
Bachelor thesis
Computing Science

Radboud University

Automatic code generation for
protocols via Dezyne and Nail

Author:
Pascal Bongartz
s4770986

First supervisor/assessor:
dr.ir. Erik Poll

erikpoll@cs.ru.nl

Second assessor:
Prof.dr. Frits W. Vaandrager

F.Vaandrager@cs.ru.nl

January 18, 2020

Abstract

Communication protocols are vital for our daily life. These protocols are
in every technology we use nowadays. We find them in our messengers like
WhatsApp or Signal. They can also be found in the bank cards which use
every day. Most of the time, the protocols are implemented hand-written
and can thereby be faulty. Most faults in the implementation of a security
protocol happen in the parsing of packets. Other mistakes can happen
in the execution of the protocol as programmers do not follow the formal
specification of a protocol.

In this thesis, we explore the idea of automatically generate the code for
protocols, whereby we especially focus on the protocol Transmission Control
Protocol(TCP). Therefore, we conduct two separate case studies. The first
case study looks at a lightweight version of TCP. After this, we implement
the actual protocol. For the code generation, we use the tools Dezyne and
Nail. In Dezyne, we implemented the state machine of TCP. This gave
us a basic code framework, which then helped us to implement the actual
protocol. After we had defined the structure of a packet of TCP in Nail, the
tool gave us the code of a parser and a generator for TCP packets.

Based on performing these two case studies, we conclude that it is pos-
sible to model protocols like TCP in Dezyne and Nail. Nevertheless, we had
problems with the code produced by Nail and it is not always clear how to
use the Nail code.

The usage of the tools, Dezyne and Nail, makes the development of
protocols like TCP easier. We can design a stateful protocol in Dezyne in
many ways which makes it not easy to verify whether the designed model is
the right one. Still, Dezyne has many features that help to model a protocol.
The modeling process in the Nail format, however, is more straightforward.
It is almost a one-to-one translation from the specification to the Nail format.

Another advantage of the tools is the maintainability of a project because
we can change for example the structure of a TCP packet at a higher level.
Therefore, we do not need to Nail code by hand. Further, Dezyne lowers the
likeliness of a bug in the flow of protocol because of the verification process
in Dezyne. Nail lowers the likeliness of a bug in the parsing and generates
process. Nevertheless, we detect g++ warnings while compiling the case
study.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Automatic code generation and Model-driven development . . 5
2.2 Tools . 6

2.2.1 Dezyne . 6
2.2.2 Nail . 8

3 Case study: bTCP 10
3.1 bTCP . 10
3.2 bTCP in Dezyne . 13
3.3 bTCP in Nail . 17
3.4 Putting it together . 19
3.5 Reflection . 22

3.5.1 Comparison between Nail + Dezyne and Python . . . 23
3.5.2 The Experience using Dezyne 23
3.5.3 The Experience using Nail 24
3.5.4 The experience combing Dezyne and Nail 25

4 Case study: TCP 27
4.1 TCP . 27
4.2 TCP in Dezyne . 32
4.3 TCP in Nail . 36
4.4 Putting it together . 37
4.5 Reflection . 41

4.5.1 The experience using Dezyne 41
4.5.2 The experience using Nail 42
4.5.3 The experience combing Dezyne and Nail 42

5 Related Work 44

6 Future Work 46

7 Conclusions 48

1

CONTENTS CONTENTS

A Appendix: Case study 1 55
A.1 bTCP in Dezyne . 55

A.1.1 IUtilServer.dzn . 55
A.2 bTCP in Nail . 55

A.2.1 checksum.cc . 55
A.3 Putting it together . 58

A.3.1 Makefile . 58

B Appendix: Case study 2 60
B.1 TCP in Dezyne . 60

B.1.1 IClient.dzn . 60
B.2 TCP in Nail . 65

B.2.1 tcp header.cc . 65
B.3 Putting it together . 66

B.3.1 Makefile . 66

2

Chapter 1

Introduction

Many engineering industries such as the automotive industry use models to
design complex systems. No one would start to build an automobile be-
fore they first divide such a complex construct into different smaller more
specialized system models. Through the abstraction of the models, we can
easier identify the complex problems of these constructs. Hence, we can use
this paradigm during the process of software development. It will help to
improve the productivity and reliability of software systems [Sel03]. Possi-
bly, this paradigm may be used to improve the security of software system
because much software frequently used today has a security flaw which can
be exploited by an attacker.

This holds explicitly for all stateful protocols, for example TCP. The
implementation for such protocols is divided in two different layers:

1. These protocols have certain states where specific actions are allowed.
Hence, the implementation of such a protocol will benefit from mod-
eling of the protocol. Therefore, an engineer first needs to design the
model before he can start to implement the protocol. Most of the time,
this approach is combined with automated code generation. This fact
also leads to a more secure software system because a human can al-
ways make mistakes during the implementation of such protocols.

2. Most of the security flaws do not occur in the way these protocols were
designed. The flaws often happen in the handling of the input of the
protocol like the packet of a specific message. The parsers which are
parsing these packets are error-prone because an attacker can craft the
packets himself and can trigger some edge-case of the parsing[BZ14a].

Hence, the research tries to solve these problems by answering the fol-
lowing question:

Is it possible to automatically generate code for a protocol like
TCP with help of Dezyne and Nail?

3

CHAPTER 1. INTRODUCTION

Therefore, the research focuses on the creation of a prototype that combines
the tools Dezyne [dez] and Nail [BZ14a]. Dezyne and Nail deal with different
layers of the protocol. These layers corresponds to the listing on page 3.

We use the tool Dezyne to apply the idea of the programming paradigm
of model-driven development1. Model-driven development defines the tech-
nique, which creates running software from the formal specification. Hence
in this research, we use Dezyne to model the protocol TCP and generate
the code of the protocol.

The second tool, Nail, is an approach for parser generation [BZ14a]. This
means if a developer uses such a parser generator, he does not need to write
an error-prone code that processes input. If the developer wants to generate
these parsers, he has to define the structure of the input.

After design the protocol in Dezyne and specifying the packet structure
in Nail, we have to combine both the generated of the tools. This process
results into a prototype which we can use to test the quality of both the
tools.

This research consists of two case studies. In the first case study, we try
to implement the basicTCP(bTCP) protocol. This protocol is a lightweight
version of the real-world protocol TCP. This case study is the first try in
working with both of the tools. The differences between bTCP and TCP are
the header of both protocols and the fixed size of the packages. Additionally,
the state machine of bTCP is simpler. Besides the implementation of bTCP,
we compare the bTCP implementation with Dezyne and Nail in C++ with
a bTCP implementation in Python.

In the second case study, we implement the real protocol TCP. Thereby,
we take a look at how we improved the usage of Dezyne and Nail.

We structured both of these case study after the three steps: designing
in Dezyne, translate the packet structure in the Nail grammar format and
finally combine the generated code to a prototype.

Chapter 2 gives information on the background of the thesis, like a de-
scription of the tools. Chapter 3 describes the first case study. Thus the
implementation of bTCP and the first reflection on Dezyne and Nail. Chap-
ter 4 illustrates the second case study of the research. Chapter 5 compares
this research with related work. Chapter 6 gives an overview on future work
to be done on this topic. Finally, chapter 7 concludes the research and
discusses the main results of this research.

1Model-driven development

4

https://en.wikipedia.org/wiki/Model-driven_engineering

Chapter 2

Preliminaries

This chapter describes all relevant background information of this research.
Section 2.1 gives an overview of the model-driven development paradigm
as well as an overview of automatic code generation. Section 2.2 describes
the tools used of this research. In this section, we also discuss some initial
experiences of the tools (see sections 3.5 and 4.5 for more discussion of
experience in using the tools).

2.1 Automatic code generation and Model-driven
development

Model-driven software development aims to generate the source code for a
software system completely or partially from a model. This approach aims
at developing models of much simpler complexity than the source code. In
this case, the programming paradigm DRY(Don’t Repeat Yourself) [Wik19]
is used. Not only the source code can be generated automatically but also
not executables files like tests and the documentation of a software system.
Further, it is not always possible to create a suitable abstraction level to
describe a specific domain with the means of the respective programming
language. Hence language-independent abstractions are created in the form
of modeling languages.

These modeling languages can be specially tailored for individual do-
mains. Such languages are referred to as domain-specific language (DSL).
Also, the more general modeling language Unified Modeling Language (UML)
is used in model-driven development.

There are several advantages to the usage of model-driven development.
As the first advantage, problem descriptions are much clearer, simpler and
less redundant due to the increased level of abstraction of DSLs. The usage
of a DSL not only increases the development speed but also ensures under-
standable domain concepts within the project [KLM15]. As a second advan-
tage, the separation of the technical level and the domain-oriented model

5

2.2. TOOLS CHAPTER 2. PRELIMINARIES

results in a more accessible development of a software system [Wik19].
Nevertheless, there are also disadvantages in the use of model-driven

development. The effort of creating a DSL or tailor the UML for a specific
target language can be significant, especially for non-trivial project domains.
Further, the code generation of these models only results in a framework,
which still has to be supplemented by hand with the actual function. Hence
sometimes, this makes it hard to get an overview of the needed time of a
project [Sel03].

In most cases, model-driven development results in automatic code gen-
eration because of the possibility to code on a higher level. Therefore, en-
gineers can focus on designing their projects and do not need to focus on
coding. However, a code generator is required. A code generator can be a
stand-alone program, but it is also used in a compiler where the generator
generates the machine code the compiled source code.

A code generator translates models that are written in DSL or other
abstract forms in the chosen target platform.

2.2 Tools

This section describes the tools used within our case studies. Dezyne is a
software design tool for modeling-driving development as discussed in section
2.1 and for protocol modeling. The second tool, Nail is a software that
generates a parser and a generator for a specified data format. Hence, we
use the Nail grammar for modeling the format of the packets of our used
protocol and as a result receive code for parsing and generating packets.

2.2.1 Dezyne

Dezyne[dez] is a toolset that enables the usage of the model-driven devel-
opment paradigm. Dezyne is based on Eclipse IDE which makes the tools
more applicable for an engineer. The tool has the same structure as other
IDEs(see figure 2.1). Therefore, a programmer can integrate the verification,
validation and code generation in the process of designing the model.

Programmers can initially design the system that they require to imple-
ment. Therefore, Dezyne uses a newly created domain-specific language(DSL)
that is called Dezyne Modelling Language (DML). Sections 3.2 and 4.2 in-
dicate that DML looks similar to other programming languages. However,
DML has some differences compared to other modeling languages because
of the semantics of DML. The DML has some drawbacks in comparison to
other modeling languages like DSL because Dezyne also supports the possi-
bility of checking the designed model[KSHS17]. For example, the DML does
not support the construct of time limitations in a model.

As mentioned above, Dezyne provides engineers with the opportunity to
formal verify their design model with regards to completeness and correct-

6

2.2. TOOLS CHAPTER 2. PRELIMINARIES

Figure 2.1: Structure of Dezyne

ness prior to implementation. Besides formal verification, Dezyne addition-
ally discovers the errors of the model and displays them to the programmer.

There are several things that a user of Dezyne can verify and validate
with the help of Dezyne. What the user can verify and validate depends
on the different components of the model(see sections 3.2 and 4.2). Dezyne
allows user to verify and validate the following five aspects:

1. Check for deadlock

2. Check for livelock1.

3. If the model is deterministic.

4. Check for illegal behavior in a component. This illegal behavior is
defined in an interface(see sections 3.2 and 4.2).

5. Check for right behavior of component based on the required interface.

With these five checks, a user has a good overview of whether his model is
properly designed or not.

Furthermore, Dezyne is able to simulate and validate a specified model.
The engineers can simulate the behavior of their design and can immedi-
ately validate whether the design functions in the correct way. Thereby the
programmers can inspect the trace of the simulation and identify the errors
inside the DML.

1https://en.wikipedia.org/wiki/Deadlock

7

https://en.wikipedia.org/wiki/Deadlock

2.2. TOOLS CHAPTER 2. PRELIMINARIES

Ultimately, Dezyne’s primary feature for this paper is code generation.
After verifying and validating his designs, an engineer can easily generate
the source code for this model. This code can be integrated into already
existing code or it can be used as a base of a new project. Nevertheless,
extern functions like socket setup need to be programmed by an engineer.

After the initial setup of Dezyne on our computers, we completed the
tutorial and discovered the tool, which allowed us to start to design our first
case study 3.

2.2.2 Nail

Nail is a so-called parser generator [comb]. Hence, Nail generates parser
based on a formal specification of the code of a parser. These parser genera-
tors are often used to handle syntactic analysis, which means the generators
are a subprogram of a new compiler. Besides their usage in compilers, we
also use parsers in all sorts of applications. For example, a generator pro-
duces the source code for a parser based on an input grammar, which defines
the syntax of a new programming language. This parser can then parse this
new programming language, which is essential for the compiling process of
the language.

Using a parser generator in the implementation of a protocol eliminates
one of the biggest security flaws in protocols: a hand-written parser. A
hand-written parser for protocols is always vulnerable for buffer overflows
and improper input validation [BHH+17]. We validate input because of
handcrafted malicious input. This input can lead to misbehavior in execut-
ing code and leak critical data for an attacker.

Most of the parser generators only focus on the part of parsing and
did not consider the contrary direction. Nevertheless, Nail produces code
in both directions. Hence, the generated code of Nail can be implemented
to parse certain syntax, but it also can be used to generate an output of
this certain syntax. This property is essential if we want to integrate a
parser generator in the implementation process of protocols, especially in
the process of security protocols.

Parsing and generating are essential for the implementation of protocols
because a server and a client often need to exchange some packets before
they establish a connection between them. Also when transferring data via a
protocol, the packets have a given grammar/structure. Hence, it is valuable
if the used parser generator can produce code, which can parse and generate
packets of a certain grammar/structure.

Another feature of Nail is the possibility of handling offset fields and
checksum elegantly. Thereby, Nail introduces two abstractions: The depen-
dent field helps to represent fields in protocols that are dependent on the
values of the rest of the packet; transformations allows programmers to work
on raw data of an important packet for computing checksum.

8

2.2. TOOLS CHAPTER 2. PRELIMINARIES

However, at the beginning using Nail is not that straightforward. About
the tool, we discovered several papers([BZ14a], [BZ14b],[BZ15a]) and not
all of them contain an explanation of the grammar format that Nail uses.
But in the paper [BZ14a], we found a table of the grammar format of the
tools, which eases to understand the tool. Further, we found some examples
of Nail grammar formats of well-known protocols, which provide the first
impression of the this grammar format. Sections 3.3 and 4.3 feature an
example of the Nail grammar format.

