
Julian Besems

N-DIMENSIONAL
GALLERIES
IN VENICE

Project Atlas

Author:
Julian Besems
s4783751

First supervisor:
Dr. Freek Wiedijk

freek@cs.ru.nl

Second supervisor:
Tom Holberton

t.holberton@ucl.ac.uk

A Specification Language
and Semantics for

Architectural Design
An exploration of formalising the logic behind

architectural design

21 August 2020

Bachelor Thesis
Computing Science

Bachelor Thesis
Computing Science

Radboud University

The Semantics of Ownership and
Borrowing in the Rust
Programming Language

Author:
Nienke Wessel
s4598350

First supervisor:
Dr. Freek Wiedijk

freek@cs.ru.nl

Second supervisor:
Marc Schoolderman

m.schoolderman@cs.ru.nl

July 10, 2019

Radboud University

2

Abstract
Since the 1960’s computers have played an increasing role in architectural de-
sign. At first this was only as a drawing and modelling tool, but lately computa-
tion is also used to drive design decisions through parametric modelling methods
and generative design. The current limitation of these methods is that the input
and output is heavily limited to geometric information, with no universal way of
connecting the geometric proposition of a design to the underlying design prin-
ciples. If computers are to play a larger role in the architectural design process,
it is important that there is also a way in which they can start to inform the
functional aspects of a building, in addition to its shape. For this it is essential
that there is a formal way of describing these aspects. This thesis explores a way
of doing this through the formulation of a syntax and semantics, by which a set
of geometries can be evaluated to determine whether this is a valid instance of a
specific project definition. A primary source for the concept of an architectural
language is Christopher Alexander’s Pattern Language, which in turn has had
a significant influence on the field of computer science due to it being the prima-
ry inspiration for software design patterns.

Cover image - A collection of plans of multiple instances of a design for art galleries in Venice. Each gallery follows the same design rationale,
but the outcome varies based on the contextual setting, thus producing a wide variety of design proposals. Created as part of a design project
completed as part of a Masters in Architecture. [Besems, 2020a]

3

Contents

Contents

1. Introduction	 4
	 1.1 A Pattern Language and OO Design Patterns 	 5
	 1.2 Formal Definition of Architecture	 5

2. Related Work	 8
	 2.1 Current computation within architecture 	 8
		 2.1.1 Space syntax	 8
		 2.1.2 Machine learning	 8
	 2.2 Previous explorations			 10
		 2.2.1 Design project 1: University libraries	 10
		 2.2.2 Design project 2: Art galleries in Venice	 13
		 2.2.3 Thesis: Towards a new architectural entity	 15
		 2.2.4 Observed limitations	 16

3. Syntax	 17
	 3.1 Categories	 17
	 3.2 Grammar	 19

4. Semantics		 28
	 4.1 Auxiliary Functions	 28
	 4.2 Semantic Functions	 30
	 4.3 Rules	 31
	 4.4 Instance Statements	 34
	 4.5 Building Element Statements	 36
	 4.6 Empty Statements	 37

5. Examples	 38
	 5.1 Connected Cubes	 38
	 5.2 C. Alexander pattern 101: Building Thoroughfare	 40
	 5.3 Generated Art Gallery St. Mark’s Square	 41
	 5.4 Courtyard	 45
	
6. Implementation	 52
	 6.1 Decidability	 52
	 6.2 Integration in CAD	 52
		 6.2.1 Derivation of spaces	 52
		 6.2.2 Derivation of elements	 53
		 6.2.3 Mutual influence of design and definition	 54
	 6.3 Use for generative architecture	 54

7. Conclusion	 57
	 7.1 Discussion	 58

List of Illustrations	 59

Bibliography				 62

Appendices				 63
	 Appendix A	 63
	 Appendix B	 64

4

1.
Introduction

Le Corbusier, one of the most influential architects of the 20th century, made
a statement in 1925 the about the Roneo filing cabinet: “This new system of
filing which clarifies our needs, has an effect on the lay-out of rooms, and of
buildings.” [Burke & Tierney, 2007]. This statement indicates his interest in
classification systems and their possible value within architecture. Le Corbus-
ier expanded on this by presenting three categories that form the principal
elements of architectural buildings: The Mass, The Skin and The Plan. This
definition was paired with a description of how each element relates to the
other [Burke & Tierney, 2007].
	 In the 1970’s the architect and mathematician Christopher Alexander
expanded this idea of generally describing fundamental architectural design
patterns. He abstracted the way people relate to different architectural sur-
roundings in 253 patterns, which are described in his book A Pattern Lan-
guage [1977]. Each pattern is defined in a standard structure. Together this
forms a framework of interconnected patterns that are to be combined to aid
in a design process.
	 With the introduction of the IBM Drafting System [IBM, 1988] in the
1960’s, architects have started to use computers as part of their design process,
although at that time and for a long time after this was limited to drawing
purposes. For the majority of architects this hasn’t changed much over the
last 50 years, the drawing programs have become three-dimensional modelling
programs, and other than technical drawings, computers are now also heavily
used for artistic representational purposes, but in the end the computer is still
mostly a tool used to create an output. This did start to change with the rise of
parametric design, where forms of a building are derived by putting other form
based parameters through a set of algorithms, thus starting to use the comput-
er not only as a tool for representation but also to drive design decisions. The
limitations of these parametric design methods are however that the algorithms
only calculate forms based on other three-dimensional inputs provided by the
architect, but not based on what the function of a building element is, or how
one space relates to another in terms of the inhabitants’ behaviour.
	 If computers are to play a larger role in the architectural design pro-
cess, there should also be a way in which they can be used to aid in design de-
cisions regarding the functional aspects of a building, in addition to its shape.
For this it is important that there is a formal way of describing these aspects.
The ideas of Le Corbusier and Alexander form a suitable starting point for
this.
	 This thesis aims to describe a syntax and semantics for the combina-
tion of building patterns within architectural design. This could be a starting
point for the development of a formal framework of building design, enabling
computers to more fundamentally aid architectural design methods.

5

Introduction

1.1 A Pattern Language and OO Design Patterns

The most well known example of an attempt to express architectural design
concepts in some form of a language format is A Pattern language by Christo-
pher Alexander [1977]. Alexander argues that users are more sensitive to their
needs than architects could be [Alexander, 1975]. Following this principle he
set out to describe the essential different patterns that occur within architec-
tural design, so that each individual could design their own built environment.
Each pattern first starts with a description of which other patterns or actions
are required before this pattern can be put in place. Then the motivation for
this pattern is given in one sentence. This is then followed by the discussion of
the functional problem that has to be solved whilst implementing this pattern.
After this the instruction is given on how to implement this pattern in order to
satisfy the conditions posed by the problem. This instruction is generally 3-4
lines, in combination with a sketched diagram. Finally the pattern description
is concluded with the reference to other patterns relating to this pattern.
	 Since each pattern refers to other patterns as possible pre- and
post-conditions, a progression through the design problem at hand is defined,
through which a loose semantic framework is created for architectural design.
This language however lacks a formal definition, making it problematic to
implement in a computational context, which is understandable due to the ex-
tremely limited way in which computers were used in architectural practice at
the time. On the other hand it is worthwhile to note how this concept of archi-
tectural design patterns has, unintentionally, created a theoretical connection
between the disciplines of computing science and architecture.
	 The development of software design patterns in Object Oriented pro-
gramming (OO) was heavily influenced by Alexander’s work. This followed
from the OOPSLA session in 1987, where Ward Cunningham outlined the
way in which his team had started to construct software design patterns as an
adaptation of Alexander’s architectural patterns. The motivation for this was
to have “a radical shift in the burden of design and implementation”[Sowizral,
1987], through defining pieces of reusable code that make it easier to define
solutions for the issue addressed by the design pattern in question.

1.2 Formal Definition of Architecture

The difference between the approach of Alexander and the domain specific
language (DSL) developed in this thesis, is that Alexander, much like design
patterns in OO, focussed on the description of frequently occurring design
problems, with a proposed abstracted pattern of finding a solution to this,
all set within a larger framework of how these are related. It does however
not offer a way in which architectural design proposals can be defined and
interpreted in addition to the physical instance, so to say, it is the concept of
OO design patterns, but without a programming language within which these
can be defined.
	 In current architectural practice the majority of design is heavily re-
liant on CAD modelling, but a way to formally define architectural design
beyond the geometries that make up the physical form is not available. A pro-
gramming analogy would be: the output of an algorithm can be written down

6

Pre-conditions:
	 - Site Repair (104)
	 - South Facing Outdoors (105)
	 - Wings of Light (107)
	 - Circulation Realms (98)
	 - Family of Entrances (102)

Motivation:
Placing the main entrance (or main entrances) is perhaps the single most im-
portant step you take during the evolution of a building plan.

Functional problem:
The entrance must be placed in such a way that people who approach the
building see the entrance or some hint of where the entrance is, as soon as they
see the building itself.

Instruction:
Place the main entrance of the building at a point where it can be seen im-
mediately from the main avenues of approach and give it a bold, visible shape
which stands out in front of the building

References:
	 - Family of entrances (102)
	 - Entrance room (130)
	 - Entrance transition (112)
	 - Shielded parking (97)
	 - Car Connection (113)

110 Main Entrance

Table 1: Summarised version of the main entrance pattern as described by Christopher Alexan-
der [1977, p541]

Figure 1. Pattern 110 - Main entrance by Christopher
Alexander

7

Introduction

in a text file, but there is no means of defining the algorithm itself, let alone
compile it to automatically generate the output. Andrew Witt [2016] addresses
this issue by his statement that architecture lacks a taxonomy, which in turn
leads to a limitation in terms of quantifiability of its manifestations. The de-
velopment of a formal language enabling architects to define a project through
abstracted design decisions could offer a way in which architectural projects
are not necessarily bound to one particular instance, but rather a range of
different realisations of one proposal.
Aspiring to explore ways in which this can be achieved, the research question
for this thesis is:
	 To what extent can the axiomatic components of architectur-
al design and their functional role within the project be defined in a
formal language?
In order to address answer this the following sub questions will be addressed:
	 - To what extent can the ambiguity of design be incorporated within
the formulation of such a language, as to not limit the architectural design
process?
	 - What criteria can be set to measure completeness in a formal lan-
guage describing building patterns?
	 - How relevant is a potential formal framework of building patterns for
the development of generative architecture?

8

2.
Related Work

Currently the ways in which computational methods are used to inform de-
sign usually involve the application of existing computational strategies to an
architectural context, but fall short in terms of integrating a computational
method as part of the architectural design process. Even where generative de-
sign procedures are used to arrive at a design form, it can be argued that these
are mere ways of using algorithms to draw in more elaborate ways, thus using
computation as a tool rather than that the computation is ingrained within the
architectural concept of spatial configurations, since the generative component
is only concerned with the form, not with the logic of the building itself.
	 Prominent architectural theorists of the same timeframe, such as Cor-
busier, Fuller and Tange, showed interest in mathematical and computational
theories such as network theory in order to find ways to model architectural
concepts, in this case as part of the multidisciplinary CIAM and Delos meet-
ings [Wigley, 2001]. Since it has seemed the mutual interest of the two disci-
plines has faded, and the architectural industry has failed to integrate
computational methods within the design methodology.

2.1 Current computation within architecture
2.1.1 Space syntax

A research topic within architecture named space syntax has studied the na-
ture of space since the 1970s, based on human interaction with the built envi-
ronment. Whilst the name suggests a formal language, this discipline primarily
investigates geometric zoning algorithms that define and analyse relationships
of a spatial setting, in regards to wider social, economic and environmental
aspects [Space syntax, 2020]. It is not concerned with formally defining the
elements that make up the built environment and through how a spatial con-
figuration is a result of their assembly, and thus does not directly address the
missing link from an architectural CAD model to its design rationale.

2.1.2 Machine learning

With the rise of attention to AI and machine learning in general, the interest
in this field of computation seems to increase within the field of architecture
as well, indicated by various recent papers and articles on the topic. Current
implementations of ML within architecture often utilise existing models and
frameworks that have not been specifically built with architectural design in
mind. A result is that these have to rely on visual media, as seen in the recent

9

Related Work

thesis by Stanislas Chaillou - AI & Architecture [2019]. As such the difference
in implementation is marginal from ways in which AI is implemented within
art projects such as the Quasimodo project by Mario Klingemann [2019].
 	 With this approach the previously discussed limitations of current
computation within architecture, where the link between the derived geometry
and the functional meaning of that geometry is absent in the algorithmic ap-
proach, is more visible than ever. Since the model is not trained based on what
the elements in the drawings mean, the result is a set of images that are the
result of training a generative adversarial network (GAN)1 model to generate
something that looks convincing as an architectural drawing, but are decrepit
of any three dimensional consideration, let alone bear in mind a design logic
required to fulfil the requirements of an architectural project. This critique
can be expanded further, since the training data, and the resulting output do
not even follow the conventional vector based format of an architectural CAD
drawing or model, but in order to be compatible with the existing format of the
image based GAN the drawings are compressed to pixel based images, result-
ing in the loss of scale and the distinction between separate, yet overlapping
objects.
	 Arguably a step back would be in order, where the full generation of
architectural drawings or even buildings should not be the first milestone to

Figure 2. GAN generated floor plans by Stanislas Chaillou

1A machine learning technology consisting of two models, a generator and discriminator.
The two neural network models train simultaneously, where the generator essentially tries
to reproduce the training data, whilst this output is scored by the discriminator.

