eroscedasticity is present in the data, the AWB method should be preferred
over the standard GPR approach. The GPR method performs equally well or
outperforms the AWB when data does not contain heteroscedasticity, but does
contain autocorrelation and large portions of missing data.

Several papers have proposed methods based on the standard GPR that
do not assume the noise to be independent of the signal, i.e. do not assume
the data to be homoscedastic. Le et al. (2005) estimate the variance locally
by making the noise itself a random variable, which is estimated along with
the mean of the posterior distribution. Similarly, Lázaro-Gredilla et al. (2013)
place a Gaussian process prior distribution on the noise. Hong et al. (2018) use
a weighting strategy, where weights are put on individual data points or subsets
of the time series, depending on their noise level.

We have compared the prediction ability of the two methods by looking at
the fraction of underlying function values of the system that were predicted
correctly in a simulation study. Other methods that compare coverage between
frequentist and Bayesian confidence bands can be considered. Yang et al. (2017)
propose a framework for assigning frequentist coverage probabilities to Bayesian
confidence bands, allowing for direct comparison between the two methods.

We applied the GPR method to a real life ethane emissions time series. The
method found a decreasing trend until around 2009, followed by an increasing
trend. This finding is in line with Franco et al. (2015). Additionally, the GPR
method found two local peaks during 1998 and 2002-2003 also found by Friedrich
et al. (2020), which demonstrate the advantage nonparametric methods have
over parametric methods.

A benefit GPR offers over the AWB method lies in the initialization of the
methods. While there are data driven methods for the choice of the bandwidth
parameter in the AWB method, a completely satisfactory way to select the best
bandwidth does not yet exist. Additionally, the selection of the autoregressive
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parameter is open-ended. The initialization of the GPR method is done by
choosing a kernel, and maximizing the log-marginal likelihood with respect to
the parameters. The kernel choice can be made based on observed characteristics
in the data, or simply trying out multiple kernels and comparing the maximized
log-marginal likelihood of the respective methods.

The GPR method also has a computational advantage over the AWB method,
as the AWB method relies on running many Monte Carlo simulations.
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Appendix A

GPR derivation

In Section 2.2.3 the posterior distribution is defined as:

f∗|T,y,T∗ ∼ N(f̄∗, cov(f∗)), where

f̄∗ = K(T∗,T)[K(T,T) + σ2
nI]−1y,

cov(f∗) = K(T∗,T∗)−K(T∗,T)[K(T,T) + σ2
nI]−1K(T,T∗).

In A Technical Introduction to Gaussian Process Regression Huang et al. (2006)
these formulas are derived. We follow their steps, and add the intermediate steps
left out in an attempt to get a more complete understanding of how the formulas
are derived. We change our previous notation for individual time points t and
the set of all time points T, to xt and X respectively to match with the notation
used by Huang et al. (2006).

Sample S is defined as S = {(x1, y1), (x2, y2), ..., (xn, yn)}. Here xt denotes time
point t and yt is the corresponding observed value.

The relationship between xt and yt is as follows:

yt = f(xt) + ε(xt).

Function f(xt) maps the input value xt to the target value, which is corrupted
by noise ε(xt), resulting in the final noisy observation yt.

Gaussian process regression assumes that the vector resulting from applying
function f on all timepoints is a sample from the normal distribution with a
zero mean vector µ and covariance matrix K:

f ≡ [f(x1), f(x2), ..., f(xn)]T ∼ N (µ,K) (1)

K is the covariance matrix, in which the entries consist of the pairwise eveluation
of a kernel K on the test time points. Furthermore:

(y|f) = ([y1, y2, ...yn]T |f) ∼ N (f , σ2I) (2)

which states the noise comes from an independent joint Gaussian distribution
with mean zero. Equation (2) implies that y is conditionally independent of
{x1, x2, ..., xn} given f, as knowing the values of vector f already tells us every-
thing we need to know about y.
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The goal of GPR is to obtain the posterior probability distribution, which
gives us the probability distribution of f(x∗) for a new time point x∗ given the
sample S: P (f(x∗)|x∗, S). For convenience, we denote f(x∗) as f∗. We get:

P (f∗|x∗, S) =

∫
P (f∗, f |x∗, S)df

=

∫
P (f∗|f ,x∗, S)P (f |x∗, S)df (3)

In A.1 we find P (f∗|f ,x∗, S), in A.2 we find P (f |x∗, S). Finally, in A.3 we
derive P (f∗|x∗, S).

