
Bachelor thesis
Computing Science

Radboud University

Optimizing the NIST Post
Quantum Candidate SPHINCS+

using AVX-512

Author:
Dor Mariel Alter
S1027021
dor.alter@student.ru.nl

First supervisor/assessor:
Prof. dr. Peter Schwabe
peter@cryptojedi.org

Second supervisor:
Prof, dr. Bo-Yin Yang

byyangat@iis.sinica.edu.tw

Second assessor:
Prof. dr. Joan Daemen

j.daemen@cs.ru.nl

August 25, 2021

mailto:dor.alter@student.ru.nl
mailto:peter@cryptojedi.org
mailto:byyangat @iis.sinica.edu.tw
mailto:j.daemen@cs.ru.nl

Abstract

Today’s cryptography is not strong enough to ensure the security risks we
might face in the future. One of the threats to cryptography is quantum
computers, and for that reason, NIST created the NIST Post Quantum
Cryptography Standardization (PQC), a standardization process for
post-quantum schemes. SPHINCS+ is one of the schemes in the alternative
candidates in the third round of this project. The main disadvantage
of SPHINCS+ is its speed performance. This thesis analyzes ways to
improve its performance using parallelism, more precisely using Intel’s
AVX-512. Using this approach, we can achieve 1.8× or 1.45× speed up
for key generation and signing (for the s and the f options of the scheme)
and a near 1.3x time improvement for verification in the case of SHA256,
compared to the AVX2 version, which is submitted to the NIST Post
Quantum Cryptography Standardization. In the case of SHAKE256, we
get 2.7× speed up performance for key generation and signing and 1.9×
improvement for verification, comparing to the AVX2 version, which is
submitted to the NIST Post Quantum Cryptography Standardization. We
also present a comparison to the other NIST candidates who are still part
of the third round.

Keywords: AVX2, AVX-512, hash, SHA256, SHAKE256, SPHINCS+,
NIST PQC, vectorization.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 SPHINCS+ . 5

2.1.1 One Time Signature (OTS) Scheme 5
2.1.2 WOTS+ . 6
2.1.3 Hypertree and FORS 10
2.1.4 SPHINCS+ . 14
2.1.5 SPHINCS+ Instantiation 15

2.2 Hash Functions . 16
2.2.1 SHA256 . 16
2.2.2 SHAKE256 . 19

2.3 Intel Advanced Vector Extensions 512 25
2.3.1 Single Instruction Multiple Data 25
2.3.2 Intel Advanced Vector Extensions 512 26

3 Related Work 28

4 Optimizing SPHINCS+ 30
4.1 SHA256 Implementation . 31
4.2 SHAKE256 Implementation 34

5 A Lower Bound on the Amount of Cycles per Hash 36
5.1 SHA256 . 37
5.2 SHAKE256 . 39

6 Results and Comparison 43
6.1 Comparison of Lower Bound to Run Time 43
6.2 Comparison of Single Hash in AVX2 and AVX512 44
6.3 Comparision of different implementations of SPHINCS+ . . . 45

6.3.1 SHA256 . 45
6.3.2 SHAKE256 . 50

6.4 Comparison to Other NIST PQC Candidates 52

1

7 Conclusions and Future Work 58

2

Chapter 1

Introduction

Today, cryptographic schemes such as signature schemes can be found in
most of our daily used devices and online activities. For instance, when we
connect to a website that uses the TLS protocol or run a software update,
the browser or the app verifies that the web page or update arrived from
the right source using such cryptographic shchemes [33]. Nowadays, most
schemes rely on a hard problem to solve, such as discrete logarithm or
factorization. However, some of those problems will no longer be hard to
solve if quantum computers will be used [35].

At the state of the art, quantum computers are still not able to threaten
those schemes, however experts believe that within 15-30 years this will
no longer be the case [24]. Therefore, the National Institute of Standards
and Technology (NIST) initiated the Post-Quantum Cryptography Stan-
dardization process (PQC), where at the end, NIST will announce their
recommendation for post-quantum schemes [29]. This project started
with 69 candidates in its first round for both public-key encryption and
key-establishment algorithms and digital signature algorithms [30]. This
list was narrowed down to seventeen candidates for public-key encryption
and key-establishment algorithms and nine candidates for digital signature
algorithms in the second round [31]. Moreover, at the time of writing this
thesis, this competition is in its third round, and there are four finalists for
public-key encryption and key-establishment algorithms and five alternative
candidates, and there are three finalists for digital signature algorithms and
another three alternative candidates [32].

One of the candidates that is part of the alternative candidates for the
digital signature algorithms is the SPHINCS+ scheme. SPHINCS+ is a
stateless hash-based signature scheme that is believed to be quantum secure
[4]. There are quite a few advantages for using SPHINCS+: minimal
security assumptions, state-of-the-art attacks are easily analyzed, small key

3

sizes and reuse of established building blocks. To sum up the advantages
and limitations of SPHINCS+ in one sentence, SPHINCS+ is probably the
most conservative design of a post-quantum signature scheme. However, it
is relatively inefficient in terms of signature size and speed [4]. Due to this
disadvantage, SPHINCS+ is not one of the finalists of the third round but
rather on the list of alternative candidates.

This leads us to the purpose of this thesis: to investigate how to speed up
SPHINCS+ performance. Different parameters can be used for SPHINCS+,
which balance between the speed and the signature size, such that the
smaller the signature size is, the slower the scheme becomes. So, boosting
the performance in terms of speed might be able to improve both issues.
Currently, there are mainly two implementations for SPHINCS+, one of
them, the so-called optimized implementation, using the Advanced Vector
Extensions 2 (AVX2), [17]. The Advanced Vector Extensions (AVX)
is a family of vector extensions used in Intel processors, allowing us to
perform more operations simultaneously. In 2017, Intel released a new
extension called AVX-512 [11], which allows us to perform even more
operations at once compared to AVX2. Therefore, we can further optimize
the performance of the SPHINCS+ scheme using this AVX-512.

In this thesis, we will try to answer the question: To what extent can we
improve the speed of the NIST candidate SPHINCS+ using AVX-512?
For that purpose, we propose a new implementation for SPHINCS+ using
AVX-512, which can be found at [1]. We will first explain how SPHINCS+
and its lower level schemes work and the improvements in using AVX-512
(chapter 2). After we understand the scheme, we will talk about other
NIST candidates, to which we will compare our implementation and another
implementation that was used in our code (chapter 3). Then, we will move
on to a higher-level explanation of the scheme’s implementation using AVX-
512 (chapter 4). Afterward, we will derive a lower bound on the amount of
operation for the hashes (chapter 5). Thereupon, we will show the results
and compare our implementation to other SPHINCS+ implementation and
NIST PQC candidates (chapter 6). Finally, in chapter 7, we will conclude
this thesis and discuss further impairments of the scheme as future work.

4

Chapter 2

Preliminaries

2.1 SPHINCS+

SPHINCS+ is a post-quantum stateless hash-based signature scheme de-
signed and implemented by Bernstein, Dobraunig, Eichlseder, Fluhrer,
Gazdag, Hülsing, Kampanakis, Kölbl, Lange, Lauridsen, Mendel, Nieder-
hagen, Rechberger, Rijneveld, and Schwabe [4]. SPHINCS+ is a participant
in the NIST Post-Quantum Cryptography Standardization Process (PQC),
in which NIST will announce which one of the candidates will become their
standard scheme [25]. SPHINCS+ is built on the original SPHINCS scheme
[6]. However, it has some improvements such as multi-target attack protec-
tion, compressed treeless WOTS+ public key, FORS instead of HORST
and verifiable index selection [4]. As SPHINCS+ is a hash-based signa-
ture scheme, it relies on a hash function. There are three possible versions
of hashes used, SHA-256 (SHA2), SHAKE256 (SHA3) and Haraka. How-
ever, for the scope of this thesis, we are going to focus on the two main-
stream hashes, which are SHA-256 and SHAKE256. before we explain the
SPHINC+ scheme, we will first introduce its dependencies, namely WOTS+,
FORC and the hyper trees. In the next two subsections, we will look at how
each of them works and later, we will see how they are used to create the
final SPHINCS+ scheme.

2.1.1 One Time Signature (OTS) Scheme

One Time Signatures are schemes that can be used to sign only one message.
These schemes are the basis of some of the more complicated signature
schemes, therefore, it is important first to understand them. The simplest
example is the 0-bit message signature, in which the sender does not send a
specific message, but the receiver knows that the message received is from
the sender. A real-life example of this was the Yo App [27], an app that
allowed the users to only send the message ”Yo” to each other. It works as
follows: the sender uses a secret key and publishes its hash as their public

5

key. Then, after sending the message, the sender also sends the private key.
The receiver hashes the private key, compares it to the sender’s public key
and if they match, the sender is authenticated. This idea, although rather
simple, is the building block for more complex schemes. Let us also consider
the 1-bit message scheme, which works as follows: the sender generates two
random values (sk0, sk1) which are the private key, then hashes each one of
them and publishes the result, as their public key. Then, when the sender
wants to send a message, they send either sk0 or sk1 for the bit to be 0
or 1, respectively. Now, the receiver can hash the message and compare
it to the public key, which will tell them if the value is zero or one and
that the signature on the 1-bit message is verified. After we understand the
simple cases of OTS, we can move on to more complicated schemes used in
SPHINCS+.

2.1.2 WOTS+

WOTS+ is a one-time signature (OTS) scheme designed by Hülsing [16],
which is an improved version of the famous Winternitz OTS (WOTS) scheme
[8]. The main idea of both schemes is to use the so-called chain functions
starting from the private key up to the public key. Those chain functions are
recursively applied to their output several times, until we get the final value,
whence their name as chain functions. Next, we will explain how WOTS
works and afterward, we will see how it matured to WOTS+.

WOTS

We start by looking at how WOTS works [8]. WOTS is a one time
signature scheme. In this scheme, we sign messages, those messages could
be either fixed length messages or the hash values of the messages with a
fixed length. In WOTS, there are two keys (public and private), consisting
of l pseudo-random values of w bits each, where w is the base used, which
is the fixed length we mentioned above.

To compute the length of l, there are two other values that needed to be
calculated first. Those being l1, the amount of blocks we divide the message
into and l2 the length of the checksum. Then l is the sum of l1 and l2.
Given the length of the message lm and base w, l1 and l2 are computed as
follows, l1 = d lm

log2(w)e and l2 = b log2(l1·(w−1))log2(w) c+ 1.

For simplicity, we are going to use base 256 and message length 256 bits as
well in our explanation and figures, which gives us l1 = 32 and l2 = 2. Hence
the private key is denoted by Prk0 to Prk33 and the public key is denoted
by Pub0 to Pub33, where each value is 256-bits long. The function H is
defined as follows H : {0, 1}256 → {0, 1}256, this function can be seen as a

6

non-compressive cryptographic hash function. The public key is generated
by applying the hash function H 255 times on each 256-bit value from the
private key and then concatenating the results, as shown in Figure 2.1.

Private key:

Prk0

Prk1

...

Prk33

Public key:

Pub0

Pub1

...

Pub33

H255(Prk0)

H255(Prk1)

H255(Prk33)

Figure 2.1: WOTS+ generation of the public key using the private key.

To elaborate upon this idea and better understand how to perform key gen-
eration for WOTS, a pseudocode is also given for that algorithm, Algorithm
1. Unlike in the case of the figures, the pseudocode does not use a specific
base, such as 256, but rather w as the base value.

Algorithm 1 Key generation for WOTS

1: function keypair WOTS()
2: sk ← $(sk1, sk2, . . . , skl)
3: for i = 0 to l do
4: pki = Hw−1(ski)
5: end for
6: return sk pk
7: end function

Notice that the $ represents generating values uniformly at random and H
is the non-compressive cryptographic hash function mentioned above.

After we got a notion of how the keys are generated, we look at how to
sign a message. Let message M be a message with a length of 256 bits,
otherwise, apply a hash function to turn it to 256 bits. We break M into 32
values denoted by mi, as it is 256 bits, we know that each element will be
8-bits long. Then, for each mi we compute H255−mi(Prki). Unfortunately,
this is not enough for signing the message as it is still prone to forgery. For
example, given a message and its signature m = (6,m1, . . . ,m31) an attacker
can perform another iteration of the hash resulting in a new valid signature
for a different message, m = (7,m1, . . . ,m31). To deal with this, the scheme

7

introduces a checksum for each mi. We compute the checksum across all
values of mi as follows: c =

∑32
i=0(256 − 1 −mi). Then we can write c as

two values c0 and c1 and compute the hash chain function H on them. So,
if we increase one of the mi, the values of the ci decrease and the signature
is no longer valid. An illustration of this procedure is shown in Figure 2.2.

Message M:

m0

m1

...

m31

Signature:

sig0

sig1

...

sig31

H255−m0(Prk0)

H255−m1(Prk1)

H255−m31(Prk31)

c =
∑32

i=0(256− 1−mi)

c = c0||c1
c0

c1

H255−c0(Prk32) hc0

H255−c1(Prk33) hc1

Figure 2.2: WOTS+ singing a message M with 256 bits length.

Again for better understanding, a pseudocode for that algorithm, Algorithm
2 is also provided.

Algorithm 2 Signing a message using WOTS

1: function signing WOTS(M, sk)
2: CS ← c0||c1||...||cl2 =

∑l1
i=1(w − 1−Mi)

3: for i = 0 to l1 do
4: sigi ← Hw−1−mi(ski)
5: end for
6: for i = 0 to l2 do
7: hci ← Hw−1−ci(ski+32)
8: end for
9: return sig, hc

10: end function

Note that bars (||) represent concatenation.

This works as we know that M is 256 bits long, so if we break M into 32
values, we will get 8-bit values (as 256/32 = 8) and we know that 28 = 256.
So, 255 is the highest value we can get for mi, which means that we will

8

always get a non-negative value for the expression of H255−mi .

Verifying is as simple as taking each sigi value and applying H on it mi

times as shown in Figure 2.3 and then comparing it to the public key and
verifying the checksum in the same manner.

Message M:

m0

m1

...

m31

Signature:

Pub0

Pub1

...

Pub31

Hm0(sig0)

Hm1(sig1)

Hm31(sig31)

c =
∑32

i=0(256− 1−mi)

c = c0||c1
c0

c1

Hc0(hc0) Pub32

Hc1(hc1) Pub33

Figure 2.3: WOTS+ verifying a message M with 256 bits length.

The algorithm for verifying will return True if the signature is valid and
False otherwise. The following pseudocode for verification, Algorithm 3 is
used.