10

aim for in terms of ML integration within architecture. A more modest first
step where a purpose built model could start to aid to explore a variety to a
specific design issue would be a more feasible, and possible also more useful
approach.

2.2 Previous explorations

During two recent projects and a thesis completed as part of the MArch Ar-
chitecture programme at the Bartlett School of Architecture, UCL, I have
made efforts to algorithmically define an abstract design of a building. These
projects both took an object at the core of the functionality of the building
programme, leading to a varying set of proposals, depending on the organisa-
tion of the objects.
	 This method is related to that of L-systems, and shape grammar [Gips
& Stiny, 1971]. The aspect where these projects tried to break with those
approaches is that the parameters of the generative rules were informed by
contextual data, thus trying to achieve a more responsive generative approach,
primarily focussed on spatial organisation instead of parametric form finding.

2.2.1 Design project 1: University libraries

The first project aimed to design a set of dynamic university libraries, where
the spatial configuration of the library is informed by the way in which the col-
lection of books is organised. In turn this organisation is dependent on the way
in which the students and staff interact with the collection. From the way in
which the books are sorted, and their internal relationship to each other a me-
andering shelf organisation was derived, from which walkways and stairs were
derived. Depending on the existing structures within the library, this path was
reconfigured to fit within those constraints. The result is a design concept that
always follows the same principles, and should thus be regarded as a singular
design solution, but the instance of the solution depends on the way in which
the users interact with the building.

Figure 3. Generative process behind library bookshelves and walkways

11

Related Work
Figure 4. Various library outputs depending on differ-
ent sorting criteria and existing context

Figure 5. Assembly at the end of a semester after
which the walkways and bookshelves are adjust-
ed to the behaviour of the inhabitants

12

Figure 6. A collection of libraries are situated within a larger dynamic study landscape which
follows a vector field.

13

Related Work

2.2.2 Design project 2: Art galleries in Venice

The second project revolves around the definition of an art gallery dependent
on the collection it houses. The art collection is selected based on the visual
qualities of the potential site of the gallery. A similarity graph of the collection
is established through image classification models determining the n-nearest
neighbours for each art piece within the collection. From this the minimum
spanning tree is taken which informs a division of the art into a set of spaces.
These spaces are then configured according to the structure of the MST. After
this the circulation that is required to make all spaces accessible is generated
through the use of visibility graphs. Finally the walls and windows are placed
following a ruleset related to views outwards of the building to the relevant
parts of the surrounding context.

Figure 7. MST of an art gallery collection based on image similarity. The resulting massing of the
subdivision of spaces based on main branches is seen on the left.

Figure 8.Visibility graph in order to find a valid circulation through the gallery.

14

Figure 9.Variety of generated gallery proposals.

15

Related Work

2.2.3 Thesis: Towards a new architectural entity

In my architecture thesis I explored the way in which the technology of recom-
mender systems could lead to a more responsive way of architectural design.
The overall argument is based on how recommender systems implementations
in music streaming platforms have contributed to the transition from the al-
bum to the playlist as the dominant listening format. From a design standpoint
this is interesting since the old entity - the album, composed by the artist
themselves, is broken down to its axiomatic components - songs, and reassem-
bled to form a personalised new entity - the playlist, optimised to a very spe-
cific situation: the listening behaviour of the user. In an architectural context
something similar to that is only possible if the combinatory possibilities of
axiomatic architectural components are defined first. For songs these are fairly
straightforward, since a playlist is in essence just a list, but an architectural
project is inherently three dimensional, and its elements do not belong to one
category either.

Figure 10.Collection of galleries in context.

16

2.2.4 Observed limitations

The issue with these attempts at integrating computational methods within
an architectural design process was that the algorithmic approach remained
sequential in nature, since every next step within the generative process relied
on the one before. This was inevitable due to the way in which the process
was defined and the lack of overview of the building requirements as a whole.
This meant that finding a valid circulation for a set of spaces was sometimes
impossible due to the configuration of the spaces, leading to an invalid output.
This is due to the structure of the generative programme, where the algorithm
of the circulation did not contain a feedback loop to that of the configuration of
spaces. This is something that could be introduced, but that would mean that
the finding of solutions is always bound by a loop between distinct entities,
rather than an approach where the different elements of the problem can be
evaluated simultaneously to arrive to a solution that takes those factors into
account in unison. For this purpose a way to connect the geometric definitions
to the functional aspects of the project would offer a means of making the gen-
erative process less limited, and more resembling to a regular design approach.
	 Additionally this type of approach is limited due to its specificity. For
each project the relevant data, relations, and restrictive elements have to be
redefined and formatted to fit that particular project. This makes it a very
time consuming way of designing. To this end a universal way of defining the
relation between architectural concepts to geometrical definitions is proposed
in the next two chapters in the form of a syntax and semantics. Through this
a more abstracted way of exploring multiple instances of one design could be
established, not unlike the way in which software design patterns offer a way
to formulate abstracted solutions to object oriented programming challenges.

17

Syntax

Chapter 3

Syntax

Here a basic Syntax for relational spatial configurations within architectural
design and the combination of physical elements that synthesise these configu-
rations is given. This is intended as a starting point for the development of a
formal framework of building design.

3.1 Categories

First the different categories will be listed, with their respective meta variables,
used to refer to elements of the respective categories in the following grammar
rules.

The first part of the syntax is primarily concerned with spatial configurations
and relations.

• P will range over projects Proj

• M will range over models Mod

• S will range over sites Site

• Φ will range over sets of project function declarations Funcs

• φ will range over the project function declarations Func

• π will range over statements Stat

• A will range over lists of arguments Args

• α will range over arguments Arg

• B will range over sets of buildings Blds

• β will range over buildings Bld

• Σ will range over sets of spaces Spacs

• σ will range over spaces Spac

• ∆ will range over sets of domains Doms

4

3.
Syntax

3.1 Categories

• δ will range over domains Dom

• F will range over sets of function invocations Fns

• f will range over function invocations Fn

The second part of the syntax defines the categories required to define con-
crete spatial information. As well as more general utility categories such as
variables and rational numbers.

• O will range over sets of object declarations Objs

• o will range over objects Obj

• G will range over sets of geometries Geoms

• g will range over geometries Geom

• V will range over voids Void

• X will range over lists of variables Vars

• x will range over variables Var

• n will range over extended rational numbers Num

The smallest variables correspond to the building elements listed by Rem
Koolhaas in Elements of Architecture [2014]. In this work reduces architectural
components to 15 axiomatic organisational elements. These are separately anal-
ysed in great detail, however only in terms of individual development, shapes
and characteristics. The combination of the elements is left out, thus providing
a study of each architectural element devoid of the architectural composition.

These elements are chosen to be the smallest resolution defined within the
syntax since the interest is in the composition of a building, not necessarily its
physical construction, which is why material elements such as columns, bricks,
etc. are not taken into consideration. The physical qualities of these elements
are represented by the abstract Geometry object, providing the possibility to
assign coordinates to element instances.

• H will range over the set of building elements Elems

• η will range over building elements Elem

• λ will range over floors Flr

• ς will range over stairs Str

• w will range over walls Wall

• c will range over facades Fac

• r will range over roofs Rfs

• ω will range over windows Wns

• d will range over doors Drs

18

• δ will range over domains Dom

• F will range over sets of function invocations Fns

• f will range over function invocations Fn

The second part of the syntax defines the categories required to define con-
crete spatial information. As well as more general utility categories such as
variables and rational numbers.

• O will range over sets of object declarations Objs

• o will range over objects Obj

• G will range over sets of geometries Geoms

• g will range over geometries Geom

• V will range over voids Void

• X will range over lists of variables Vars

• x will range over variables Var

• n will range over extended rational numbers Num

The smallest variables correspond to the building elements listed by Rem
Koolhaas in Elements of Architecture [2014]. In this work reduces architectural
components to 15 axiomatic organisational elements. These are separately anal-
ysed in great detail, however only in terms of individual development, shapes
and characteristics. The combination of the elements is left out, thus providing
a study of each architectural element devoid of the architectural composition.

These elements are chosen to be the smallest resolution defined within the
syntax since the interest is in the composition of a building, not necessarily its
physical construction, which is why material elements such as columns, bricks,
etc. are not taken into consideration. The physical qualities of these elements
are represented by the abstract Geometry object, providing the possibility to
assign coordinates to element instances.

• H will range over the set of building elements Elems

• η will range over building elements Elem

• λ will range over floors Flr

• ς will range over stairs Str

• w will range over walls Wall

• c will range over facades Fac

• r will range over roofs Rfs

• ω will range over windows Wns

• d will range over doors Drs

• e will range over elevators Elv

• ρ will range over ramps Rmp

In all cases where a category is specified as a set the elements are un-ordered.
In the case of X and A the order is relevant, hence specified as a list.

3.2 Grammar

In this section the grammar of the syntax is defined through a set of rules, one
for each of the categories listed previously. The grammar follows a top down
approach, where the larger categories are broken down into their subsequent
parts.

Project
———————————————————————————————————
The highest level variable is the architectural project as a whole. Within this
syntax a project is defined by a site, a set of function declarations, a set of
buildings and a set of function invocations that apply to the overall project.
The syntax of Proj:

P ::= S Φ B F

Model
———————————————————————————————————
The fundamental variable that can be evaluated is the model. This represent
a raw cad model only containing the definition of combinations of geometric
objects without a notion of what these strive to represent in an architectural
context. The syntax of Mod:

M ::= O

19

Syntax• e will range over elevators Elv

• ρ will range over ramps Rmp

In all cases where a category is specified as a set the elements are un-ordered.
In the case of X and A the order is relevant, hence specified as a list.

3.2 Grammar

In this section the grammar of the syntax is defined through a set of rules, one
for each of the categories listed previously. The grammar follows a top down
approach, where the larger categories are broken down into their subsequent
parts.

Project
———————————————————————————————————
The highest level variable is the architectural project as a whole. Within this
syntax a project is defined by a site, a set of function declarations, a set of
buildings and a set of function invocations that apply to the overall project.
The syntax of Proj:

P ::= S Φ B F

Model
———————————————————————————————————
The fundamental variable that can be evaluated is the model. This represent
a raw cad model only containing the definition of combinations of geometric
objects without a notion of what these strive to represent in an architectural
context. The syntax of Mod:

M ::= O

3.2 Grammar

S :
B :

O :

20

Site
———————————————————————————————————
The site within the project is declared by a name and a set of objects and spaces.
These spaces have to have a specific geometry as a domain, as the site is treated
as a constant entity within the evaluation of the model. The syntax of the Site:

S ::= ε|site x(objs(O), spacs(Σ))

Set of Function Declarations
———————————————————————————————————
Syntax for a set of function declarations Funcs:

Φ ::= ε | φ, Φ

Function Declaration
———————————————————————————————————
A function declaration consists of a name, followed by a list of variables that act
as abstract arguments. The body of the function consists of a statement over
the set of previously defined variables. Syntax for a project function declaration
Func:

φ ::= func x(X){π}

Statement
———————————————————————————————————
The statements facilitate the formulation of the desired functional aspects of the
project. The syntax for predicate statements Stat:

π ::= true | false | x | f | π ∧ π′ | π ∨ π′ | π → π′ |π ↔ π′ | ¬π | x ∈ D |

x = x | x||x′ | x#x′| x x′| x x′ | x ∼ x′| x ≈ x′| ∃x ∈ D[π] | ∀x ∈ D[π]

R[x] | G[x]

O :
Σ :

21

Syntax

Where D is used to describe a domain, given by a list of buildings, spaces,
elements, geometries, objects, a mixed set of those, R, R2 or R3. R and G
are semantic functions retrieving the real number domain of a geometry and a
geometry of an argument respectively, formally specified in the semantics section
of this thesis.
Additional to the regular predicate logic symbols, additional symbols are used
concerning spatial relationships:

• ||: adjacency - the geometric domains of two arguments share a vertical
border

• #: intersects - the geometric domains of two arguments overlap more than
just their borders

• : supported - the geometric domain of the first argument is supported
by that of the other

• : covered - the geometric domain of the first argument is covered by that
of the other

• ∼: connected - the geometric domains of two arguments share a border

• ≈: chain connected - within the larger set of arguments there is an unbro-
ken set of connected geometric domains from one argument to the other

List of Arguments
———————————————————————————————————
Syntax for a list of arguments Args:

A ::= ε | α, A

Technically this rule will result in an extra comma at the end of each list,
but since this is an abstract syntax and not meant to be interpreted literally in
terms of ASCII character it is chosen to leave it like this.