A.1 P (f ∗|f ,x∗, S)
Define k ≡ [K(x∗, x1),K(x∗, x2), ...,K(x∗, xn)]T , which is the vector of applying
some kernel function K on a single test point x∗ with every training point x.
Then the joint distribution of [ff∗]T is:[

f

f∗

]
∼ N

(
0,

[
K k

kT K(x∗, x∗)

])
(4)

Where K is the covariance matrix of the training points K(X,X). Since the
conditions on x∗ and S are already embedded in the covariance matrix in (4),
P (f∗|f ,x∗, S) is equivalent to P (f∗|f), giving us:

P (f∗|f) =
P (f∗, f)

P (f)
(5)

Let [
A b

bT c

]
≡

[
K k

kT K(x∗, x∗)

]−1

(6)

The probability density of a normally distributed random variable X is defined
as:

P (X) =
1√

2πσ2
e−

(X−µ)2

2σ2

Where σ2 is the variance of X, and µ the mean.
We can say P (X) is proportional to:

P (X) ∝ e−
(x−µ)2

2σ2

= e−
1
2 (x−µ)2σ2−1

= e−
1
2 (x−µ)σ−2(x−µ) (P)

36



Then, from (5) and (P) we get:

P (f∗|f) ∝

exp

− 1
2

[
f

f∗

]T [
A b

bT c

][
f

f∗

]
exp

(
− 1

2 fTK−1f
)

= exp

−1

2

[
f

f∗

]T [
A b

bT c

][
f

f∗

]
−
(
−1

2
fTK−1f

)
= exp

−1

2

[
f

f∗

]T [
A b

bT c

][
f

f∗

]
+

1

2
fTK−1f


= exp

(
−1

2

[
fTA+ f∗bT , fbT + f∗c

] [ f

f∗

]
+

1

2
fTK−1f

)

= exp

(
−1

2

(
f(fTA+ f∗bT ) + f∗(fbT + f∗c

)
+

1

2
fTK−1f

)
.

= exp

(
−1

2

(
c(f∗)2 + 2(bT f)f∗ + fTAf

)
+

1

2
fTK−1f

)
= exp

(
−1

2
c

(
f∗ +

bT f

c

)2

+
1

2
fTK−1f

)

∝ exp

(
− 1

2c−1

(
f∗ +

bT f

c

)2
)
. (7)

From (6) we get:[
A b

bT c

]
∗

[
K k

kT K(x∗, x∗)

]−1

= I

[
A b

bT c

]
∗

[
K k

kT K(x∗, x∗)

]−1

=

[
1 0

0 1

]

Which gives us:

Kb + ck = 0 and kTb + cK(x∗,x∗) = 1.

We can rewrite this to:

Kb = −ck
b = K−1 ∗ −ck (HelpB)

and,

ck = −Kb

c = −k−1Kb (HelpC)
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and with that,

kTb + cK(x∗,x∗) = 1

cK(x∗,x∗) = 1− kTb

c =
1− kTb

K(x∗,x∗)

Nog we plug in (HelpB) and get:

c =
1 + kTK−1kc

K(x∗,x∗)

1 + kTK−1kc

c
= K(x∗,x∗)

1

c
+ kTK−1k = K(x∗,x∗)

1

c
= K(x∗,x∗)− kTK−1k

c =
1

K(x∗,x∗)− kTK−1k
(9)

We do the same for b:

kTb + cK(x∗,x∗) = 1

b =
1− cK(x∗,x∗)

kT

Now we plug in (HelpC) and get:

b =
1 +K(x∗,x∗)k−1Kb

kT

1 +K(x∗,x∗)k−1Kb

b
= kT

1

b
+
K(x∗,x∗)

kK−1
= kT

1

b
= kT − K(x∗,x∗)

kK−1
=

kTkK−1

kK−1
− K(x∗,x∗)

kK−1

=
kTkK−1 −K(x∗,x∗)

kK−1

b =
kK−1

kTK−1k−K(x∗,x∗)

= − K−1k

K(x∗,x∗) + kTK−1k
(8)
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We can plug in (8) and (9) into (7) and get:

P (f∗|f) ∝ exp

(
− 1

2c−1

(
f∗ +

bT f

c

)2
)

= exp

(
− 1

2(K(x∗,x∗)− kTK−1k)