Furthermore, it is beneficial to take a look at the examples of the GitHub
page [BZ15b]. These examples give several usages of the Nail grammar.
On top, the examples provide on an overview of how to implement the
automatically generated code of Nail in hand-written code.

After overcoming the initial problems, the generated Nail code is clear
to use in the case study. For more reflection see sections 3.3 and 4.3.

Another drawback of Nails the lacking up-to-dateness of the tool, with
the last commit on GitHub dating back to 2015. Furthermore, as we took
a look into automatically generated code, we found some comments with
Todos which suggest some updates in the structure of the Nail code and in
the some of the functionality of Nail .

9

Chapter 3

Case study: bTCP

This chapter describes the first case study of this paper. This case study
looks at the implementation of bTCP(see section 3.1) with the help of
Dezyne and Nail. In sections 3.2 and 3.3, we describe the usage of both
tools and the way how we implemented bTCP using these tools. Section
3.4 gives an overview of how to put together the generated code of Dezyne
and Nail. Finally, section 3.5 compares the implementation of bTCP with
the help of the tools and the implementation of bTCP in Python, and also
describes the experience of working with the mentioned tools in practice.

3.1 bTCP

As the first case study, we choose a simple protocol to implement in order
to get to know both the tools Dezyne and Nail. We decided to use the
bTCP protocol. We already implemented a version of this protocol the
bachelor course Networks and Disturbed Systems1 where we realized the
protocol in Python. During the course, we needed to implement, how to
parse and generate the packets of the protocol ourselves. Further, we needed
to construct the state-machine of bTCP.

bTCP stands for basicTCP because this version of the protocol consists
of a more simplistic header and does not use the idea of congestion control.
Another simplification compared to the real TCP is the specified length of
the packet that will be sent. A packet of bTCP is always 1016 bytes long.
The first 16 bytes represent the header of the packet. The remaining 1000
bytes are reserved for the sent data.

1https://www.ru.nl/courseguides/science/vm/osirislinks/ibc/nwi-ibc021/

10

https://www.ru.nl/courseguides/science/vm/osirislinks/ibc/nwi-ibc021/

3.1. BTCP CHAPTER 3. CASE STUDY: BTCP

The header of bTCP looks as follows:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Stream ID

SYN Number ACK Number

Control flags Window Size Data Length

Checksum

bTCP Header

Payload(maximal 1000 bytes)

Figure 3.1: The bTCP Header

The fields are defined the following way:

1. StreamID (32-bit): A unique identifier given to each bTCP stream.
Used to differentiate packet of different origin and destination.

2. SYN Number (16-bit): Used to order packets in a given bTCP stream.

3. ACK Number (16-bit): Used to acknowledge received packets.

4. Control Flags(8-bit): Contains the flag state of a given packet.

5. Window Size (8-bit): Defines the number of packets allowed in transit
with a maximum of 255.

6. Data Length (16-bit): Defines how much of 1000 bytes are data.

7. Checksum (32-bit): A checksum computed over the header and data.

8. Payload (max. 1000 bytes): The data of the packet.

Additionally, the checksum is a 32-bit long due to the usage of the CRC32(cyclic
redundancy check) algorithm.

The goal of the original implementation was to make an implementation
that is reliable. Hence, the client needs to maintain track of the packets
that were already acknowledged by the server. The client should retrans-
mit the packet after some timeout, that are unacknowledged by the server.
Therefore, the client needs to keep track of the ACK numbers. Moreover,
the server should be capable to reassemble out-of-order packets.

Another part of the bTCP protocol is the usage of flow control. The idea
of flow control is that the client and the server agree on a specific window
size. The window size specifies the maximum number of packets that the
client can send before the server acknowledges one of these packets.

Furthermore, the flags are simple to use because they are just an 8-bit
integer. Hence, we can define one 8-bit integer for one flag. For example,
the number one equals the flag FIN.

11

3.1. BTCP CHAPTER 3. CASE STUDY: BTCP

As above-mentioned, the initial task was to define a state-machine of
this protocol. The state machine of the server and client are presented in
figure 3.2 and figure 3.3.

CLOSED

LISTEN

SYN_RECEVIED

ESTABLISHED

FIN_RECEIVED

passive open

receive SYN
send SYN-ACK

receive ACK of SYN_ACK

receive FIN
send FIN-ACK

receive ACK of FIN-ACK

Figure 3.2: State machine of the
bTCP server

CLOSED

SYN_SENT

ESTABLISHED

FIN_SENT

active open
send SYN

receive SYN_ACK
send ACK

terminate
send FIN

receive FIN-ACK
send ACK

Figure 3.3: State machine of the
bTCP client

The initial state of the server is the CLOSED. Therefore, the server cannot
establish a connection with a client. In the state LISTEN, the server sets
up its structure and can receive packets from clients. The server waits
for a packet with SYN to continue. After receiving the SYN packet, the
server sends an SYN-ACK packet and transits to ESTABLISHED state. In this
state, it waits for the acknowledgment of the SYN-ACK packet. This step
concludes the opening handshake, and the server can now process incoming
packets with data. The data transmission continues until the server receives
a FIN packet. The server advances into the FIN_RECEIVED state and sends
a FIN-ACK packet. At that point, it waits for an acknowledgment of this
packet. After receiving this packet, the connection between server and client
is terminated and the server is back in its initial state.

The client shares the initial state with the server. In the state CLOSED

of the client, the client cannot send any packets. To send packets, the client
needs to open the connection wit the server actively . Hence, the client sets
up its structure up and transmits the first packet. This packet is an SYN

12

3.2. BTCP IN DEZYNE CHAPTER 3. CASE STUDY: BTCP

packet that starts the connection between client and server and gets the
client to SYN_SENT state. In this state, the client waits for an SYN-ACK
packet that acknowledges its SYN packet. This packet is again acknowledged
by the client, which concludes the opening handshake and the client transits
to the ESTABLISHED state. At this point, the client starts sending packages
with data to the server. This procedure happens until the client delivered all
the data and sends a FIN packet. At this point, the client is in the FIN_SENT
state, and wait for FIN-ACK of the server. Finally, the client acknowledges
this packet, sends an ACK packet and goes back to its initial state.

3.2 bTCP in Dezyne

The usage of Dezyne in the process of software development is automatically
component-based. Therefore, every part of a system represents a component
which defines a certain functionality. To define the functionality, a compo-
nent can use the functionality offered by another component. The offered
functionality of a different component is defined in the interface of the com-
ponent.

Hence, it is important to initially specify an interface of a component
first and consecutively use the component in other components. In the case
of the server structure, this fact is not that important because the server
component is already the highest in the whole system.

Nevertheless, in Dezyne Modelling Language (DML) an interface pro-
vides the events, their direction(input/output) and optionally their param-
eters. Besides the definition of the events of a component, an interface
specifies the externally visible behavior of the component that will provide
an implementation of the interface. In this context, behavior means which
events (or method calls) can be handled at which stages in the execution
process.

1 import IUtilServer.dzn;

2

3

4 interface IServer{

5 in void start_listen();

6 in void send_synack();

7 in void receive_ack();

8 in void receive_fin();

9 in void send_finack_receive_ack();

10

11 behaviour{

12 enum State {CLOSED, LISTEN, SYN_RECEIVED, ESTABLISHED, FIN_RECEIVED};

13 State state = State.CLOSED;

14

15 on start_listen: {

16 [state.CLOSED] state = State.LISTEN;

17 [otherwise] illegal;

18 }

19 on send_synack: {

20 [state.LISTEN] state = State.SYN_RECEIVED;

21 [otherwise] illegal;

22 }

13

3.2. BTCP IN DEZYNE CHAPTER 3. CASE STUDY: BTCP

23 on receive_ack: {

24 [state.SYN_RECEIVED] state = State.ESTABLISHED;

25 [otherwise] illegal;

26 }

27 on receive_fin: {

28 [state.ESTABLISHED] state = State.FIN_RECEIVED;

29 [otherwise] illegal;

30 }

31 on send_finack_receive_ack: {

32 [state.FIN_RECEIVED] state = State.CLOSED;

33 [otherwise] illegal;

34 }

35 }

36 }

37

38 component Server{

39 provides IServer iServer;

40 requires IUtilServer iUtilServer;

41

42 behaviour{

43 enum State {CLOSED, LISTEN, SYN_RCVD, ESTABLISHED, FIN_RECEIVED};

44 State state = State.CLOSED;

45

46 [state.CLOSED]{

47 on iServer.start_listen(): {

48 state = State.LISTEN;

49 iUtilServer.wait_for_syn();

50 }

51 }

52 [state.LISTEN]{

53 on iServer.send_synack():{

54 state = State.SYN_RCVD;

55 iUtilServer.send_syn_ack();

56 }

57 }

58 [state.SYN_RCVD]{

59 on iServer.receive_ack(): {

60 state = State.ESTABLISHED;

61 iUtilServer.receive_data();

62 }

63 }

64 [state.ESTABLISHED]{

65 on iServer.receive_fin():{

66 state = State.FIN_RECEIVED;

67 iUtilServer.wait_for_fin();

68 }

69 }

70 [state.FIN_RECEIVED]{

71 on iServer.send_finack_receive_ack(): {

72 state = State.CLOSED;

73 iUtilServer.receive_final_ack();

74 }

75 }

76 }

77 }

Code fragment 3.1: bTCP server in Dezyne

As we started to model the bTCP state-machines(figures 3.2 and 3.3),
we first needed to define an interface for the server(see code fragment 3.1,
lines 4-36). The definition of an server interface eases implementation of the

14

3.2. BTCP IN DEZYNE CHAPTER 3. CASE STUDY: BTCP

server structure in Dezyne. The lines 38-77 describes the component with
describes the server.

In the following listing, we giving a high level description of the interface
and the component of the server which can be seen in the code fragment
3.1:

Interface(lines 4-36): As mentioned above, you see the interface of the
server (IServer) in code snippets 3.1 in the lines 4-36. In lines 5-9,
we define all the methods, which the providing component needs to
specify. The names of the methods following the state machine of the
server 3.2.

Following this, we define the behavior-block of the interface. The
block echoes which of the methods are allowed in a particular state.
The states are visible in the line 12. Thereto, we describe the states
in an enumeration. The names of the states are equal to names in the
state machine of the server 3.2.

Further, line 13 displays the initial state of the model in the Dezyne
environment. Next, we start by defining which functions can be exe-
cuted in which states. For example, the receive_fin method is only
legal if the state is in the ESTABLISHED state. In all other states, it is
illegal to call this function. If a part of the system still tries to call the
function, the program terminates.

Component(lines 38-77): At line 40, we define that the server compo-
nent requires another component namely the UtilServer component.
This component provides the interface IUtilServer(see the code frag-
ment A.1). The interface only defines the signatures of the methods
because we only can defines the bodies of these function in C++. We
only need the UtilServer component to use the functionality of the
IUtilServer interface in the Server component.

In line 42, we start defining the behavior-block of the component. The
beginning of this mostly looks identical to the interface. Nevertheless,
the definition of the functions looks modified. We use the states as
a switch-block. For the control flow of the system. For example, the
server stands in LISTEN state, then we merely define the actions of the
method send_synack. All other methods of the interface are illegal
in this state, therefore it is not necessary to define actions for these
methods. Further, the body of these functions is defined in the same
way. At the start, we change the state to the following state of the
state machine. Second, we call a function of UtilServer component.

15

3.2. BTCP IN DEZYNE CHAPTER 3. CASE STUDY: BTCP

Figure 3.4: State machine of the
bTCP server

Figure 3.5: System overview of the
bTCP server

After modeling the component Server of the code fragment 3.1, Dezyne
gives us the states machine in figure 3.4. This state machine is equal to the
state machine in figure 3.2 on page 12.

In figure 3.5, Dezyne shows us the complete server system. The system
is a simpler system because it only contains two component. We connect the
system with outer world via the Server component. Hence, we can call the
function of Server directly. The blue color of the component UtilServer

indicates that this component needs to be written by hand.
Last not but least, we need to connect the Server and the UtilServer

component into a sound system. The code 3.2 defines this connection.
Therefore, we create a new component, the ServerSystem wh9ich serves the
purpose to refer to other components and connects the interface of them. To
connect the interfaces, we need to bind, with <=> operator, each requires

interface instance with the corresponding provides interface instance.

1 import IUtilServer.dzn;

2 import Server.dzn;

3

4 component ServerSystem{

5 provides IServer iServer;

6

7 system{

8 Server server;

9 UtilServer utilserver;

10

11 iServer <=> server.iServer;

12 server.iUtilServer <=> utilserver.iUtilServer;

13 }

16

3.3. BTCP IN NAIL CHAPTER 3. CASE STUDY: BTCP

14 }

Code fragment 3.2: bTCP server system in Dezyne

After finishing the modeling process, we can verify our model in Dezyne.
Besides verification, we also can simulate the behavior of our model and
check for modeling mistakes. Verifying our model helped us a lot because
it would spot mistakes that we did not see. Furthermore, Dezyne automat-
ically verifies the model if we wanted to generated the code of the model.
Simulating the behavior of the model makes it easier to find the mistakes in
the model.

The client system is not displayed in this section because the extensive
explanation of the Dezyne files and the implementation of the client is the
same as the implementation of the server. For convenience, you can find the
client Dezyne code in the Gitlab repository2.

3.3 bTCP in Nail

As we already stated, figure 3.1 on page 11 shows the bTCP header. The
bTCP header is not as complex as the real TCP header because most of
the fields in the header are simple bytes field. The interesting fields are the
control flag, the data length, and the checksum field.

The control flag field is interesting because we can define the value of
the flags.

Besides the control flag field, the data length field is interesting because
the field reflects the length of the whole packet, which we want to send.

Further, the checksum field is interesting because the checksum is com-
puted over the header bytes and the payload bytes. Therefore, it is more
complicated to compute the value of the checksum.

The Nail grammar format has a basic format. You can see the basic
format in the code fragment 3.3. To the btcp parser, we assignment the
rule between the curly brackets. A parser can consist of some basic formats
and more sophisticated structures like dependent fields, input streams, and
transformations.