Argument
———————————————————————————————————
Syntax for argument Arg:

α ::= β | η | σ | g | o

Set of Buildings
———————————————————————————————————
Syntax for a set of buildings Blds:

B ::= ε | β, B

Building
———————————————————————————————————
A building consists of a variable for its name, set of spaces, a set of building

22

elements and a set of functions that apply to the internal organisation of the
building. Syntax of Bld:

β ::= bld x(spacs{Σ}, elems{H}, fns{F})

Set of Spaces
———————————————————————————————————
Syntax for a set of spaces Spacs:

Σ ::= ε | σ, Σ

Space
———————————————————————————————————
A space is declared by a name, and a domain restriction definition for its di-
mensions. Syntax for Spac:

σ ::= spac x(δ)

Set of Domains
———————————————————————————————————
Syntax for a set of domains Doms:

∆ ::= ε | δ, ∆

Domain
———————————————————————————————————
An object domain is defined by an empty domain, posing no restriction, an area
domain only binding the area, a volume domain, a three dimensional domain
definition only specifying width, depth and height, all determined by an inter-
val of real numbers. Alternatively a domain can be a set of specific geometries.
Syntax for Dom:

δ ::= ε | m2(n, n) | m3(n, n) | w(n, n), d(n, n), h(n, n) | G

H :
Σ :

23

Syntax

Set of Function Invocations
———————————————————————————————————
Syntax for a set of function invocations Fns:

F ::= ε | f, F

Function Invocation
———————————————————————————————————
A function invocation contains the name of a function declaration, followed by a
list of arguments to which the predicate logic statement has to apply to. Syntax
for the function calls Fn:

f ::= x(A)

Set of Objects
———————————————————————————————————
Syntax for a set of objects Objs:

O ::= ε | o, O

Object
———————————————————————————————————
An object is a named set of geometries. Syntax for objects Objs:

o ::= obj x(G)

Void
———————————————————————————————————
Syntax for void Void:

V ::= G

Set of Geometries
———————————————————————————————————
Syntax for a set of geometries Geoms:

G ::= ε | g,G

Geometry
———————————————————————————————————
A geometry is constructed through a variety of geometric object declarations.
For simplicity only rectilinear geometries are included, with the addition of a
mesh, a collection of triangles, which can be used to approximate non defined
geometries. In order to facilitate all geometries that can be defined in a CAD

24

software this would have to be expanded with curves, circles, spheres and nurbs.
Syntax of Geom:

G ::= ε | point(x, y, z)| line(p1, p2)| rect(p1, p2, p3)|
box(r, (x, y, z)) | tri(p1, p2, p3)| mesh(t1, ..., tn)

where x, y, z are Num, p is a point,r is a rect and t is a tri.

Variable
———————————————————————————————————
The variables can be any letter and number sequence, here illustrated by a
regular expression. Syntax for variables Var:

x ::= (a...z|A...Z|0...9)∗

Real Numbers
———————————————————————————————————
Syntax for extended real numbers Num:

n ::= R ∪ {−∞,+∞}

Set of Building Elements
———————————————————————————————————
Syntax for a set of building elements Elems:

H ::= ε | η,H

Building Element
———————————————————————————————————
Syntax for building elements Elem:

η ::= λ | ς | w | c | r | ω | d | e | ρ
All building elements consist of both a relational, and a geometrical aspect. The
relational aspect is made up of a selection of spaces to which the element relates.
The geometrical aspect is a domain. If the element is a general definition, the
geometrical domain is merely an indication of its size, and the spaces that are
referred to determine the role the element has within the building specification.
If the domain and the spaces are specific instances bound by a instances of ge-
ometries instead of size intervals the element definition should conform to the
resulting geometrical restrictions to be valid. This is formally defined in the
semantics section of this thesis.

Floor
———————————————————————————————————
A floor is defined by the spaces beneath it and the ones above it, and geomet-
rically bound by a domain. Syntax for floors Flr:

λ ::= flr(Σ,Σ′){δ}
λ :
Σ :

25

Syntax

Stairs
———————————————————————————————————
Stairs are defined by the lower space and upper space it connects, and geomet-
rically bound by a domain. Syntax for stairs Str:

ς ::= str(σ, σ′){δ}

Wall
———————————————————————————————————
Walls are defined by the spaces it is adjacent to either side, and geometrically
bound by a domain. Syntax for walls Wall:

w ::= wall(Σ,Σ′){δ}

Facade
———————————————————————————————————
Facades are defined by the indoor it is adjacent to the inner side, and geomet-
rically bound by a domain. Syntax for facades Fac:

c ::= fac(Σ){δ}

Roof
———————————————————————————————————
Roofs are defined by the spaces below it, and geometrically bound by a domain.
Syntax for roofs Rfs:

r ::= rf(Σ){δ}

Window
———————————————————————————————————
Windows are defined by the indoor space it is located in, and geometrically
bound by a domain. Syntax for windows Wns:

ω ::= wn(σ){δ}

ς :
Σ :

w :
Σ :

c :
Σ :

26

Facades are defined by the indoor it is adjacent to the inner side, and geomet-
rically bound by a domain. Syntax for facades Fac:

c ::= fac(Σ){δ}

Roof
———————————————————————————————————
Roofs are defined by the spaces below it, and geometrically bound by a domain.
Syntax for roofs Rfs:

r ::= rf(Σ){δ}

Window
———————————————————————————————————
Windows are defined by the indoor space it is located in, and geometrically
bound by a domain. Syntax for windows Wns:

ω ::= wn(σ){δ}

Door
———————————————————————————————————
Doors are defined by the two spaces it connects, and geometrically bound by a
domain. Syntax for doors Drs:

d ::= dr(σ, σ′){δ}

Elevator
———————————————————————————————————
Elevators are defined by the spaces it connects, and geometrically bound by a
domain. Syntax for elevators Elv:

e ::= elv(Σ){δ}

Ramps
———————————————————————————————————
Ramps are defined by the lower space and upper space it connects, and geomet-
rically bound by a domain. Syntax for ramps Rmp:

r ::= rmp(σ, σ′){δ}

r :
Σ :

ω :
Σ :

d :
Σ :

27

Syntax

Door
———————————————————————————————————
Doors are defined by the two spaces it connects, and geometrically bound by a
domain. Syntax for doors Drs:

d ::= dr(σ, σ′){δ}

Elevator
———————————————————————————————————
Elevators are defined by the spaces it connects, and geometrically bound by a
domain. Syntax for elevators Elv:

e ::= elv(Σ){δ}

Ramps
———————————————————————————————————
Ramps are defined by the lower space and upper space it connects, and geomet-
rically bound by a domain. Syntax for ramps Rmp:

r ::= rmp(σ, σ′){δ}

e :
Σ :

r :
Σ :

28

Chapter 4

Semantics

4.1 Auxiliary functions

A set of functions is defined for retrieving specific components of different cat-
egories.

A function is defined to retrieve the geometry component bound to a specific
variable. The same function can operate on different categories, with a universal
output of a set geometries. Semantics of G:
For a space, the function G can only be applied if the domain is a set of specific
geometries.

G�spac x(G)� = G

G�σ,Σ� = G�σ� ∪ G�Σ�
G�obj x(G)� = G

G�o,O� = G�o� ∪ G�O�
Similarly to spaces, the function can only be applied to a building element

if the domain is a set of specific geometries. In that case it returns this set of
geometries. Since all elements have a domain this is here not written out in full.
The signature:

G�η� = G

Following this pattern:

G�elemType(args){G}� = G

G�η,H� = G�η� ∪ G�H�
G�bld x(spacs{Σ}, elems{H}, fns{F})� = G�Σ� ∪ G�H�

Another function is defined that breaks down a geometry further to R3

domains:

R�point(n1, n2, n3)� = [n1, n2, n3]

R�line(point(n1, n2, n3), point(n
′
1, n

′
2, n

′
3))� =

15

4.
Semantics

4.1 Auxiliary Functions

29

Semantics

{[n1, n2, n3] + t[n′
1 − n1, n

′
2 − n2, n

′
3 − n3] | 0 ≤ t ≤ 1}

R�rect(p1, p2, p3)� =
{v + (t(R�p3� −R�p1�)) | v ∈ R�line(p1, p2)� | 0 ≤ t ≤ 1}

R�box(r, (n1, n2, n3))� = {v + t[n1, n2, n3] | v ∈ R�r� | 0 ≤ t ≤ 1}

R�tri(p1, p2, p3)� =
{t1R�p1� + t2R�p2� + t3R�p3� | 0 ≤ t1, t2, t3 | t1 + t2 + t3 = 1}

R�mesh(t1, ..., tn)�∗ =

n⋃
i=1

R�ti�

∗ This definition is only accurate if it is an open mesh, in order to be able to handle closed

meshes this definition would need to be expanded to include all internal points contained

within the mesh.

Sometimes it is necessary to obtain an attribute of an instance of a certain
category. For this a suffix function is defined followed by the signature of that
attribute conatained in the category instance. A few examples will be written
out in full, but this principle can be applied to any category if it contains other
categories within its definition:

For the building category there are three ways of applying this function:

bld x(spacs{Σ}, elems{H}, fns{F}).spacs = Σ

bld x(spacs{Σ}, elems{H}, fns{F}).elems = H

bld x(spacs{Σ}, elems{H}, fns{F}).funcs = F

Additional there is the special function .name:

bld x(spacs{Σ}, elems{H}, fns{F}).name = x

A set of elements can contain a mix of all element types, as defined by the
grammar rule:

η ::= λ | ς | w | c | r | ω | d | e | ρ

Because of this another set of functions is declared that yield a subset of those
elements of one specific type. For example in the case for Flr:

H ′ is the set of all floors contained in the set of mixed elements in H

H.flr = H ′

30

4.2 Semantic functions

Additional to conventional predicate logic five symbols were added to express
spatial configurations: adjacency, intersect, supported, covered, contact and
chained contact. These are defined for any variable or object that has a ge-
ometry component, which corresponds to the permitted arguments for project
functions.

For these it is necessary to define the sets of vertical and horizontal planes
as well as the complete set of lines and planes in R3:
Vertical planes:

vPlanes = {{r = p+ s[0, 0, 1] + t[x, y, 0] | s, t ∈ R} | x, y ∈ R | p ∈ R3}

Horizontal planes:

hPlanes = {{p+ s[0, 1, 0] + t[1, 0, 0] | s, t ∈ R} | p ∈ R3}

Lines:

lines = {[n1, n2, n3]+t[n′
1−n1, n

′
2−n2, n

′
3−n3] | 0 ≤ t ≤ 1} | n1, n2, n3, n

′
1, n

′
2, n

′
3 ∈ R3

Planes:

planes = {r = p+sv1+tv2 | s, t ∈ R} | p, v1, v2 ∈ R3 | v1, v2 are linearly independent

An abbreviation is defined for the following pair of predicates over a set
N ⊂ R3 since these have to hold for all spatial relations:

valid(N) ⇐⇒ N �= ∅ ∧ ¬N ∈ lines

Adjacency ||:

[adj.]
α, α′ ∈ A R�G�α�� ∩R�G�α′�� = N valid(N) ∃P ∈ vPlanes[N ∈ P]

A � α||α′

Intersect #:

[int.]
α, α′ ∈ A R�G�α�� ∩R�G�α′�� = N valid(N) �P ∈ planes[N = P]

A � α#α′

Supported :

α, α′ ∈ A R�G�α�� ∩R�G�α′�� = N valid(N)

[sup.]
∃P ⊂ hPlanes[N ∈ P] ∀[n1, n2, n3] ∈ R�G�α��[∀[n4, n5, n6] ∈ R�G�α′��[n6 ≤ n3]]

A � α α′

Covered :

α, α′ ∈ A R�G�α�� ∩R�G�α′�� = N valid(N)

[cov.]
∃P ⊂ hPlanes[N ∈ P] ∀[n1, n2, n3] ∈ R�G�α��[∀[n4, n5, n6] ∈ R�G�α′��[n3 ≤ n6]]

A � α α′

4.2 Semantic Functions

31

Semantics

Contact ∼ :

[con. a]
α, α′ ∈ A α||α′

A � α ∼ α′

[con. s]
α, α′ ∈ A α α′

A � α ∼ α′

[con. c]
α, α′ ∈ A α α′

A � α ∼ α′

Chained contact ≈ :

[c. con. a]
α, α′ ∈ A α ∼ α′

A � α ≈ α′

[c. con. b]
α, α′ ∈ A ∃α′′ ∈ A[α ∼ α′′ ∧ α′′ ≈ α′]

A � α ≈ α′

All other symbols used in the predicate statements are evaluated as expected,
and will not be written out in full.