9

Algorithm 3 Verifying a signature using WOTS

1: function Verifying WOTS(M, sig, pk, hc)
2: for i = 0 to l1 do
3: veri ← Hmi(sigi)
4: end for
5: c0||c1||...||cl2 ←

∑l1
i=1(w − 1−Mi)

6: for i = 0 to l2 do
7: verl1+i ← Hci(hci)
8: end for
9: if pk == ver then

10: return True
11: else
12: return False
13: end if
14: end function

From WOTS to WOTS+

Since its first introduction, WOTS has been modified and improved upon,
while the most noticeable improvement is WOTS+ [16]. Similar to WOTS,
WOTS+ also has several versions. Unfortunately, they share the same name,
although they have slight differences. As a result, the WOTS+ used in
SPHINCS+ is different from the original version. The WOTS+ used in
SPHINCS+ introduces two additional parameters which turn the hash func-
tion into a tweakable hash function compared to the WOTS discussed above.
This notion is beyond the scope of this thesis, but more information can be
found in [2]. For this thesis, we can consider WOTS+ as a version of WOTS
which takes two extra parameters [5], those being the position of the node
in the tree, called address, and a public seed while the signatures have the
same procedures as WOTS.

2.1.3 Hypertree and FORS

As the name might suggest, WOTS+ alone is not sufficient for a signature
scheme as it is a one-time signature scheme. This means that every time we
want to sign a message, we will have to generate a new key pair, which is
inconvenient if we want to sign a large number of messages under the same
key at the same time. Therefore, we combine WOTS+ with hypertrees in
order to address this issue. However, before we can talk about hypertrees, we
will first explain how trees can be used to sign messages. For that purpose,
we will discuss Merkle trees in the next part.

10

Merkle tree

A Merkle tree is a type of hash tree used to sign and verify messages, which
was designed by dr. Merkle [23]. One of the main disadvantages of schemes
that use this method is being stateful, meaning that we need to save the
state in which our tree is. The main idea of Merkle tree is to have a tree with
a root (gray circle node), nodes (circle nodes) and leaf elements (rectangle
node) as can be seen in Figure 2.4. Now, the root of this tree is designated
as the public key. The leaf elements are the public key, Yi, and private key,
Xi, of the given signature scheme. The nodes are the hashed value of the
concatenation of their children. Notice that when talking about height, the
leaves are not taken into consideration because they are not an actual part
of the tree, but rather an initializer for the nodes. Therefore, in the tree
below Figure 2.4, they are not represented as nodes.

pk

H12

H8

H0

X000

Y000

H1

X001

Y001

H9

H2

X010

Y010

H3

X011

Y011

H13

H10

H4

X100

Y100

H5

X101

Y101

H11

H6

X110

Y110

H7

X111

Y111

Figure 2.4: Merkle tree of height 3

To sign a message M using the Merkle tree, we will first use the signature
scheme given in the leaf, which gives us sig′ = sign′(M,Xi). However,
unlike in the previous scheme, just publishing the signature, sig′, and the
public key, whether it is the public key of the leaf (Yi) or the public key of
the scheme (pk), is not enough. In order to get the public key pk from a
leaf used to sign it, we need the path from that leaf to the root. Therefore,
we will include an additional parameter, AUTH in the signature, being the
concatenation of all nodes in the path leading from the leaf to the root.
So, the signature will look like this sig = (i, sign(M,Xi), Yi, AUTH). As
an example, assuming we want to sign message M using X010, we first sign
M using X010 so we have sig′010 = sign′(M,X010), then we add Y010, the
public key of X010, then we add the index of the leaf 010 and finally the
authentication path, which gives us sig = (010, sig′010, Y010, (H8||H3||H13).

11

To verify sig, we will first use the leaf scheme to verify that sign′(M,Xi)
indeed gives Yi and then use Yi together with the authentication path to
reconstruct the public key. We compare it to the known public key pk and
if they match, then we know that the signature is valid.

The idea of stateful here comes from the fact that we also need to update
the i for every signature and ensure the same i’s do not repeat. If we do
not, we risk using the same leaf twice, which might reveal information about
the message or might allow attackers to create a forgery, depending on the
scheme we use in the leaf. This is due to the fact that the scheme used in
the leaves is a one time signature scheme, which means that it must only be
used once.

Hypertree

Now, after having a better understanding of the way trees can be used
for signing, we can look at hypertrees schemes, which is equivalent to the
XMSS scheme [9], where the main idea is to use a tree as the constructor
for the scheme. Afterward, we will extend upon this idea to get a multi-tree
setting rather than one big tree, which is equivalent with XMSSMT [15].

So, as explained earlier, we do not want to use the same leaf twice, and we
want to have enough leaves to sign more messages. The straightforward
approach to solve this issue would be to create a signal tree called a
hyper tree that is large enough such that there would be sufficient leaves.
However, as we increase the height of a tree, we need to consider that we
increase the cost of using and constricting this tree. By doing so, we will
get 2h leaves, where h is the height.

In order to improve upon this issue, we use multi hypertree, thus reducing
the cost, by using multiple smaller trees instead of a single big tree. This
approach will give us a× 2h

′
leaves, where a is the number of trees, and h′

is the height of those trees. In this case, we can have the same amount of
leaves, but as we have multiple unrelated trees, on which we can work in
parallel, it increases the efficiency of the scheme.

FORS

Another method that can be used to reduce the impact of using the same
leaf twice is to use a few time signature scheme (FTS), rather than an OTS.
This way, we will ensure that we will not leak any vital information even if

12

we use the same leaf twice. After discussing how trees could be used for
OTS signing, we will look at their use for FTS signing. The scheme used
for that purpose is Forest of Random Subsets (FORS), where the main idea
is not to use only one tree, but rather a forest of trees.

Let us look at how FORS works. As in the case of the Merkle tree, we have
a public key associated with the sender. However, unlike in the Merkle
tree scheme, it is not the root of a single tree, but the concatenation of
the roots of all the trees. This public key is computed before sending any
message and is published by the sender. To sign a message, we need it
to be the same size as the block size, k × a, which means that we need k
strings of length a bits. Then, we do the following: we have k trees, and
each of them has 2a leaves, so each value of a string will be interpreted as
a leaf in one of the k trees. Afterward, as we have seen in the Merkle tree
above, we can sign by using the node representing one string of a together
with the authentication path to the root. So, our signature will be the leaf
represented by the value of a and the authentication path to the root of
that tree, and we can concatenate the results and send it. To verify the
signature, we need to reconstruct the k roots of the trees and compare it to
the value of the roots given in the public key.

r0 r1 r2

r3 r4 r5

Figure 2.5: An illustration of a FORS signature with k = 6 and a = 3, for
the message 010 001 110 100 101 011.

In Figure 2.5 we can see an example of a signature using FORS. In this
case, we see that we have six trees (k = 6), and the tree’s height is 3 (a = 3).
Thus, a message should be of length 3×6 = 18 bits. In this case, we want to
sign the following message 010 001 110 100 101 011, which is indeed 18 bits

13

long. So, we split it into six values of 3 bits each as a is 3. The signature
will consist of the gray leaf (representing the leaves corresponding to the six
values we split m into) and the gray nodes. As can be seen in Figure 2.5 for
each tree, we can construct its root using the gray nodes, thus, verifying the
signature. We can also see that the message m is not the value of the leaf
node, but rather a pointer towards a specific node, meaning that the values
of the roots and leaves are not dependent on the message. But instead, the
leaves are chosen by the message, which means that we can compute the
leaves when generating the public and private keys.

2.1.4 SPHINCS+

Finally, after discussing the smaller schemes used in SPHINCS+, we can
discuss how the scheme works as a whole.

pk

m

h = 9

d = 3

hash node

OTS node

FTS node

Figure 2.6: Illustration of a small SPHINCS+ structure, Figure reprinted
from [2].

In Figure 2.6 we can see an illustration of how we sign a message m. How-
ever, before we can sign any message, we need to generate the SPHINCS+
key pair. Like any other public-key scheme, SPHINCS+ consists of a public
key and a private key. The public key is composed of two n-bit values: the
root node of the top trees in the scheme and a random public seed. The
private key is also composed of two n-bit values, two random seeds, one for
WOTS+ and FORS and another for the randomized message digest. As we
discussed in FORS, we do not generate the leaves when signing a message,

14

but rather we create them in the key generation process. After generat-
ing these keys and understanding how the tree is created, we can discuss
how we sign a message. We sign a message using FORS, and then we sign
the FORS pubic key using WOTS+, which gives us a node in the lowest
tree. Additionally, we add the authentication path leading to the top root
from that node, giving us the SPHINCS+ signature. In order to verify the
signature, we use the authentication path, and we keep going up the trees
until we get to the top root node, which is the public key. Then, we simply
compare if the top root we got is identical to the known public key and if
so, the message is authenticated. There are two important aspects to notice
here: first, the whole tree is not present in the verification process, but only
the nodes needed to get from the signed node to the root (so, for instance, if
the node is on the right branch of the tree, considering its first two children,
we only need the left child and not the whole tree resulting from that child).
Secondly, the FORS public key and WOTS public keys are never explicitly
verified, but rather used to construct the top root of the tree. Those are
important aspects that reduce the time and space complexity of the scheme.

2.1.5 SPHINCS+ Instantiation

We proceed to discuss the different parameter sets and implementations
we use within it. The first two implementations we can talk about are
the simple and robust versions. Each focuses on a different aspect of the
scheme. While the simple version is more about speed, the robust version is
more about security, in the sense that we have fewer security assumptions,
so those two are two versions of the SPHINCS+, which balance the scheme’s
security and speed. Next, we have six options for the scheme, which uses
different parameters to provide different security strengths as required
by NIST. We are going to represent those options in the following table
Table 2.1 where we have the following abbreviations, n - hash output
length, h - the height of the hypertree, d - number of subtree layers, log(t) -
FORS tree height, k - Number of FORS Trees and w - Winternitz parameter.

n h d log(t) k w security bits pk bytes sk bytes signature bytes

SPHINCS+-128s 16 63 7 12 14 16 133 32 64 7,856

SPHINCS+-128f 16 66 22 6 33 16 128 32 64 17,088

SPHINCS+-192s 24 63 7 14 17 16 193 48 96 16,224

SPHINCS+-192f 24 66 22 8 33 16 194 48 96 35,664

SPHINCS+-256s 32 64 8 4 22 16 255 64 128 29,792

SPHINCS+-256f 32 68 17 9 35 16 255 64 128 49,856

Table 2.1: SPHINCS+ Instantiation.

15

2.2 Hash Functions

As mentioned above, SPHINCS+ is a hash-based signature scheme, which
means that the main operations in this scheme are hashing. Therefore, it is
important to explain how the hash functions used in this scheme work. In
this thesis, we will consider the implementations of SPHINCS+ using both
SHA2 and SHA3, more specifically SHA256 and SHAKE256, so in the next
part, we will explain how each of those hashes works.

2.2.1 SHA256

The first hash function we will discuss is SHA256, which is part of the
SHA2 hash function family. As the name suggests, it is a more secure
scheme comparing to its previous version of SHA1. This function is a
standard by the National Institute of Standards and Technology (NIST)
and was published in FIPS 180-2 [26], and since then, it was and still is
widely used.

Now, we discuss how this function works. Given an input message, we
divide it into values of 512-bit length and hash each block separately.
Therefore, we are going to focus on the operations we perform on a
single block. If we do not have 512 bits, we will pad the message to end
up with a 512-bit value. The first thing we need to consider is the 8
constants that will initialize the hash values, let us note them by hi where
i ∈ N ∧ i ∈ {0, 1, ..., 7}. We obtain those constants by taking the 32 first
bits of the fractional parts of the square roots of the first eight primes.
Those values are usually hardcoded in the code. The values, represented in
hexadecimal, are as follow:

h0 := 0x6a09e667
h1 := 0xbb67ae85
h2 := 0x3c6ef372
h3 := 0xa54ff53a
h4 := 0x510e527f
h5 := 0x9b05688c
h6 := 0x1f83d9ab
h7 := 0x5be0cd19

In addition to those constants, there are another 64 constants consisting
of 32 bits each. We are going to place them in an array K, which has 64
entries of 32 bits each. Those constants are the first 32 bits of the fractional
parts of the cube roots of the first 64 primes. Again, those constants
are hardcoded into the code. The values of the constants, represented in
hexadecimal, are:

16

0x428a2f98 0x71374491 0xb5c0fbcf 0xe9b5dba5 0x3956c25b 0x59f111f1
0x923f82a4 0xab1c5ed5 0xd807aa98 0x12835b01 0x243185be 0x550c7dc3
0x72be5d74 0x80deb1fe 0x9bdc06a7 0xc19bf174 0xe49b69c1 0xefbe4786
0x0fc19dc6 0x240ca1cc 0x2de92c6f 0x4a7484aa 0x5cb0a9dc 0x76f988da
0x983e5152 0xa831c66d 0xb00327c8 0xbf597fc7 0xc6e00bf3 0xd5a79147
0x06ca6351 0x14292967 0x27b70a85 0x2e1b2138 0x4d2c6dfc 0x53380d13
0x650a7354 0x766a0abb 0x81c2c92e 0x92722c85 0xa2bfe8a1 0xa81a664b
0xc24b8b70 0xc76c51a3 0xd192e819 0xd6990624 0xf40e3585 0x106aa070
0x19a4c116 0x1e376c08 0x2748774c 0x34b0bcb5 0x391c0cb3 0x4ed8aa4a
0x5b9cca4f 0x682e6ff3 0x748f82ee 0x78a5636f 0x84c87814 0x8cc70208
0x90befffa 0xa4506ceb 0xbef9a3f7 0xc67178f2

Now that we have established all the constants, it is time to start operating
on the input. However, before that, let us define the following functions and
their notation: 32-bit add (+), which adds two values of 32 bits, bitwise flip
(not), which flips the 32-bit value given to it, bitwise or (∨), which takes
two 32-bit values and returns the bitwise or between them bitwise and (∧),
which takes two 32-bit values and returns the bitwise and between them,
rotate right (ROTRn(x) = (x� n)∨(x� w−n), where w is the size of the
word in bits), which takes a 32-bit value, x, and an integer n and rotates
it to the right n times, rotate left (ROTLn(x) = (x � n) ∨ (x � w − n),
where w is the size of the word in bits), which takes a 32-bit value, x, and
an integer n and rotates it to the left n times, shift right (x � n), which
takes a 32-bit value and an integer n and shifts it to the right n times and
shift left (x� n), which takes a 32-bit value and an integer n and shifts it
to the left n times.