One of the basic building blocks of the Nail grammar is signed or un-
signed integer with a maximal length of 64-bits. The grammar can also
constrain these integers. For example, an integer can only contain a range
of integers or a specific number. Additionally, the grammar supports the
repetition of other building blocks. Further, it is possible to model structures
in Nail grammar. Another building block that is supported by the grammar
is constants value. It is further possible to define a structure that consists
of a select. This select behaves like switch-statement in a programming

2https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

17

https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

3.3. BTCP IN NAIL CHAPTER 3. CASE STUDY: BTCP

language. You give the select parser a value and then it decides which
next parser rule is executed. Moreover, the Nail grammar format supports
to choose between two other formats. We also can define optional buildings
blocks. To use all the building blocks, we can reference different building
blocks. For more explanation, see [BZ14a].

1 control_flags = {

2 flag uint8 | 1..6

3 }

4

5 btcp = {

6 streamid uint32

7 syn_number uint16

8 ack_number uint16

9 flags control_flags

10 window_size uint8

11 @data_length uint16

12 @checksum uint32

13 transform crc32_checksum($current @checksum)

14 payload n_of @data_length uint8

15 }

Code fragment 3.3: bTCP packet in Nail grammar
The code 3.3 reflects the bTCP header in figure 3.1. The definition of the

bTCP header begins in line 5 with the assignment of the parser to the name
bTCP. The first, second and fourth fields are very plain unsigned integers
of a specified size. The size of in Nail grammar corresponds with the size in
the bTCP header.

The flags field references to a second parser that only parses the field
of the control flags. In the control flag parser, we only define one format
which is a restricted unsigned integer.

The data length and checksum fields are also definitions of an unsigned
integer, but we use the at-sign as a reference to use both these fields in the
following fields.

The last two definitions are the interesting part of the bTCP header in
Nail grammar. We define the payload of the packet as a number of unsigned
8-bit integers. The number is specified by the data length field because this
field specifies the size of the packet. The last definition uses the format of
transformations. Therefore, a programmer himself needs to implement the
here defined function. In this case, we have to program crc32_checksum

in C++. The interface of the method is already given. You can find the
implementation this function in the appendix part A.2.

18

3.4. PUTTING IT TOGETHER CHAPTER 3. CASE STUDY: BTCP

3.4 Putting it together

Figure 3.6 describes the directory structure of our bTCP project. The sub-
directories client_dzn and server_dzn contain the modeled ClientSystem
and ServerSystem of section 3.2. The btcp.nail file contains the bTCP
header in Nail grammar format which we defined in section 3.3.

bTCP

Makefile

server (executables)

client (executables)

btcp.nail

lib(Dezyne library)

lib gen

btcp.nail.cc/hh

checksum.cc

nail(Nail library)

client dzn

Client.dzn

ClientSystem.dzn

IUtilClient.dzn

server dzn

Server.dzn

ServerSystem.dzn

IUtilServer.dzn

src client

Client.cc/hh

ClientSystem.cc/hh

IUtilClient.cc/hh

UtilClient.cc/hh

main client.cc

src server

Server.cc/hh

ServerSystem.cc/hh

IUtilServer.cc/hh

UtilServer.cc/hh

main server.cc

Figure 3.6: Directory structure of bTCP

: automatically generated code : Dezyne models & Nail grammar

: self-written code : other

The directories lib and nail contain the libraries of both the tools Dezyne
and Nail. We need to copy the Nail library in the project ourselves. We

19

3.4. PUTTING IT TOGETHER CHAPTER 3. CASE STUDY: BTCP

create the Dezyne library with the command make runtime in the Makefile
in the appendix A.3.

With the command make generate_all of the Makefile, all files with
the color orange in figure 3.6 are automatically generated. The Dezyne
and Nail automatically generate these files. Hence, they are not pretty
formatted. Nevertheless, you can still find them in the Gitlab3 project of
the thesis.

The cyan files in figure 3.6 are the program code we have to write our-
selves. In the following we list them:

• The files main_server and main_client starting the server/client.
Additionally, they initialize the Dezyne system.

• The files UtilServer.hh/cc and UtilClient.hh/cc are also hand-
written as we mentioned in section 3.2. These files consist of the
socket setup and some other things.

• As we already mentioned in section 3.3, we need to program the
crc32_checksum function. Therefore, we create the file checksum.cc.
You can see the content of the file in the appendix A.2.

As we already mentioned above, we need to write a main function which
executes the Dezyne code. We have to this for the server and the client. In
this section, we only explaining the file at example of the server, but you
find the client part in the Gitlab repository3.

1 #include <iostream>

2 #include <string>

3

4 #include <dzn/runtime.hh>

5 #include <dzn/locator.hh>

6 #include "ServerSystem.hh"

7

8 int main(int argc, char* argv[]){

9 dzn::locator loc;

10 dzn::runtime rt;

11

12 loc.set(rt);

13

14 ServerSystem serverSystem(loc);

15

16 serverSystem.check_bindings();

17

18 serverSystem.iServer.in.start_listen();

19 serverSystem.iServer.in.send_synack();

20 serverSystem.iServer.in.receive_ack();

21 serverSystem.iServer.in.receive_fin();

22 serverSystem.iServer.in.send_finack_receive_ack();

23 }

Code fragment 3.4: main server.cc file

3https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

20

https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

3.4. PUTTING IT TOGETHER CHAPTER 3. CASE STUDY: BTCP

The code fragment 3.4 represents the main file where all parts of the
server are called. To run a Dezyne system in C++, the system needs the
runtime and locator of Dezyne because the generated code of Dezyne uses
functions from these header files. After we include the header files into our
project, we can make an instance of both the runtime and the locator.

The next step is to create an object of the ServerSystem in line 11. After
this step, we use the check_bindings function of Dezyne. The usage of the
function is recommended because it checks if all ports are bounded properly.

Finally, we can start to use the defined methods of the server. In this
version, the server can only handle one user and one session because we only
call all the server methods one time(lines 15-19). The main_client.cc has
a similar structure as the code 3.4. You can find the main_client.cc file
in the Gitlab repository4 project of the thesis.

1 /*generates a bTCP packet based on the input and directly send the packet*/

2 void genPacket(NailArena *arena, int streamID, int synNr, int ackNR, int flags, int

window_size, int data_length,↪→
3 std::vector<unsigned char> payload) {

4 //C++ struct of the bTCP packet

5 btcp packet;

6 NailOutStream out;

7 NailOutStream_init(&out, 2000);

8 memset(&packet, 0, sizeof(packet));

9 packet.streamid = streamID;

10 packet.syn_number = synNr;

11 packet.ack_number = ackNR;

12 packet.flags.flag = flags;

13 packet.window_size = window_size;

14 packet.payload.count = data_length;

15 narray_alloc(packet.payload, arena, packet.payload.count);

16 for (unsigned int i = 0; i < packet.payload.count; i++) {

17 packet.payload.elem[i] = payload[i];

18 }

19 //main generate function of Nail: generate bTCP packet in arena

20 if (gen_btcp(arena, &out, &packet) != 0) {

21 printf("gen packet");

22 exit(0);

23 }

24 //getting bTCP out of the arena, we can send buf

25 const unsigned char *buf = NailOutStream_buffer(&out, &len);

26 ...

Code fragment 3.5: Generating a bTCP packet and sending packet

The code 3.5 shows how we can generate a new bTCP packet. To begin
with, we create an instance of the bTCP packet inline 3. We also need a
NailOutStream that we use for receiving the generating packet out of the
arena. The variable arena is one of the unique parts of the Nail tool. The
further step is to give the bTCP object the attributes of the packet. We can
accomplish this easily by just assigning the new value to the attributes of
the bTCP object(lines 7-16). Therefore, the payload field is special because
we loop through the payload and assign the single values of the payload.

4https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

21

https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

3.5. REFLECTION CHAPTER 3. CASE STUDY: BTCP

Now, we call the gen_btcp function. This function creates the packet in the
arena. With the function inline 23, we stream the bytes object of the packet
out of the arena and write the variable buf. Finally, we can forward this to
the client which is not shown the code fragment 3.5.

1 uint8_t packet[1016];

2 ssize_t packet_size;

3 NailArena arena;

4 jmp_buf err;

5 ...

6 //receive packet from the socket

7 packet_size = recvfrom(sock, packet, sizeof(packet), 0, (struct sockaddr *)

&rem_addr, &addr_len);↪→
8

9 if (0 != setjmp(err)) {

10 printf("OOM\n");

11 NailArena_release(&arena);

12 }

13 //initialize arena(=parsing memory) and stream(=getting packet in bytes into

arena)↪→
14 NailArena_init(&arena, 2000, &err);

15 NailMemStream packet_stream(packet, packet_size);

16

17 //main parser function of Nail, returns a bTCP struct

18 message = parse_btcp(&arena, &packet_stream);

19 if (!message) {

20 printf("Invalid packet; ignoring\n");

21 exit(0);

22 }

23 ...

Code fragment 3.6: Parsing a bTCP packet

The code 3.6 explains the process of parsing a bTCP. Before parsing a
packet, we declare some help objects. As in the generating part, we need
a NailArena and a NailOutStream. Additionally, we need jmp_buf object.
This object helps with memory errors of Nail. Now, we receive the packet
from the input socket and stream this packet in the NaimMemStream object
packet_stream. We feed this object into the parse_btcp function together
with the defined NailArena. The function returns a bTCP object and we
use the object onwards in our program.

3.5 Reflection

This section gives a comparison between the C++ implementation of bTCP
built using Nail and Dezyne and the Python code of the bTCP implemen-
tation(in 3.5.1). Also, the section details the experiences of working the
first time with Nail and Dezyne(in 3.5.2 and 3.5.3). Section 3.5.1 describes
problems which occurred by combing Dezyne and Nail code.

22

3.5. REFLECTION CHAPTER 3. CASE STUDY: BTCP

3.5.1 Comparison between Nail + Dezyne and Python

When we want to compare the implementation of bTCP in C++ with the
help of Dezyne and Nail and the implementation in Python that I made
earlier as part of the course Networks and Distributed Systems, we can
take a look at the lines of code both implementation. Nevertheless, we
look only at the hand-written parts and not the header files of the C++
implementation(See 3.6).

The server in C++ consists of 415 hand-written lines of code. The
main_sever file contributes 20 lines of code and the UtilClient file pro-
duces 395 lines of code. Additionally, we could count the lines of the
checkusm file but we cannot compare this number with the Python im-
plementation. In the Python version of bTCP, the checksum is computed
with a library and only uses one method call. In comparison, the server in
Python consists only of 318 lines of code. This is a difference of 100 lines
of code. This discrepancy may raise questions. Why is an implementation
with the help of two tools longer than an implementation without help?
The reason for the discrepancy lies in the properties of the programming
languages and how we can use the tools.

C++ has more verbose syntax than Python. In C++, all methods need
curly brackets. Hence, a method in C++ always has two more lines than
the counterpart in Python. Additionally, we have to declare some variables
beforehand in C++, which is in Python not needed. Also, you have to
manually handle memory in C++.

Another reason why the C++ implementation has more lines of code is
the usage of generated code. As you could see in code snippets 3.5 and 3.6,
using the Nail code needs some preparation. You always have to declare the
arena and output stream before parse or generate a packet. Further, you
have to release these objects because they allocate memory which can lead
to a segmentation fault.

Another way to compare both of these implementations is the perfor-
mance of them. Hence, we would compare the execution time and memory
usage of both implementations. This could lead us to a decision which one of
the implementations should further be used. Nevertheless, this comparison
is valuable, but we already know the outcome. Python is not fast enough
for communication protocol like bTCP because Python is a not compiled
language.

3.5.2 The Experience using Dezyne

This case study represents the first try for us to program a protocol with
the help of Dezyne. As we mentioned in section 2.2.1, at the beginning the
usage of Dezyne was not trivial. The tool has its own modeling language
(DML) which we first need to understand. Besides the new language, it was

23

3.5. REFLECTION CHAPTER 3. CASE STUDY: BTCP

the first attempt to model the system before we start directly to program
the system. After we studied the tutorials on Dezyne webpage[dez], the tool
became more understandable for us.

For this case study, it was convenient that we already created the state-
machines for the sever 3.2 and client 3.3. The state-machines assisted us to
design because we did not need to think about the flow of the protocol. We
could concentrate on the modeling process that helped us a lot.

We only encountered one problem during the design bTCP in Dezyne.
As you can see in code 3.1, we could use the keyword otherwise in the
specification of the interface. But in the beginning, we started to define the
action for every state. Afterward, we discovered the keyword otherwise

that made the definition of the interface more clearer.
After we defined and verified bTCP in Dezyne (see section 3.2), we did

not generate the code via the Makefile command because this process was
new for us. Nevertheless, we discovered an example of a Makefile for a
Dezyne project and modified the file to our purpose(See A.3). With this
Makefile, we made every step of generating the code of Dezyne and compiling
the code automatically. Hence, in future projects, we only need to specify
the model and then create the Makefile that will set-up the rest for us.

Additionally, we were surprised by how many lines of code Dezyne creates
based on the model files. For example, the server in figure 3.1 in DML has
77 lines of code. Dezyne creates for this server in C++ 365 lines of codes.
We would expect Dezyne would create more lines of C++ code because the
size of model.

3.5.3 The Experience using Nail

We also used Nail for the first in this case study. Hence, we need some time
in the beginning as we discussed in section 2.2.2.

To begin with, we did not know how to model the bTCP header(3.1)
in the Nail grammar format because of the inadequate documentation of
Nail. Nevertheless, we solved this problem quickly and model the header in
Nail(see figure 3.3). We think it is simple to model a packet because the
syntax of Nail is very understandable. Further, the structure of the bTCP
header is not very complex, which makes the modeling simpler.

As you can see in the Makefile A.3, we automated the code generation
of Nail code. Hence, we only wrote the Nail grammar for a bTCP packet in
our favorite text editor, save the file with the nail format and call the right
Makefile rule.

During the implementation of self-written function crc32_checksum, an-
other problem occurred. We did not how to code the method. After some
searching in the examples of Nail, we found an example implementation of
such a method.

Furthermore, we needed to accustom to the arenas which are provided

24

3.5. REFLECTION CHAPTER 3. CASE STUDY: BTCP

by Nail. We had to specify these arenas by every use of parsing or generating
a packet. But after some time, the process becomes natural.