4.3 Rules

This section addresses the semantic rules on how one categories can be derived
from other categories.
The judgements for these rules are as follows:

• M � P for a model Mod to a project Proj

• O � SΦBF for a set of objects Objs to a site Site, set of function decla-
rations Funcs, buildings Blds and function invocations Fns

• ΦSO � B for a set of function declarations Funcs, a Site Site, and a set
of objects Objs to a set of buildings Blds

• ΦSO � β for a set of function declarations Funcs, a Site Site, and a set
of objects Objs to a building Bld

• SO � ΣH for a site Site and a set of objects Objs to a set of spaces
Spacs and a set of elements Elems

• SO � Σ for a site Site and a set of objects Objs to a set of spaces Spacs

• SO � V for a site Site and a set of objects Objs to a void Void

• SO � g for a site Site and a set of objects Objs to a geometry Geom

• V � σ for a void Void to a space Spac

• SOΣ � H for a site Site and a set of objects Objs to a set of elements
Elems

• SOΣ � η for a site Site and a set of objects Objs to an element Elem ∗

4.3 Rules

32

• ΦA � F for a set of function declarations Funcs and arguments Args to
a set of function invocations Fns

• φA � f for a set of function declarations Funcs and arguments Args to
a function invocation Fn

∗ The rules for element derivation are gathered in section 4.5, since these all follow the same

general pattern, but have different rules depending on the specific type of element.

The rules for the judgements listed above are defined using proof trees. This
means that the judgement at the bottom of the proof tree is a valid only if all
judgements and statements above are valid as well.

The bottom of the proof tree is the derivation of a project declaration from a
model.

[model]
P = SΦBF M = O O � SΦBF

M � P

In order to verify the validity of the model in regards to the project definition
objects of the model have to infer the buildings and functions that act on the
project, within the given site. This means that the site and objects together
with the function declarations of the project can be evaluated to a set of build-
ings. This set of buildings has to contain the requirements as defined in the
project description. In turn this set of buildings in the site context has to meet
the functions that are defined in regards to the project as a whole.

[objects]
ΦSO � B′ B � B′ ΦS ∪B′ � F

O � SΦBF

Based on the function declarations of the project definition and the model the
buildings are derived.

[der. blds]
ΦSO′ � β ΦSO′′ � B′ O′ ∪O′′ = O O′ ∩O′′ = ∅ {β} ∪B′ = B

ΦSO � B

A singular building is derived through the evaluation of the model to spaces
and building elements. After which those are evaluated to test if the function
requirements are met.

[const. bld]
SO � ΣH ΦΣ ∪H � F

ΦSO � bld x(spacs{Σ}, elems{H}, fns{F})

Site and objects evaluate to spaces and building elements by separately evalu-
ating the objects to elements and in turn the elements together with the site to
spaces.

[der. spac, elem]
SO � Σ SOΣ � H

SO � ΣH

33

Semantics

Construct spaces from site and set objects.

[constr. spacs]
SO � V V � σ SO � Σ′ {σ} ∪ Σ′ = Σ

SO � Σ

Construct Voids from site and set of objects.

[constr. voids]
SO � g SO � V ′ {v} ∪ V ′ = V

SO � V

Construct Void from site and set of objects.

[constr. void]
∀g′ ∈ G�S.objs�[¬g′#g] ∀o ∈ G�O�[¬o#g] ∃O′ ⊂ O[g O′]

SO � g

Construct space from voids.

[constr. space]
V = δ

V � spac x(δ)

Derive elements from objects.

[der. elems]
SO′Σ � η SO′′Σ � H ′ {η} ∪H ′ = H O′ ∪O′′ = O O′ ∩O′′ = ∅

SOΣ � H

Verify functions of provided arguments and function declarations.

[ver. funcs]
φA � f ′ ΦA � F ′′ F � F ′ {f ′} ∪ F ′′ = F ′ φ ∈ Φ

ΦA � F

Verify function is met by provided arguments and function declaration.

[ver. func]
φA′ � f A′ ⊂ A

φA � f

Evaluate function invocation.

[eval. func]
� π[X := A]

func x(X){π} A � x(A)
Where π[X := A] means substituting the variables X in the predicate equation

of the function declaration by the arguments A

4.4 Instance statements

The following set of statements define how one variable of a category can be
derived to a more specific instance of that same category:

34

First the different instance rules for domains Dom:
Instance of an empty domain can be any domain.

[inst. dom. empty.]
ε � δ

Instances of m2 domains.

[inst. dom. m2,m2]
n1 ≤ n3 ≤ n2 n1 ≤ n4 ≤ n2

m2(n1, n2) � m2(n3, n4)

[inst. dom. m2,xyz]
n1 ≤ n3 × n5 ≤ n2 n1 ≤ n4 × n6 ≤ n2

m2(n1, n2) � x(n3, n4), y(n5, n6), z(n7, n8)

[inst. dom. m2,G]
The surface area of the groundplanes of G is within the domain of {n1, n2}

m2(n1, n2) � G

Instances of m3 domains.

[inst. dom. m3,m3]
n1 ≤ n3 ≤ n2 n1 ≤ n4 ≤ n2

m3(n1, n2) � m3(n3, n4)

[inst. dom. m3,xyz]
n1 ≤ n3 × n5 × n7 ≤ n2 n1 ≤ n4 × n6 × n8 ≤ n2

m3(n1, n2) � x(n3, n4), y(n5, n6), z(n7, n8)

[inst. dom. m3,G]
The cubic area of G is within the domain of {n1, n2}

m3(n1, n2) � G

Instances of wdh domains.

[inst. dom. wdh]
n1 ≤ n7 ≤ n2 n1 ≤ n8 ≤ n2 n3 ≤ n9 ≤ n4 n3 ≤ n10 ≤ n4 n5 ≤ n11 ≤ n6 n5 ≤ n12 ≤ n6

w(n1, n2), d(n3, n4), h(n5, n6) � w(n7, n8), d(n9, n10), h(n11, n12)

[inst. dom. wdh, G]
The width, depth, height of G fall within {n1, n2}, {n3, n4}, {n5, n6} respectively

w(n1, n2), d(n3, n4), h(n5, n6) � G

Instance of a space:

[inst. spac.]
δ � δ′

spac x(δ) � spac x(δ′)

Construct spaces from site and set objects.

[constr. spacs]
SO � V V � σ SO � Σ′ {σ} ∪ Σ′ = Σ

SO � Σ

Construct Voids from site and set of objects.

[constr. voids]
SO � g SO � V ′ {v} ∪ V ′ = V

SO � V

Construct Void from site and set of objects.

[constr. void]
∀g′ ∈ G�S.objs�[¬g′#g] ∀o ∈ G�O�[¬o#g] ∃O′ ⊂ O[g O′]

SO � g

Construct space from voids.

[constr. space]
V = δ

V � spac x(δ)

Derive elements from objects.

[der. elems]
SO′Σ � η SO′′Σ � H ′ {η} ∪H ′ = H O′ ∪O′′ = O O′ ∩O′′ = ∅

SOΣ � H

Verify functions of provided arguments and function declarations.

[ver. funcs]
φA � f ′ ΦA � F ′′ F � F ′ {f ′} ∪ F ′′ = F ′ φ ∈ Φ

ΦA � F

Verify function is met by provided arguments and function declaration.

[ver. func]
φA′ � f A′ ⊂ A

φA � f

Evaluate function invocation.

[eval. func]
� π[X := A]

func x(X){π} A � x(A)
Where π[X := A] means substituting the variables X in the predicate equation

of the function declaration by the arguments A

4.4 Instance statements

The following set of statements define how one variable of a category can be
derived to a more specific instance of that same category:

4.4 Instance Statements

35

Semantics

Instance of an element (not seperately written out in full for all elements, but
defined following the universal pattern of the element definition):

[inst. elem.]
elemType1 = elemType2 args � args′ δ � δ′

elemType1(args){δ} � elemType2(args′){δ′}

Instance of set of spaces:

[inst. spacs.]
σ � σ′ Σ′′ � Σ′′′ {σ} ∪ Σ′′ = Σ {σ′} ∪ Σ′′′ = Σ′

Σ � Σ′

Instance of set of empty spaces:

[inst. spacs.e]
Σ = ∅

Σ � Σ′

Instance of set of elements:

[inst. elems.]
η � η′ H ′′ � H ′′′ {η} ∪H ′′ = H {η′} ∪H ′′′ = H ′

H � H ′

Instance of set of empty elements:

[inst. elems.]
H = ∅

H � H ′

Instance of list of arguments:

[inst. args.]
α � α′ A � A′

α,A � α,A′

Instance of a building:

[inst. bld.]
Σ′′ ⊂ Σ′ H ′′ ⊂ H ′ Σ � Σ′′ H � H ′′

bld x(spacs{Σ}, elems{H}, fns{F}) � bld x(spacs{Σ′}, elems{H ′}, fns{F})

Instance of set of buildings:

[inst. blds.]
β � β′ B′′ � B′′′ {β} ∪B′′ = B {β′} ∪B′′′ = B′

B � B′

[inst. fn.]
A � A′

x(A) � x(A′)

[inst. fns.]
f � f ′ {f} ∪ F ′′ = F {f ′} ∪ F ′′′ = F ′

F � F

36

For any attribute of a category, it is true that the attribute is an instance of
another object’s attribute if the same is true for the parent object. As an ex-
ample the rules for spaces and elements of a building are written out:

[inst. sBlds.]
B � B′

B.spacs � B′.spacs

[inst. eBlds.]
B � B′

B.elems � B′.elems

4.5 Building Element statements

Construct floor from site, objects and spaces:

[constr. flr]
δ = G�O� Σ′ ⊂ Σ Σ′′ ⊂ Σ ∀o ∈ O[∃g ∈ G�Σ′�[g o]] ∀o ∈ O[∃g ∈ G�Σ′′�[g o]]

SOΣ � flr(Σ′,Σ′′){δ}

Construct stair from site, objects and spaces:
[constr. str.]
δ = G�O� σ ∈ Σ σ′ ∈ Σ′ ∀o ∈ O[∀o′ ∈ O[O � o ≈ o′]] ∃o ∈ O[o G�σ�] ∃o ∈ O[o G�σ′�]

SOΣ � str(σ, σ′){δ}

Construct wall from site, objects and spaces:

[constr. wall]
δ = G�O� Σ′ ⊂ Σ Σ′′ ⊂ Σ ∀o ∈ O[∃g ∈ G�Σ′�[g||o]] ∀o ∈ O[∃g ∈ G�Σ′′�[g||o]]

SOΣ � wall(Σ′,Σ′′){δ}

Construct wall from site, objects and spaces:

[constr. fac.]
δ = G�O� Σ′ ⊂ Σ Σ′′ ⊂ S ∀o ∈ O[∃g ∈ G�Σ′�[g||o]] ∀o ∈ O[∃g ∈ G�Σ′′�[g||o]]

SOΣ � fac(Σ′,Σ′′){δ}

Construct roof from site, objects and spaces:

[constr. rf.]
δ = G�O� Σ′ ⊂ Σ ∀o ∈ O[∃g ∈ G�Σ′�[g o]]

SOΣ � rf(Σ′){δ}

Construct window from site, objects and spaces:

[constr. wnd.]
δ = G�O� σ ∈ Σ σ′ ∈ Σ ∪ S ∀o ∈ O[o||G�σ� ∧ o||G�σ′�]

SOΣ � wnd(σ, σ′){δ}

4.5 Building Element Statements

37

Semantics

Construct door from site, objects and spaces:

[constr. dr.]
δ = G�O� σ ∈ Σ σ′ ∈ Σ ∪ S ∀o ∈ O[o||G�σ� ∧ o||G�σ′�]

SOΣ � dr(σ, σ′){δ}

Construct elevator from site, objects and spaces:

[constr. elv.]
δ = G�O� Σ′ ⊂ Σ ∀σ ∈ Σ′[∃o ∈ O[o||G�σ�]] ∀o ∈ O[∀o′ ∈ O[O � o ≈ o′]]

SOΣ � elv(Σ′){δ}

Construct ramp from site, objects and spaces:
[constr. rmp.]
δ = G�O� σ ∈ Σ σ′ ∈ Σ′ ∀o ∈ O[∀o′ ∈ O[O � o ≈ o′]] ∃o ∈ O[o G�σ�] ∃o ∈ O[o G�σ′�]

SOΣ � rmp(σ, σ′){δ}

4.6 Empty statements

Finally there is a set of statements for if the right side is an empty set:

[empty blds.]
ΦS∅ � ∅

[empty spacs.]
SO � ∅

[empty voids.]
SO � ∅

[empty elems.]
S∅Σ � ∅

[empty fns.]
ΦA � ∅

4.6 Empty Statements

38

5.
Examples

In this chapter 4 examples of project definitions will be given following the
syntax and semantics defined in the previous two chapters. The first example
is meant as a base case to show the way in which a project can be defined,
using a rudimentary example. The second example attempts to capture one of
Alexander’s patterns. The third example is one of the galleries of the design
project described in 2.2.2, following the basic algorithmic principles used for
the design. The last example mostly serves as an illustration of the challenges
of capturing a not necessarily clear definition of an architectural concept in a
formal manner, in this case a courtyard.