The following steps happen for each chunk of 512 bits. We start by
initializing an array W with 64 entries, each being 32 bits. The first 16
elements (W [0..15]) are our 512 bits input and the rest, for now, will be 0.
Then, we perform the following:

17

Algorithm 4 Sigmas computation, initializing W

1: function SIGMAS(W)
2: for i = 16 to 63 do
3: x1 ← i− 15
4: x2 ← i− 2
5: s0 ← ROTR7(W [x1]) ⊕ ROTR18(W [x1]) ⊕ (W [x1] >> 3)
6: s1 ← ROTR17(W [x2]) ⊕ ROTR19(W [x2]) ⊕ (W [x2] >> 10)
7: W [i]←W [i− 16] + s0 + w[i− 7] + s1
8: end for
9: end function

Next, we are going to copy the values of the constants of hi to new variable
denoted from a to h such that a = h0, b = h1 and so on. Then we are going
to perform the following:

Algorithm 5 SHA256 rounds

1: function Rounds(a, b, c, d, e, f, g, h,W,K)
2: for i = 0 to 63 do
3: S0 ← ROTR2(a) ⊕ ROTR13(a) ⊕ ROTR22(a)
4: S0 ← ROTR2(a) ⊕ ROTR13(a) ⊕ ROTR22(a)
5: S1 ← ROTR6(e) ⊕ ROTR11(e) ⊕ ROTR25(e)
6: ch← (e ∧ f) ⊕ (not(e) ∧ g)
7: maj ← (a ∧ b) ⊕ (a ∧ c) ⊕ (b ∧ c)
8: temp1 ← h+ S1 + ch+K[i] +W [i]
9: temp2 ← S0 +maj

10: h← g
11: g ← f
12: f ← e
13: e← d+ temp1
14: d← c
15: c← b
16: b← a
17: a← temp1 + temp2
18: end for
19: end function

Next, we are going to add the 8 constants to the values we obtained for
a, b, c, d, e, f and g one last time:

h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d

18

h4 = h4 + e
h5 = h5 + f
h6 = h6 + g
h7 = h7 + h

Finally, we concatenate all the hi and we got the hashed value.

2.2.2 SHAKE256

The second hash function that we will discuss is SHAKE256, a hash
function from the function family SHA3, or more precisely, the Keccak
family. This function is an improvement to the SHA2 family of functions in
terms of security, but not only. Unlike the previous versions of SHA, which
were fixed digest length, this version allows us to modify the output size
to any number of bits. This function became a standard by the National
Institute of Standards and Technology (NIST), published in FIPS 202 in
2015 [28] and it is the latest version of the SHA family of functions.

The first aspect we will discuss while talking about SHAKE256 is the
parameters. In order to decide on the size of the state, we have parameter
b = 25 × 2l = {25, 50, 100, 200, 400, 800, 1600}. In the case of SHAKE256,
the state size is 1600. After we have chosen a state size, we determine the
number of rounds, Rounds = 12 + 2 × l. So, for instance, for a state size
of 1600 like in SHAKE256, we have l = 6, so we have 24 rounds. Another
important parameter is the w parameter, which is equal to w = b/25. We
will use this parameter when writing the dimensions of the state, which
are 5 by 5 by w. Next, we can talk about the rate denoted by r and the
capacity denoted by c, the values are such that r + c = b. Those two
variables are different for each member of the SHA3 family and in our case,
for SHAKE256, the values are r = 1088 and c = 512. As we can see, adding
those two will give us 1600, which is our state size.

Before we dive deeper into understanding how SHAKE256 works, we will
see a more general diagram that shows us how Keccak works. Keccak is also
known as a sponge function, this is due to the way we can split it into two
parts, the absorbing phase and the squeezing phase. In Figure 2.7 below,
we are going to look at how the absorbing phase works.

19

M
X0, X1, ...Padding

r

c

X0

f

X1, ...

r

c

X1

f

...

r

c

Figure 2.7: Illustration of the absorbing phase of Keccak.

In Figure 2.7 we can see the absorbing phase of a message M , which is the
first phase in its hashing. The first step is to add padding, such that the
length is divisible by r. Then we XOR r bits from the message with the
values of r. Notice that the initial values of r and c are 0’s. Then we add
to those r bits the additional c and perform the permutation operations on
it, which are called f , representing the rounds discussed earlier. We will
perform these operations until we have covered all the input from message
M . This is known as the absorbing phase, because using the input M we
create, ”absorbed”, our state and we repeat this, until we have ”absorbed”
the whole input. Afterward, we will ”squeeze” the state into output. Next,
we are going to look at how the squeezing phase works.

M
X0, ...Padding

r

c

X0

f

...

...

...

r

c

f

Z0

r

c

...

...

Figure 2.8: Illustration of the squeezing phase of Keccak.

20

On the left side, we can see the absorbing phase we talked about above
and on the right hand, we can see the squeezing phase. In the squeezing
phase, we take the state (r and c) that we got from the absorbing phase,
run the f function on it again, and take the resulted r to be the output. As
mentioned above, we can get the output size to be as we wish. This is done
by squeezing until we get the amount of Z’s needed. If we want less output
than the length of r, we will take the first x-bits out of the Z0, where x
is the length needed. The idea for the name squeezing is because after we
absorbed the input, we can ”squeeze” as much output as we want from the
state.

After understanding the absorption and squeezing phases, we need to
comprehend how the f function from above works. As we can see from the
Figures 2.7 and 2.8 above, it takes as input a state which in the case of
SHAKE256 is 1600 bits, and it returns a state of the same length. This
state is an array of b bits with dimension 5 by 5 by w and it is going to be
denoted by A, while the output state will be denoted as A′. Now, the f
function is built up out of 5 smaller functions denoted by θ, ρ, π, χ and ι.
Next, we will explain how each of them works and then see how we can
combine them to create one round of function f , as explained in [28]. Recall
from above that we mentioned that depending on the chosen value of l, we
have different number of rounds in each call to f . In the next definitions
we are going to denote the array as an array of x by y by z, where we know
that x ∈ {0, 1, 2, 3, 4}, y ∈ {0, 1, 2, 3, 4} and z ∈ {0, 1, 2, ..., w − 1}. Another
term we will use throughout those definitions is the lane, lane is a sub-array
of w bits with constant x and y coordinates. Now that we have covered all
the terms and notations, we can explain how the smaller functions work.

First is the θ function, the idea is to XOR each bit in the state with the
parities of two columns in the state. We do that as follows:

21

Algorithm 6 The θ function, SHAKE256

1: function theta(A,w)
2: for x = 0 to 5 do
3: for z = 0 to w do
4: C[x, z] ← A[x, 0, z] ⊕ A[x, 1, z] ⊕ A[x, 2, z] ⊕ A[x, 3, z] ⊕
A[x, 4, z]

5: end for
6: end for
7: for x = 0 to 5 do
8: for z = 0 to w do
9: D[x, z] ← C[(x − 1) mod 5, z] ⊕ C[(x + 1) mod 5, (z − 1)

mod w]
10: end for
11: end for
12: for x = 0 to 5 do
13: for y = 0 to 5 do
14: for z = 0 to w do
15: A′[x, y, z]← A[x, y, z] ⊕ D[x, z]
16: end for
17: end for
18: end for
19: return A’
20: end function

Next, we are going to talk about ρ, the idea behind this function is to rotate
the bits of each lane by a length, called the offset, which depends on the
fixed x and y coordinates of the lane. We perform that as follows:

Algorithm 7 The ρ function, SHAKE256

1: function rho(A,w)
2: for z = 0 to w do
3: A′[0, 0, z]← A[0, 0, z]
4: end for
5: (x, y)← (1, 0)
6: for t = 0 to 23 do
7: for z = 0 to w do
8: A′[x, y, z]← A[x, y, (z − (t+ 1)(t+ 2)/2) mod w]
9: end for

10: (x, y)← (y, (2x+ 3y) mod 5)
11: end for
12: return A’
13: end function

22

Now, we are going to talk about the π function. In this function, we are
going to rearrange the positions of the lanes. We are performing this as
follows:

Algorithm 8 The π function, SHAKE256

1: function pi(A,w)
2: for x = 0 to 5 do
3: for y = 0 to 5 do
4: for z = 0 to w do
5: A′[x, y, z]← A[(x+ 3y) mod 5, x, z]
6: end for
7: end for
8: end for
9: return A’

10: end function

Next on the list is the χ function, the effect of this function is to XOR each
bit with a nonlinear function of two other bits in its row. We perform this
as follows:

Algorithm 9 The χ function, SHAKE256

1: function chi(A,w)
2: for x = 0 to 5 do
3: for y = 0 to 5 do
4: for z = 0 to w do
5: A′[x, y, z]← A[x, y, z] ⊕
6: ((A[(x+ 1) mod 5, y, z] ⊕ 1) ·A[(x+ 2) mod 5, y, z])
7: end for
8: end for
9: end for

10: return A’
11: end function

Note that the dot (·) represents integer multiplication.

Finally, we got to the last function ι, but before we can define this function
we are going to define another function which we will use in the definition
of ι. Let us call this function rc. rc receives an integer denoted by t and
returns a one-bit value. The function rc is defined as follows:

23

Algorithm 10 The rc function, SHAKE256

1: function rc(t)
2: if t mod 255 == 0 then
3: return 1
4: end if
5: R← [1, 0, 0, 0, 0, 0, 0, 0]
6: for i = 1 to t mod 255 do
7: R← 0 || R
8: R[0]← R[0] ⊕ R[8].
9: R[4]← R[4] ⊕ R[8].

10: R[5]← R[5] ⊕ R[8].
11: R[6]← R[6] ⊕ R[8].
12: R = Trunc8[R]
13: end for
14: return R[0]
15: end function

Note that the bars (||) represent concatenation and Trunci(x) is a function
that returns the first and the i− 1 (last) bits of x.

Now, we can define the ι function, the idea of this function is to modify
some of the bits of lane (0, 0) in a manner that depends on the round index
ir. This means that, unlike the previous function, this function apart from
the state also gets the round index. We define the function as follows:

Algorithm 11 The ι function, SHAKE256

1: function iota(A, ir)
2: for x = 0 to 5 do
3: for y = 0 to 5 do
4: for z = 0 to w do
5: A′[x, y, z]← A[x, y, z]
6: end for
7: end for
8: end for
9: RC ← [0, 0, .., 0] (w times)

10: for j = 0 to len(ir)− 1 do
11: RC[2j − 1]← RC(j + 7 ∗ ir)
12: end for
13: for z = 0 to w do
14: A′[0, 0, z]← A′[0, 0, z] ⊕ RC[z]
15: end for
16: return A’
17: end function

24

After we have covered all the functions that make up a round, we can
properly define a round. Each round is given a state array A and a round
index ir, so we define a round as:
round(A, ir) = ι(χ(π(ρ(θ(A)))), ir).

Now, after we understand how a round works and how the absorption and
squeezing work, we have a complete image of how SHAKE256 works. We
first absorb the input as explained above, then perform the round function
24 times and squeeze the output to a 256-bit value.

2.3 Intel Advanced Vector Extensions 512

Today, we can find different applications in non-computer-science-related
fields which require the use of supercomputers [34] [38]. As a result,
scientists are looking at different methods to increase the performance of
computers, which will allow us to do more operations per unit of time (let
it be minute, second or cycle). In order to achieve such improvements, it
is a common practice to use parallelism, meaning executing multiple tasks
at the same time. There are three main methods of parallelism in today’s
architecture and software: multi-core [14], multi-threading [37] and single
instruction multiple data vectorization. Each of those methods works on a
different CPU level and allows it to perform multiple tasks at once. Before
we start discussing Intel Advanced Vector Extensions 512, we first discuss
the parallel approach it uses.

2.3.1 Single Instruction Multiple Data

AVX-512 uses the Single instruction multiple data (SIMD) vectorization
parallel approach. In this case, the idea is to increase the size of the regis-
ters such that instead of containing a single value, it will contain a vector
consisting of multiple values. Operations on this vector will be performed
the same way as operations on one register, as all the values are in one
register. For instance, let us say we have eight floats, each of 32 bits and
we want to add four of them to the other four. If we do that in sequence,
having two registers, each with a size of 32 bits, it will take us four opera-
tions to complete the task. However, if instead of two registers of 32 bits,
we will have two registers with 128 bits, then we can fill each register with
four floats values and add those two registers. So, we will only need one
operation in order to add all the floats, instead of four. This way, we can
work in parallel within the same thread, using just the registers available.

25

Figure 2.9: An illustration of different parallel approaches, Figure reprinted
from [20].

For a better understanding of the differences between the approaches the
following example is given. In Figure 2.9 we can see an illustration of all
three approaches on one task. Let us say we have Task T which can be
broken into C different tasks denoted by Si, where i ∈ N ∧ i ∈ {1, 2, ..., C}
such that each core, Corei is assigned one task to perform. After that,
we can further break down each task Si into another C sub-tasks Threadi,
which can be done by each thread and communicated within the same core
to result in the final task Si. Then, each thread needs to perform different
operations on different variables, which can again be done in parallel. As
we can see in Figure 2.9 on the right, each operation is carried out on
four different streams, which is the same idea as operating on the floats, as
discussed above.

2.3.2 Intel Advanced Vector Extensions 512

Now, that we know the different parallelism methods, we can talk about
Intel Advanced Vector Extensions 512, also known as AVX-512. AVX-512 is
an extension that implements the SIMD vectorization approach. However,
before we can understand the benefits of AVX-512, we will first look at the
previous implementation of AVX. The first implementation in this series is
AVX, which was an improvement for the known SSE, AVX has a register
size of 256 bits and limited Intel operations set [21]. Afterward, Intel
introduced AVX-2, which has the same register size of 256 bits but additional

26

operations, which allows us to not only work on 256 bits register but also run
more sophisticated operations [17]. Lastly, AVX-512 extended the register
size again to 512 bits, extended the number of registers from 16 to 32 and
added additional instruction sets for more complex operations [11].

Figure 2.10: Comparison of different version of AVX and traditional register
size, Figure reprinted from [36].

In order to see the differences in scale, we can look at Figure 2.10 which
illustrates the differences in register size between the different versions of
AVX and the traditional register size.

As mentioned above, in each version of AVX, Intel introduces more powerful
instruction sets. When discussing the hashes in Section 2.2, we have seen
that we need some logic and arithmetical operations to hash values. When
comparing AVX2 and AVX-512, we can see that new operations, such as
the rotate intrinsic, can help us speed up the performance of hashing.
Also, we can use the ternary logic operation to boost the performance of
logic operations on three values. More about those benefits will be dis-
cussed in Section 6.2 where we explain the motivation for the results we got.