Additionally, we were surprised by how many lines Nail produces from
the specified input grammar. The grammar 3.3 has only. Nail creates based
on this grammar 396 lines of code. To the 396 lines, we need to add 30 lines
of code because we needed to program the checksum computation ourselves.

During the compiling of the process of the bTCP project, another prob-
lem occurred. g++, the C++ compiler used of our project, produces three
different warnings. We cannot neglect one of these warnings because of the
possibility of a security flaw. Therefore, we discuss these warning below:

-Wsign-compare: This alert warns us for a comparison between signed
and unsigned integer expressions. This warning is very dangerous
for the source code of Nail because this comparison can cause several
problems. One problem is that C++ provides implicit type conversions
between signed and unsigned values. For example, when a signed
integer is converted to an unsigned integer, the bit pattern ist left
alone and the vale changes correspondingly.

This warning occurs in a for-loop generated by Nail. Therefore, the
signed integer is always converted to an unsigned integer. The conver-
sion can cause not desired behavior.

The comparison between signed and an unsigned integer is also a se-
curity problem because it might cause a buffer overflow or it might
cause bug, but it is not a buffer overflow.

-Wunused-variable and -Wunused-function: This first alert warns us
for an unused variable and second alert warns us for an unused func-
tion. These warnings are not dangerous because they do not trigger
any security flaws. Often such variables and functions are remains of
debug output or just old functions that are not used anymore. As we
already mentioned, Nail is not the update-to-date and only project of
a Master-thesis. Hence, the creator of Nail could forget these unused
parts.

It can be important to fix these warnings in future research(see chapter
6) because besides the warnings Nail is a simple tool. The tool has a simple
grammar that results in generated code which can be efficiently used.

3.5.4 The experience combing Dezyne and Nail

A problem was to connect the Nail code with the Dezyne code. At the start,
we only compiled the Dezyne code. This was easy because of the provided
Makefile. After this step, we tried to integrate the Nail code in the Dezyne
code, but it was more challenging. The problem was in how we combine the

25

3.5. REFLECTION CHAPTER 3. CASE STUDY: BTCP

checksum.cc file with the btcp.nail.cc file. After we solved this problem
and adjusted our Makefile a little, the project compiled.

26

Chapter 4

Case study: TCP

This chapter describes the first case study of this paper. This case study
looks at the implementation of TCP(see section 4.1) with the help of Dezyne
and Nail. In sections 4.2 and 4.3, we describe the usage of both tools and the
way how we implemented TCP in these tools. Section 4.4 gives an overview
of how to put together the generated code of Dezyne and Nail. Finally,
section 4.5 compares the implementation with the help of the tools and also
describes the experience of working with tools practical.

4.1 TCP

At the beginning of this research, we planned to implement the security
protocol EMV(see chapter 6). Nevertheless, we did not follow this early
draft. After the first research to EMV, we knew that EMV is a completely
new protocol to learn and to understand. This step would cost us a lot of
time. Hence, we choose to implement the actual TCP for our second case
study because bTCP and TCP do not differ a lot.

This case study only consists of the basic version of the TCP protocol.
We only implement the classic connection opening and closing(see figures 4.1
and 4.2)). Also, we do not implement the simultaneous opening and closing
part of the protocol. Further, this TCP implementation of us does not
contain any congestion control algorithms like TCP Reno or TCP Tahoe.
Another feature that is missing is the computation of the retransmission
timer of TCP like it is described in the RFC 6298 [SCPA11].

Thereby, we split the case study into two parts. The first part is the
server. The server handles incoming TCP connections and writes the trans-
mitted data to his file system. The second part is the client. It tries to open
a connection with the server and sends arbitrary data to the server. After
sending the data, it will also close the connection with the server.

27

4.1. TCP CHAPTER 4. CASE STUDY: TCP

Figure 4.1: State machine of the a TCP server

Figure 4.2: State machine of the a TCP client

As we can see in the figures 4.1 and 4.2, server and client share two
states. The CLOSED is the beginning of a TCP connection. The server starts
with a passive opening. The passive opening means that it starts to listen for
an incoming connection. The client, however, starts with an active opening.
Hence, the client actively sends an opening message to the server and starts
the connection.

In the ESTABLISHED state, the server and the client exchange data with
each other. Then the server or client, in our case the client, initializes the
termination of the connection.

For starting and ending a connection, the server and client using a three-
way handshake. You can find these handshakes in the figures 4.3 and 4.4.

28

4.1. TCP CHAPTER 4. CASE STUDY: TCP

Figure 4.3: TCP opening procedure [TTG05b]

As already mentioned, the client starts the opening shake (figure 4.3) by
sending an SYN packet. The packet contains a random initialize sequence
number and a zero as an acknowledgment number. The server answers this
packet with a SYN-ACK packet. For this packet, the server uses as sequence
number a new number. As an acknowledgment number, it increments the
received sequence number. After the client received the message, it answers
with the ACK packet. The sequence number of this packet is equal to the
acknowledgment number of the SYN-ACK packet. The acknowledgment
number of the ACK packet is the increment sequence number of the SYN-
ACK packet. After the server validates the packet the opening handshake
is completed.

Figure 4.4: TCP closing procedure [TTG05a]

The closing handshake (figure 4.4) works almost in the same way as the
opening handshake. The client starts with a FIN packet which indicates the
start of the termination. The sequence number of this packet is arbitrary.

29

4.1. TCP CHAPTER 4. CASE STUDY: TCP

On this packet, the server answers with a packet whereby the sequence
number is arbitrary and the acknowledgment number equals the sequence
number of received packet increment by one. Additionally, the server sends
a FIN packet itself with the same numbers. The client answers this packet
with an ACK packet. The sequence number is now the acknowledgment
number of the FIN packet of the server and the acknowledgment number is
the sequence number but increment by one. After this step, the connection
is terminated.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data offset Reserved
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window size

Checksum Urgent pointer

Options (Variable 0-320 bits, divisible by 32)

TCP Header

Payload

Figure 4.5: The TCP Header

The fields of the header (see figure 4.5) are defined the following way(based
on the RFC793 [rfc81]):

1. Source Port(16 bits): The source port number.

2. Destination Port(16 bits): The destination port number.

3. Sequence number(32 bits): The sequence number of the first data octet
in this segment (except when SYN is present). If SYN is present the
sequence number is the initial sequence number (ISN) and the first
data octet is ISN+1.

4. Acknowledgment number(32 bits): If the ACK control bit is set this
field contains the value of the next sequence number the sender of the
segment is expecting to receive. Once a connection is established this
is always sent.

5. Data offset(4 bits): The number of 32-bit words in the TCP Header.
This indicates where the data begins. The TCP header (even one
including options) is an integer number of 32 bits long.

30

4.1. TCP CHAPTER 4. CASE STUDY: TCP

6. Reserved (6 bits): Reserved for future use.

7. Control Bits: 9 bits (from left to right):

• URG: Urgent Pointer field significant

• ACK: Acknowledgment field significant

• PSH: Push Function

• RST: Reset the connection

• SYN: Synchronize sequence numbers

• FIN: No more data from sender

8. Window size(16 bits): The number of data octets beginning with the
one indicated in the acknowledgment field which the sender of this
segment is willing to accept.

9. Checksum(16 bits): The 16-bit checksum field is used for error-checking
of the header, the Payload and a Pseudo-Header. The Pseudo-Header
consists of the Source IP Address, the Destination IP Address, the
protocol number for the TCP-Protocol (0x0006) and the length of the
TCP-Headers including Payload (in Bytes).

10. Urgent pointer(16 bits): This field communicates the current value of
the urgent pointer as a positive offset from the sequence number in
this segment. The urgent pointer points to the sequence number of
the octet following the urgent data. This field is only be interpreted
in segments with the URG control bit set.

11. Options(variable): Options may occupy space at the end of the TCP
header and are a multiple of 8 bits in length. All options are included
in the checksum. An option may begin on any octet boundary.

12. Payload: The data of the packet.

The header of a TCP packet (see figure 4.5)is different in comparison
with the header of the bTCP packet (see figure 3.1 on page 11). The TCP
header uses a source and destination port field to identify the origin of the
packets. The sequence and acknowledgment number field are sorts of the
same in both the headers. The difference in these fields is the size. The data
offset field of TCP and the data length field of bTCP are completely different
because the data offset field gives the size of the header and indicates the
start of the sent data. The data length field, however, gives the size of the
actual data. TCP defines the control flags in the separated fields. This takes
more space than the control flags in the bTCP header. We need to compute
the checksum in TCP in a different than in bTCP because in TCP we need to
compute the checksum over pseudo-header(see above). The urgent pointer
and options are new constructs of TCP. We defined this field in our case
study for convenience, but we do not use these fields.

31

4.2. TCP IN DEZYNE CHAPTER 4. CASE STUDY: TCP

4.2 TCP in Dezyne

TCP in Dezyne In this section, we display the TCP client in the Dezyne
modeling language. We chose to show the client of the TCP case study
because we use some more functionalities of the language. You can find the
client component in the several code fragments 4.1 and 4.2. For the full
Client component take a look at our Gitlab repository1. This repository
also contains the Server component with all its interface.

1 ...

2 component Client{

3 provides IClient iClient;

4 requires ISocketClient iSocketClient;

5 requires IFileHandler iFileHandler;

6

7 behaviour{

8

9 enum States {CLOSED, SYN_SENT, ESTABLISHED, FIN_WAIT1,

FIN_WAIT2, TIME_WAIT};↪→

10

11 States state = States.CLOSED;

12 ...

Code fragment 4.1: Component definition of TCP client

In lines 3-5, we define the interfaces which are required for the component
and which are provided to the component. The IClient interface specifies
the function of the client. For example, one function starts the connection
to the server and has the name startConnection. This function already
uses a new functionality that we did not use before. The function has an
input parameter as any other function in a programming language.

The Client component provides the interface IClient. Therefore, we
need to implement all the functions of the interface. As a help, we can
use the functions of the interfaces ISocketClient and IFileHandler. The
ISocketClient interface (see appendix B.2) provides the functions which
we have to hand-write ourselves later on. The functions of this interface
handle the packets with the help of the Nail code.

As the name already suggests the IFileHandler interface (see appendix
B.3) handles the file that the client sends. The function readFile uses an
extra functionality of the Dezyne modeling language. In this function, we
use a out parameter. This parameter has the same meaning as a return
value of the function. So, we use readFile to read a file and give this file
to a function of ISocketClient.

1https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/TCP

32

https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/TCP

4.2. TCP IN DEZYNE CHAPTER 4. CASE STUDY: TCP

The IFileHandler and ISocketClient have also the separate own com-
ponents which implements the functions. These components can be found
in the Gitlab repository.

Line nine of the code fragment 4.1 displays the states of the client. We
copied these states from the state machine 4.2 on page 28. Finally, line 9
describes the initial sate of the client.

1 ...

2 [state.ESTABLISHED]{

3 on iClient.stopSending(): {

4 ISocketClient.retval retval = iSocketClient.stop();

5 if (ISocketClient.retval.retOK == retval){

6 state = States.CLOSED;

7 reply(IClient.retval.retOK);

8 } else {

9 reply(IClient.retval.retFailed);

10 }

11 }

12 on iClient.sendData(): {

13 IFileHandler.data file;

14 IFileHandler.retval retFile =

iFileHandler.readFile(file);↪→

15 if (retFile == IFileHandler.retval.retOK){

16 ISocketClient.retval retSend =

iSocketClient.sendData(file);↪→

17 if (ISocketClient.retval.retOK == retSend){

18 state = States.ESTABLISHED;

19 iFileHandler.stopReading();

20 reply(IClient.retval.retOK);

21 } else {

22 reply(IClient.retval.retFailed);

23 }

24 }else{

25 reply(IClient.retval.retFailed);

26 }

27 }

28 on iClient.sendFin(): {

29 ISocketClient.retval retval = iSocketClient.sendFin();

30 if (ISocketClient.retval.retOK == retval){

31 state = States.FIN_WAIT1;

32 reply(IClient.retval.retOK);

33 } else {

34 reply(IClient.retval.retFailed);

35 }

33

4.2. TCP IN DEZYNE CHAPTER 4. CASE STUDY: TCP

36 }

37 }

38 ...

Code fragment 4.2: Example implemantion of behavior block

Code fragment 4.2 shows an example implementation of the behavior
block. In this code fragment, we take look in the state ESTABLISHED. In
this state, we only allow three functions to execute. The first function
stopSending just stops the whole Client. After executing this function, the
Client goes back into its initial state and terminate the existing connection.

The interesting part of the ESTABLISHED state is the sendData function.
As already mentioned, the readFile of the file handler interface has a return
value. Therefore, we need to declare the variable file in line 13which has
the data type data. The data type data is just type name of vector.
readFile assigns data of file to the variable file. Now, we can use the
variable for the sendData function of the ISocketClient interface which
needs an input value. Further, the execution of this function do not trigger
any state transion and the Client stays in the ESTABLISHED.

The sendFin only uses the function sendFin function of the ISocketClient
inteface. After the function, the Client goes to the next state namely
FIN WAIT1.

Figure 4.6: State machine of the
TCP client

Figure 4.7: System overview of the
TCP client

After modeling the component Client of the code fragment 4.2, Dezyne
gives us the state machine in figure 4.6. This state machine is equal to the
state machine 4.2 on page 28.

In figure 4.7, Dezyne shows us the complete client system. This system
differs from the system(see figure 3.5 on page 16). The system contains sev-
eral different components that we need to connect. The system is connected
to the outer world with the component ClientApi which serves as a guard

34

4.2. TCP IN DEZYNE CHAPTER 4. CASE STUDY: TCP

for illegal calls. Hence, we can only call the function of the ClientApi com-
ponent. The Client has two required ports. The first port connects to the
SocketClient component which is responsible for handling the sent and in-
coming packets of the client. The second port connects to the FileHandler

component, which is responsible for reading the specified file.
The blue color of the components SocketClientApi and SocketClient

indicates that these components need to be written by hand.

1 ...

2 component SClient{

3

4 provides IClientApi iClientApi;

5

6 system{

7

8 ClientApi clientApi;

9 Client client;

10 FileHandler fileHandler;

11 SocketClient socketClient;

12 SocketClientApi socketClientApi;

13 FileHandlerApi fileHandlerApi;

14

15 iClientApi <=> clientApi.iClientApi;

16 clientApi.iClient <=> client.iClient;

17 client.iFileHandler <=> fileHandler.iFileHandler;

18 client.iSocketClient <=> socketClient.iSocketClient;

19

20 socketClient.iSocketClientApi <=>

socketClientApi.iSocketClientApi;↪→

21 fileHandler.iFileHandlerApi <=>

fileHandlerApi.iFileHandlerApi;↪→

22 }

23 }

Code fragment 4.3: TCP client system in Dezyne

The code fragment 4.3 shows how we can obtain the figure 4.7. This code
connects all components and interfaces. After programming the system, we
are done with the modeling process in Dezyne.