5.1 Connected Cubes
The base case example is that of two connected cubes, each between 1 to 2 me-
tres in floor space. For this example the full proof tree is given in Appendix A,
to show how the model given on the next page, can be shown to fit the project
definition given below based on the defined syntax and semantics.

5.3 Courtyard

site location(objs(), spacs(Σsite)){

func courtyard(B){

∃sc ∈ B.spacs[

¬∃er ∈ B.elems[sc er]∧

∀sb ∈ B.spacs[sb||sc → ∃er ∈ B.elems[sb er]]∧

∀ew ∈ B.elems.wall[ew||sc → ∃sb ∈ B.spacs[

ew||sb ∧ ∃er ∈ B.elems[sb er]]∧

¬∃ss ∈ Σsite[sc ∼ ss]}

bld buildingWithCourtyard(spacs {}, elems{}, fns{})

courtyard(bld buildingWithCourtyard(spacs {}, elems{}, fns{}))

Abbreviations:
Σsite = The external spaces of the surrounding site context.

5.4 Connected cubes

func noIsolatedSpaces(B1){∀s1 ∈ B1.spacs[∃s2 ∈ B1.spacs[s1||s2]]

bld connectedCubes(spacs{

spac s1(m2(10002, 20002)),

spac s2(m2(10002, 20002))},

elems{}, funcs{})

noIsolatedSpaces(

bld connectedCubes(spacs{

spac s1(m2(10002, 20002)),

spac s2(m2(10002, 20002))},

elems{}, funcs{}))

39

Examples

M =

V =

H =

P =

300

3000

1500

500

1000
1700

g3

g1g2

g4 g5
g6

g7

g8

g9

g10

g11

g12

40

5.2 C. Alexander pattern 101: Building Thoroughfare

The project description below represents a simplified interpretation of the pat-
tern of a thoroughfare as described by Alexander in A Pattern Language
[1977, p492]. The basic idea is that if there is no way to access the site from
a space in the building, then it has to access the thoroughfare, which is con-
nected to two external spaces. The dimensions of this thoroughfare space are
bound to the dimensions as defined in the pattern description. The full descrip-
tion by Alexander can be found in Appendix B.

Chapter 5

Examples

5.1 C. Alexander pattern 101: Building Thor-
oughfare

site location(objs(), spacs())

func access(B1, s1, s2){

s1||s2∨

∃e1 ∈ B1.elems.str ∪B1.elems.dr ∪B1.elems.elv∪

B1.elems.rmp[s1, s2 ∈ e1.spacs]}

func buildingThoroughfare(B1, S1, st){

st ∈ B1∧

∃s1, s2 ∈ S1.spacs[¬(s1 = s2) ∧ access(B1, st, s1) ∧ access(B1, st, s2)]∧

∃e1 ∈ B1.elems[st e1]∧

∀s3 ∈ B1.spacs[¬∃s4 ∈ S1.spacs[access(B1, s3, s4)] → access(B1, st, s3)}

bld publicBuildingComplex(

spacs {spac indoorStreet(w(3353, 7000), d(7000,∞), h(3657, 9000))},

elems{}, fns{})

buildingThoroughfare(Bpbc, Ssite,Σspaces)

Abbreviations:
Ssite = site location(objs(), spacs())
Bpbc =

bld publicBuildingComplex(

spacs {spac indoorStreet(w(3353, 7000), d(7000,∞), h(3657, 9000)),

elems{}, fns{})

Σspaces = spac indoorStreet(w(3353, 7000), d(7000,∞), h(3657, 9000))

25

41

Examples

5.3 Generated Art Gallery St. Mark’s Square

The core concepts of the algorithmic design method for the galleries are the
MST determined spaces and connections, together with that all spaces need to
be accessible. Additionally views out to the context informed wall placements.
These features have been included in the project definition given below. 5.2 Generated Art Gallery st. Mark’s Square

site StMarksSquare(objs(Osite), spacs(Σsite))

func access(B, s1, s2){

s1||s2∨

∃e1 ∈ B.elems.str∪B.elems.dr∪B1.elems.elv∪B.elems.rmp[s1, s2 ∈ e1.spacs]}

func accessible(B, s1, s2){

access(s1, s2)∨

∃s3 ∈ B.spacs[access(s1, s3) ∧ accessible(s3, s2)]}

func fullyAccessible(B,S){

∀s1 ∈ B.spacs[

∃s2 ∈ S.spacs[accessible(s1, s2)]]}

func visible(B, g1){

∃p1, p2 ∈ R3[

p1 ∈ R�G�B.spacs��∧
p2 ∈ R�g1�∧
¬∃g2 ∈ G�B.elems \B.elems.wn�[line(p1, p2)#g]}

bld gallery(spacs {ΣgallerySpaces}, elems{}, fns{})

fullyAccessible(Bgallery, site StMarksSquare(objs(Osite), spacs(Σsite)))

FspaceRels

Fvisibility

Abbreviations:
Bgallery = bld gallery(spacs {ΣgallerySpaces}, elems{}, fns{})

ΣgallerySpaces: Here the number of spaces s1 ... sn in the gallery are defined,
together with the required cubic area for each subset of art. This is informed
by the MST of the art collection.

FspaceRels: For each sub collection of art housed in space si, and all neighbouring
sub collections housed in space sj , the following function call is defined:

access(Bgallery, si, sj)

FspaceRels: For each site geometry gi that is deemed as a relevant view(see image
with plus signs), the following function call is defined:

visible(Bgallery, gi)

42

M =

P =

 StO = StS = Gallery =

43

Examples

 Gallery.spacs =

 Gallery.elem =

 Gallery.flr =

 Gallery.str =

 Gallery.wall =

 Gallery.wn =

44

The blue cross signs in this drawing depict the views from the bounding box
outwards that were deemed to be relevant to the visual qualities of the col-
lection. The visibility functions of the project declaration would have to be
applied to all g in STO that are in line of these views.

45

Examples

5.4 Courtyard
For this last example only the function definition is given in full, as this is only
meant to convey a certain architectural concept: that of the courtyard. Follow-
ing the project description below, a set of basic models is given with motivation
on why some of these do and others don’t follow the project description. After
this a set of architectural examples will be discussed in regards to this defini-
tion and the basic models.
In words the function for a building with a courtyard is specified as follows:
There is a space in the building for which:
	 - there is no roof
	 - all adjacent building spaces do have a roof
	 - all adjacent walls are between this space and a space with a roof
	 - there is no adjacency to the site spaces
5.3 Courtyard

site location(objs(), spacs(Σsite)){

func courtyard(B){

∃sc ∈ B.spacs[

¬∃er ∈ B.elems[sc er]∧

∀sb ∈ B.spacs[sb||sc → ∃er ∈ B.elems[sb er]]∧

∀ew ∈ B.elems.wall[ew||sc → ∃sb ∈ B.spacs[

ew||sb ∧ ∃er ∈ B.elems[sb er]]∧

¬∃ss ∈ Σsite[sc ∼ ss]}

bld buildingWithCourtyard(spacs {}, elems{}, fns{})

courtyard(bld buildingWithCourtyard(spacs {}, elems{}, fns{}))

Abbreviations:
Σsite = The external spaces of the surrounding site context.

5.4 Connected cubes

func noIsolatedSpaces(B1){∀s1 ∈ B1.spacs[∃s2 ∈ B1.spacs[s1||s2]]

bld connectedCubes(spacs{

spac s1(m2(10002, 20002)),

spac s2(m2(10002, 20002))},

elems{}, funcs{})

noIsolatedSpaces(

bld connectedCubes(spacs{

spac s1(m2(10002, 20002)),

spac s2(m2(10002, 20002))},

elems{}, funcs{}))

46

The following images depict a set of elementary models that either do or don’t
satisfy the project description given for a courtyard. The blue dotted area sig-
nifies the space which would be classified as the courtyard: sc

The obvious example
of an open space fully
surrounded by a closed
space.

The spaces adjacent to
the surrounding wall do
not need to be closed,
only covered, making
this a valid model.

The surrounding space
is not covered, hence not
satisfying the specifica-
tion.

One wall is adjacent to
the context space, mak-
ing it invalid.

The open corridor is not
covered, thus resulting
in an invalid instance.

In this case it depends on how the spaces of the
building are evaluated, if the space is limited to
the centre this is a valid instance, otherwise it isn’t
since it is adjacent to the context, and there is an
element that covers it.

1 2

3 4 5

6 7

47

Examples

Now follows a selection of architecture projects of various scales, time periods
and styles, all with a feature that could be interpreted as a courtyard. It will be
discussed whether these satisfy the given definition P or not, and how this com-
pares to an architectural interpretation. It will also be indicated which scenario
the buildings follow in terms of the examples given on the previous page. (Image
labels are given at the end of this section).

The Roman ‘Domus’ house typical-
ly has a specific type of courtyard in
the middle with a pool for rainwa-
ter underneath. If this pool (nr 4 in
the image) would be identified as a
separate space it follows the defini-
tion P. However if the surrounding
area including the pool would be
interpreted as one singular space it
wouldn’t, since part of the proposed
courtyard space would be covered.
A similar scenario to example 6 and
7.

A Chinese ‘Siheyuan’ type resi-
dence would unambiguously satisfy
P. This is due to the complete sur-
rounding of covered spaces around
the central courtyard, alike example
1.

The unbuilt project ‘The Goldenberg House’ by Louis Kahn is also a clear
cut example of a building that would fit the definition given in P, similar to
example 1.

6/7

1

1

48

Tadao Ando’s famous
Azuma House with an
open area between the
two enclosed parts of
the house does not sat-
isfy P. It is a similar
case to example 4, since
there are walls enclosing
the open area, but both
are adjacent to the ex-
ternal context.

A more recent Japanese house, ‘loop
house’ by Tomohiro Hata, does satisfy
the given definition, on one condition.
If the courtyard is considered as one
space, excluding the entire staircase
area marked with red in the plan
above, this would fit the definition
given in P. If the ground floor section
of the staircase area, marked in the
photo on the left would be included
in the definition of that space, this
would not fit P.

4

1

49

Examples

The next two projects are both by Mies van der Rohe. The first is a more
difficult example, since it is a set of 3 houses, called ‘Group of Three court
houses’. As suggested in the name, the architect saw these houses as having a
courtyard. However, because all open spaces are adjacent to either the site, or
another open space it does not fit the definition of P. This follows examples 3
and 4.

3/4

This project by van der Rohe for a concrete country house includes an open
area at the centre, which is on one side completely exposed to the remaining
context. Essentially an extreme version of example 5, thus not following P.
However due to the change in levels from the surrounding area architecturally
it could be debated that this is a courtyard.

5

50

Le Corbusier’s La Tourette Monastery. Another case similar to examples 6/7.
Architecturally this would certainly qualify as a courtyard, but since there
is a direct access to the site context from the courtyard, without the need of
entering the building it would not meet P if the colonnade would be regarded
as one singular space together with the courtyard.

By far the largest pro-
ject discussed in this ex-
ample: the Apple cam-
pus designed by Foster
+ Partners. Fits exam-
ple 1 in terms of struc-
ture, but due to its size
it could be argued from
an architectural stand-
point that the courtyard
does not follow that of
the conventional defini-
tion.

6/7

1

51

Examples

The last example shows the use of
courtyards in a housing estate. This is
the ‘Lindenstrasse/Markgrafenstrasse’
housing in Berlin, by Herman Hertz-
berger. Overall it follows example 1,
however the passage indicated in red
would have to be specified as a sepa-
rate space, when interpreting the mod-
el to satisfy P.

1

Labels of figures used in order of appearance in this section
Figure 11. Domus
Figure 12. Siheyuan
Figure 13. The Goldenberg House axon
Figure 14. The Goldenberg House model
Figure 15. Azuma house axon
Figure 16. Azuma house facade
Figure 17. Azuma house internal
Figure 18. Loop house external
Figure 19. Loop house plan
Figure 20. Loop house internal
Figure 21. Court houses
Figure 22. Concrete country house
Figure 23. La Tourette Monastery external
Figure 24. La Tourette Monastery internal
Figure 25. Apple campus plan
Figure 26. Apple campus render
Figure 27. Lindenstrasse axon
Figure 28. Lindenstrasse plan
Figure 29. Lindenstrasse internal

52

6.
Implementation

The last three chapters were concerned with the development of a way in
which an architectural proposal can be quantified in terms of the functions it
is meant to fulfil. This chapter focusses on how this could then be implemented
in such a way that it can aid in computational design methods that aim to find
an optimal solution to a given project definition.