(
f∗ + bT f(K(x∗,x∗)− kTK−1k)

)2)
= exp

(
− 1

2(K(x∗,x∗)− kTK−1k)

(
f∗ − K−1kT f(K(x∗,x∗)− kTK−1k)

K(x∗,x∗)− kTK−1k

)2
)

= exp

(
− 1

2(K(x∗,x∗)− kTK−1k)

(
f∗ − K−1kT f

1

)2
)

= exp

(
− (f∗ − kTK−1f)2

2(K(x∗,x∗)− kTK−1k)

)
Which is again of the form:

e−
(x−µ)2

2σ

And we can thus find (f∗|f) as:

(f∗|f) ∼ N (kTK−1f , K(x∗,x∗)− kTK−1k). (10)

A.2 P (f |x∗, S)
f does not depend on x∗, so all we need to do is find P (f |S).

P (f |S) ∝ P (S|f)P (f) (Bayes rule)

= P (y,x|f)P (f)

= P (y|x, f)P (x|f)P (f) (11)

∝ P (y|f)P (f) (12)

In (11) we use that P (y|x, f) = P (y|f), as y is independent of x given f.
Additionally, P (x|f) = P (x), as x is not dependent on f. P (x) is assumed to
have a uniform distribution.
Combining (1), (2), (12) and letting:

Σ = (K−1 + σ−2I)−1

u = σ−2Σy
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We find

P (f |S) ∝ exp

(
− (y − f)T (y − f)

2σ2

)
∗ exp

(
− fTK−1f

2

)
= exp

(
− (y − f)T (y − f)

2σ2
− fTK−1f

2

)
= exp

(
−σ
−2(yTy − yT f − f ty + f tf)

2
− fTK−1f

2

)
= exp

(
−σ
−2yTy − σ−2yT f − σ−2fTy + σ−2fT f − fTK−1f

2

)
∝ exp

(
−−σ

−2yT f − σ2fTy + σ2fT f − fTK−1f

2

)
∝ exp

(
−−2σ−2yT f + σ2fT f − fTK−1f

2

)
= exp

(
− fT (K−1 + σ−2I)f − 2σ−2yT f

2

)
= exp

(
− fTΣ−1f

2
− 2σ−2yT f

2

)
= exp

(
− fTΣ−1f

2
− 2uf

2Σ

)
= exp

(
− fT f

2Σ
− 2uf

2Σ

)
= exp

(
− fT f − 2uf

2Σ

)
∝ exp

(
− (f − u)2

2Σ

)
= exp

(
− (f − u)Σ−1(f − u)

2

)
where

Σ = (K−1 + σ−2I)−1

= (K−1 + σ−2KK−1)−1

=
(
(I + σ−2K)K−1

)−1

=
1

(I + σ−2K)K−1

=
K

I + σ−2K

=
σ2K

σ2I +K

= σ2K(K + σ2I)−1
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and

u = σ−2Σy

= σ−2(σ2K(K + σ2I)−1)y

= K(K + σ2I)−1y

Which gives us:

(f |S) ∼ N
(
K(K + σ2I)−1y, σ2K(K + σ2I)−1

)
. (13)

A.3 P (f ∗|x∗, S)
For ease of reading, we define:

a ≡ K−1k,

∆ ≡ K(x∗,x∗)− kTK−1k,

b ≡ K(K + σ2I)−1y,

Σ ≡ σ2K(K + σ2I)−1.
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We use (3), (10) and (13) to find P (f∗|x∗, S):

∝
∫

exp

(
− (f∗ − kTK−1f)2

2K(x∗,x∗)− kTK−1f

)
∗ exp

(
− (f −K(K + σ2I)−1y)2

2σ2K(K + σ2I)−1

)
df

=

∫
exp

(
− (f∗ − aT f)2

2∆

)
∗ exp

(
− (f − b)2

2Σ

)
df

=

∫
exp

(
− (f∗ − aT f)2

2∆
− (f − b)TΣ−1(f − b)

2

)
df

=

∫
exp

(
− (f∗)2 − 2f∗aT f + aTffTa

2∆
− 1

2
(f − b)TΣ−1(f − b)