The server of TCP has a lot of common with the server of the bTCP
case study. Nevertheless, we changed the states of the TCP server to states
in the state machine 4.1. The server uses some of the extra functionalities
like the input value for functions. Also, the server has the same system
structure as the client in figure 4.7. Besides the name changes, the server

35

4.3. TCP IN NAIL CHAPTER 4. CASE STUDY: TCP

has not an extra component for handling data because it was not possible
to implement this.

4.3 TCP in Nail

In figure 4.4, we can see the TCP header in Nail grammar format. We can
already see that the 4.5 on page 30 do not differs a lot with header in the
Nail grammar. The modeling process is almost a one-to-one translation.
This makes the modeling easy.

Nevertheless, some difficulties occurred during the modeling process in
the Nail grammar format. The difficulties occurred because of the differences
between the header definitions on Wikipedia2 and in the actual RFC [rfc81].
After some time, we decided to use the RFC as a reference that made the
modeling process more clear.

Additionally, the header of TCP 4.4 and header of bTCP 3.3 have some
difference. You can observe that the TCP header is more complex than the
bTCP header.

1 options = {

2 kind uint8

3 length (optional uint8)

4 value (optional uint16)

5 }

6

7 tcp = {

8 source uint16

9 destination uint16

10 seq_num uint32

11 ack_num uint32

12 @data_offset uint4

13 uint6 = 0

14 urg uint1

15 ack uint1

16 psh uint1

17 rst uint1

18 syn uint1

19 fin uint1

20 window uint16

21 @checksum uint16

22 urg_pointer uint16

23 transform checksum($current @checksum @data_offset)

2https://en.wikipedia.org/wiki/Transmission_Control_Protocol

36

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

4.4. PUTTING IT TOGETHER CHAPTER 4. CASE STUDY: TCP

24 $options, $body transform tcp_header($current

@data_offset)↪→

25 options apply $options (many options)

26 payload apply $body (many uint8)

27 }

Code fragment 4.4: TCP packet in Nail grammar

At the beginning of the TCP parser definition, we use the basic building
blocks of the Nail grammar. The first fields of the TCP header are just
simple values. For example, the sequence number of the TCP header is just
a 32bits integer. We translate the sequence number into a 32-bit unsigned
integer (see line 10). The first interesting field is the data offset field(see
line 12) because it displays the size of the header and so an important field
for the function at the end of the TCP definition in the Nail grammar format.
In line 13, we can see that 6-bits of the header are reserved for the future.
These bits have to have the value zero. The flags are just one-bit fields.
The checksum is also interesting because the field is also used self-written
functions.

The first function (line 23) is the computation of the checksum. In this
case study, we could implement the computation of the checksum because
we need to compute the checksum over a pseudo-header that contains parts
of the next higher protocol in the protocol stack: the IP protocol. With
the set-up of our research, it is not possible to compute the checksum the
right way. Therefore, we decided to ignore the checksum. However, the
computation of such a checksum is not a problem.

The function tcp header creates two new streams which we use later.
The function gets as input the current stream and the data offset. With the
help of the inputs, the generate function adds the option field and payload
field to the bytes of the whole header and the parsing function creates the
two new data object which we can use after the whole packet is parsed(see
appendix B.4).

In the lines 25-26, we used new created data stream $options and
$payload to define the last two fields of the TCP header. The apply syntax
means that we apply the parser options to the stream $options. The type
of options field is a new parser that is described in line 1-5. The payload
field of the TCP header is just many 8-bit unsigned integers. many means
that the field can contain of zero or more 8-bit integer.

4.4 Putting it together

Figure 4.8 describes the directory structure of our TCP project. We con-
structed the structure in the same ways as in our bTCP project (see figure

37

4.4. PUTTING IT TOGETHER CHAPTER 4. CASE STUDY: TCP

3.6). The folder client dzn consists of the complete client system as we
described it in section 4.2. Further, the file tcp.nail contains the Nail
grammar format of the code fragment 4.4. For a full overview take a look
at our Gitlab project.

TCP

Makefile

server (executables)

client (executables)

tcp.nail

lib(Dezyne library)

lib gen

tcp.nail.cc/hh

tcp header.cc

nail(Nail library)

client dzn(client system)

server dzn(server system)

src client

files of client dzn directory

FileHandlerApi.cc/hh

SocketClientApi.cc/hh

main client.cc

src server

files of server dzn directory

SocketServerApi.cc/hh

main server.cc

: automatically generated code : modeled files

: self-written code : other

Figure 4.8: Directory structure of TCP

One difference with the bTCP project is the extra hand-written file in
the src client folder. The FileHandlerApi file corresponds to the change
of modeling style (see section 4.2).

The file tcp header(see appendix B.4) contains the functions signature
of the checksum calculation, however, not the actual calculation as men-
tioned in section 4.3. Also, the file includes the function tcp header which
is necessary for the Nail code.

The Makefile of the TCP project looks almost the same as the Makefile
A.3 of the bTCP project. Only some names changed to the TCP project.

1 #include <dzn/runtime.hh>

2 #include <dzn/locator.hh>

3

4 #include "SClient.hh"

5

38

4.4. PUTTING IT TOGETHER CHAPTER 4. CASE STUDY: TCP

6 int main(int argc, char* argv[]){

7 dzn::locator loc;

8 dzn::runtime rt;

9

10 loc.set(rt);

11

12 SClient sClient(loc);

13 sClient.check_bindings();

14

15 IClientApi::retval::type retStart = sClient.iClientApi.in.startConnection(5555);

16 if(retStart == IClientApi::retval::retOK){

17 IClientApi::retval::type retAck = sClient.iClientApi.in.sendAck();

18 if (retAck == IClientApi::retval::retOK){

19 IClientApi::retval::type retData = sClient.iClientApi.in.sendData();

20 printf("data transfer completed\n");

21 if (retData == IClientApi::retval::retOK){

22 IClientApi::retval::type retFin = sClient.iClientApi.in.sendFin();

23 if (retFin == IClientApi::retval::retOK){

24 IClientApi::retval::type retAck2 =

sClient.iClientApi.in.receiveAck();↪→
25 if (retAck2 == IClientApi::retval::retOK){

26 IClientApi::retval::type retAck3 =

sClient.iClientApi.in.sendAck2();↪→
27 if (retAck3 == IClientApi::retval::retOK){

28 IClientApi::retval::type retTime =

sClient.iClientApi.in.timeWait();↪→
29 if (retTime == IClientApi::retval::retOK){

30 printf("protocol completed. connection closed.\n");

31 }

32 }

33 }

34 }

35 }

36 }

37 }

38 }

Code fragment 4.5: main client.cc file

The code fragment 4.5 looks more complex as the code fragment 3.4.
But, both files do the same thing. They initialize the corresponding sys-
tem and call the functions of the main component. In the case of the code
fragment 4.5, we first call the function of the guard because the guard is con-
nected with the outer-world (see section 4.2). The functions of the guard
return value whether the function was executed successfully. In this case
study, the client builds one connection with the server and then stops run-
ning.

1 ...

2 //This function generates a new TCP packet

3 size_t len;

4 tcp packet;

5 NailOutStream out;

6 NailOutStream_init(&out, 4000);

7 memset(&packet, 0, sizeof(packet));

8 packet.source = dst;

9 packet.destination = src;

10 packet.seq_num = seq_num;

11 packet.ack_num = ack_num;

12 switch (flag_type) {

13 case ACK:

39

4.4. PUTTING IT TOGETHER CHAPTER 4. CASE STUDY: TCP

14 packet.ack = 1;;

15 packet.urg = 0;

16 packet.syn = 0;

17 packet.psh = 0;

18 packet.rst = 0;

19 packet.fin = 0;

20 break;

21 case SYN_ACK:

22 packet.ack = 1;

23 packet.syn = 1;

24 packet.urg = 0;

25 packet.psh = 0;

26 packet.rst = 0;

27 packet.fin = 0;

28 break;

29 case FIN:

30 packet.fin = 1;

31 packet.ack = 0;

32 packet.syn = 0;

33 packet.urg = 0;

34 packet.psh = 0;

35 packet.rst = 0;

36 }

37 packet.window = window_size;

38 packet.urg_pointer = urgent_pointer;

39 packet.options.count = options_size;

40 narray_alloc(packet.options, arena, packet.options.count);

41 for (size_t i = 0; i < packet.options.count; i++) {

42 options *o = &packet.options.elem[i];

43 switch (options_type) {

44 case 0:

45 o->kind = 0;

46 break;

47 case 1:

48 o->kind = 1;

49 break;

50 case 2:

51 o->kind = 2;

52 o->length = (uint8_t *) 4;

53 o->value =(uint16_t *) 100;

54 break;

55 }

56 }

57 packet.payload.count = data_size;

58 narray_alloc(packet.payload, arena, packet.payload.count);

59 for (size_t i = 0; i < packet.payload.count; i++) {

60 packet.payload.elem[i] = data[i];

61 }

62

63 //generates packet into arena(the actual usage of generate function of Nail code)

64 if (gen_tcp(arena, &out, &packet) != 0) {

65 printf("gen packet");

66 return ISocketClientApi::retval::type::retFailed;

67 }

68

69 //gets the packet as bytes out of the arena

70 const unsigned char *buf = NailOutStream_buffer(&out, &len)

71 ...

Code fragment 4.6: Generate a TCP packet

The code fragment 4.6 shows how we can generate a new TCP packet.

40

4.5. REFLECTION CHAPTER 4. CASE STUDY: TCP

With line 4, we create a new tcp struct. With the help of the NailOutStream
object, we can extract the packet out of the arena where the packet is
created. In the lines 8-38, we assign the new tcp object the necessary values.
The flags are assigned by switch-block because we need to set several flags.

The lines 39-61 show the tricky parts of the TCP packet generation.
We need to create options object which can be assigned to options field of
the tcp object. We copied how we add data to the packet from the code
fragment 3.5.

Line 64 calls the actual generating function of Nail and generates the
packet in the arena. In line 70, we extract the packet from the arena and
assign the packet to a variable. At this point, a packet is only a byte object
and we can send it via socket to a client.

Parsing incoming data looks the same as in code fragment 3.6. Only
we changed the function parse btcp to parse tcp. After parsing the byte
object, we can use all values of tcp object.

4.5 Reflection

This section describes our experience using the tools Dezyne and Nail in the
case study of TCP. Therefore, we give detailed experiences using Dezyne in
section 4.5.1 and detailed experiences using Nail in section 4.5.2.

4.5.1 The experience using Dezyne

After the first case study, we took a deeper look at the documentation of
Dezyne [dez]. On this web page, we found examples of systems that are
used in the real world. These examples show the extra functionalities that
we are describing in section 4.2. The features help with a better connection
between two separate components.

As we started to use the feature of input and output variables of func-
tions, our hand-written parts become more readable. A component had a
clear purpose and it becomes easier to model this specific component.

Calling a function of guard component before actually calling the main
component, makes the model more secure. The main component is defended
by this guard. This makes clearer which functions engineers can call in
certain states. Further, the guard stops the execution if it detects illegal
behavior.

We could also use these functionalities in our first case study 3, too.
Then the code would be less messy and the component had more distinct
tasks.

We also experience how hard it can be to design a complex protocol like
TCP in Dezyne. The basic transitions, which are shown in the figures 4.1
and 4.2 are easy to design. But, TCP has also exceptional behavior that is
not easy to model. For example, we can name the simultaneously opening

41

4.5. REFLECTION CHAPTER 4. CASE STUDY: TCP

and closing sequences. The simultaneously closing sequence uses an extra
state and therewith changes the model little bit.

After we modeled TCP in Dezyne, two questions came to our mind:

1. Does the Dezyne model correctly model TCP?

2. Is there a ”better” way to model TCP in Dezyne?

In your case, we did not model the complete TCP protocol in Dezyne. In
our model, some of the non-standard behavior is missing. We have still high
confidence that we designed the best-scenario of TCP the right way.

The second question is hard to answer because we are not very experi-
enced in the design protocol in Dezyne. To answer this question, we should
talk with experienced users or the developers of Dezyne.

Last but not least, we think that the feature of verifying and simulating
helped us a lot during the design process. It is easy to get lost in the
model and to forget where we define some rules. Verifying helped us to find
mistakes in the model and to fix them quickly.

4.5.2 The experience using Nail

Design the TCP header in the Nail grammar format does not differ with
design the bTCP header. We only translate the fields of the TCP header
in the Nail grammar format. This makes easy to model packets in Nail.
With the experiences so far, we could model every packet structure. Even
encapsulation like the network stack should be simple to design.

One problem was the ambiguous definition of the options fields in the
RFC [rfc81] and other sources. The basic RFC only supports one kind of
option. The other sources give a specification for other options, which made
the design process harder. Hence, we focused on the RFC and implement
the described options fields.

Another problem was to define the checksum computation of the TCP
header. To calculate the checksum, we need fields of the next higher layer
of the network stack. This is not possible in this case study because we do
not know these fields. To compute the checksum, we could implement the
full protocol stack and provide the checksum function with these fields.

4.5.3 The experience combing Dezyne and Nail

The biggest problem of this case study occurred as we want to connect the
Dezyne and Nail code. The start was the same as in the case study 3.
After programming the opening handshake of TCP, we wanted to send data
via the packets(see code fragment 4.6). Generating the packet on the client
does not raise any errors. After receiving the packet at the server, the parser
returns an error and says the packet is invalid. We have an assumption of

42

4.5. REFLECTION CHAPTER 4. CASE STUDY: TCP

where the problem is. We think the problem lays in the initialize of the
data field of the header. The field uses a many combinator (see line 26 of
the code fragment 4.4). We did not find any example in the Nail project,
which indicates the usage of this combinator. This makes it hard to fix this
problem.

43

Chapter 5

Related Work

This chapter describes some of the related work of model-driven development
and automatic code generation. Nowadays there are a lot of tools that help
with automatic code generation and modeling a certain model. This chapter
lists some of the other tools which we did not use in our research.