6.1 Decidability
For possible implementations of the described DSL it is of importance whether
the following question is decidable: Given a model Mod and a project descrip-
tion Proj, does the model satisfy the requirements of the project?
Whether a model satisfies a project according to the defined syntax and se-
mantics, depends on the possibility of deriving a combination of spaces and
elements from the model, in such a way that the project requirements are ful-
filled. This is the case if those derived spaces and elements are valid instances
of the spaces and elements as defined in the building definitions of the project,
and filling in those instances in the function statements of the project need to
evaluate to true.
	 Deciding on if a space or element is a valid instance only relies on
checking relations between real numbers. The functional statements as defined
in the DSL are equivalent to first-order logic statements over the real numbers.
Because of this the decidability of a derivation of a model to a project definition
can be seen as a satisfiability modulo theories (SMT) problem [Barrett et al.,
2008]. The constraints are determined by the model, as this determines what
spaces and elements can be derived from it, and the building definitions, limit-
ing the domain of the possible instances. Then within these constraints a valid
set of derivations need to be found that satisfy the function statements.
	 All operations over domains of real numbers in the specification are
linear, which would make it possible to implement the DSL in such a way
that the problem is reduced to a system of linear inequalities. By applying
Fourier-Motzkin elimination [Monniaux, 2010] it would seem that the overall
problem of checking the validity of a model in terms of a project description
within this DSL would be decidable.

6.2 Integration in CAD
6.2.1 Derivation of spaces

From the courtyard example it becomes clear that the way in which the spaces

53

Potential Implementation

of the project are derived from the objects of the model can heavily influence
whether a model is recognised as a valid instance of the project definition or
not. In many architectural projects the lines between spaces are blurry at best,
especially since space is a rather subjective term. The way in which architects
refer to space often depends on the scale at which a project is discussed, thus
making it a fluid concept within the design process. This is also the reason
behind the way spaces are defined within the syntax and semantics, where they
are not part of the model itself, but directly derived from it through a collec-
tion of voids. After all, in CAD models it is unusual to include a geometry of
the void that forms a specific space, both because it is in fact not a physical
geometry, and it is often not something that is set in stone within the project.
However in the context of a formal expression of architectural design this does
present a problem in terms of possible ambiguous interpretations.
	 One way of solving this would be the introduction of a convention
within architectural CAD modelling where the spatial organisation of a build-
ing is made more distinct. In that case the model category in the syntax would
need to be adjusted to contain one set of physical and one of organisational
objects - to be evaluated to spaces. This would make the derivation from model
to project significantly less ambiguous.
	 Another option would be to introduce a way in which the designer
has to indicate how certain spaces are interpreted in different scenarios. This
would align more with the way in which the concept of space is currently treat-
ed in architectural design. That way it might be suitable to adjust the seman-
tics in such a way that multiple instances of spaces can be defined, where for
one function an area is regarded as one space, where for another criteria that
same area would be broken down in multiple different spaces.
	 The first option would be more in line with the proposed goal of this
thesis where the functional aspects of a project are directly integrated in the
CAD modelling process, thus adding a second layer to conventional computa-
tional design models. This would add the advantage that changes could direct-
ly be evaluated in regards to the project definition.

6.2.2 Derivation of elements
The second aspect within the semantics that allows for varying interpretations
is the derivation of building elements from the model. Many creative design
solution stem from the blurred lines between the distinction of elements and
their functions: should a door be a distinct object, or is a gap in a wall also
seen as a door, where does the transition from wall to ceiling end, is a staircase
only a staircase or also part of a floor if it is a gradual transition, etc. The
current way in which the syntax and semantic rules are defined would force
the designer to make a distinction between where one object ends and the next
one starts, in order to be able to evaluate to the respective elements. This was
done so that no objects from the model can be omitted, which would create
possibilities of false positives, since an obstructing object could be chosen not
to be interpreted as an element. A possible adjustment to the syntax to make it
possible to interpret one object as multiple different building elements would be
one way to address this. A statement would need to be added where one object
can be interpreted as two elements simultaneously. After all the syntax and
semantics that are introduced do not aim to be a design manual, but rather a
means of verifying the validity of a model in terms of its design goals.

1 https://github.com/JulianBesems/PlaceBuildingsAI (I’ll probably create a new repo with
neater commits)

54

6.2.3 Mutual influence of design and definition
In an architectural project, the building programme is often re-evaluated as
a direct result of the development of its design. This means that during the
process of defining an instance to satisfy the project definition, that very
definition could also be adjusted again. Essentially any design process is a
continuous feedback loop between requirement and solution. This is also why
the option for integration of spatial definition during the design was advocated
above manual interpretation in 6.2.1. It is likely that an implementation of a
formal framework to connect the geometry to the functional aspects of a build-
ing would prompt a continuous dialogue between modelling and adjusting the
functional specification. However once one completed design instance would be
modelled, and the specification of the functional aspects would be perfected to
exactly fit that one instance, it should be possible to then develop a generative
algorithm, using the geometric conventions used in the model to explore vari-
ous instances of the design.

6.3 Use for generative architecture
In The Creativity Code by Marcus du Sautoy [2019] highlights how the AI
Alpha Go achieved a level of playing the game go that exceeded that of any
player, something he deemed as a truly creative act. This was seen as truly
creative and different from AI’s playing other games since Alpha Go didn’t
just master current playing methods, but actually changed the current way
of playing the game through breaking with fundamental tactical conventions.
One method behind this achievement is the use of a genetic neural network,
where the training data isn’t an aggregation of known outputs, but where the
training process is informed by how well each attempt is according to a fitness
function, essentially playing against itself.
	 This method of machine learning to drive creativity fundamentally dif-
fers from the previously discussed implementation of using image based GAN’s
in 2.1.2, since the neural network is not trained on historical data, or at least
not exclusively. Rather the quality of the output is judged in terms of it’s goals
and validity, by means of a fitness function.

Figure 30. Zoning proposal with the neural network.

55

Potential Implementation

Figure 31. Outcome of a zoning ‘game’, with 3D
interpretation.

Figures 32. Maze like outputs. The influence of the 8 directions
by which the game moves were restricted remain extremely
visible through the ‘wind mill’ patterns.

56

	 Based on this idea I attempted to implement a genetic neural network
in order to generate architectural zoning proposals1. The basic idea is that
given a set of spaces with a set number of tiles each, and a relation score be-
tween each space, the neural network is to propose a configuration of the tiles
that best reflects the relations between the spaces. The implementation was
based on an open source genetic neural network that plays the game snake
[Greerviau, 2019]. The algorithm was adjust so that instead of snakes there are
multiple nodes, each forming the starting point for a space. Then each space
takes turns with placing one of its tiles, until all tiles of all spaces have been
placed.
	 The input of the neural network is based from the centre tile of the
space who’s turn it is. From that tile it is calculated how many tiles of its own
there are, how close tiles of other spaces are, and how many empty spaces there
are for 8 directions. The output is the decision for each direction, the highest
score is where the tile is placed. At the end of each attempt the score is calcu-
lated based on a fitness score looking at adjacency of spaces according to the
relational scores.
	 The result is a maze like tiling for the set of given spaces. The dif-
ficulty proved to be twofold. First of all it was a challenge to find a way to
essentially turn an architectural massing exercise into a game. Second of all
it proved extremely challenging to evaluate the outcome in an accurate way
through a fitness function. Additionally my knowledge of neural networks and
genetic algorithms is rather limited, which restricted me to fairly basic at-
tempts.
	 I would argue that this approach could possibly be combined with a
more straightforward algorithmic approach such as the ones applied in the two
design projects described in 2.2.1 and 2.2.2. However the evaluation issue
would remain on how to score the outcome, which brings us back to the pro-
posal of a syntax and semantics for architectural design. This could provide
a means of scoring generated outcomes in terms of how well they satisfy the
desired project features.

1Code available on: https://github.com/JulianBesems/ArchitecturalZoningAI

https://github.com/JulianBesems/ArchitecturalZoningAI

57

Conclusion

7.
Conclusion

The development of a language to formally define functional aspects of ar-
chitectural design is meant to fill a void in computational technologies used
for architectural design. Current computational development within the field
of architecture is primarily focussed at ways of form finding, thus limited to
the geometrical aspect of design. This can partially be led back to the loss in
mutual interest between the fields of computer science and architectural de-
sign, since this has led to the more heavy reliance of architects on software not
specifically developed for the field of architecture.
	 In defining a way to express the functional aspects of an architectural
proposal in a formal language, the first step was to establish a hierarchy in
which an architectural design can be defined. The difficulty in this is that an
architectural project is not evaluated in a sequential way, given that at least
the final proposal of a design is static in nature. Consequentially the defined
language does not formalise the process of reaching a solution, but is focussed
at specifying the conditions this solution has to satisfy in order to meet the
project requirements. The structure of the syntax is top down, from least spe-
cific to most specific. Essentially a hierarchy is declared for an architectural
proposal, breaking down the whole to the axiomatic organisational elements
that tie the project together. The functional aspect of the specification consists
of statements that define conditions over the combination of the aforemen-
tioned elements. Within the project description the use of specific geometry
is kept to a minimum, focussing on compositional conditions. The semantics
then declares the way in which a specific model of a proposed solution can be
evaluated to determine if the project specification is satisfied.
	 The focus on functional aspects inevitably led to a structure within
which ambiguity was included, precisely because the current understanding
of architectural design is not absolute. The central functional category Spac
in the grammar represents the architectural concept of space. This concept is
at the centre of architectural design processes, but virtually always remains
implicit in the design outcome. The way in which spaces are derived from the
model is structured so that this ambiguity is maintained. This means that a
language is probably not the most suitable to distinguish whether a model is
a complete nonsensical building proposal. It is more suited to the functional
verification of proposals that meet a certain level of rudimentary correctness.
On the other extreme it is also not suitable for the evaluation of aesthetic char-
acteristics, as this heavily relies on the physical aspects of the project proposal,
which is not what this methodology focusses on. Completeness is only meas-
ured by the correlation between an abstracted CAD model and the extended
first order logic statements over the given categories. As such it is not intended
to aid in fully automating the design process, but rather to be incorporated in

58

current design methods as a tool to facilitate design abstraction.
	 This encourages a way of working where the specification of the project
would be developed in correspondence to the development of its solution. In ef-
fect this means that throughout the process the designer is forced to reevaluate
their own work, and adjust both specification and solution to reach a satisfacto-
ry whole. Often a creative architectural solution to a project brief also involves
the creative interpretation and reevaluation of that brief. As such this way of
working shows resemblance to the way in which Agile project management is
used within software development, where the software requirements are reeval-
uated based on the review.
	
7.1 Discussion
	 The evaluation of a model in terms of validity in the current DSL is
restricted to an absolute outcome, the model is valid or it isn’t. For further
implementation this might not be the most appropriate format of evaluation.
On a detailed level the propositions used for whether one element is adjacent to
another does not take into account how large this overlap is. This means that if
the specification says that one space needs to be connected to another, and there
is a 1mm gap between separating walls, this would evaluate to true. As such a
more fine-tuned way of expressing these relations might be desirable. On a larg-
er scale the limitation of this way of evaluation is that the outcome does not give
insight in where the issue lies. Because of this further development might look at
ways to numerically score the validity of a model, instead of being limited to a
boolean evaluation. This would also address the potential implementation where
the evaluation serves as fitness function for a generative approach using a ge-
netic neural network. On the other hand a balance is needed between simplicity
and specificity, at the moment the specification of the elements is almost entirely
restricted to their relational role, this means that within an instance there exists
a freedom in how these are being shaped. The danger of over-specifying the pro-
ject is that the design solutions will be bound to preconceived limitations, thus
standing in the way of solutions that were not considered beforehand. A possible
way of addressing this would be to connect the specification to a set of paramet-
ric tools, where the requirements can be more subtly adjusted throughout the
design process, allowing for more detail to be added once the design direction
has become more clear.
	 Previously it was mentioned that an architectural proposal is static,
but the experience of the user for which the design is intended is certainly
not. A different approach to the one taken in this thesis would be to focus on
the interaction of the dynamic user with the static project definition. Possibly
this would then focus on evaluating the experience of a sequence through the
building, requiring the specification of those sequences instead of the overall
functional aspects in a top down format.

59

List of illustrations

List of Illustrations

Cover Image - Project Atlas, Author’s own work, 2020. In Besems,
J. (2020a). createGalleries.py. UCL. Design project. http://unit-21.
com/?p=9454

Figure 1. - Pattern 110 - Main entrance by Christopher Alexander. In Alex-
ander, C. (1977). A Pattern Language. New York. Oxford University Press

Figure 2. - GAN generated floor plans by Stanislas Chaillou. In Chaillou, S.
(2019). AI + Architecture: Towards a New Approach. Harvard University.