Another benefit of AVX-512 comparing to previous versions is the increase
in the number of registers. While in the previous version, AVX2, there were
only 16 registers in AVX-512, there are 32 registers, allowing us to keep
more data in memory. Later in Section 6.2 we will see how this helps us to
improve the performance of our scheme.

To conclude this section, it can be seen that the new AVX-512 has some
advantages over its predecessors. Those advantages can help boost the speed
of a program, which will allow us to perform more tasks in a given unit of
time.

27

Chapter 3

Related Work

In this paper, we propose a new implementation of SPHINCS+ using
AVX-512. By using AVX-512, we hope to optimize the performance in
terms of speed for the SPHINCS+. In order to better understand our
implementation and the possible optimization, we compare it to other
implementations and analyze the results.

The first comparison that comes to mind is to compare it to the REF
implementation proposed in [4]. However, we need to consider that this
version is not optimized in terms of efficiency and is instead used as proof
of concept for the SPHINCS+ scheme.

Another implementation of SPHINCS+ to which we can compare our
results is the AVX2 implementation [39], which is also part of the code
submitted to the third round of the NIST post-quantum competition [5].
By comparing those three implementations, we will better understand the
different operations of the scheme and the benefit of using AVX-512. In
addition, we will be able to grasp and understand which parts we are
getting a meaningful improvement. For instance, if we expect AVX-512 to
be twice as fast as AVX2 and observe that we only get an improvement of
1.5× for some parts, we might think the implementation is not optimal.
However, suppose we also see that we get an improvement of 1.6× for the
same parts comparing to the REF and AVX2, it will become clear that
it is not about the implementation not being optimal enough or due to
overhead, but rather due to parts that cannot benefit from the use of this
type of parallelism.

As we mentioned above, SPHINCS+ is a candidate in the NIST post-
quantum competition, [25]. It is one of the alternative schemes of the third
round for the Digital Signature Algorithms competition. Therefore, we are
going to end the last section with a comparison to the other five NIST

28

candidates. It is important to mention that, unlike our implementation,
the other implementations are not optimized for AVX-512. However, as
they are all part of the NIST post-quantum competition, it is still essential
to see the different performances for each candidate and compare them to
our implementation. For this comparison, we are going to use SUPERCOP
[3] which has the implementation of the other candidates. SUPERCOP is
toolkit used to measure the performance of cryptographic software. Also,
we are going to integrate our implementation into SUPERCOP, in order to
make the comparison as fair as possible. Next, we are going to introduce
each one of the candidates.

There are two lattice-based post-quantum signature schemes, CRYSTALS-
DILITHIUM [22] and FALCON [13], two multivariate based post-quantum
signature schemes, Rainbow [19] and GeMSS (A Great Multivariate Short
Signature) [10] and one other scheme, Picnic [41]. Unlike the other
schemes, Picnic is not based on number-theoretic or structured hardness
assumptions, but rather on zero-knowledge proofs, where Alice convinces
Bob that she knows a secret without revealing any information about
the secret. It uses this idea together with symmetric cryptography, hash
functions, and block ciphers.

Apart from those schemes, which we will compare to our implementation,
there is another implementation we should acknowledge. As mentioned
above, SPHINCS+ uses SHAKE256 as one of its hash functions. For that
purpose, we used the eXtended Keccak Code Package for AVX-512, which
was written by the Keccak team [40] and further discussed in [7]. It is
an optimized version of Keccak for AVX-512, and we used its implementa-
tion of the 24 rounds (the f function) on the state array in our proposed
implementation.

29

Chapter 4

Optimizing SPHINCS+

As we have seen in Section 2.1, where we explain how the SPHINCS+
scheme works, the main operations we are performing are creating the keys,
signing a message, and verifying a signature. It should not be a surprise that
the main operation in a hash-based scheme is hashing. Therefore, if we want
to optimize the speed of the scheme, we will have to focus on improving the
performance of hashing, and later on, combine this new version of hashing
in the calls of the scheme. That is why it is essential to understand how the
hashes work, as we explained in Section 2.2. As we have seen in Section
2.1, we have a · 2h′

leaves in our tree, and each one of them is using hashes
that are independent of each other, meaning that the hash value of one of
the leaves is not dependent on the hash value of another leaf. Therefore,
we can parallelize them by hashing different leaves simultaneously, which
would speed up the performance. It is important to mention that this ap-
proach is already present in another implementation of the SPHINCS+ code
[39]. However, in that case, they used an older version of the AVX family,
AVX2, while in this thesis, we are using the newer version AVX-512. This
proposed implementation works the same way as the original scheme, which
implies it does not affect its security, but only improves upon its speed by
performing a similar operation on the hash values, using the AVX-512 as
we saw in Section 2.3.1, when we talked about SIMD vectorization. Below,
we will explain this idea further and see how each hash is implemented,
using AVX-512 in our implementation of SPHINCS+. As we have seen in
Section 2.1.5, SPHINCS+ has two types of implementation: the simple
version, which focuses on speed, and the robust version, which provides a
more secure version. However, for simplicity, in this section, we do not go
into details about either of them, but rather explain how we improved their
main operations. For more details, see the code [1].

30

4.1 SHA256 Implementation

Let us start by explaining how we implemented SHA2 (SHA256) using AVX-
512. Similar to what we saw in Section 2.2.1 we will follow those steps, but
instead of hashing one value at the time, we are going to hash 16 values at the
time. Since we are working with 32-bit values for SHA256, and as we know
that AVX-512 has a register size of 512 bits, we can work on 512/32 = 16
values at once. Therefore, in the code, [1] we can see the x16 added to some
of the function and file names to emphasize that their idea is the same, but
they perform 16 hash values at one call. Now, we are working with 32-bit
values and as we have seen in Section 2.2.1 we have eight values we are
working with (a, b, . . . , h). This means that we have 32 · 8 = 256-bit values
which we work with for one hash value. In order to work with the 512-bit
registers, two of those 256-bit values are placed within one register. This
is done as follows: hash values 0 through 7 are placed in the first part of
the register and hash values 8 through 15 are placed in the second part of
the register, as shown in Figure 4.1. Next, we are going to explain how we
perform the hashing on 16 values at once.

hash7

hash6

hash5

hash4

hash3

hash2

hash1

hash0

hash15

hash14

hash13

hash12

hash11

hash10

hash9

hash8

Figure 4.1: Illustration of the ordering of the 16 hash values in the registers.

As explained above, we are going to store the 16 values in 8 registers, for
convenience, an array, called s, of eight entries each of 512 bits is used. As
expected, the first step in hashing is initializing the array with the SHA256
constants. Since there are 16 values hashed at once, there are sixteen val-
ues of each constant. As each constant is 32 bits and we have a 512-bit

31

register, this fits perfectly. For an illustration of the code, the initialization
part is given in Figure 4.2, where m512 set1 epi32 is an Intel intrinsic for
broadcasting the value given to the register as a 32-bit value.

void sha256_init16x(sha256ctx *ctx) {

ctx->s[0] = _mm512_set1_epi32(0x6a09e667);

ctx->s[1] = _mm512_set1_epi32(0xbb67ae85);

ctx->s[2] = _mm512_set1_epi32(0x3c6ef372);

ctx->s[3] = _mm512_set1_epi32(0xa54ff53a);

ctx->s[4] = _mm512_set1_epi32(0x510e527f);

ctx->s[5] = _mm512_set1_epi32(0x9b05688c);

ctx->s[6] = _mm512_set1_epi32(0x1f83d9ab);

ctx->s[7] = _mm512_set1_epi32(0x5be0cd19);

ctx->datalen = 0;

ctx->msglen = 0;

}

Figure 4.2: The initialization of array s.

For a better illustration of how the m512 set1 epi32 intrinsic works in
Figure 4.2 we are also given an example of how the registers would
look like in Figure 4.3 where csi refers to the constants such that
cs0 = 0x6a09e667, cs1 = 0xbb67ae85, ... , cs7 = 0x5be0cd19.

...

s0

s1

s7 cs7 cs7 cs7 c7 cs7 cs7 . . . cs7

cs1 cs1 cs1 cs1 cs1 cs1 . . . cs1

cs0 cs0 cs0 cs0 cs0 cs0 . . . cs0

Figure 4.3: Illustration of the ordering of the constants in s, where we have
16 values within one entry.

The next step is to upload the values we want to hash into an array of
512-bit values, called W , and transpose the data to correspond with the
constants we filled in our s array. Then, we create functions that will perform
the operations used in SHA256. We start with computing the values for
W using the sigmas, as we saw in 2.2.1. In the code, these sigmas are
called WSIGMA1 AVX and WSIGMA0 AVX. Below, in Figure 4.4 the

32

most significant functions used in this part are given.

#define SHIFTR32(x, y) _mm512_srli_epi32(x, y)

#define SHIFTL32(x, y) _mm512_slli_epi32(x, y)

#define ROTR32(x, y) _mm512_ror_epi32(x,y)

#define ROTL32(x, y) _mm512_rol_epi32(x,y)

#define WSIGMA1_AVX(x) XOR3(ROTR32(x, 17), ROTR32(x, 19),

SHIFTR32(x, 10))↪→

#define WSIGMA0_AVX(x) XOR3(ROTR32(x, 7), ROTR32(x, 18),

SHIFTR32(x, 3))↪→

Figure 4.4: Definition of s’s functions for SHA256.

Then we have another function called SHA256ROUND AVX, where we per-
form the S’s , ch, maj, temp1, temp2 and the a− h updates, which can be
seen in Figure 4.5. Again, for readability, we only show the most relevant
parts of the code.

#define XOR3(a,b,c) _mm512_ternarylogic_epi32(a,b,c,0x96)

#define MAJ_AVX(a, b, c)

_mm512_ternarylogic_epi32(a,b,c,0xE8)↪→

#define CH_AVX(a, b, c)

_mm512_ternarylogic_epi32(a,b,c,0xCA)↪→

#define SIGMA1_AVX(x) XOR3(ROTR32(x, 6), ROTR32(x, 11),

ROTR32(x, 25))↪→

#define SIGMA0_AVX(x) XOR3(ROTR32(x, 2), ROTR32(x, 13),

ROTR32(x, 22))↪→

#define SHA256ROUND_AVX(a, b, c, d, e, f, g, h, rc, w) \

T0 = ADD5_32(h, SIGMA1_AVX(e), CH_AVX(e, f, g),

_mm512_set1_epi32(RC[rc]), w); \↪→

d = ADD32(d, T0); \

T1 = ADD32(SIGMA0_AVX(a), MAJ_AVX(a, b, c)); \

h = ADD32(T0, T1);

Figure 4.5: Definition of SHA256ROUND AVX functions for SHA256.

For the MAJ and CH functions, we use a new intrinsic that allows us to
perform fast logical operations on three values at once. To achieve that, we
pass a constant as the last element, which specifies how to interpret the

33

logical operation. For instance, for the XOR3, we pass the hexadecimal
value 0x96, which in binary is 10010110, this value being the result of the
truth table of the expression a ⊕ b ⊕ c. The same values were calculated
to give the equivalent results for the MAJ and CH.

After executing those functions, we add the constants one last time, and
we get the hashed values in s. However, before extracting the values, we
transpose them again in order to get them in the order needed for extraction.
Then we simply extract them.

4.2 SHAKE256 Implementation

Moving on, we will explain how SHA3, SHAKE256, is implemented using
AVX-512. Similar to the case of SHA256, we follow the steps from Section
2.2.2, but instead of performing hashing on one value at the time, we are
going to hash eight values at once. The idea here is that we are working on
1600 bits state that is split into 25 lanes, so our w is 64, which means that
we have 25 lanes of size 64 bits. So, using the AVX-512, we can perform
512/64 = 8 hashes simultaneously, hence the eight values at once.

For this part, we used an existing Keccak implementation for AVX-512,
[40] which was optimized by the Keccak team. This idea is similar to the
SHA256 version above: we pass eight values and we run the functions on
them simultaneously. As expected, we start with a zero state, then we
initialize the state array with the values such that we place eight values of
64 bits in a 512 bits entry of the state. So, the state will look like Figure
4.6.

h0 h1 h2 h3 h4 h5 h6 h7

Figure 4.6: Illustration of the ordering of the initial values in one register of
512 bits where h represents the initial 64-bit values.

We have the state, which is represented as an array of 25 entries of 512-bit
values called state, and in the initialization, we upload the values in the
same way as shown in Figure 4.6. The code for this part can be seen in
Figure 4.7.

34

for (unsigned int i = 0; i < (SPX_N/8) * inblocks; i++) {

state[SPX_N/8+4+i] = _mm512_set_epi64(

((int64_t*)in7)[i],

((int64_t*)in6)[i],

((int64_t*)in5)[i],

((int64_t*)in4)[i],

((int64_t*)in3)[i],

((int64_t*)in2)[i],

((int64_t*)in1)[i],

((int64_t*)in0)[i]

);

}

Figure 4.7: Initialization of the state of SHAKE256.

After we initialize the state with our input and fill the state array with the
corresponding values, we can run the f functions. This means that we are
going to run the 24 rounds on the state array. For that, we are using the
function KeccakP1600times8 PermuteAll 24rounds, which is taken from the
Keccak implementation for AVX-512 [40]. In that function, we perform
all the smaller functions we discussed in Section 2.2.2. Depending on the
scenario, we either run this function once or until we are done with the
absorption and squeezing phases. After the hashing, we extract the first 256
bits of the values, as shown in Figure 4.8.

__m256i_u take1, take2;

for (int i = 0; i < 8; i++) {

(take1) = _mm512_extracti64x4_epi64(state[i],0);

(take2) = _mm512_extracti64x4_epi64(state[i],1);

((int64_t*)out0)[i] = _mm256_extract_epi64(take1, 0);

((int64_t*)out1)[i] = _mm256_extract_epi64(take1, 1);

((int64_t*)out2)[i] = _mm256_extract_epi64(take1, 2);

((int64_t*)out3)[i] = _mm256_extract_epi64(take1, 3);

((int64_t*)out4)[i] = _mm256_extract_epi64(take2, 0);

((int64_t*)out5)[i] = _mm256_extract_epi64(take2, 1);

((int64_t*)out6)[i] = _mm256_extract_epi64(take2, 2);

((int64_t*)out7)[i] = _mm256_extract_epi64(take2, 3);

}

Figure 4.8: Extracting the hashed values from the state array.