ComMa(Component Modeling and Analysis)

The tool ComMa(Component Modeling and Analysis)[coma][KSHS17] is a
framework for model-based engineering by formalizing the interface specifi-
cation. For the process of formalization, ComMa uses a new defined domain-
specific language(DSL).

ComMa shares some of his functions with Dezyne. Nevertheless, ComMa
also has some drawbacks in its functionality. One disadvantage of ComMa
is that it is not possible to design a model like it is possible in Dezyne.
Another drawback of ComMa is the fact that the tool does not support
code generation. Besides this, ComMa cannot perform formal verification
of the defined interfaces. However, Dezyne does not offer the possibility of
time constraints and data constraints.

We cannot use ComMa in our case studies because the most important
feature of Dezyne is missing in ComMa. It is not possible to generate code
of the model.

Cogent

Cogent [ORC+16] is a purely functional programming language like Haskell.
In these programming languages, programs are written as mathematical
functions whereby the functions operate on algebraic data types. Neverthe-
less, Cogent differs from the most functional programming languages because
Cogent is written for low-level operating system components [OCS+18].
Written Cogent code compiles into C code, and therefore it does not need any
garbage collector, and memory management is explicit. Despite the explicit

44

CHAPTER 5. RELATED WORK

memory management, Cogent’s uniqueness type system ensures memory
safety.

The data description language and data refinement framework, Dargent
[OCS+18], provides engineers with the possibility to define how Cogent de-
scribes its data types. It helps for a better transition to the generated C
code. It would help to define data structure like packets, in higher-level
languages like Cogent because of the more understandable representation of
these languages.

Hammer parser generator

The Hammer [PH14] parser generator has a lot of similarities with Nail.
Hammer introduces parsing on the level bits and bytes, and not only on the
level of characters. Users of Hammer need to define the structure of data in
several rules in the programming language. This restriction makes it harder
for engineers to use the tool because the rules can be insecure and lead to
security flaws of the parser. Further, Hammer can only parse data structures
and cannot generate packets, which is a disadvantage towards Nail. Also,
Hammer cannot handle input fields that have dependencies with each other.
Hence, we cannot use Hammer as alternative of Nail.

Efficient Java Code Generation of Security Protocols Specified in
AnB /AnBx

In 2014, Modesti [Mod14] presents a AnBx compiler and code generator.
This tool generates Java code of security protocols. These protocols are
noted in the simple Alice&Bob notation. This notation is a popular way
to describe security protocols. But it is hard to create explicit checks that
are needed for running security protocols based on an implicit concept like
the AnB notation. Therefore, Modesti developed a compiler from the AnB
notation to Java. He split this process into three parts. In the first part, the
compiler translates the AnBx (an extension of AnB) protocol to AnB which
is a suitable format for verification. In the second part, the compiler maps
the AnB specifications into automatically generated code and optimize it.
In the last part, the compiler finally generates Java code.

45

Chapter 6

Future Work

Alternative case study: SHH

One possible future research topic is a case study with the SHH protocol.
SHH is standardized after some RFCs. These RFCs do not contain a state-
machine of the protocol. This makes it harder for developers to program
SHH. The research would look like this thesis. First, the researcher defines a
state-machine for SHH. Secondly, he specifies this state-machine in Dezyne
and defines the packet of SHH in Nail grammar. In the end, he has to
combine both of the generated codes.

Alternative case study: EMV

A different research topic would be the implementation of the security pro-
tocol EMV. EMV is a payment method which is the technical standard
for smart cards and payment terminals. This payment method is used by
many companies that create credit cards, gift cards and debit cards like Visa
and Mastercard. The standard is not only used in contact cards but also
contactless cards and even mobile phones.

Investigate the compiler warnings and ToDo’s of Nail code

Another research topic is to investigate the g++ warnings about the code
and check whether an attacker can use the flaw that the warning points out
to start an attack on the parser and generator. Further, the automatically
generated code of Nail contains some ToDo’s which suggest an overflow
potential inside the Nail code. Additionally, the research can focus on the
up-to-dateness of the Nail code and analyzes whether Nail can be improved.

Test robustness of generate code

A different research topic is to check the robustness of the generated code
with a fuzz tester like AFL. With the help of such a fuzz tester, we can decide

46

CHAPTER 6. FUTURE WORK

if Dezyne and Nail produce more secure code then hand-written code.

Implement complete TCP

In the case study in chapter 4, we implemented the best-case scenario of
the TCP protocol. We could extend this implementation to the full version
of TCP. Hence, we need to add the fallback mechanism of the protocol
like different usage of flags and possibilities of simultaneous opening and
closing. Further, we provide the usage of options, however, we do not use
these options in our implementation. We programmed a very simple version
of congestion control. We can extend the feature of congestion control to a
more real-world version.

Compare our TCP implementation with real-world TCP imple-
mentations

The second case study 4 focuses on the extension of bTCP to TCP and the
implementation. An extra step to this implementation would be to compare
an existing implementation of TCP with our TCP implementation. In this
comparison, we can take a look at the efficiency and the fastness of both the
implementation.

47

Chapter 7

Conclusions

In this thesis, we implemented two stateful protocols, bTCP and TCP (see
chapters 3 and 4) with the help of the tools Dezyne and Nail (see section
2.2). To evaluate these tools and see if we can combine them (see sections
3.4 and 4.4). Thereby, Dezyne is the tool for modeling the protocols state
machines and creating the foundation of the source code of these protocols.
In Nail grammar, we specify the structure of the packets of the respective
protocols. Further, Nail creates the source code for parsing and generating
these packets.

The two case studies are giving the following answers to our research
question(see page 3): The most relevant answer is that it is achievable to
program protocols with the help of Dezyne and Nail. Nevertheless, it is not
the most straightforward thing to use these tools.

Dropping EMV for TCP

We already mentioned in section 4.1 that we had planned to implement
the security protocol EMV(see section 6). After we performed the first
case study, we started to research on EMV. The protocol is not hard to
understand, nevertheless, we decided to drop the case study on EMV because
of the time that we need to invest if we want to implement a new EMV
implementation.

After this decision, it was obvious which stateful protocol we implement
next. The decision fell on TCP because the bTCP protocol is just a smaller
version of the real TCP. Hence, we could reuse some of the code of the first
case study. This made us the second case study easier and we could focus
on the modeling process of TCP in Dezyne(see section 4.2).

Experience using Dezyne

We already mention in the sections 2.2.1, 3.5.2 and 4.5.1 some of our expe-
rience using Dezyne.

48

CHAPTER 7. CONCLUSIONS

Dezyne is a well-structured tool. As you can see in figure 2.1 on page
7,the stand-alone version of Dezyne is comparable to a modern IDE. The
program offers syntax highlighting but also helps with syntax errors in the
model. Furthermore, Vernum, the creators of Dezyne, update their tool on
a regular base.

Furthermore, the process of verifying and simulating a model is easy
to find in the tools. The results of the verification are simple to under-
stand. As described in section 2.2.1, Dezyne can analyze the model based
on five different checks. If an error occurs during the process of verification,
Dezyne produces a traceback of the executed action and reports an error
message what went wrong. We used this feature of Dezyne a lot during the
modeling process. With this feature, engineers do not need to spend time
checking their model on mistakes. They can easily use Dezyne itself to do
these checks. For example, during the design process of TCP in Dezyne, we
implement the behavior of the server. The behavior of the server is guarded
by an extra component. We wanted to call a function in a state where
the guard forbids this function. This mistake was easily discovered by the
verifying feature.

The simulation of a model is also very simple to use. With only one click,
Dezyne starts the simulation of the model and the user can click through
possible functions in the model. For example, the verification feature of
Dezyne finds a error and we can simulate the model to correct the error.

Besides the stand-alone version, Dezyne also provides a command-line
tool that is used in both Makefiles (see code A.3 and B.5) of the project.
Nevertheless, we can as well use the command-line tool in the modeling
process.

Learning the Dezyne Modelling Language (DML) requires some time.
DML is very complex and has a bundle of constructs that can be used to
design the perfect model. After mastering DML, it becomes simple to design
a new model in DML. Therefore, it saves time to design a protocol.

After the modeling process in both case studies, we had two remaining
questions:

1. Does the Dezyne model correctly model the protocol?

2. Is there a ”better” way to model the protocol in Dezyne?

We can answer the first question looking at the state machines which are
provided by the protocols RFC or different sources. For the second question,
we need to talk with the developers of Dezyne or experience users which can
help us build better models in Dezyne.

All in all, we can conclude that Dezyne helps develop a secure protocol.
With the usage of Dezyne, a developer needs to think before a starts pro-
gramming because he first needs to specify the state diagram of the protocol.
Additionally, the tool makes the developing process more structured because

49

CHAPTER 7. CONCLUSIONS

programmers always have an overview of what he is currently programming.
Hence, programmers are more confident and save time. Nevertheless, a de-
veloper needs to learn the DML of Dezyne and how to translate the protocol
from an RFC to DML.

Experience using Nail

We already mention in the sections 2.2.2, 3.5.3 and 4.5.2 some of our expe-
rience using Nail.

One of the experiences is that Nail is not well documented. Therefore,
it is hard to use the tool at the beginning. After getting to know the Nail
grammar, it becomes simple to define a new structure of a packet.

Nevertheless, a programmer needs to program some extra lines of code
to use the automatically generated code of Nail. The tool uses so-called
type NailArena to parse and generate packages[BZ14a]. So, a programmer
needs keeping this in his mind if he programs with generated Nail code.

A remarkable fact of Nail is how many lines of code the tool generates
from a little input specification. The grammar 3.3 has only 15 lines of code.
In comparison, the generated code of this grammar has roughly 428 lines of
code. Hence, the grammar is very lightweight. Even after some settling-in
period, the tool in good integrated into the programming flow.

The tool was a project of a Master thesis and is already four years old.
Therefore, it is not validated if Nail is nowadays security-relevant. If we
compiled Nail code with Wall flag of the g++ compiler, we got some warn-
ings (see section 3.5.3). Besides these warnings, the automatically generate
code of Nail contains some ToDo’s which need correction. These problems
can be solved in the future (See chapter 6).

In conclusion, we can say that Nail is a really helpful tool. It saves time
programming a protocol because a programmer does not need to figure out
how to parse or generator the packets of the protocol. Thereby, Nail has
some security methods in place. These methods are preventing attacks like
shell-code in padding fields, which are corrupting the memory (as discussed
in [BZ14a]). After some setting-in period, the usage of Nail felt very natural
and easy.

Experience putting Dezyne and Nail code together

The third part of the two case studies was to put the generated code of
Dezyne and Nail together. The experience of the individual case studies can
be found in the sections 3.4 and 4.4.

In the beginning, it was not obvious to combine the code of Dezyne and
Nail. We started with understanding and using the automated generated
code of Dezyne.

50

CHAPTER 7. CONCLUSIONS

The Dezyne code needs several elements before it runs. For example,
the modeled system needes a dzn::locator and a dzn::runtime(see sec-
tions 3.4 and 4.4). These parts are crucial for running the Dezyne code.
Hence, software engineers need to know these parts exist and they need to
implement the parts before starting something else.

Another point of the Dezyne code is the hand-written parts. For exam-
ple, in our case studies, the creation of sockets, getting, parsing and sending
packets(The parsing part is handled by the Nail code). It is important to
know that engineers can only influence the code of these parts of the whole
system. It is also possible to manipulate the generated code, but this would
destroy the whole system and we did not achieve anything.

After we got the Dezyne code running, we started to combine the Dezyne
code with the Nail code. As we already mentioned in sections 3.3, 3.4, 3.5.3,
4.5.2, 4.4 and 4.5.2, engineers have to program some parts of the parser
and generator themselves. For example, in both case studies, we needed
to implement the checksum function ourselves (see sections 3.4 and 4.4).
Hence, the generated code of Nail gives us the needed parts of the packet to
compute the checksum. Therefore, Nail needs one method for parsing the
checksum and one method for generating the checksum (see code fragments
A.2 and B.4). These methods need some basic knowledge of how bytes are
working because the parts in these methods are bytes.

In conclusion, we can say that the combing code of Dezyne and Nail
together is at the begin not trivial. After some time to settle in and under-
standing how the code works, it becomes very clear how to use the code of
both tools. The Dezyne code is the framework in which we use the parse
and generate functions of the Nail.

Conclusions

All in all, we can answer after the two case studies the following three
questions:

1. Is it possible to use Dezyne and Nail for automatic code generation of
protocols?

2. Is it easy to use Dezyne and Nail during the implementation of proto-
cols?

3. Is it better to use Dezyne and Nail during the development of proto-
cols?

As we already mentioned in the sections above, Dezyne and Nail are
expressive enough to model protocols like TCP. In Dezyne, developers have
many features to model stateful protocols like TCP. The usage of Nail almost
feels like a one-to-one translation of the specifications to the Nail grammar

51

CHAPTER 7. CONCLUSIONS

format. Nevertheless, Nail also has some flaws. In the case study 4, we
could not send data via the generated packet of Nail.

The second question is not trivial compared to the first question. Both
tools were new for use at the beginning. Hence, it took us some time to
understand the feature of both tools. For example, Dezyne uses a new mod-
eling language that we need to learn. Further, the Nail grammar format
was not easy to understand at the beginning. After some time, we under-
stand both the Dezyne modeling language and the Nail grammar format.
This made the usage of Dezyne and Nail easier and also helped during the
implementation of both case studies.

The third question is hard to answer because it is not clear what better
means in this context. Hence, we think about the maintainability of a
project that is developed with the help of Dezyne and Nail. As engineers
encounter a mistake in the flow of the protocol during the testing phase.
They do not need to change parts of the source code because they make
changes on a higher level namely in Dezyne. Further, this also holds for
Nail. If engineers want to change the structure of the packet, they can do
it in the Nail grammar of the packet.

We can answer the third question in the context of whether the usage
of Dezyne and Nail lowers the likeliness of a bug in the project. With
Dezyne it is less likely to have a bug in the project because Dezyne always
verifies and validates the model before it generates the code of the model.
Hence, engineers can catch errors in the design phase and not in the testing
phase. Nail eliminates the risk of parsing bytes packets by hand-written
code. Nevertheless, the Nail code produces g++ warnings which can cause
bugs and create attack vectors for an attacker.