Figure 3. - Generative process behind library bookshelves and walkways,
Author’s own work, 2019. In Besems, J. (2019). Books as Bytes. UCL. De-
sign project. http://unit-21.com/?p=8106

Figure 4. - Various library outputs depending on different sorting criteria
and existing context, Author’s own work, 2019. In Besems, J. (2019). Books
as Bytes. UCL. Design project. http://unit-21.com/?p=8106

Figure 5. - Assembly at the end of a semester after which the walkways
and bookshelves are adjusted to the behaviour of the inhabitants, Author’s
own work, 2019. In Besems, J. (2019). Books as Bytes. UCL. Design project.
http://unit-21.com/?p=8106

Figure 6. - A collection of libraries are situated within a larger dynam-
ic study landscape which follows a vector field, Author’s own work, 2019.
In Besems, J. (2019). Books as Bytes. UCL. Design project. http://unit-21.
com/?p=8106

Figure 7. - MST of an art gallery collection based on image similarity. The
resulting massing of the subdivision of spaces based on main branches is
seen on the left, Author’s own work, 2020. In Besems, J. (2020a). createGal-
leries.py. UCL. Design project. http://unit-21.com/?p=9454

Figure 8. - Visibility graph in order to find a valid circulation through the
gallery, Author’s own work, 2020. In Besems, J. (2020a). createGalleries.py.
UCL. Design project. http://unit-21.com/?p=9454

Figure 9. - Variety of generated gallery proposals, Author’s own work,
2020. In Besems, J. (2020a). createGalleries.py. UCL. Design project.
http://unit-21.com/?p=9454

Figure 10. - Collection of galleries in context, Author’s own work, 2020. In
Besems, J. (2020a). createGalleries.py. UCL. Design project. http://unit-21.
com/?p=9454

http://unit-21.com/?p=9454
http://unit-21.com/?p=9454
http://unit-21.com/?p=8106
http://unit-21.com/?p=8106
http://unit-21.com/?p=8106
http://unit-21.com/?p=8106
http://unit-21.com/?p=8106
http://unit-21.com/?p=9454
http://unit-21.com/?p=9454
http://unit-21.com/?p=9454
http://unit-21.com/?p=9454
http://unit-21.com/?p=9454

60

Figure 11. - Domus, Unknown Author. In Art History 342: Roman art,
https://arh342.weebly.com/rooms-in-the-domus.html

Figure 12. - Siheyuan, Unknown Author. In Apple Eden’s Blog, (2010),
Siheyuan,Quadrangles,Four Side Enclosed Courtyard(Reprinted), https://
appleeden.wordpress.com/2010/10/21/siheyuanquadranglesfour-side-en-
closed-courtyardreprinted/amp/

Figure 13. - The Goldenberg House Axon by Louis Kahn. In Fabrizi, M,
(2014), The Plan is a Society of Rooms*: Goldenberg House by Louis Kahn
(1959), http://socks-studio.com/2014/04/08/the-plan-is-a-society-of-rooms-
goldenberg-house-by-louis-kahn-1959/

Figure 14. - The Goldenberg House Model by Louis Kahn. In Fabrizi, M,
(2014), The Plan is a Society of Rooms*: Goldenberg House by Louis Kahn
(1959), http://socks-studio.com/2014/04/08/the-plan-is-a-society-of-rooms-
goldenberg-house-by-louis-kahn-1959/

Figure 15. - Azuma House Axon by Tadao Ando. In Baek, J. (2010). Cli-
mate, Sustainability And The Space Of Ethics, Architectural
Theory Review, 15:3, 377-395, DOI: 10.1080/13264826.2010.497181

Figure 16. - Azuma House Facade by Tadao Ando. In Sgustok Design,
Tadao Ando: Azuma House, https://sgustokdesign.com/tadao-ando-azu-
ma-house

Figure 17. - Azuma House Internal by Tadao Ando. In Sgustok Design,
Tadao Ando: Azuma House, https://sgustokdesign.com/tadao-ando-azu-
ma-house

Figure 18. - Loop House External by Tomohiro Hata. In Astbury, J. (2019),
Tomohiro Hata’s Loop House faces inwards onto a central courtyard,
Dezeen. https://www.dezeen.com/2019/07/14/loop-house-tomohiro-hata-ar-
chitect-associates-hyogo-japan-courtyard/

Figure 19. - Loop House Plan by Tomohiro Hata. In Astbury, J. (2019), To-
mohiro Hata’s Loop House faces inwards onto a central courtyard, Dezeen.
https://www.dezeen.com/2019/07/14/loop-house-tomohiro-hata-architect-as-
sociates-hyogo-japan-courtyard/

Figure 20. - Loop House Internal by Tomohiro Hata. In Astbury, J. (2019),
Tomohiro Hata’s Loop House faces inwards onto a central courtyard,
Dezeen. https://www.dezeen.com/2019/07/14/loop-house-tomohiro-hata-ar-
chitect-associates-hyogo-japan-courtyard/

Figure 21. - Court Houses by Mies van der Rohe. In Archive of Affinities.
(2011), MIES VAN DER ROHE, GROUP OF THREE COURT HOUSES,
PROJECT, 1938. https://archiveofaffinities.tumblr.com/post/14571923635/
mies-van-der-rohe-group-of-three-court-houses

https://arh342.weebly.com/rooms-in-the-domus.html
https://appleeden.wordpress.com/2010/10/21/siheyuanquadranglesfour-side-enclosed-courtyardreprinted/amp/
https://appleeden.wordpress.com/2010/10/21/siheyuanquadranglesfour-side-enclosed-courtyardreprinted/amp/
https://appleeden.wordpress.com/2010/10/21/siheyuanquadranglesfour-side-enclosed-courtyardreprinted/amp/

61

List of illustrations

Figure 22. - Concrete country house by Mies van der Rohe. In Architectur-
al Drawings, Models, Photos, etc.... (2014), Project for a concrete country
house. https://davidhannafordmitchell.tumblr.com/post/98384566063/tgphi-
pps-ludwig-mies-van-der-rohe

Figure 23. - La Tourette Monastery external by Le Corbusier, pho-
to by Oliver Martin Gambier. In Winston. A. (2016), Le Corbusier’s La
Tourette monastery is among his iconic buildings on the World Heritage
List. https://www.dezeen.com/2016/07/22/le-corbusier-la-tourette-monas-
tery-grass-roof-france-unesco-world-heritage/

Figure 24. - La Tourette Monastery internal by Le Corbusier, photo by
Fernando Schapo. In Winston. A. (2016), Le Corbusier’s La Tourette
monastery is among his iconic buildings on the World Heritage List.
Dezeen. https://www.dezeen.com/2016/07/22/le-corbusier-la-tourette-monas-
tery-grass-roof-france-unesco-world-heritage/

Figure 25. - Apple campus plan by Foster + Partners. In Basulto, D. (2011),
More about Foster + Partner’s new Apple Campus in Cupertino. ArchDai-
ly. https://www.archdaily.com/160044/more-about-foster-partners-new-apple-
campus-in-cupertino?ad _ medium=gallery

Figure 26. - Apple campus render by Foster + Partners. In Basulto, D.
(2011), More about Foster + Partner’s new Apple Campus in Cupertino.
ArchDaily. https://www.archdaily.com/160044/more-about-foster-partners-
new-apple-campus-in-cupertino?ad _ medium=gallery

Figure 27. - Lindenstrasse axon by Herman Hertzberger. In Herzberger,
H. (1984-1986), LINDENSTRASSE / MARKGRAFENSTRASSE HOUS-
ING, BERLIN, GERMANY. AHH. https://www.ahh.nl/index.php/en/pro-
jects2/14-woningbouw/78-lindenstrasse-housing-berlin-germany

Figure 28. - Lindenstrasse plan by Herman Hertzberger. In Herzberger,
H. (1984-1986), LINDENSTRASSE / MARKGRAFENSTRASSE HOUS-
ING, BERLIN, GERMANY. AHH. https://www.ahh.nl/index.php/en/pro-
jects2/14-woningbouw/78-lindenstrasse-housing-berlin-germany

Figure 29. - Lindenstrasse internal by Herman Hertzberger. In Herzberger,
H. (1984-1986), LINDENSTRASSE / MARKGRAFENSTRASSE HOUS-
ING, BERLIN, GERMANY. AHH. https://www.ahh.nl/index.php/en/pro-
jects2/14-woningbouw/78-lindenstrasse-housing-berlin-germany

Figure 30. - Zoning proposal with the neural network, Author’s own work.

Figure 31. - Outcome of a zoning ‘game’, with 3D interpretation, Author’s
own work.

Figure 32. - Maze like outputs. The influence of the 8 directions by which
the game moves were restricted remain extremely visible through the
‘wind mill’ patterns, Author’s own work.

62

Bibliography

Alexander, C. (1975). The Oregon Experiment. New York. Oxford University
Press

Alexander, C. (1977). A Pattern Language. New York. Oxford University
Press

Barrett, C. & Sebastiani, R. & Seschia, S. & Tinelli, C. (2008). Satisfiability
Modulo Theories. In Biere, A. & Heule, M. & Maaren van, H. & Walsch, T.
Handbook of Satisfiability. IOS Press.

Besems, J. (2019). Books as Bytes. UCL. Design project. http://unit-21.
com/?p=8106

Besems, J. (2020a). createGalleries.py. UCL. Design project. http://unit-21.
com/?p=9454

Besems, J. (2020b). Towards A New Architectural Entity -
How the n-Dimensional could inform the 3-Dimensional. UCL. Thesis.
http://unit-21.com/wp-content/uploads/2020/07/ThesisJBesems.pdf

Burke, A. & Tierney, T. (2007). Network practices: new strategies in archi-
tecture and design. New York, Princeton Architectural Press

Chaillou, S. (2019). AI + Architecture: Towards a New Approach. Harvard
University.

Greerviau. (2019). SnakeAI. https://github.com/greerviau/SnakeAI

IBM. (1988). IBM Architecture And Engineering Series. Announce-
ment Letter Number 288-215 dated May 3, 1988. IBM. https://
www-01.ibm.com/common/ssi/cgi-bin/ssialias?appname=skmww-
w&htmlfid=897%2FENUS288-215&infotype=AN&mhq=service%20initializ-
er&mhsrc=ibmsearch _ a&subtype=CA

Koolhaas, R. (2014). Elements of architecture. Tashen. Cologne.

Lea, D. (1994). Christopher Alexander: An Introduction for Object-Orien-
tated Designers. ACM SIGSOFT

Monniaux, D. (2010). Quantifier elimination by lazy model enumeration.
CAV 2010, Edinburgh, UK. pp. 585-599

Nielson, H. & Nielson, F. (1999) Semantics With Applications - A Formal
Introduction. John Wiley & Sons

Sowizral, H. (1987). Design Methodology for Object-Orientated Program-
ming. OOPSLA’97 Panel Session.

http://unit-21.com/?p=8106
http://unit-21.com/?p=8106
http://unit-21.com/?p=9454
http://unit-21.com/?p=9454
http://unit-21.com/wp-content/uploads/2020/07/ThesisJBesems.pdf
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?appname=skmwww&htmlfid=897%2FENUS288-215&infotype=AN&mhq=service%20initializer&mhsrc=ibmsearch_a&subtype=CA
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?appname=skmwww&htmlfid=897%2FENUS288-215&infotype=AN&mhq=service%20initializer&mhsrc=ibmsearch_a&subtype=CA
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?appname=skmwww&htmlfid=897%2FENUS288-215&infotype=AN&mhq=service%20initializer&mhsrc=ibmsearch_a&subtype=CA
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?appname=skmwww&htmlfid=897%2FENUS288-215&infotype=AN&mhq=service%20initializer&mhsrc=ibmsearch_a&subtype=CA

1

To keep the tree somewhat readable abbreviations will be used. The exact contents will be
made explicit in a list below the tree.

The purpose of the tree is to show that the model shown in the image to the right is a
valid instance of the project description below.

This follows from the following tree:

𝑃𝑃 = ∅{𝜑𝜑}{𝛽𝛽}{𝑓𝑓} 𝑀𝑀 = 𝑀𝑀

Sub-tree 1
constr. bld

{𝜑𝜑}∅𝑀𝑀 � 𝛽𝛽′ empty blds.
{𝜑𝜑}∅∅ � ∅ 𝑀𝑀 ∪ ∅ = 𝑀𝑀 𝑀𝑀 ∩ ∅ = ∅ {𝛽𝛽′} ∪ ∅ = {𝛽𝛽′}

der. blds
{𝜑𝜑}∅𝑀𝑀 � {𝛽𝛽′}

Sub-tree 2
inst. bld

𝛽𝛽 � 𝛽𝛽′ ∅ � ∅ {𝛽𝛽} ∪ ∅ = {𝛽𝛽} {𝛽𝛽′} ∪ ∅ = {𝛽𝛽′}
inst. blds

{𝛽𝛽} � {𝛽𝛽′}

Sub-tree 3
eval. func

𝜑𝜑{𝛽𝛽′} � 𝑓𝑓 ′ ∅{𝛽𝛽′} � ∅

already proven earlier in the tree
inst. args.