)
df

=

∫
exp

(
− (f∗)2

2∆
− 1

2

(
(f − bT )Σ−1(f − b)− 2f∗aT f

∆
+ fT

aaT

∆
f

))
df

=

∫
exp

(
− (f∗)2

2∆
− 1

2

(
fTΣ−1f − fTΣ−1b− bTΣ−1f + bTΣ−1b− 2f∗aT f

∆
+ fT

aaT

∆
f

))
df

∝
∫

exp

(
− (f∗)2

2∆
− 1

2

(
fTΣ−1f − 2Σ−1bT f − 2f∗aT f

∆
+ fT

aaT

∆
f

))
df

=

∫
exp

(
− (f∗)2

2∆
− 1

2

(
fT (Σ−1 +

aaT

∆
)f − 2(Σ−1b +

f∗a

∆
)T f

))
df

= exp

(
(f∗)2

2∆
+

1

2

(
f∗a

∆
+ Σ−1b

)T (
Σ−1 +

aaT

∆

)−1(
f∗a

∆
+ Σ−1b

))

= exp

 − (f∗)2

2∆ + 1
2 ( f

∗aT

∆ Σ−1 f
∗a
∆ + f∗aT

∆ (aaT

∆ )−1 f
∗a
∆ + 2Σ−1bT (Σ−1)−1 f

∗a
∆ +

2Σ−1bT (aaT

∆ )−1 f
∗aT

∆ + Σ−1bTΣ−1bΣ−1−1

+ Σ−1bTΣ−1b
(

aaT

∆

)−1

)


∝ exp

(
− (f∗)2

2∆ + 1
2 ( f

∗aT

∆ Σ−1 f
∗a
∆ + f∗aT

∆ (aaT

∆ )−1 f
∗a
∆ + 2Σ−1bT (Σ−1)−1 f

∗a
∆ +

2Σ−1bT (aaT

∆ )−1 f
∗aT

∆ )

)
= exp

(
− (f∗)2

2∆ + 1
2

(
aT (∆Σ−1)−1a

∆ + (f∗)2aaT ∗(aaT )−1

∆ + 2aT (∆Σ−1)−1Σ−1bf∗ + 2aT (aaT )−1Σ−1bf∗
) )

= exp

(
−1

2

(
1− aT (∆Σ−1 + aaT )−1a

∆
(f∗)2 − 2aT (∆Σ−1 + aaT )−1Σ−1bf∗

))
.

= exp

(
−1

2

(
1− aT (∆Σ−1 + aaT )−1a

∆
(f∗)2 − 2aT (∆Σ−1 + aaT )−1Σ−1bf∗

))
= exp

(
−1

2

(
(1− aT (∆Σ−1 + aaT )−1a)(f∗)2

∆
− 2aT (∆Σ−1 + aaT )−1bf∗

Σ

))
= exp

(
−1

2

(
Σ(1− aT (∆Σ−1 + aaT )−1a)(f∗)2 − 2aT (∆Σ−1 + aaT )−1bf∗∆

Σ∆

))
= exp

(
−1

2

(
(1− aT (∆Σ−1 + aaT )−1a)(f∗)2 − 2aT (∆Σ−1 + aaT )−1Σ−1bf∗∆

∆

))
= exp

(
−1

2

(
(f∗)2 − 2aT (∆Σ−1 + aaT )−1Σ−1bf∗∆(1− aT (∆Σ−1 + aaT )−1a)−1

∆(1− aT (∆Σ−1 + aaT )−1a)−1

))
= exp

(
−1

2

(
(f∗)2 − 2aT (∆Σ−1 + aaT )−1Σ−1bf∗∆(1− aT (∆Σ−1 + aaT )−1a)−1

∆
1−aT (∆Σ−1+aaT )−1a

))

= exp

−1

2

 (f∗)2 − 2aT (∆Σ−1+aaT )−1Σ−1bf∗∆
1−aT (∆Σ−1+aaT )−1a

∆
1−aT (∆Σ−1+aaT )−1a


∝ exp

(
−1

2

(
(f∗ −∆aT (∆Σ−1 + aaT )−1Σ−1b)2

∆
1−aT (∆Σ−1+aaT )−1a

))42



We find
(f∗|x∗, S) ∼ N (µ∗, (σ∗)2)

where

µ∗ =
∆aT (∆Σ−1 + aaT )−1Σ−1b

1− aT (∆Σ−1 + aaT )−1a

(σ∗)2 =
∆

1− aT (∆Σ−1 + aaT )−1a

Using the Sherman-Morrison-Woodbury formula:

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1, (14)

we find

(∆Σ−1 + aaT )−1 =
Σ

∆
− Σ

∆
a

(
1 +

aTΣa

∆

)−1

aT
Σ

∆

=
Σ

∆
− Σ

∆
a

(
∆ + aTΣa

∆

)−1

aT
Σ

∆

=
Σ

∆
− Σ

∆
a

(
∆

∆ + aTΣa

)
aT

Σ

∆

=
Σ

∆
− Σa∆aTΣ

∆2(δ + aTΣa)

=
Σ

∆
− ΣaaTΣ

∆(∆ + aaT )Σ

=
1

∆

(
Σ− ΣaaTΣ

∆ + aTΣa

)
substituting this in µ∗:

µ∗ =
∆aT (∆Σ−1 + aaT )−1Σ−1bf∗

1− aT (∆Σ−1 + aaT )−1a
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gives

µ∗ =
aT
(

Σ− ΣaaTΣ
∆+aTΣa

)
Σ−1b

1− aT

∆

(
Σ− ΣaaTΣ

∆+aTΣa

)
a

= aTb

1
Σ −

(
Σ− ΣaaTΣ

∆+aTΣa

)
1− aT

∆

(
Σ− ΣaaTΣ

∆+aTΣa

)
a

= aTb
1− aaTΣ

∆+aTΣa

1− aT

∆

(
Σ− ΣaaTΣ

∆+aTΣa

)
a

= aTb
1− aTΣa

∆+aTΣa

1− aTΣa
∆ + (aTΣa2)

∆(∆+aTΣa)

= aTb
1− aTΣa

∆+aTΣa

1− aTΣa(∆+aTΣa)
∆(∆+aTΣa)

+ (aTΣa2)
∆(∆+aTΣa)

= aTb
1− aTΣa

∆+aTΣa

1− (aTΣa)∆
∆(∆+aTΣa)

= aTb
1− aTΣa

∆+aTΣa

1− aTΣa
∆+aTΣa

= aTb

= K−1kTK(K + σ2I)−1y

= kT (K + σ2I)−1y

= kT (K + σ2I)−1y

and

(σ∗)2 =
∆

1− aT (∆Σ−1 + aaT )−1a
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becomes

(σ∗)2 =
∆

1− aT
(

1
∆

(
Σ− ΣaaTΣ

∆+aTΣa

))
a

=
∆

1− aTΣa
∆ + aTΣaaTΣa

∆(∆+aTΣa)

=
∆

1− aTΣa
∆ + (aTΣa)2

∆(∆+aTΣa)

=
∆

∆(∆+aTΣa)−aTΣa(∆+aTΣa)+(aTΣa)2

∆(∆+aTΣa)

=
∆

∆(∆+aTΣa)−∆(aTΣa)
∆(∆+aTΣa)

=
∆

∆(∆+aTΣa−aTΣa)
∆(∆+aTΣa)

=
∆
∆2

∆(∆+aTΣa)

=
∆
∆

∆+aTΣa

=
∆

∆ ∗ (∆ + aTΣa)−1
= ∆ + aTΣa

= ∆ +K−1kTσ2K(K + σ2I)−1K−1k

= ∆ +
σ2KkTk

K2(K + σ2I)
= ∆ +

σ2kTk

K(K + σ2I)

= ∆ +
σ2kTk

KK + σ2K

= ∆ + σ2kT (σ2K +KK)−1k (15)

= ∆ + σ2kT (σ−2K−1 − σ−2K−1K(I +Kσ−2K−1K)−1Kσ−2K−1)k
(16)

= ∆ + σ2kT (σ−2K−1 − σ−2(I + σ−2K)−1σ−2)k

= ∆ + σ2kT (σ−2K−1 − σ−4(Kσ−2 + I)−1)k

= ∆ + σ2kT (σ−2K−1 − (K−1σ−2 + σ−4I))k

= ∆ + (kTK−1 − kT (K + σ2I)−1)k

= ∆ + kTK−1k− kT (K + σ2I)−1k

= K(x∗,x∗)− kTK−1k + kTK−1k− kT (K + σ2I)−1k

= K(x∗,x∗)− kT (K + σ2I)−1k

Finally, we have the predictive distribution (f∗|x∗, S):

(f∗|x∗, S) ∼ N
(
µ∗, (σ∗)2

)
∼ N

(
kT (K + σ2I)−1y, K(x∗,x∗)− kT (K + σ2I)−1k

)
.
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