52

Bibliography

[APS14] Matteo Avalle, Alfredo Pironti, and Riccardo Sisto. Formal ver-
ification of security protocol implementations: a survey. Formal
Aspects of Computing, 26(1):99–123, Jan 2014.

[BHH+17] S. Bratus, L. Hermerschmidt, S.M. Hallberg, M. Locasto, F.D.
Momot, M.L. Patterson, and A Shubina. Curing the vulnerable
parser: Design patterns for secure input handling. ;login: The
USENIX Magazine, Vol. 42(1):32–39, Spring 2017.

[BZ14a] J. Bangert and N. Zeldovich. Nail: A practical interface gen-
erator for data formats. In 2014 IEEE Security and Privacy
Workshops, pages 158–166, May 2014.

[BZ14b] J. Bangert and N. Zeldovich. Nail: A practical interface genera-
tor for data formats. In Login Journal, 2014.

[BZ15a] J. Bangert and N. Zeldovich. Nail - a practical tool for pars-
ing and generating data formats. Master’s thesis, Massachusetts
Institute of Technology, 2015.

[BZ15b] Julian Bangert and Nickolai Zeldovich. Nail. https://github.

com/jbangert/nail, 2015.

[coma] ComMa. http://comma.esi.nl/. Accessed: 2019-11-02.

[comb] Compiler-compiler. https://en.wikipedia.org/wiki/

Compiler-compiler. Accessed: 2019-11-05.

[dez] Dezyne description from Verum. https://www.verum.com/

dezyne/. Accessed: 26-09-2019.

[KLM15] John Klein, Harry Levinson, and Jay Marchetti. Model-driven
engineering: Automatic code generation and beyond. Technical
Report CMU/SEI-2015-TN-005, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 2015.

53

https://github.com/jbangert/nail
https://github.com/jbangert/nail
http://comma.esi.nl/
https://en.wikipedia.org/wiki/Compiler-compiler
https://en.wikipedia.org/wiki/Compiler-compiler
https://www.verum.com/dezyne/
https://www.verum.com/dezyne/

BIBLIOGRAPHY BIBLIOGRAPHY

[KSHS17] Ivan Kurtev, Mathijs Schuts, Jozef Hooman, and Dirk-Jan Swa-
german. Integrating interface modeling and analysis in an indus-
trial setting. In MODELSWARD, 2017.

[Mod14] Paolo Modesti. Efficient Java Code Generation of Security Pro-
tocols Specified in AnB/AnBx. In Sjouke Mauw and Chris-
tian Damsgaard Jensen, editors, Security and Trust Manage-
ment, pages 204–208, Cham, 2014. Springer International Pub-
lishing.

[OCS+18] Liam O’Connor, Zilin Chen, Partha Susarla, Christine Rizkallah,
Gerwin Klein, and Gabriele Keller. Bringing effortless refinement
of data layouts to cogent. In Tiziana Margaria and Bernhard
Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation. Modeling, pages 134–149, Cham,
2018. Springer International Publishing.

[ORC+16] Liam O’Connor, Christine Rizkallah, Zilin Chen, Sidney Amani,
Japheth Lim, Yutaka Nagashima, Thomas Sewell, Alex Hixon,
Gabriele Keller, Toby Murray, and Gerwin Klein. Cogent: Cer-
tified compilation for a functional systems language, 2016.

[PH14] Meredith Patterson and Dan Hirsch. Hammer parser generator.
https://github.com/UpstandingHackers/hammer, 2014.

[rfc81] Transmission Control Protocol. RFC 793, September 1981.

[SCPA11] Matt Sargent, Jerry Chu, Dr. Vern Paxson, and Mark Allman.
Computing TCP’s Retransmission Timer. RFC 6298, June 2011.

[Sel03] B. Selic. The pragmatics of model-driven development. IEEE
Software, 20(5):19–25, Sep. 2003.

[TTG05a] A TCP/IP reference You can Understand! The TCP/IP Guide.
Tcp connection termination procedure. http://www.

tcpipguide.com/free/t_TCPConnectionTermination-2.htm,
2005. [Online; accessed December 13, 2019].

[TTG05b] A TCP/IP reference You can Understand! The
TCP/IP Guide. Tcp sequence number synchro-
nization. http://www.tcpipguide.com/free/t_

TCPConnectionEstablishmentSequenceNumberSynchroniz-2.

htm, 2005. [Online; accessed December 13, 2019].

[Wik19] Wikipedia. Modellgetriebene Softwareentwicklung — Wikipedia,
Die freie Enzyklopädie. https://de.wikipedia.org/w/index.

php?title=Modellgetriebene_Softwareentwicklung&oldid=

188569540, 2019. [Online; accessed 7-January-2020].

54

https://github.com/UpstandingHackers/hammer
http://www.tcpipguide.com/free/t_TCPConnectionTermination-2.htm
http://www.tcpipguide.com/free/t_TCPConnectionTermination-2.htm
http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentSequenceNumberSynchroniz-2.htm
http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentSequenceNumberSynchroniz-2.htm
http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentSequenceNumberSynchroniz-2.htm
https://de.wikipedia.org/w/index.php?title=Modellgetriebene_Softwareentwicklung&oldid=188569540
https://de.wikipedia.org/w/index.php?title=Modellgetriebene_Softwareentwicklung&oldid=188569540
https://de.wikipedia.org/w/index.php?title=Modellgetriebene_Softwareentwicklung&oldid=188569540

Appendix A

Appendix: Case study 1

This appendix contains some extra file of our first case study(see chapter 3).
The structure of the appendix is equal to the structure for chapter 3. The
whole project can be found on Gitlab1.

A.1 bTCP in Dezyne

A.1.1 IUtilServer.dzn
1 interface IUtilServer {

2 in void wait_for_syn();

3 in void send_syn_ack();

4 in void receive_data();

5 in void wait_for_fin();

6 in void receive_final_ack();

7

8 behaviour{

9 on wait_for_syn: {}

10 on send_syn_ack: {}

11 on receive_data: {}

12 on wait_for_fin: {}

13 on receive_final_ack: {}

14 }

15 }

16

17 component UtilServer{

18 provides IUtilServer iUtilServer;

19 }

Code fragment A.1: IUtilServer.dzn

A.2 bTCP in Nail

A.2.1 checksum.cc
1 #include "btcp.nail.hh"

2 #include "memstream.hh"

3 #include <arpa/inet.h>

1https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

55

https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

A.2. BTCP IN NAIL APPENDIX A. APPENDIX: CASE STUDY 1

4 #include <zlib.h>

5

6 #define POLY 0xedb88320

7

8

9 template<typename str>

10 struct checksum_parse {

11 };

12

13

14 template <> struct checksum_parse<NailMemStream>{

15 static int f(NailArena *tmp, NailMemStream *header, NailMemStream *payload,

uint32_t *ptr_checksum){↪→
16 const uint32_t Polynomial = 0xEDB88320;

17 size_t length1 = header->getSize();

18 size_t length2 = payload->getSize();

19 uint32_t previousCrc32 = 0;

20 unsigned char* field1 = (unsigned char*) header->getBuf();

21 unsigned char* field2 = (unsigned char*) payload->getBuf();

22

23 uint32_t crc = ~previousCrc32;

24

25 while (length1--)

26 {

27 crc ^= *field1++;

28 for (unsigned int j = 0; j < 8; j++)

29 if (crc & 1)

30 crc = (crc >> 1) ^ Polynomial;

31 else

32 crc = crc >> 1;

33 }

34

35 while (length2--)

36 {

37 crc ^= *field2++;

38 for (unsigned int j = 0; j < 8; j++)

39 if (crc & 1)

40 crc = (crc >> 1) ^ Polynomial;

41 else

42 crc = crc >> 1;

43 }

44

45 if (~crc == *ptr_checksum){

46 return 0;

47 } else{

48 return -1;

49 }

50 }

51 };

52

53 template<typename str>

54 struct crc32_checksum_parse {

55 };

56

57

58 template <> struct crc32_checksum_parse<NailMemStream>{

59 static int f(NailArena *tmp, NailMemStream *in_current,uint32_t *ptr_checksum){

60 NailMemStream header(in_current->getBuf(), (size_t) 10);

61 NailMemStream payload(in_current->getBuf()+16, (size_t) 1000);

62 return checksum_parse<NailMemStream>::f(tmp, &header, &payload,

ptr_checksum);↪→
63 }

56

A.2. BTCP IN NAIL APPENDIX A. APPENDIX: CASE STUDY 1

64 };

65

66

67

68 int checksum_generate(NailArena *tmp, NailOutStream *header, NailOutStream *payload,

uint32_t *ptr_checksum){↪→
69 const uint32_t Polynomial = 0xEDB88320;

70 size_t length1 = header->size;

71 size_t length2 = payload->size;

72 uint32_t previousCrc32 = 0;

73 unsigned char* field1 = (unsigned char*) header->data;

74 unsigned char* field2 = (unsigned char*) payload->data;

75

76 uint32_t crc = ~previousCrc32;

77

78 while (length1--)

79 {

80 crc ^= *field1++;

81 for (unsigned int j = 0; j < 8; j++)

82 if (crc & 1)

83 crc = (crc >> 1) ^ Polynomial;

84 else

85 crc = crc >> 1;

86 }

87

88 while (length2--)

89 {

90 crc ^= *field2++;

91 for (unsigned int j = 0; j < 8; j++)

92 if (crc & 1)

93 crc = (crc >> 1) ^ Polynomial;

94 else

95 crc = crc >> 1;

96 }

97

98 *ptr_checksum = ~crc;

99 return 0;

100 }

101

102 int crc32_checksum_generate(NailArena *tmp, NailOutStream *current, uint32_t

*ptr_checksum){↪→
103 NailOutStream header = {

104 .data =current->data,

105 .size = (size_t) 10,

106 .pos = (size_t) 10,

107 .bit_offset = 0

108 };

109

110 NailOutStream payload = {

111 .data =current->data+16,

112 .size = (size_t) 1000,

113 .pos = (size_t) 1000,

114 .bit_offset = 0

115 };

116 return checksum_generate(tmp, &header, &payload, ptr_checksum);

117 }

118

119

120

121 #include "btcp.nail.cc"

57

A.3. PUTTING IT TOGETHER APPENDIX A. APPENDIX: CASE STUDY 1

Code fragment A.2: checksum.cc

A.3 Putting it together

A.3.1 Makefile
1 CXX = g++

2 CXXFLAGS = -std=gnu++11 -I$(RUNTIME) -I$(SRC_SERVER) -I$(SRC_CLIENT) -I$(NAIL_LIB)

-I$(LIB) -Wall -lrt↪→
3 CPPFLAGS = -I$(SRC) -I$(RUNTIME)

4 LDFLAGS = -lpthread -lz

5 RM = rm -rf

6 VERSION = 2.9.1

7 CURRENT := $(shell dzn query | grep '*' | sed 's,* ,,')

8

9 ifneq ($(VERSION),$(CURRENT))

10 $(info current version: $(CURRENT) is not equal to selected version: $(VERSION))

11 endif

12

13 SRC_SERVER = ./src_server

14 SRC_CLIENT = ./src_client

15 RUNTIME = ./lib

16 GEN = ./lib_gen

17 NAIL_LIB = ./nail

18 LIB = /usr/include

19

20 SRCS_SERVER = $(filter-out $(SRC_SERVER)/btcp.nail.cc, $(wildcard

$(SRC_SERVER)/*.cc))↪→
21 SRCS_SERVER += $(wildcard $(RUNTIME)/*.cc)

22

23 SRCS_CLIENT = $(filter-out $(SRC_CLIENT)/btcp.nail.cc, $(wildcard

$(SRC_CLIENT)/*.cc))↪→
24 SRCS_CLIENT += $(wildcard $(RUNTIME)/*.cc)

25

26

27 OBJS_SERVER = $(subst .cc,.o,$(SRCS_SERVER))

28 OBJS_CLIENT = $(subst .cc,.o,$(SRCS_CLIENT))

29

30 NAIL = $(wildcard *.nail)

31

32 all:

33 make server client

34

35 server: $(OBJS_SERVER)

36 $(CXX) $(CXXFLAGS) -o server $(OBJS_SERVER) $(LDFLAGS)

37

38 client: $(OBJS_CLIENT)

39 $(CXX) $(CXXFLAGS) -o client $(OBJS_CLIENT) $(LDFLAGS)

40

41 runtime: | $(RUNTIME)/dzn

42 for f in $(shell dzn ls -R /share/runtime/c++ | sed 's,/c++/,,' | tail -n +3); do \

43 dzn cat --version=$(VERSION) /share/runtime/c++/$$f > $(RUNTIME)/$$f; \

44 done

45 touch $@

46

47 $(RUNTIME)/dzn:

48 mkdir -p $@

49

50 generate_all: generate_client generate_server generate_parser

51

52 generate_client: $(wildcard client_dzn/*.dzn)

58

A.3. PUTTING IT TOGETHER APPENDIX A. APPENDIX: CASE STUDY 1

53 for f in $^; do dzn -v code --version=$(VERSION) -l c++ -o $(SRC_CLIENT) $$f; done

54 touch $@

55

56 generate_server: $(wildcard server_dzn/*.dzn)

57 for f in $^; do dzn -v code --version=$(VERSION) -l c++ -o $(SRC_SERVER) $$f; done

58 touch $@

59

60 generate_parser: ; ~/Projekte/nail/generator/nail $(NAIL) ; cp btcp.nail.hh

btcp.nail.cc $(GEN)↪→
61

62 clean:

63 $(RM) $(OBJS_CLIENT) $(OBJS_SERVER) server client

64

65 clean_generated:

66 $(RM) `grep -h dzn $(SRC)/*.dzn.d | sed -e 's,:.*,,' -e 's,%,.,g'`

67 $(RM) $(RUNTIME)

68 $(RM) runtime generate

69

70 distclean: clean clean_generated

71 $(RM) *~

Code fragment A.3: Makefile of the bTCP project

59

Appendix B

Appendix: Case study 2

This appendix contains some extra file of our first case study(see chapter 4). The structure of the
appendix is equal to the structure for chapter 4. The whole project can be found on Gitlab1.