{𝛽𝛽} � {𝛽𝛽′}
inst. fn

𝑓𝑓 � 𝑓𝑓 ′

inst. fns
{𝑓𝑓} � {𝑓𝑓 ′} {𝑓𝑓} ∪ ∅ = {𝑓𝑓} 𝜑𝜑 ∈ {𝜑𝜑}

ver. func
{𝜑𝜑}∅ ∪ {𝛽𝛽′} � {𝑓𝑓}

objects
𝑀𝑀 � ∅{𝜑𝜑}{𝛽𝛽}{𝑓𝑓}

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀 � 𝑃𝑃

Sub-tree 1:

∀𝑔𝑔′ ∈ ∅[¬𝑔𝑔′#𝑔𝑔11] ∀𝑜𝑜 ∈ 𝒢𝒢�𝑀𝑀�[¬𝑜𝑜#𝑔𝑔11] ∃𝑂𝑂′ ⊂ 𝑂𝑂[𝑔𝑔11_𝑂𝑂′]
constr. void

∅𝑀𝑀 � 𝑔𝑔11
empty. voids

∅𝑀𝑀 � ∅ {𝑔𝑔11} ∪ ∅ = {𝑔𝑔11}
constr. voids

∅𝑀𝑀 � {𝑔𝑔11}

{𝑔𝑔11} = {𝑔𝑔11}
constr. space

{𝑔𝑔11} � spac 𝑠𝑠1({𝑔𝑔11})
Left to reader

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∅𝑀𝑀 � {spac 𝑠𝑠2({𝑔𝑔12})} {spac 𝑠𝑠1({𝑔𝑔11})} ∪ {spac 𝑠𝑠2({𝑔𝑔12})} = Σ

constr. spacs
∅𝑀𝑀 � Σ

Sub-tree 1.1
der. elem

∅𝑀𝑀Σ � 𝐻𝐻
der. spac, elem

∅𝑀𝑀 � Σ𝐻𝐻 {𝜑𝜑}Σ ∪ 𝐻𝐻 � ∅
constr. bld

{𝜑𝜑}∅𝑀𝑀 � 𝛽𝛽′

Sub-tree 1.1:

Wall condition checks left to reader
constr. wall

∅{obj 𝑜𝑜1(𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4)}Σ � 𝑤𝑤1

Left to reader
der. elems

∅{obj 𝑜𝑜2(𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8), obj 𝑜𝑜3(𝑔𝑔9, 𝑔𝑔10}Σ � {𝑤𝑤2, 𝜆𝜆1} {𝑤𝑤1} ∪ {𝑤𝑤2, 𝜆𝜆1} = 𝐻𝐻 {obj 𝑜𝑜1(𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4)} ∪ {obj 𝑜𝑜2(𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8), obj 𝑜𝑜3(𝑔𝑔9, 𝑔𝑔10} = 𝑀𝑀 {obj 𝑜𝑜1(𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4)} ∩ {obj 𝑜𝑜2(𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8), obj 𝑜𝑜3(𝑔𝑔9, 𝑔𝑔10} = ∅
der. elem

∅𝑀𝑀Σ � 𝐻𝐻

Sub-tree 2:

Σ′ ⊂ Σ′ ∅ ⊂ 𝐻𝐻

m2(10002, 20002) � {𝑔𝑔11}
inst.spac.

spac 𝑠𝑠1(m2(10002, 20002)) � spac 𝑠𝑠1({𝑔𝑔11})
Left to reader

inst.spacs.
{spac 𝑠𝑠2(m2(10002, 20002))} � {spac 𝑠𝑠2({𝑔𝑔12})} {spac 𝑠𝑠1(m2(10002, 20002))} ∪ {spac 𝑠𝑠2(m2(10002, 20002))} = 𝛽𝛽.spacs {spac 𝑠𝑠1({𝑔𝑔11})} ∪ {spac 𝑠𝑠2({𝑔𝑔12})} = Σ

inst. spacs
{spac 𝑠𝑠1(m2(10002, 20002)), spac 𝑠𝑠2(m2(10002, 20002))} � Σ′ ∅ � ∅

inst. bld.
𝛽𝛽 � 𝛽𝛽′

Sub-tree 3:

1 = 1 noIsolatedSpaces = noIsolatedSpaces ∀𝑠𝑠1 ∈ 𝛽𝛽′.spacs[∃𝑠𝑠2 ∈ 𝛽𝛽′.spacs[𝑠𝑠1||𝑠𝑠2]]
eval. func

func noIsolatedSpaces(𝐵𝐵1){∀𝑠𝑠1 ∈ 𝐵𝐵1.spacs[∃𝑠𝑠2 ∈ 𝐵𝐵1.spacs[𝑠𝑠1||𝑠𝑠2]]{𝛽𝛽′} � noIsolatedSpaces(𝛽𝛽′))

M = V =

H = P =

300

3000

1500

500

1000
1700

g3

g1g2

g4 g5
g6

g7

g8

g9

g10

g11

g12

Appendix A
Example 1: Connected Cubes

prooftree

2

𝑃𝑃 =

func noIsolatedSpaces(𝐵𝐵1){∀𝑠𝑠1 ∈ 𝐵𝐵1.spacs[∃𝑠𝑠2 ∈ 𝐵𝐵1.spacs[𝑠𝑠1||𝑠𝑠2]]

bld connectedCubes(spacs{spac 𝑠𝑠1(m2(10002, 20002)), spac 𝑠𝑠2(m2(10002, 20002))}, elems{}, funcs{})

noIsolatedSpaces(𝛽𝛽)

𝑀𝑀 =

obj 𝑜𝑜1(𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4),

obj 𝑜𝑜2(𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8),

obj 𝑜𝑜3(𝑔𝑔9, 𝑔𝑔10)

𝜑𝜑 = func noIsolatedSpaces(𝐵𝐵1){∀𝑠𝑠1 ∈ 𝐵𝐵1.spacs[∃𝑠𝑠2 ∈ 𝐵𝐵1.spacs[𝑠𝑠1||𝑠𝑠2]]

𝛽𝛽 = bld connectedCubes(spacs{spac 𝑠𝑠1(m2(10002, 20002)), spac 𝑠𝑠2(m2(10002, 20002))}, elems{}, funcs{})

𝛽𝛽′ = bld connectedCubes(spacs{spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}, elems{wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}, wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8}, flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}}, funcs{})

𝑓𝑓 = noIsolatedSpaces(𝛽𝛽)

𝑓𝑓 ′ = noIsolatedSpaces(𝛽𝛽′)

Σ = {spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}

Σ′ = {spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}, elems{wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}

𝐻𝐻 =

wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4},

wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8},

flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}

𝑤𝑤1 = wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}

𝑤𝑤2 = wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8}

𝜆𝜆1 = flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}

2

𝑃𝑃 =

func noIsolatedSpaces(𝐵𝐵1){∀𝑠𝑠1 ∈ 𝐵𝐵1.spacs[∃𝑠𝑠2 ∈ 𝐵𝐵1.spacs[𝑠𝑠1||𝑠𝑠2]]

bld connectedCubes(spacs{spac 𝑠𝑠1(m2(10002, 20002)), spac 𝑠𝑠2(m2(10002, 20002))}, elems{}, funcs{})

noIsolatedSpaces(𝛽𝛽)

𝑀𝑀 =

obj 𝑜𝑜1(𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4),

obj 𝑜𝑜2(𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8),

obj 𝑜𝑜3(𝑔𝑔9, 𝑔𝑔10)

𝜑𝜑 = func noIsolatedSpaces(𝐵𝐵1){∀𝑠𝑠1 ∈ 𝐵𝐵1.spacs[∃𝑠𝑠2 ∈ 𝐵𝐵1.spacs[𝑠𝑠1||𝑠𝑠2]]

𝛽𝛽 = bld connectedCubes(spacs{spac 𝑠𝑠1(m2(10002, 20002)), spac 𝑠𝑠2(m2(10002, 20002))}, elems{}, funcs{})

𝛽𝛽′ = bld connectedCubes(spacs{spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}, elems{wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}, wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8}, flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}}, funcs{})

𝑓𝑓 = noIsolatedSpaces(𝛽𝛽)

𝑓𝑓 ′ = noIsolatedSpaces(𝛽𝛽′)

Σ = {spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}

Σ′ = {spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}, elems{wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}

𝐻𝐻 =

wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4},

wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8},

flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}

𝑤𝑤1 = wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}

𝑤𝑤2 = wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8}

𝜆𝜆1 = flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}

2

𝑃𝑃 =

func noIsolatedSpaces(𝐵𝐵1){∀𝑠𝑠1 ∈ 𝐵𝐵1.spacs[∃𝑠𝑠2 ∈ 𝐵𝐵1.spacs[𝑠𝑠1||𝑠𝑠2]]

bld connectedCubes(spacs{spac 𝑠𝑠1(m2(10002, 20002)), spac 𝑠𝑠2(m2(10002, 20002))}, elems{}, funcs{})

noIsolatedSpaces(𝛽𝛽)

𝑀𝑀 =

obj 𝑜𝑜1(𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4),

obj 𝑜𝑜2(𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8),

obj 𝑜𝑜3(𝑔𝑔9, 𝑔𝑔10)

𝜑𝜑 = func noIsolatedSpaces(𝐵𝐵1){∀𝑠𝑠1 ∈ 𝐵𝐵1.spacs[∃𝑠𝑠2 ∈ 𝐵𝐵1.spacs[𝑠𝑠1||𝑠𝑠2]]

𝛽𝛽 = bld connectedCubes(spacs{spac 𝑠𝑠1(m2(10002, 20002)), spac 𝑠𝑠2(m2(10002, 20002))}, elems{}, funcs{})

𝛽𝛽′ = bld connectedCubes(spacs{spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}, elems{wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}, wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8}, flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}}, funcs{})

𝑓𝑓 = noIsolatedSpaces(𝛽𝛽)

𝑓𝑓 ′ = noIsolatedSpaces(𝛽𝛽′)

Σ = {spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}

Σ′ = {spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}, elems{wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}

𝐻𝐻 =

wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4},

wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8},

flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}

𝑤𝑤1 = wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}

𝑤𝑤2 = wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8}

𝜆𝜆1 = flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}

Appendices

2

𝑃𝑃 =

func noIsolatedSpaces(𝐵𝐵1){∀𝑠𝑠1 ∈ 𝐵𝐵1.spacs[∃𝑠𝑠2 ∈ 𝐵𝐵1.spacs[𝑠𝑠1||𝑠𝑠2]]

bld connectedCubes(spacs{spac 𝑠𝑠1(m2(10002, 20002)), spac 𝑠𝑠2(m2(10002, 20002))}, elems{}, funcs{})

noIsolatedSpaces(𝛽𝛽)

𝑀𝑀 =

obj 𝑜𝑜1(𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4),

obj 𝑜𝑜2(𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8),

obj 𝑜𝑜3(𝑔𝑔9, 𝑔𝑔10)

𝜑𝜑 = func noIsolatedSpaces(𝐵𝐵1){∀𝑠𝑠1 ∈ 𝐵𝐵1.spacs[∃𝑠𝑠2 ∈ 𝐵𝐵1.spacs[𝑠𝑠1||𝑠𝑠2]]

𝛽𝛽 = bld connectedCubes(spacs{spac 𝑠𝑠1(m2(10002, 20002)), spac 𝑠𝑠2(m2(10002, 20002))}, elems{}, funcs{})

𝛽𝛽′ = bld connectedCubes(spacs{spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}, elems{wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}, wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8}, flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}}, funcs{})

𝑓𝑓 = noIsolatedSpaces(𝛽𝛽)

𝑓𝑓 ′ = noIsolatedSpaces(𝛽𝛽′)

Σ = {spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}

Σ′ = {spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})}, elems{wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}

𝐻𝐻 =

wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4},

wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8},

flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}

𝑉𝑉 = {𝑔𝑔1, 𝑔𝑔2}

𝑤𝑤1 = wall({spac 𝑠𝑠1({𝑔𝑔11})},∅){𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4}

𝑤𝑤2 = wall({spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔5, 𝑔𝑔6, 𝑔𝑔7, 𝑔𝑔8}

𝜆𝜆1 = flr({spac 𝑠𝑠1({𝑔𝑔11}), spac 𝑠𝑠2({𝑔𝑔12})},∅){𝑔𝑔9, 𝑔𝑔10}

Appendices

63

64

Appendix B
Thoroughfare Pattern 101

As described in A Pattern Language by Christopher
Alexander [1977, p492 - 498]

65

Appendices

66

67

Appendices

68

69

Appendices

70