35

Chapter 5

A Lower Bound on the
Amount of Cycles per Hash

As mentioned above, we are going to use AVX-512 in order to optimize the
implementation of SPHINCS+. The idea will be to measure the execution
time using clock cycles and compare the implementation proposed in this
thesis to other implementations. However, before talking about optimiza-
tion and asking to what extent we can improve the speed of the scheme, we
will first look at the theoretical improvement that can be gained from using
the AVX-512. In order to do so, we are going to derive a lower bound on
the amount of cycles per one hash. As SPHINCS+ is a hash-based scheme,
most of the execution time is spent on hashing. Therefore, it is important
to see how many cycles it takes to perform one hash. By doing so, we
will better understand the improvement and see the limitations of using
the AVX-512. It is also important to distinguish between the theoretically
expected speed up and the practical one. In theory, we should be able to
derive the amount of cycle it takes to perform a hash. However, this is
not always the case in practice, as running the code will give us a different
amount of cycles compared to the theoretical one. This is due to the
differences in communication and execution of the CPU, which is not taken
into consideration when calculating the theoretical amount of cycles and
due to different optimizations done by the CPU. Therefore, we are going
to name the derived amount of cycles the lower bound on the amount of
cycles rather than the expected amount of cycles. Notice that we will only
calculate the amount of cycles that it takes to compute the hash of a value
and not the amount of cycles of other operations, such as loading the values
to the registers, copying them to variables, etc.

After we have discussed the meaning and motivation behind deriving the
lower amount of cycles, we are going to calculate it. To do so, we will

36

use our implementation together with the fourth Software Optimization
Resources manual [12] and Intel intrinsics guide [18], which will provide us
with the throughput of the operations we perform in order to hash. We are
using the throughput and ports given for the Skylake microarchitecture.

In order to compute the cost of a hash, we need to consider the smaller
operations we perform while hashing. One might think that we can simply
calculate the number of operations we perform and then multiply it by the
execution time of each operation, add them all together, and get the lower
bound. However, this approach is too pessimistic, as the CPU can execute
some of the operations simultaneously. There are a few execution units for
each execution core of a microprocessor, on which different categories of
operations can be performed. Those execution units are clustered around
one or more execution ports. The idea is that each operation passes through
an execution port to get to the execution unit in which it will be performed.
This might result in a bottleneck if multiple operations request the same
port, as only one operation can be performed at a time. However, this
also means that different operations which are performed on different ports
can be done simultaneously as long as they are independent of each other’s
output and there are enough registers. Thus, it is not enough to count the
number of operations and multiply them by the operation’s execution time,
but we also need to think about how the CPU schedules them on different
ports. Hence, before we can compute the cost of those functions, we give the
throughput of AVX-512 intrinsics used and the port in which the instruction
is executed. Next, we are going to derive the lower bound for SHA256 and
SHAKE256.

5.1 SHA256

Let us start with driving a lower bound for SHA256. The main operations
we have in SHA256 are the round, consisting of S0, S1, ch,maj, temp1
and temp2, the sigmas for w and the eight adds at the end, as we saw
in Figure 4.4 and Figure 4.5 in section 4.1. The first step we need
to perform in order to compute the cost is to specify the cost of each
intrinsic and the port it is executed on. For the logical operations AND
and XOR, we have the cost of 0.5 cycles on port 5. For the ternary
logical operations MAJ, CH and XOR three times, we have the cost of
0.5 cycles on port 5 again. For shift right and rotate right we have the
cost of 1 cycle on port 0 and for broadcast 32-bit value to 512-bit value we
have the same cost, but instead of port 0 we have port 5. Finally, for a
512-bit value added as 32-bit values, we have the cost of 0.5 cycles on port 5.

Now, let us start with computing the cost of a round. For that, we have

37

seven 32 bits add, six rotate right, two ternary XORs, one CH, one MAJ and
one set. Some of the operations are dependent on each other’s output, so
they cannot all be run simultaneously. For this reason, the expected order
of execution is given in Figure 5.1, where each line represents 0.5 cycles.
So, if we want to execute an operation of 1 cycle, we will have to leave the
next row empty as this port is still busy.

port 0 port 5

rotate CH

add

rotate set

rotate add

add

rotate XOR3

add

rotate add

MAJ

rotate

XOR3

add

add

Figure 5.1: Order of execution of the operations in one round of SHA256
where each row represents 0.5 cycles.

As we can see, we have 15 rows, which means that it takes us 7.5 cycles to
compute one round. We perform the round while i ∈ {0, 1, ..., 63} thus, we
perform it sixty four times which gives us 7.5 · 64 = 480 cycles. Next, we
will compute the amount of cycles for the sigmas. For the sigmas, we have
three 32 bits add, four rotate to the right, two shift to the right and two
ternary XORs. Similarly to above, the order of execution is given in Figure
5.2 where each row represents 0.5 cycles.

38

port 0 port 5

rotate add

rotate

shift

rotate XOR

add

rotate

shift

XOR

add

Figure 5.2: Order of execution of the operations performed in the sigmas of
SHA256 where each row represents 0.5 cycles.

As we can see, we have 14 rows which means that it takes us 7 cycles to
compute one round. We perform the sigmas while i ∈ {16, 17, ..., 63} which
means we perform it forty eight times, which gives us 7 · 48 = 336 cycles.
Finally, in the end, we add the 8 constants, which takes 4 cycles. So, in
total we get 480 + 336 + 4 = 820 cycles for one hash.

5.2 SHAKE256

Now, let us take a look at SHAKE256 and derive a lower bound for it as well.
In this case, the most important part is the 24 rounds function. As in the
other parts, we simply initialize and extract, while in the rounds, we perform
operations on the state. Again, before we move to the computation part, we
provide a list of throughputs for the AVX-512 intrinsics used and the ports
on which they are executed. For the logical operation XOR and OR, we
have 0.5 cycles on port 5. For rotate left, we have 1 cycle on port 0. Finally,
for the ternary functions XOR3 and CHI, we have 0.5 cycles on port 5.
Now, let us start with computing the throughput of one run of the 24 rounds
function. The implementation of the 24 rounds is split into 6 blocks of 4
rounds and in every block, we perform the function we discussed in section
2.2.1 four times. In each round of the f function, we perform the following
operations KeccakP ThetaRhoPiChiIota0, KeccakP ThetaRhoPiChi1,

39

KeccakP ThetaRhoPiChi2, KeccakP ThetaRhoPiChi3 and Kec-
cakP ThetaRhoPiChi4. However, as we can see in the last four functions,
we perform the same operations (call to KeccakP ThetaRhoPiChi) but with
different values. So, we only need to calculate the cost for the first one and
for KeccakP ThetaRhoPiChi.

For KeccakP ThetaRhoPiChiIota0 we have 5 XOR5s, 9 rotates to the left, 5
CHIs and 11 XORs. For XOR5, we can simply perform XOR3 two times,
which will take us 1 cycle. Next, we are going to provide the order in
which the operations are executed and based on that, we will compute the
throughput for this part. Again each line represents a 0.5 cycle.

40

port 0 port 5

XOR5

XOR5

rotate XOR5

rotate XOR5

rotate XOR5

rotate XOR

XOR

rotate XOR

XOR

XOR

XOR

rotate XOR

XOR

rotate XOR

XOR

rotate

rotate

rotate

Chi

Chi

Chi

Chi

Chi

XOR

Figure 5.3: Order of execution of the operations in Kec-
cakP ThetaRhoPiChiIota0 where every row takes 0.5 cycles.

41

As we can see, we have 32 rows which means that it takes us 16 cycles
to compute KeccakP ThetaRhoPiChiIota0. Next, we will perform the
same process to compute the amount of cycles it takes to execute Kec-
cakP ThetaRhoPiChi.

For KeccakP ThetaRhoPiChi we have 5 XORs, 5 rotates to the left and 5
CHI. The order of execution of that can be seen in Figure 5.4.

port 0 port 5

XOR

XOR

rotate XOR

XOR

rotate XOR

rotate

rotate

Chi

Chi

Chi

Chi

Chi

Figure 5.4: Order of execution of the operations in KeccakP ThetaRhoPiChi
where every row takes 0.5 cycles.

As we can see, we have 15 rows which means that it takes us 7.5 cycles to
compute KeccakP ThetaRhoPiChi. As explained above, we perform this 4
times together with KeccakP ThetaRhoPiChiIota0 and get one round. So
in total, we know that one round takes 16 + 7.5 · 4 = 46 and as we have
24 rounds, we know that the total throughput of performing all the rounds
takes 46 · 24 = 1104 cycles.

42

Chapter 6

Results and Comparison

In this section, we are going to take a look at the performance of the
proposed implementation. First, we will compare the results we got for
our implemented version of the hashes to the lower bound we computed
in Chapter 5. Then, we move on to comparing the run time of hash-
ing a single value between our version and the AVX2 implementation.
Afterwards, we compare our implementation to the REF [4] and AVX2
[39] implementations of SPHINCS+. Finally, we will compare it to other
third-round NIST post-quantum competition schemes. Before we start
with the results, we should mention that all the executions of the different
implementations are done in a benchmark environment, where performance
boosts are turned off. The processor used for those measures was Cascade
Lake processor, Xeon Silver 4215R, which has eight cores per socket and 16
CPUs. Although this is a slightly different microarchitecture than the one
used in Section 5 it is the closest documented microarchitecture to Cascade.

6.1 Comparison of Lower Bound to Run Time

As discussed in Chapter 5 we derived a lower bound for the amount of
cycles expected from the execution of the code. The next step will be to
measure the execution of our implementation for the hashes and compare
it to the lower bound we computed. By doing so, we will see how close
our implementation is to the theoretical execution time. This comparison
was carried out several times during the implementation of the code until
we got a close enough result to the lower bound. However, here we only
include the final results.

As we have discussed in section 5.1 for SHA256, we got a lower bound of
820 cycles for the computation of one hash. We got an execution time of 880
cycles in our implementation, which is relatively close to our expectations.

43

For SHAKE256, as mentioned in Section 5.2, we got a lower bound of
1104 cycles, while in our implementation, we got a run time of 1245 cycles.
As we can see, both implementations are within 12% from our theoretical
lower bound. It was according to our expectations. Therefore, we can move
on to the next step, linking them with the code of SPHINCS+ and later
comparing the execution time to the other implementation of SPHINCS+
and the other NIST PQC candidates. However, before moving to the result
of the comparison of the scheme as a whole, we will look at the improvement
of the hash functions in our AVX-512 implementation comparing to the
AVX2 implementation and try to understand the motivation behind it.

6.2 Comparison of Single Hash in AVX2 and
AVX512

This section will compare the execution of hashing a single time using
AVX2 and AVX-512 implementations. Same as for the measures for
the lower bound, we only look at the operations of the hashing and not
other side operations, such as initialization and extraction. This means
that for SHA256, we are only looking at the round function and the com-
putation of w and for SHAKE, we are only looking at the 24 rounds function.

In the case of SHA256, we got the following results: for the AVX2 implemen-
tation, it takes 1,252 cycles to run one hash value, while for the AVX-512
implementation, it only takes 880 cycles to perform one hash. This means
that we get a 1, 42× speed-up improvement in our implementation using
AVX-512. The main reason for this is that we can run faster different oper-
ations using the new Intel intrinsics. The main improvements achieved from
using faster intrinsics are:

• In order to perform a rotate operation, we needed to shift twice and
then XOR in AVX2. In AVX-512, we can simply use a rotation in-
struction that takes one cycle.

• Intel introduced a new ternary logic function that allows us to perform
any logic operation on three registers at the cost of one logic operation.
This was used in simple functions such as XOR three times, which re-
duces the cost of XORing, but also in more complicated functions such
as MAJ and CH. In AVX2, in order to perform the MAJ or CH func-
tion, we needed to perform 3 ANDs and 2 XORs or 2 XORs, 2 ANDs
and 1 set, respectively. Now we can simply call the ternary function,
which has the same throughput as any of those logic operations.

• We broadcast the same 32-bit value to 512 bits instead of internalizing
it 32 bits by 32 bits while initializing the constants.

44

In the case of SHAKE256, we got the following results for the AVX2 im-
plementation: hashing one time takes 1790 cycles, while for the AVX-512,
performing one hash takes 1252 cycles. This means that we get a 1, 43×
speed-up improvement in the implementation of SHAKE256 with AVX-512.
It is important to mention that this implementation was written by the Kec-
cak team and further discussed in [7]. In order to understand the motivation
behind these speed-ups, we need to consider the benefit of the AVX-512 and
consider how SHAKE256 works. As we have discussed in section 2.3, one
of the improvements comparing to AVX2 is the addition of more registers.
While in AVX2, there were only 16 registers, in AVX-512, there are 32 reg-
isters. Now, we know that for the SHAKE256, there is a state of 1600 bits
split into 25 lanes. In the case of AVX2, since we only have 16 registers,
we will have to swap lanes between the memory and the registers, which
is a time-consuming operation. However, in AVX-512, since we have 32
registers, we can simply keep all lanes in the register and thus perform the
operations faster. Also, we can benefit from the ternary logic operation and
rotate operation mentioned above. All of those improvements result in the
speed up that we have seen.

6.3 Comparision of different implementations of
SPHINCS+

In the following sections, we will compare the proposed implementation
of SPHINCS+ to the two other versions: the AVX2 implementation and
the REF implementation. We will give the number of cycles for the most
common operations of the scheme, as well as for the two smaller schemes
used in SPHINCS+, which were discussed in Section 2.1. Those operations
generate the public and private keys for the whole scheme, WOTS+ public
key, signing a message (using SPHINCS+), signing a message using FORS,
and verifying a signature.

6.3.1 SHA256

Let us start by analyzing the results of SHA256. Before we present the
results, it is important to mention that we expect two improvement values,
depending on the option used for the SPHINCS+, as there are two versions
in that implementation. In order to understand the motivation for that,
we need to consider the parameters of the different versions and the idea
of the improvement. We are basing our improvement of SHA256 on two
benefits, the bigger size of the registers and the new faster AVX-512 intrin-
sics. Now, for the advantage of the register, as explained in Section 4.1 we
are performing 16 hashes at once, meaning we work on 16 nodes at once.
However, in the case of SPHINCS+ using the f option with sizes 128 and

45

192, the hypertree has a height of 66 and the number of subtree layers is
22. This means that the height of a tree will be 66

22 = 3, so we will have
23 = 8 leaves in one tree. Since the code is implemented in such a way
that we work on a single tree at a time and compute its root, we face the
problem that we only have 8 leaves in a tree, which will not allow us to
perform 16 operations at once simply because we do not have 16 leaves to
work on. Therefore, we cannot benefit from the improvement of performing
twice fewer operations. For that reason, these options have a slightly differ-
ent implementation, while still using the new AVX-512 intrinsics, we only
perform 8 hash at once, instead of 16. This means that the improvement we
expect will be smaller for those options. This can be seen in Table 6.1 where
we give the results of different operations for the three implementations of
the SPHINCS+ using SHA256, our proposed implementation AVX-512, the
AVX2 implementation, and the REF implementation.