B.1 TCP in Dezyne

B.1.1 IClient.dzn
1 interface IClient{

2

3 extern xint int;

4

5 enum retval { retOK, retFailed};

6

7 in retval startConnection(in xint port);

8 in retval stopSending();

9 in retval sendAck();

10 in retval sendAck2();

11 in retval sendFin();

12 in retval receiveAck();

13 in retval timeWait();

14 in retval sendData();

15

16 behaviour{

17

18 enum States {CLOSED, SYN_SENT, ESTABLISHED, FIN_WAIT1, FIN_WAIT2,

TIME_WAIT};↪→
19

20 States state = States.CLOSED;

21

22 [state.CLOSED]{

23 on stopSending: illegal;

24 on sendAck: illegal;

25 on sendAck2: illegal;

26 on sendData: illegal;

27 on receiveAck: illegal;

28 on timeWait: illegal;

29 on sendFin: illegal;

30 on startConnection: {

31 reply(retval.retFailed);

32 }

1https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

60

https://gitlab.science.ru.nl/pbongartz/bachelor-thesis/tree/master/bTCP

B.1. TCP IN DEZYNE APPENDIX B. APPENDIX: CASE STUDY 2

33 on startConnection: {

34 state = States.SYN_SENT;

35 reply(retval.retOK);

36 }

37 }

38 [state.SYN_SENT]{

39 on startConnection: illegal;

40 on sendData: illegal;

41 on receiveAck: illegal;

42 on timeWait: illegal;

43 on sendFin: illegal;

44 on sendAck2: illegal;

45 on stopSending: {

46 reply(retval.retFailed);

47 }

48 on stopSending: {

49 state = States.CLOSED;

50 reply(retval.retOK);

51 }

52 on sendAck: {

53 reply(retval.retFailed);

54 }

55 on sendAck: {

56 state = States.ESTABLISHED;

57 reply(retval.retOK);

58 }

59 }

60 [state.ESTABLISHED]{

61 on startConnection: illegal;

62 on sendAck: illegal;

63 on receiveAck: illegal;

64 on timeWait: illegal;

65 on sendAck2: illegal;

66 on stopSending: {

67 reply(retval.retFailed);

68 }

69 on stopSending: {

70 state = States.CLOSED;

71 reply(retval.retOK);

72 }

73 on sendData: {

74 reply(retval.retOK);

75 }

76 on sendData: {

77 reply(retval.retFailed);

78 }

79 on sendFin: {

80 state = States.FIN_WAIT1;

81 reply(retval.retOK);

82 }

83 on sendFin: {

84 reply(retval.retFailed);

85 }

86 }

87 [state.FIN_WAIT1]{

88 on startConnection: illegal;

89 on sendAck: illegal;

90 on sendData: illegal;

91 on timeWait: illegal;

92 on sendFin: illegal;

93 on sendAck2: illegal;

94 on stopSending: {

61

B.1. TCP IN DEZYNE APPENDIX B. APPENDIX: CASE STUDY 2

95 reply(retval.retFailed);

96 }

97 on stopSending: {

98 state = States.CLOSED;

99 reply(retval.retOK);

100 }

101 on receiveAck: {

102 reply(retval.retFailed);

103 }

104 on receiveAck: {

105 state = States.FIN_WAIT2;

106 reply(retval.retOK);

107 }

108 }

109 [state.FIN_WAIT2]{

110 on startConnection: illegal;

111 on receiveAck: illegal;

112 on sendData: illegal;

113 on timeWait: illegal;

114 on sendFin: illegal;

115 on sendAck: illegal;

116 on stopSending: {

117 reply(retval.retFailed);

118 }

119 on stopSending: {

120 state = States.CLOSED;

121 reply(retval.retOK);

122 }

123 on sendAck2: {

124 reply(retval.retFailed);

125 }

126 on sendAck2: {

127 state = States.TIME_WAIT;

128 reply(retval.retOK);

129 }

130 }

131 [state.TIME_WAIT]{

132 on startConnection: illegal;

133 on receiveAck: illegal;

134 on sendData: illegal;

135 on sendFin: illegal;

136 on sendAck: illegal;

137 on sendAck2: illegal;

138 on stopSending: {

139 reply(retval.retFailed);

140 }

141 on stopSending: {

142 state = States.CLOSED;

143 reply(retval.retOK);

144 }

145 on timeWait: {

146 reply(retval.retFailed);

147 }

148 on timeWait: {

149 state = States.CLOSED;

150 reply(retval.retOK);

151 }

152 }

153 }

154 }

62

B.1. TCP IN DEZYNE APPENDIX B. APPENDIX: CASE STUDY 2

Code fragment B.1: Interface for client in Dezyne

1 interface ISocketClient

2 {

3 extern data $std::vector<unsigned char>$;

4 extern xint int;

5 enum retval { retOK, retFailed };

6

7 in retval start(in xint port);

8 in retval stop();

9 in retval sendAck();

10 in retval sendAck2();

11 in retval sendFin();

12 in retval sendData(in data file);

13 in retval receiveAck();

14 in retval timeWait();

15

16 behaviour {

17 enum State { Off, Waiting, Connected };

18

19 State state = State.Off;

20

21 [state.Off]{

22 on stop: illegal;

23 on sendAck: illegal;

24 on sendAck2: illegal;

25 on sendFin: illegal;

26 on sendData: illegal;

27 on receiveAck: illegal;

28 on timeWait: illegal;

29 on start: {

30 state = State.Waiting;

31 reply(retval.retOK);

32 }

33 on start: {

34 reply(retval.retFailed);

35 }

36 }

37 [state.Waiting] {

38 on start: illegal;

39 on receiveAck: illegal;

40 on sendFin: illegal;

41 on sendData: illegal;

42 on sendAck2: illegal;

43 on timeWait: illegal;

44 on stop: {

45 state = State.Off;

46 reply(retval.retOK);

47 }

48 on stop: {

49 reply(retval.retFailed);

50 }

51 on sendAck: {

52 state = State.Connected;

53 reply(retval.retOK);

54 }

55 on sendAck: {

56 reply(retval.retFailed);

57 }

58 }

59 [state.Connected]{

60 on start: illegal;

63

B.1. TCP IN DEZYNE APPENDIX B. APPENDIX: CASE STUDY 2

61 on sendAck: illegal;

62 on sendAck2: {

63 state = State.Connected;

64 reply(retval.retOK);

65 }

66 on sendAck2: {

67 reply(retval.retFailed);

68 }

69 on stop: {

70 state = State.Off;

71 reply(retval.retOK);

72 }

73 on stop: {

74 reply(retval.retFailed);

75 }

76 on receiveAck:{

77 reply(retval.retOK);

78 }

79 on receiveAck:{

80 reply(retval.retFailed);

81 }

82 on timeWait: {

83 state = State.Off;

84 reply(retval.retOK);

85 }

86 on timeWait: {

87 reply(retval.retFailed);

88 }

89 on receiveAck: {

90 reply(retval.retOK);

91 }

92 on receiveAck: {

93 reply(retval.retFailed);

94 }

95 on sendData: {

96 reply(retval.retOK);

97 }

98 on sendData: {

99 reply(retval.retFailed);

100 }

101 on sendFin: {

102 reply(retval.retOK);

103 }

104 on sendFin: {

105 reply(retval.retFailed);

106 }

107 }

108 }

109 }

Code fragment B.2: Interface of socket for client in Dezyne

1 interface IFileHandler

2 {

3 extern data $std::vector<unsigned char>$;

4 enum retval { retOK, retFailed };

5

6 in retval readFile(out data file);

7 in void stopReading();

8

64

B.2. TCP IN NAIL APPENDIX B. APPENDIX: CASE STUDY 2

9 behaviour {

10 on readFile: {reply (retval.retOK);}

11 on readFile: {reply (retval.retFailed);}

12 on stopReading: {}

13 }

14 }

Code fragment B.3: Interface of file handler for client in Dezyne

B.2 TCP in Nail

B.2.1 tcp header.cc
1 #include "tcp.nail.hh"

2 #include "memstream.hh"

3 #include "size.hh"

4

5 template <typename str> struct checksum_parse{

6 static int f(NailArena *tmp, NailMemStream *in_current, uint16_t *ptr_checksum,

uint8_t *ptr_offset){↪→
7 return 0;

8 }

9 };

10

11 int checksum_generate(NailArena *tmp, NailOutStream *current, uint16_t

*ptr_checksum, uint8_t *ptr_offset){↪→
12 return 0;

13 }

14

15 template <typename str> struct tcp_header_parse{

16 typedef NailMemStream out_1_t;

17 typedef NailMemStream out_2_t;

18

19 static int f(NailArena *tmp, NailMemStream **out_options, NailMemStream

**out_body, NailMemStream *in_current, uint8_t *ptr_offset){↪→
20 if (n_fail(in_current->repositionOffset(*ptr_offset*4, 0))) return -1;

21 *out_options = (NailMemStream *) n_malloc(tmp, sizeof(NailMemStream));

22 new((void *) *out_options) NailMemStream(in_current->getBuf()+20,

(*ptr_offset*4)-20);↪→
23 *out_body = (NailMemStream *) n_malloc(tmp, sizeof(NailMemStream));

24 new((void *) *out_body) NailMemStream(in_current->getBuf()+*ptr_offset*4,

in_current->getSize()-(*ptr_offset*4));↪→
25 return 0;

26 }

27 };

28

29 int tcp_header_generate(NailArena *tmp, const NailOutStream *in_options, const

NailOutStream *in_body, NailOutStream *current, uint8_t *ptr_offset){↪→
30 if (in_options->pos % 3 != 0) return -1;

31 if (in_options->pos > 40) return -1;

32

33 if (n_fail(size_generate(tmp, in_options, current, ptr_offset))) return -1;

34 *ptr_offset = 5 + (in_options->pos % 3);

35 if(n_fail(tail_generate(tmp, in_body, current))) return -1;

36 return 0;

37 }

38

39 #include "tcp.nail.cc"

65

B.3. PUTTING IT TOGETHER APPENDIX B. APPENDIX: CASE STUDY 2

Code fragment B.4: tcp header.cc

B.3 Putting it together

B.3.1 Makefile
1 CXX = g++

2 CXXFLAGS = -std=gnu++11 -I$(RUNTIME) -I$(SRC_SERVER) -I$(SRC_CLIENT) -I$(NAIL_LIB)

-I$(LIB) -Wall -lrt -g↪→
3 CPPFLAGS = -I$(SRC) -I$(RUNTIME)

4 LDFLAGS = -lpthread -lz

5 RM = rm -rf

6 VERSION = 2.9.1

7 CURRENT := $(shell dzn query | grep '*' | sed 's,* ,,')

8

9 ifneq ($(VERSION),$(CURRENT))

10 $(info current version: $(CURRENT) is not equal to selected version: $(VERSION))

11 endif

12

13 SRC_SERVER = ./src_server

14 SRC_CLIENT = ./src_client

15 RUNTIME = ./lib

16 GEN = ./lib_gen

17 NAIL_LIB = ./nail

18 LIB = /usr/include

19

20 SRCS_SERVER = $(filter-out $(SRC_SERVER)/tcp.nail.cc, $(wildcard

$(SRC_SERVER)/*.cc))↪→
21 SRCS_SERVER += $(wildcard $(RUNTIME)/*.cc)

22

23 SRCS_CLIENT = $(filter-out $(SRC_CLIENT)/tcp.nail.cc, $(wildcard

$(SRC_CLIENT)/*.cc))↪→
24 SRCS_CLIENT += $(wildcard $(RUNTIME)/*.cc)

25

26

27 OBJS_SERVER = $(subst .cc,.o,$(SRCS_SERVER))

28 OBJS_CLIENT = $(subst .cc,.o,$(SRCS_CLIENT))

29

30 NAIL = $(wildcard *.nail)

31

32 all:

33 make server client

34

35 server: $(OBJS_SERVER)

36 $(CXX) $(CXXFLAGS) -o server $(OBJS_SERVER) $(LDFLAGS)

37

38 client: $(OBJS_CLIENT)

39 $(CXX) $(CXXFLAGS) -o client $(OBJS_CLIENT) $(LDFLAGS)

40

41 runtime: | $(RUNTIME)/dzn

42 for f in $(shell dzn ls -R /share/runtime/c++ | sed 's,/c++/,,' | tail -n +3); do \

43 dzn cat --version=$(VERSION) /share/runtime/c++/$$f > $(RUNTIME)/$$f; \

44 done

45 touch $@

46

47 $(RUNTIME)/dzn:

48 mkdir -p $@

49

50 generate_all: generate_client generate_server generate_parser

51

52 generate_client: $(wildcard client_dzn/*.dzn)

66

B.3. PUTTING IT TOGETHER APPENDIX B. APPENDIX: CASE STUDY 2

53 for f in $^; do dzn -v code --version=$(VERSION) -l c++ -o $(SRC_CLIENT) $$f; done

54 touch $@

55

56 generate_server: $(wildcard server_dzn/*.dzn)

57 for f in $^; do dzn -v code --version=$(VERSION) -l c++ -o $(SRC_SERVER) $$f; done

58 touch $@

59

60 generate_parser: ; ~/Projekte/nail/generator/nail $(NAIL) ; cp tcp.nail.hh

tcp.nail.cc $(GEN) ; rm tcp.nail.hh tcp.nail.cc↪→
61

62 clean:

63 $(RM) $(OBJS_CLIENT) $(OBJS_SERVER) server client

64

65 clean_generated:

66 $(RM) `grep -h dzn $(SRC)/*.dzn.d | sed -e 's,:.*,,' -e 's,%,.,g'`

67 $(RM) $(RUNTIME)

68 $(RM) runtime generate

69

70 distclean: clean clean_generated

71 $(RM) *~

Code fragment B.5: Makefile of the bTCP project

67

	Introduction
	Preliminaries
	Automatic code generation and Model-driven development
	Tools
	Dezyne
	Nail

	Case study: bTCP
	bTCP
	bTCP in Dezyne
	bTCP in Nail
	Putting it together
	Reflection
	Comparison between Nail + Dezyne and Python
	The Experience using Dezyne
	The Experience using Nail
	The experience combing Dezyne and Nail

	Case study: TCP
	TCP
	TCP in Dezyne
	TCP in Nail
	Putting it together
	Reflection
	The experience using Dezyne
	The experience using Nail
	The experience combing Dezyne and Nail

	Related Work
	Future Work
	Conclusions
	Appendix: Case study 1
	bTCP in Dezyne
	IUtilServer.dzn

	bTCP in Nail
	checksum.cc

	Putting it together
	Makefile

	Appendix: Case study 2
	TCP in Dezyne
	IClient.dzn

	TCP in Nail
	tcp_header.cc

	Putting it together
	Makefile