46

Keypair Generation WOTS pk generation Signing FORS signing Verifying

(cycles) (cycles) (cycles) (cycles) (cycles)

128f robust AVX-512 1329235 1307109 31477151 2260854 3161335

128f robust AVX2 1962009 1936334 46478171 3275073 4236203

128f robust REF 10772523 1344012 249889292 12870059 15652196

128f simple AVX-512 732076 724326 17240880 1170396 1622396

128f simple AVX2 1057992 1067508 24903369 1653298 2114719

128f simple REF 5432123 678936 127283704 7644523 7619587

192f robust AVX-512 2049619 2011244 54712829 9509437 5271305

192f robust AVX2 2980925 2956470 79648436 13926095 6770038

192f robust REF 16080880 2003874 424844865 71212878 24408338

192f simple AVX-512 1108198 1097462 29712256 5355827 2588770

192f simple AVX2 1594595 1582247 42957518 7859900 3226355

192f simple REF 8017572 996445 215379398 39256192 11522757

256f robust AVX-512 8058598 8020842 162544195 25427339 9570043

256f robust AVX2 16781379 8385915 336779564 51380624 13882777

256f robust REF 60672290 3784410 1240958967 209446921 35849994

256f simple AVX-512 2439356 2403821 50828565 9349677 2599902

256f simple AVX2 4199701 2092771 87999113 16413113 3371802

256f simple REF 20921322 1304590 438061836 82966534 11930640

128s robust AVX-512 65157755 2027415 497899597 41773867 1233761

128s robust AVX2 124449739 1933960 948725240 77513432 1663939

128s robust REF 688486498 1342298 5171599328 350399739 5279514

128s simple AVX-512 37368240 1185413 284785923 23215968 671904

128s simple AVX2 67259588 1049217 511255919 40423932 789884

128s simple REF 345259975 672793 2624259822 206965533 2557810

192s robust AVX-512 102369620 3181245 953234172 236646319 2312743

192s robust AVX2 191639633 2958018 1782224754 440805869 2862057

192s robust REF 1025097181 1997362 9520139802 2344050584 8822422

192s simple AVX-512 57191635 1780133 535278766 134943588 1097686

192s simple AVX2 101020935 1574326 956109801 248924122 1365384

192s simple REF 514163879 1005737 4892530688 1294632267 4284338

256s robust AVX-512 131420674 8142236 1542643320 491153345 5477365

256s robust AVX2 268349824 8366201 3163901068 1017087661 7492251

256s robust REF 972569496 3791256 11994415382 4205064722 18029912

256s simple AVX-512 38580865 2426475 487479308 178897003 1552991

256s simple AVX2 67312150 2098441 864543353 326158773 1960065

256s simple REF 334958126 1304665 4340941609 1660977800 5896725

Table 6.1: Comparison of the different versions of SPHINCS+ using SHA256
in terms of amount of cycles taken to perform hash operations for AVX-512,
AVX2 and REF implementation.

For a better comparison, we normalized the values of the experiment by
dividing the AVX2 measured values by the AVX-512 measured values, the
REF measured values by the AVX2 measured values and the REF measured
values by the AVX-512 measured values and took the average of all the
results. We put the results in two figures based on whether we hash 8 times
at once or 16 times at once. The results are in the following figures Table
6.2 and Table 6.3.

47

Keypair Generation WOTS pk genration Signing FORS signing Verifying

AVX2/AVX-512 1.454 1.467 1.456 1.448 1.294

REF/AVX2 5.262 0.659 5.201 4.665 3.619

REF/AVX-512 7.651 0.967 7.584 6.761 4.682

Table 6.2: Average of the improvement factors of the results in the case of
performing 8 hashes at once from Table 6.1.

Keypair Generation WOTS pk genration Signing FORS signing Verifying

AVX2/AVX-512 1.868 0.933 1.873 1.872 1.298

REF/AVX2 4.788 0.600 4.815 4.815 3.020

REF/AVX-512 8.875 0.555 8.958 8.970 3.903

Table 6.3: Average of the improvement factors of the results in the case of
performing 16 hashes at once from Table 6.1.

As we expected, we get different results for the two versions we have. For
the 8 times with only the new intrinsics, we get a speed-up of around 1.45×
for key pair generation, WOTS+ public key generation signing, and FORS
signing and 1.29× improvements for verification of a signature. For the
16 times optimization, we get around 1.87× improvements for key pair
generation, signing, and FORS signing, around 1.3× for verification of a
signature, however, we get a slower implementation for the WOTS+ public
key generation by 0.93×. In order to understand the reason behind these
results, we need to consider the benefit of the AVX-512 and consider the
implementation of SHA256.

Let us start by analyzing the results of the 8 times version. In that case,
we simply use the new faster intrinsics, which improve the implementation
of the hash. As we can see, the improvement we get for the key generation,
WOTS+ public key generation, signing and FORS signing is almost the
same as the improvement we get for the hash values, 1.45× compared to
1.42×. The idea here is that we are mainly hashing in those operations,
so it is expected that if we improve the hash, we will get the same
improvement for the whole operation. In the case of verifying, we have the
same limitations, as we need to wait for some nodes in order to compute
the root using the authentication path. Therefore the time improvement is
slightly slower.

Now, let us look at the 16-time version. In this case, we see that we get a
slower implementation for the WOTS+ public key generation, the reason
for that being due to the overheads we have as we are working on two
values within a single register. For instance, in the initialization function,
we need to make sure we correctly place every two hashes in one register
and the same should be done for input hash values we receive when placing

48

them in w. Later on, in the transpose function, we again need to make sure
we transposed correctly and this is done slightly differently in AVX-512
comparing to AVX2. Due to the new shuffling intrinsic in AVX-512, we
need to pass a 512-bit integer value instead of an int in AVX2, which is
slower. Also, we again need to make sure we correctly take the hashes from
each register in the extract. While simply hashing is done faster, those
operations create some overhead, which results in a slightly slower imple-
mentation for the WOTS+ public key generation. Nevertheless, we need to
remember that we will perform half the amount of hashing in the signature
operations by performing those operations. So, we will still get some
improvement while performing those operations. In addition, as we can
see, we also get a slow down for WOTS+ public key generation when com-
paring AVX2 and REF. This is again due to the overhead in those functions.

Next, for key pair generation, signing and FORS signing, we get an
improvement of around 1.87×. The reason for the improvement is that as
we perform 16 values at once instead of 8, we can perform half the amount
of operations. In those operations, we mainly perform WOTS+ public key
generation and hashing and, as we saw, we get a 0.933× slow down moving
from AVX2 to AVX-512, but we perform twice less. So, we should expect an
improvement of around two times this value, which gives 2 · 0.933 = 1.866.
This is similar to the improvement we get for those operations.

Finally, in the last operation, verification, we can see that the improvement
is lower. Similarly, it is also the case when comparing the REF imple-
mentation to the AVX2. We see a 3.02 improvement for the verification,
comparing to around 4.8 in the other operations. The motivation behind it
is that while verifying, we need to wait for values to hash and recall that
we are given a leaf and a path. So, unlike in the generation, where we
can just run each leaf and path separately, here we need to wait until we
computed the lower path, in order to continue with the higher path. For
instance, let us take an elementary example, where we have eight leaves:
we use leaf 1 as a node, in the authentication path, we will get leaf 0,
a hash of a combination of leaves 2 and 3, and a hash of a combination
of leaves 4, 5, 6 and 7. Now, to perform the operations on the hash of
leaves 4, 5, 6 and 7 we need the hash of leaves 0, 1, 2 and 3. For that, we
need the hash of leaves 0 and 1, and the hash of leaves 2 and 3, and so
on. So, in this case, we have some dependencies in the tree, which cause
us to perform a little slower, as we cannot simply run everything twice faster.

49

6.3.2 SHAKE256

Moving on to SHAKE256, in Table 6.4 we give the results of different oper-
ations for the three implementations of the SPHINCS+, using SHAKE256,
our proposed implementation AVX-512, the AVX2 implementation, and the
REF implementation.

Keypair Generation WOTS pk generation Signing FORS signing Verifying

(cycles) (cycles) (cycles) (cycles) (cycles)

128f robust AVX-512 1508149 1496761 35217789 2054807 3638377

128f robust AVX2 4292217 2138524 99846834 5367302 7536495

128f robust REF 18160305 2264230 421328445 21973966 25570140

128f simple AVX-512 792018 785041 18663577 1259390 1872484

128f simple AVX2 2234613 1115702 52842798 3255549 3803755

128f simple REF 9343874 1165200 218744119 13143815 12835936

192f robust AVX-512 2220205 2208578 56329421 7504515 5148846

192f robust AVX2 6190683 3086233 157065137 20884821 10737256

192f robust REF 26559796 3313270 676114412 88391932 37777982

192f simple AVX-512 1169080 1161554 30344265 4638726 2634774

192f simple AVX2 3252835 1610788 83985470 12574724 5420898

192f simple REF 13691035 1706685 353631291 52736331 19238198

256f robust AVX-512 5894607 2940407 115938201 15777837 5332546

256f robust AVX2 16047940 4006880 316833904 43770581 10629669

256f robust REF 70695400 4414168 1390519744 189055237 38598677

256f simple AVX-512 3119372 1569917 62793283 9736976 2787534

256f simple AVX2 8477199 2118907 170791517 26497230 5493487

256f simple REF 36070434 2250485 724238430 111610011 19331306

128s robust AVX-512 95970218 1496075 720732817 48980504 1677370

128s robust AVX2 274304451 2138256 2060509426 140487765 2923322

128s robust REF 1165534526 2264543 8731958180 597812954 8948336

128s simple AVX-512 50666487 785086 384737484 30075364 833056

128s simple AVX2 143087646 1115186 1086418236 85222909 1471744

128s simple REF 598867558 1164928 4549473219 356213066 4589397

192s robust AVX-512 141505690 2206663 1229584977 239050035 2307832

192s robust AVX2 398579702 3101247 3471482061 681555553 4114201

192s robust REF 1708169043 3329677 14878053675 2924080166 13198490

192s simple AVX-512 74521099 1161942 668348451 146852908 1172624

192s simple AVX2 207028321 1614763 1859915777 410688165 2086606

192s simple REF 874233197 1704000 7860638078 1734564453 6336907

256s robust AVX-512 94471316 2938885 1067937038 312182793 3203126

256s robust AVX2 256954790 4010175 2932974894 876938321 5802809

256s robust REF 1132391265 4418712 12871693747 3809296695 19343712

256s simple AVX-512 49911841 1567552 591915343 192665326 1634790

256s simple AVX2 136715548 2133558 1623211830 530350369 2977290

256s simple REF 576428862 2248780 6861202003 2246967862 9451665

Table 6.4: Comparison of the different versions of SPHINCS+ using
SHAKE256 in terms of amount of cycles taken to perform hash operations
for AVX-512, AVX2 and REF implementations.

50

For a better comparison, we normalized the values of the experiment by
dividing the AVX2 measured values by the AVX-512 measured values, the
REF measured values by the AVX2 measured values and the REF measured
values by the AVX-512 measured values and took the average of all the
results. We put the results in the following figure, Table 6.5.

Keypair Generation WOTS pk genration Signing FORS signing Verifying

AVX2/AVX-512 2.784 1.393 2.788 2.758 1.909

REF/AVX2 4.261 1.066 4.255 4.218 3.326

REF/AVX-512 11.864 1.484 11.859 11.640 6.373

Table 6.5: Average of the improvement factors of the results from Table 6.4.

Now, we see a speed-up of around 2.78× for key pair generation, signing,
and FORS signing, while we only get 1.39× improvement for WOTS+
public key generation and 1.9× improvement for verification of a signature.
In order to understand the motivation behind these speed-ups, we need to
consider the benefit of the AVX-512 and consider how SHAKE256 works.

As we have discussed in Section 2.3 the AVX-512 increases the size of
the register from 256 bits (present in AVX2) to 512 bits, so one would
expect an improvement of at most 2, considering the fact that we might
create overheads by using this type of parallelism. However, as we saw in
Section 6.2 when we were talking about SHAKE256, not only do we not
have overheads, but we get an improvement, as we do not have to perform
too many operations on the values, as in SHA256. It can be seen in the
improvement of WOTS+ public key generation when comparing AVX2 to
REF, we only gain 1.06× improvement, which is mainly due to the fact
that REF was not focusing on performance, so there were some minor
improvements possible. However, when comparing AVX512 to AVX2, we
see a speed-up of 1.39× as we take advantage of faster implementation of
the hash. We can see that the speed-up of WOTS+ key pair generation is
almost the same as the improvement we get for the hash 1.39× compared to
1.43×, which is mainly due to the fact that the main operation in WOTS+
public key generation is hashing.

When performing key pair generation, signing, and verification, we are
mainly performing WOTS+ signing and verification (in which the main
operation is hashing) in these operations. Now, since each hashing com-
putation is faster, and since we have to perform most of the operations
twice less (as we perform eight values at once instead of four), we get an
improvement of more than two. It can be seen as the improvement we
get for WOTS+ public key generation times two, meaning 1.39 · 2 = 2.78,
which is around the same speed up we get for those operations.

51

Finally, in the last operation, verification, we can see that the improvement
is smaller. However, it is also the case when comparing the REF imple-
mentation to the AVX2. We see a 3.32× improvement for the verification,
comparing to around 4.2× in the other operations. Similar to what was
explained in verification for the SHA256 implementation, the motivation
behind it is that while verifying, we need to wait for values to hash, recall
that we are given a leaf and a path. So, unlike in the generation, where we
can just run each leaf and path separately, here we need to wait until we
computed the lower path, in order to continue with the higher path. In this
case, we have some dependencies in the tree, which cause us to perform a
little slower, as we cannot simply run everything twice as fast.

6.4 Comparison to Other NIST PQC Candidates

In this section, we are going to compare the speed performance of the six
remaining candidates in the third round of the NIST PQC. In this project,
NIST defined five levels of security [29], therefore each scheme specifies
to which security level it belongs. In this case, we have schemes that
comply with four out of those five levels, level 1, level 2, level 3 and level 5.
However, not each scheme has an implementation for each level, and most
schemes have only three levels of security. In order to compare the schemes,
we are going to divide them into three tables, where we compare levels 1 and
2, level 3 and level 5. Since levels 1 and 2 are relatively close to each other
security-wise, they can be compared to each other and put in the same table.

In order to optimize the benchmarking, we use SUPERCOP [3], more
precisely supercop-20210423, and we use the scheme versions that were
present in this version. We also follow the SUPERCOP convention and
report the results for the operation on 59 bytes message value.

The results of benchmarking using SUPERCOP on the remaining six NIST
PQC can be seen in Tables 6.6 to 6.8 and as explained above, they are
divided based on their security level.

52

scheme key generation (cycles) signing (cycles) verifying (cycles)

dilithium2/avx2 84775 214945 96191

dilithium2aes/avx2 53004 225865 67616

falcon512dyn/avx2 18435111 757966 94450

falcon512tree/avx2 18294471 407077 78340

rainbow1a/avx2 971022592 55819 45061

rainbow1aclassic363232/avx2 9180336 65821 31706

rainbow1acompres363232/avx2 10468189 6688416 3335531

rainbow1acyclicc363232/ssse3 9888685 111910 3107618

rainbow1b/avx2 145158902 193658 154181

rainbow1c/avx2 169424620 102299 80653

bluegemss128/skylake 62636362 124960374 259912

bluegemss128v2/skylake 68260284 133496044 231920

gemss128/skylake 62299388 786229802 271956

gemss128v2/skylake 66942770 693450196 238082

redgemss128/skylake 60081930 4705046 251520

redgemss128v2/skylake 69223506 3941038 240952

picnic2l1fs/optimizedct/avx2 5112 154319440 68282072

picnic3l1/optimizedct/avx2 2934 18650008 13884468

picnicl1fs/optimizedct/avx2 5094 4956484 3932056

picnicl1full/optimizedct/avx2 2938 3650194 2873242

picnicl1ur/optimizedct/avx2 5082 6182712 5024920

sphincsf128harakarobust/aesni 884628 32662282 1772100

sphincsf128harakasimple/aesni 765752 26227775 1086770

sphincsf128sha256robust/avx512 1529710 36586954 3573674

sphincsf128sha256simple/avx512 704568 16357292 1590924

sphincsf128shake256robust/avx512 1437342 33723304 4674484

sphincsf128shake256simple/avx512 786524 18632486 2111900

sphincss128harakarobust/aesni 28010379 546829396 763554

sphincss128harakasimple/aesni 21078955 397786584 470838

sphincss128sha256robust/avx512 80278446 612061142 1405248

sphincss128sha256simple/avx512 34627046 262987792 619820

sphincss128shake256robust/avx512 91769352 690458876 2384902

sphincss128shake256simple/avx512 49965472 379889980 993144

Table 6.6: Results of SUPERCOP of the NIST candidates for NIST security
level 1 and 2.

53

scheme key generation (cycles) signing (cycles) verifying (cycles)

dilithium3/avx2 153241 251128 156909

dilithium3aes/avx2 83469 162561 96869

rainbow3b/avx2 1032425599 600159 524856

rainbow3c/avx2 1451911935 390035 320645

rainbow3cclassic683248/avx2 54411786 399186 199347

rainbow3ccompres683248/avx2 58100021 38807771 19957470

rainbow3ccyclicc683248/ssse3 63646352 504659 20300479

bluegemss192/skylake 311558044 369765050 671846

bluegemss192v2/skylake 349824664 431083596 592532

gemss192/skylake 310017862 2544269142 647096

gemss192v2/skylake 345919488 2535517698 575744

redgemss192/opt 310632024 9055040 665196

redgemss192v2/skylake 352277284 12084184 600970

picnic2l3fs/optimizedct/avx2 8576 466578866 152273198

picnic3l3/optimizedct/avx2 4052 38034828 29144700

picnicl3fs/optimizedct/avx2 8238 11261426 9256502

picnicl3full/optimizedct/avx2 4066 6958596 5615246

picnicl3ur/optimizedct/avx2 8278 14681382 12100836

sphincsf192harakarobust/aesni 1347431 40769290 2730824

sphincsf192harakasimple/aesni 973898 28510255 1750182

sphincsf192sha256robust/avx512 2432422 63533558 6075968

sphincsf192sha256simple/avx512 1023124 27686240 2469838

sphincsf192shake256robust/avx512 2106784 53924202 6471390

sphincsf192shake256simple/avx512 1151354 30121236 2892488

sphincss192harakarobust/aesni 42607808 1291958816 1124046

sphincss192harakasimple/aesni 37067199 966429552 726042

sphincss192sha256robust/avx512 119938826 1111945958 3167410

sphincss192sha256simple/avx512 49573904 472637426 1363204

sphincss192shake256robust/avx512 134521832 1172473256 3258638

sphincss192shake256simple/avx512 73611512 663084066 1690528

Table 6.7: Results of SUPERCOP of the NIST candidates for NIST security
level 3.

54

scheme key generation (cycles) signing (cycles) verifying (cycles)

dilithium5/avx2 234415 445832 244385

dilithium5aes/avx2 127564 235418 144751

falcon1024dyn/avx2 60583627 1510942 189071

falcon1024tree/avx2 59836769 798813 154490

rainbow5c/avx2 4883226585 710293 843879

rainbow5cclassic963664/avx2 217096914 1054799 482671

rainbow5ccompres963664/ssse3 222968004 107506972 44998749

rainbow5ccyclicc963664/avx2 224725909 1054523 45980787

bluegemss256/opt 844345150 577432038 1519252

bluegemss256v2/skylake 1060940250 562046960 1500592

gemss256/skylake 828494972 3534176918 1421404

gemss256v2/skylake 835931232 4208805286 1447230

redgemss256/skylake 849336260 15678678 1517624

redgemss256v2/skylake 1054998820 14620022 1389520

picnic2l5fs/optimizedct/avx2 11830 981924130 266902408

picnic3l5/optimizedct/avx2 5242 64679238 46383352

picnicl5fs/optimizedct/avx2 11032 19159952 15867934

picnicl5full/optimizedct/avx2 5364 11360782 9205348

picnicl5ur/optimizedct/avx2 11138 23972024 19986934

sphincsf256harakarobust/aesni 3212160 83547013 3093406

sphincsf256harakasimple/aesni 2884315 72502328 1929650

sphincsf256sha256robust/avx512 14912084 180516682 10563458

sphincsf256sha256simple/avx512 2047930 42931234 2536494

sphincsf256shake256robust/avx512 5599888 110778770 7193552

sphincsf256shake256simple/avx512 3129072 63184706 3212818

sphincss256harakarobust/aesni 55273977 770314352 1638852

sphincss256harakasimple/aesni 41093470 571192516 994564

sphincss256sha256robust/avx512 142816070 1690745092 6086916

sphincss256sha256simple/avx512 32097622 415021020 1554960

sphincss256shake256robust/avx512 89918536 1021923746 4563864

sphincss256shake256simple/avx512 49497880 589175936 2341038

Table 6.8: Results of SUPERCOP of the NIST candidates for NIST security
level 5.

As expected, the improvement does not reach the performance of the
lattice-based schemes (Dilithium and Falcon) or multivariate-based schemes
(Rainbow and GeMSS). However, the target of SPHINCS+ is different

55

comparing to those other schemes. SPHINCS+ is used for cases where
strong latency requirements are not an issue, like offline code signing or
certificate signing. In those scenarios, the signature size (and occasionally
public-key size, signing speed, and verification speed) are the most impor-
tant optimization targets [2] and therefore, SPHINCS+ optimizes based
on them rather than on other parameters.

As we can see, there is another symmetric-crypto-based scheme among the
NIST PQC scheme, being Picnic. Therefore, we are going to mainly discuss
the comparison between those two schemes, as Picnic is the closest scheme
to SPHINCS+ and thus, making the comparison more appropriate.

As explained in [2], Picnic has three variants based on different transforma-
tions. Without going into too many details, two are based on Fiat-Shamir
transform (”Picnic1” and ”Picnic2”) and another is based on Unruh trans-
form (”Picnic3”) (notice that understanding the differences between them is
out of scope and the only reason we mentioned them are for naming conven-
tion). In the case of Unruh transform, ”Picnic3”, the signature is 4 times
bigger than the ones for SPHINCS+ for similar security levels. In the case of
”Picnic2”, we get signatures with sizes in a similar ballpark as SPHINCS+.
Therefore, to get a balanced comparison, we will compare ”Picnic2” to our
implementation. In order to highlight the results, we extract the instances
we compared from the bigger tables above and present them in Table 6.9.

56

scheme key generation (cycles) signing (cycles) verifying (cycles)

Security Level 1

picnic2l1fs/optimizedct/avx2 5112 154319440 68282072

sphincsf128sha256simple/avx512 704568 16357292 1590924

sphincsf128shake256simple/avx512 786524 18632486 2111900

sphincss128sha256simple/avx512 34627046 262987792 619820

sphincss128shake256simple/avx512 49965472 379889980 993144

Security Level 3

picnic2l3fs/optimizedct/avx2 8576 466578866 152273198

sphincsf192sha256simple/avx512 1023124 27686240 2469838

sphincsf192shake256simple/avx512 1151354 30121236 2892488

sphincss192sha256simple/avx512 49573904 472637426 1363204

sphincss192shake256simple/avx512 73611512 663084066 1690528

Security Level 5

picnic2l5fs/optimizedct/avx2 11830 981924130 266902408

sphincsf256sha256simple/avx512 2047930 42931234 2536494

sphincsf256shake256simple/avx512 3129072 63184706 3212818

sphincss256sha256simple/avx512 32097622 415021020 1554960

sphincss256shake256simple/avx512 49497880 589175936 2341038

Table 6.9: Comparison of Picnic and SPHINCS+ from the results of Tables
6.6 - 6.8, where the values discussed below are highlighted.

For our comparison, we are going to consider the s option for SPHINCS+ as
it relies on fewer security assumptions (therefore considered more secure).
However, for completeness, we included the f option as well. Now, as can
be seen in Table 6.9 for security level 1, we get a slower signing time by
70% for SHA256 and a slower signature time of 0.4× for SHAKE256 for
SPHINCS+ comparing to Picnic. For the same security level, we also get
much slower key generation, but verification is more than 110× faster for
SHA256 and more than 68× for SHAKE256 for SPHINCS+ comparing to
Picnic. In the case of security level 3, we only get a slower signing time
of 1%, which means that they take approximately the same amount of
time for signing using SHA256 and a slow down of 42% using SHAKE256.
Again, generation is much slower, but verification is more than 111× faster
for SHA256 and more than 90× faster for SHAKE256. For security level 5,
we also get an improvement for signing, where for SHA256, we get more
than 2× faster and for SHAKE256, we get more than 66% faster. Again
key generation is much slower, but verification is 171× faster for SHA256
and 114× faster for SHAKE256.

57

Chapter 7

Conclusions and Future
Work

In this thesis, we discussed how SPHINCS+ algorithm works and we have
seen an approach to improve its performance using the AVX-512 vector
extensions. We also understood how well the proposed implementation is
compared to the previous AVX2 implementation and compared to other
NIST PQC candidates.

The results look promising, but there are still some improvements that can
be done in order to optimize the speed performance of SPHINCS+ further
using AVX-512. Such improvements could involve optimizing small func-
tions implemented in assembly faster or more complicated implementation
features on the scheme itself. Next, we are going to discuss those ideas
which could be seen as ideas for future work on improving the performance
of SPHINCS+.

Examples of optimizations using assembly might entail for instance a
function that takes 64 bits integer from 512 bits integer value. As it stands
now, we first need to extract 256 integer values and only then 64 int value.
By creating such a function, we can reduce a cycle for each time we extract
a 64-bit value, which is mainly done in the squeezing part of SHAKE256.

Another function that can be written in assembly is a concatenation
function of two 256 bits integers to one 512 bits integer. Currently, this is
done using permutation but can be more efficiently done.

A more efficient implementation of the shuffling instruction
mm512 permutex2var epi64, used in the transpose part in the SHA256

implementation, could also improve the space and speed performance of
the code. In this function, we pass a 512-bit integer value to specify the

58

shuffling order. However, there is no use for all the bits and a simple 64-bit
integer would be sufficient to cover all cases. Furthermore, in the code
this function is used to concatenate two 256-bit values, so if implemented
in assembly, we will no longer need to pass any additional values but only
the two values we wish to concatenate. This might increase the speed
performance as well since there is no longer a need to create a 512-bit value
to pass to this function.

Apart from those smaller functions, which could provide a small improve-
ment for the proposed version in this thesis, other ideas might result in
more significant changes to the code. One approach could be to parallelize
independent vector operations and integer operations in order to increase
performance. While the integer operations are relatively bigger, compared
to vector operations, they leave space in the CPU that can still be used.
Whereas this space is too small for another integer operation, it might be
enough for vector operation. Thus, we will create better parallelism by
executing those operations at the same time.

While working on the f option for SHA256, we saw that due to the fact
that we work on one tree at a time, we do not have enough leaves and
therefore, we cannot perform 16 hashes at once. An idea can be to modify
the code to work on multiple trees at once. This way, we will have more
leaves and we will be able to perform the 16 times hash for this option as
well. This might also be useful when and if Intel will release a new version
for the AVX, which works with 1028 bits registers.

All in all, we have seen an approach for optimizing the NIST PQC candidate
SPHINCS+. The results we got are a significant first step towards optimal
implementation, but, as it stands for optimizations, there is always a place
for improvement and we intend to explore a number of different ideas to
such end in the future.

59

Bibliography

[1] D.M. Alter. sphincsplus AVX-512 implementation. GitHub, 2021.
https://github.com/DorAlter/sphincsplus/tree/master.

[2] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld,
and P. Schwabe. The SPHINCS+ signature framework. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security,. New York : ACM, 2019. https://dl.acm.org/doi/

10.1145/3319535.3363229.

[3] D. J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of
Cryptographic Systems, accessed on May 2021. https://bench.cr.

yp.to.

[4] D.J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.L. Gazdag,
A. Hülsing, P. Kampanakis, S. Kölbl, T. Lange, M.M. Laurid-
sen, F. Mendel, R. Niederhagen, C. Rechberger, J. Rijneveld, and
P. Schwabe. SPHINCS+ - Submission to the NIST post-quantum cryp-
tography project, 2017. Submission available at https://sphincs.org.

[5] D.J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.L. Gazdag,
A. Hülsing, P. Kampanakis, S. Kölbl, T. Lange, M.M. Laurid-
sen, F. Mendel, R. Niederhagen, C. Rechberger, J. Rijneveld, and
P. Schwabe. SPHINCS+ – Submission to the 3rd round of the
NIST post-quantum project, 2020. Submission available at https:

//sphincs.org.

[6] D.J. Bernstein, D. Hopwood, A.T. Hülsing, T. Lange, R.F. Nieder-
hagen, L. Papachristodoulou, P. Schwabe, and Z. Wilcox O’Hearn.
SPHINCS: Practical Stateless Hash-Based Signatures. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2015. https://link.springer.com/

chapter/10.1007/978-3-662-46800-5_15.

[7] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, R. Van Keer, and
B. Viguier. KangarooTwelve: fast hashing based on Keccak-p. Cryp-
tology ePrint Archive, Report 2016/770, 2016. https://eprint.iacr.
org/2016/770.

60

https://github.com/DorAlter/sphincsplus/tree/master
https://dl.acm.org/doi/10.1145/3319535.3363229
https://dl.acm.org/doi/10.1145/3319535.3363229
https://bench.cr.yp.to
https://bench.cr.yp.to
https://sphincs.org
https://sphincs.org
https://sphincs.org
https://link.springer.com/chapter/10.1007/978-3-662-46800-5_15
https://link.springer.com/chapter/10.1007/978-3-662-46800-5_15
https://eprint.iacr.org/2016/770
https://eprint.iacr.org/2016/770

[8] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert.
On the Security of the Winternitz One-Time Signature Scheme.
In International Journal of Applied Cryptography, volume 3, pages
363–378, 06 2011. https://link.springer.com/chapter/10.1007/

978-3-642-21969-6_23.

[9] J. Buchmann, E. Dahmen, and A. Hülsing. XMSS - A Practical For-
ward Secure Signature Scheme Based on Minimal Security Assump-
tions, 2011. https://eprint.iacr.org/2011/484.

[10] A. Casanova, J. C. Faugere, G. Macario-Rat, J. Patarin, L. Per-
ret, and J. Ryckeghem. GeMSS: A Great Multivariate Short Sig-
nature, 2020. https://www-polsys.lip6.fr/Links/NIST/GeMSS_

specification_round2.pdf.

[11] A.V. Cueva. The Intel Advanced Vector Extensions 512 (Intel®
AVX-512) Vector Length Extensions Feature on Intel® Xeon®
Scalable Processors. Intel, 2018 accessed on May 2021. https:

//software.intel.com/content/www/us/en/develop/articles/

the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.

html?wapkw=advanced%20vector%20extensions.

[12] A. Fog. Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for Intel, AMD and VIA CPUs.
anger.org, 2021 (last update) accessed on May 2021. https://agner.

org/optimize/instruction_tables.pdf.

[13] P. A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, Pornin T,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-
Fourier Lattice-based Compact Signatures over NTRU, 2020. https:

//falcon-sign.info/falcon.pdf.

[14] P. Gepner. Multi-Core Processors: New Way to Achieve High Sys-
tem Performance. In PARELEC 2006 - Proceedings: International
Symposium on Parallel Computing in Electrical Engineering, pages
9–13, 01 2006. https://ieeexplore.ieee.org/document/1698630?

arnumber=1698630.

[15] A. Hülsing, L. Rausch, and J. Buchmann. Optimal Parameters for
XMSSMT . Cryptology ePrint Archive, Report 2017/966, 2017. https:
//eprint.iacr.org/2017/966.

[16] A. Hülsing. W-OTS+ - Shorter Signatures for Hash-Based Signature
Schemes. In International Conference on Cryptology in Africa, volume
7918, pages 173–188, 06 2013. https://link.springer.com/chapter/
10.1007/978-3-642-38553-7_10.

61

https://link.springer.com/chapter/10.1007/978-3-642-21969-6_23
https://link.springer.com/chapter/10.1007/978-3-642-21969-6_23
https://eprint.iacr.org/2011/484
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification_round2.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification_round2.pdf
https://software.intel.com/content/www/us/en/develop/articles/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html?wapkw=advanced%20vector%20extensions
https://software.intel.com/content/www/us/en/develop/articles/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html?wapkw=advanced%20vector%20extensions
https://software.intel.com/content/www/us/en/develop/articles/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html?wapkw=advanced%20vector%20extensions
https://software.intel.com/content/www/us/en/develop/articles/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html?wapkw=advanced%20vector%20extensions
https://agner.org/optimize/instruction_tables.pdf
https://agner.org/optimize/instruction_tables.pdf
https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://ieeexplore.ieee.org/document/1698630?arnumber=1698630
https://ieeexplore.ieee.org/document/1698630?arnumber=1698630
https://eprint.iacr.org/2017/966
https://eprint.iacr.org/2017/966
https://link.springer.com/chapter/10.1007/978-3-642-38553-7_10
https://link.springer.com/chapter/10.1007/978-3-642-38553-7_10

[17] Intel. Intrinsics for Intel Advanced Vector Extensions 2. In-
trinsics for Intel Advanced Vector Extensions 2, 2013 ac-
cessed on April 2021. https://www.cism.ucl.ac.be/

Services/Formations/ICS/ics_2013.0.028/composer_xe_

2013/Documentation/en_US/compiler_c/main_cls/index.htm#

GUID-9E84F9C5-1711-4F59-8742-8F9DF283A472.htm.

[18] Intel. Intel Intrinsics Guide. Intel official website, accessed
on June 2021. https://software.intel.com/sites/landingpage/

IntrinsicsGuide/.

[19] J.Ding, M. S. Chen, A. Petzoldt, D. Schmidt, B. Y. Yang, M. Kannwis-
cher, and J. Patarin. RAINBOW, 2020. https://www.pqcrainbow.

org/.

[20] M. Lhoussein, H. Sylvain, H. Dominique, B. Said, Abdelkrim H., and
Z. Yahya. Efficient adaptive load balancing approach for compres-
sive background subtraction algorithm on heterogeneous CPU–GPU
platforms. Journal of Real-Time Image Processing, 17, 2020. https:

//link.springer.com/article/10.1007/s11554-019-00916-4.

[21] C. Lomont. Introduction to Intel Advanced Vector Exten-
sions. Intel White Paper, 2011, accessed on May 2021. https:

//software.intel.com/content/www/us/en/develop/articles/

introduction-to-intel-advanced-vector-extensions.html.

[22] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler,
D. Stehle, and S. Bai. CRYSTALS-Dilithium Algorithm Specifications
and Supporting Documentation, 2020. https://pq-crystals.org/

dilithium/data/dilithium-specification-round3.pdf.

[23] R. Merkle. A Digital Signature Based on a Conventional Encryp-
tion Function. In C. Pomerance, editor, Advances in Cryptology —
CRYPTO ’87, pages 369–378. Springer Berlin Heidelberg, 1988. https:
//link.springer.com/chapter/10.1007/3-540-48184-2_32.

[24] M. Mosca and M. Piani. Quantum Threat Timeline Report
2020, 2021. https://globalriskinstitute.org/publications/

quantum-threat-timeline-report-2020/.

[25] G. Alagic (NIST), J. Alperin-Sheriff (NIST), D. Apon (NIST),
D. Cooper (NIST), Q. Dang (NIST), J. Kelsey (NIST), Y. Liu (NIST),
C. Miller (NIST), D. Moody (NIST), R. Peralta (NIST), R. Perlner
(NIST), A. Robinson (NIST), and D. Smith-Tone (NIST). Status Re-
port on the Second Round of the NIST Post-Quantum Cryptography
Standardization Process. NISTIR 8309, 2020. https://csrc.nist.

gov/publications/detail/nistir/8309/final.

62

https://www.cism.ucl.ac.be/Services/Formations/ICS/ics_2013.0.028/composer_xe_2013/Documentation/en_US/compiler_c/main_cls/index.htm#GUID-9E84F9C5-1711-4F59-8742-8F9DF283A472.htm
https://www.cism.ucl.ac.be/Services/Formations/ICS/ics_2013.0.028/composer_xe_2013/Documentation/en_US/compiler_c/main_cls/index.htm#GUID-9E84F9C5-1711-4F59-8742-8F9DF283A472.htm
https://www.cism.ucl.ac.be/Services/Formations/ICS/ics_2013.0.028/composer_xe_2013/Documentation/en_US/compiler_c/main_cls/index.htm#GUID-9E84F9C5-1711-4F59-8742-8F9DF283A472.htm
https://www.cism.ucl.ac.be/Services/Formations/ICS/ics_2013.0.028/composer_xe_2013/Documentation/en_US/compiler_c/main_cls/index.htm#GUID-9E84F9C5-1711-4F59-8742-8F9DF283A472.htm
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://www.pqcrainbow.org/
https://www.pqcrainbow.org/
https://link.springer.com/article/10.1007/s11554-019-00916-4
https://link.springer.com/article/10.1007/s11554-019-00916-4
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf
https://link.springer.com/chapter/10.1007/3-540-48184-2_32
https://link.springer.com/chapter/10.1007/3-540-48184-2_32
https://globalriskinstitute.org/publications/quantum-threat-timeline-report-2020/
https://globalriskinstitute.org/publications/quantum-threat-timeline-report-2020/
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/publications/detail/nistir/8309/final

[26] National Institute of Standards and Technology. SECURE HASH
STANDARD. Federal Information Processing Standards Publica-
tion (FIPS) 180-2, 2002. https://csrc.nist.gov/csrc/media/

publications/fips/180/2/archive/2002-08-01/documents/

fips180-2.pdf.

[27] National Institute of Standards and Technology. What is Yo? (Yo
App documentation). Yo App website, 2014, accessed on April 2021.
https://docs.justyo.co/.

[28] National Institute of Standards and Technology. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. Federal
Information Processing Standards Publication (FIPS) PUB 202, 2015.
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[29] National Institute of Standards and Technology. Submission Require-
ments and Evaluation Criteria for the Post-Quantum Cryptography
Standardization Process. NIST official website, 2017. https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf.

[30] National Institute of Standards and Technology. Round 1 Sub-
missions. NIST official website, 2019. https://csrc.nist.gov/

Projects/post-quantum-cryptography/Round-1-Submissions.

[31] National Institute of Standards and Technology. Round 2 Sub-
missions. NIST official website, 2020. https://csrc.nist.gov/

Projects/post-quantum-cryptography/round-2-submissions.

[32] National Institute of Standards and Technology. Round 3 Sub-
missions. NIST official website, 2021. https://csrc.nist.gov/

Projects/post-quantum-cryptography/round-3-submissions.

[33] E. Rescorla and T. Dierks. The Transport Layer Security (TLS) Pro-
tocol Version 1.2. RFC 5246, 2008. https://datatracker.ietf.org/
doc/html/rfc5246.

[34] V.A. Shargatov, A.S. Pecherkin, A.S. Sofin, A.A. Agapov, S.V.
Gorkunov, S.I. Sumskoi, Y.A. Bogdanova, and A.V. Karabulin. Mod-
eling of Shock Wave Propagation Over the Obstacles Using Super-
computers. In Journal of Physics, volume Conference Series 1099 (1),
2014. https://iopscience.iop.org/article/10.1088/1742-6596/

1099/1/012014.

[35] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer. SIAM Journal
on Computing, 26(5):1484–1509, 1997. http://dx.doi.org/10.1137/
S0097539795293172.

63

https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://docs.justyo.co/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://iopscience.iop.org/article/10.1088/1742-6596/1099/1/012014
https://iopscience.iop.org/article/10.1088/1742-6596/1099/1/012014
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172

[36] R. Sole. AVX-512: qué es y para qué sirve estas instrucciones
que debes tener en cuenta. Professional review, 2021, accessed
on June 2021. https://www.profesionalreview.com/2021/06/12/

intel-avx-512/.

[37] L. Spracklen and S. G. Abraham. Chip multithreading: opportunities
and challenges. In 11th International Symposium on High-Performance
Computer Architecture, pages 248–252, 2005. https://ieeexplore.

ieee.org/document/1385946.

[38] B.T. Sutcliffe, J. Tennyson, and S. Miller. The Use of Supercom-
puters for the Variational Calculation of Ro-Vibrationally Excited
States of Floppy Molecules. In Theoretica Chimica, volume 72(4),
pages 265–276, 1987. https://www.semanticscholar.org/paper/

The-use-of-supercomputers-for-the-variational-of-of-Sutcliffe-Tennyson/

747a55d6457a977006937048dc376378030c2bc9.

[39] SPHINCS+ Team. sphincsplus. GitHub, accessed on November 2020.
https://github.com/sphincs/sphincsplus.

[40] Keccake team XKCP. eXtended Keccak Code Package. GitHub, ac-
cessed on November 2020. https://github.com/XKCP/XKCP/tree/

master/lib/low/KeccakP-1600-times8/AVX512.

[41] G. Zaverucha, M. Chase, D. Derler, S. Goldfeder, C. Orlandi,
S. Ramacher, C. Rechberger, D. Slamanig, J. Katz, X. Wang,
V. Kolesnikov, and D. Kales. Post-Quantum Zero-Knowledge and Sig-
natures from Symmetric-Key Primitives. Cryptology ePrint Archive,
Report 2017/279, 2017. https://ia.cr/2017/279.

64

https://www.profesionalreview.com/2021/06/12/intel-avx-512/
https://www.profesionalreview.com/2021/06/12/intel-avx-512/
https://ieeexplore.ieee.org/document/1385946
https://ieeexplore.ieee.org/document/1385946
https://www.semanticscholar.org/paper/The-use-of-supercomputers-for-the-variational-of-of-Sutcliffe-Tennyson/747a55d6457a977006937048dc376378030c2bc9
https://www.semanticscholar.org/paper/The-use-of-supercomputers-for-the-variational-of-of-Sutcliffe-Tennyson/747a55d6457a977006937048dc376378030c2bc9
https://www.semanticscholar.org/paper/The-use-of-supercomputers-for-the-variational-of-of-Sutcliffe-Tennyson/747a55d6457a977006937048dc376378030c2bc9
https://github.com/sphincs/sphincsplus
https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600-times8/AVX512
https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600-times8/AVX512
https://ia.cr/2017/279

	Introduction
	Preliminaries
	SPHINCS+
	One Time Signature (OTS) Scheme
	WOTS+
	Hypertree and FORS
	SPHINCS+
	SPHINCS+ Instantiation

	Hash Functions
	SHA256
	SHAKE256

	Intel Advanced Vector Extensions 512
	Single Instruction Multiple Data
	Intel Advanced Vector Extensions 512

	Related Work
	Optimizing SPHINCS+
	SHA256 Implementation
	SHAKE256 Implementation

	A Lower Bound on the Amount of Cycles per Hash
	SHA256
	SHAKE256

	Results and Comparison
	Comparison of Lower Bound to Run Time
	Comparison of Single Hash in AVX2 and AVX512
	Comparision of different implementations of SPHINCS+
	SHA256
	SHAKE256

	Comparison to Other NIST PQC Candidates

	Conclusions and Future Work

