
Bachelor thesis
Computing Science

Radboud University

Analysis of Confined Blocks World

Author:
Julius Landsman
s1010919

First supervisor/assessor:
prof. dr., H. Zantema (Hans)

h.zantema@cs.ru.nl

Second assessor:
prof. dr., J.H. Geuvers

(Herman)
h.geuvers@cs.ru.nl

January 10, 2021

Abstract

Blocks World is a logical planning game. While it has been widely used in
the field of artificial intelligence, it has also received some backlash due to
the artificial nature of the game. In this thesis, we analyse a slightly more
realistic variation of Blocks World, in an attempt to make Blocks World
results more useful in the real world. Most notably, this variation puts a
limit on the scale of Blocks World. We show how to verify whether problems
of this variation are solvable, and provide an algorithm that solves these
problems. We also prove that finding an optimal solution for this variation
is NP-hard, putting this problem in the same complexity class as most other
versions of Blocks World.

Contents

1 Introduction 3

2 Background 4
2.1 What is Blocks World? . 4

2.1.1 Elementary Blocks World 4
2.1.2 Other versions of Blocks World 5

2.2 Solving Blocks World . 5
2.2.1 Finding any solution 6
2.2.2 Finding an optimal solution 6

3 Confined Blocks World 7
3.1 Definitions . 8

3.1.1 Configuration . 8
3.1.2 Auxiliary functions . 8
3.1.3 Moving blocks . 9

3.2 Solving CBW . 9
3.2.1 Solvability . 9
3.2.2 HMove . 12
3.2.3 VMove . 14
3.2.4 Finding the solution 15
3.2.5 Other observations . 17

3.3 Finding an optimal solution 19
3.3.1 NP-completeness of CBW 19
3.3.2 CBW with pre-established restrictions 25

4 Related Work 28

5 Conclusions 29

A HMove 32
A.1 Algorithm . 32
A.2 Proofs . 37

1

B VMove 39
B.1 Algorithm . 39
B.2 Proofs . 41

2

Chapter 1

Introduction

One of the most well-known planning domains in artificial intelligence is
Blocks World, where the goal is to build one or more vertical stacks of
blocks. Blocks World is an instance of a ’toy problem’: a problem that
does not have all the complexity of a real-world problem [13]. The simplicity
of toy problems make them useful to compare the performance of different
algorithms and heuristics, as well as being crucial in fields such as game de-
sign. However, toy problems such as Blocks World can also have a negative
connotation [16]. One might think toy problems are too artificial to be useful
in practice. Conversely, one might try to use the solution of a toy problem
in the real world, without considering the limitations of this solution.

While there are several known versions of Blocks World, the bulk of the
current research has been on the most basic version, Elementary Blocks
World (EBW). In this paper we will present a different variation, Confined
Blocks World (CBW), which is meant to be a slightly more realistic variation
of Blocks World. The main difference between these versions is that, unlike
EBW, CBW puts a limit on both the number of stacks of blocks and the
height of these stacks. As the real world also has these limits, knowledge
about CBW can help bridge the gap between Blocks World and real-world
problems (for example: sorting boxes in a warehouse, which clearly has a
limited capacity). We will provide an algorithm that can solve CBW prob-
lems, and we will show that finding an optimal solution for CBW problems
is NP-hard (similar to EBW).

We will start by explaining how exactly Blocks World works, and what is
currently known about it (chapter 2). We will then introduce and define
Confined Blocks World, and present our main findings about this variation,
such as our algorithm to solve problems and the hardness of finding an op-
timal solution (chapter 3). We will discuss existing literature related to this
subject (chapter 4), and conclude our research (chapter 5).

3

Chapter 2

Background

2.1 What is Blocks World?

2.1.1 Elementary Blocks World

The most well-known and basic version of Blocks World is Elementary Blocks
World (EBW) [11]. EBW is about cube-shaped blocks, which can be stacked
on top of each other by placing a block precisely on top of another block. A
vertical stack of one or more blocks is also called a ’tower’ of blocks.
An EBW ’state’ consists of a finite number of blocks, which are stacked into
towers on top of a table.
A state can only be changed by moving a block from the top of a tower,
either onto another tower or to the table (and thus creating a new tower).
Only a single block can be moved at a time.
An EBW problem consists of two states: an initial state and a goal state.
The main objective is to move the blocks, one at a time, from the initial
state to the goal state. Ideally this is done in the least amount of moves
possible. A simple EBW problem and its solution can be seen in figure 2.1.

Other properties of EBW are:

• The table may hold an unbounded number of towers. This means all
blocks can be on the table simultaneously.

• Towers may consist of an unbounded number of blocks. This means
all blocks can be in the same tower.

• Every block is unique; a state cannot have more than 1 of the same
block.

• Every block has the same size. This means every block is either on top
of a single other block or on the table.

• The positioning of the towers on the table is irrelevant.

4

Figure 2.1: An EBW problem and a possible solution

2.1.2 Other versions of Blocks World

While EBW is the most widely used and well-known version of Blocks World,
there are also several other versions that have been researched throughout
the years. Some notable examples of these are:

• The original Blocks World used by Winograd [18], which contained
blocks of different sizes, colors and shapes, such as pyramids.

• Varying Block-Size Blocks World (VBW) [11], an adaptation of EBW.
As the name suggests blocks can have different sizes, and as a result
multiple blocks can sit on top of a single other block.

• Limited Table-Size Blocks World (LBW) [11], an adaptation of EBW
where the table is only large enough to hold a certain number of towers.

• Varying Block-Size, Limited Table-Size Blocks World (VLBW) [11],
which combines the elements of both VBW and LBW.

• The version of Blocks World used by Chenoweth [6]. This version is
also similar to EBW, but here blocks are not necessarily unique. This
means blocks can appear multiple times in a single problem.

2.2 Solving Blocks World

In this section we will broadly describe what is currently known about solving
Blocks World problems. There are two main things to focus on: finding any
solution, and finding an optimal solution. A solution is optimal if the number
of blocks getting moved during the solution is the lowest possible; this means
it is impossible to solve the problem in fewer moves than that of an optimal
solution. Note that a single block getting moved multiple times counts as
multiple moves. The amount of blocks in a given Blocks World problem
generally gets indicated with n, so we will do the same in this section.

5

2.2.1 Finding any solution

Finding any solution to EBW (or any other variation where the table size
is unbounded) is trivial: since the table is large enough to hold every block
simultaneously, any problem can simply be solved by moving every block to
the table first, and then building the goal state from the ground up. We can
conclude the following:

For any Blocks World version where the table is large enough to
hold all blocks simultaneously, a solution of 2n moves can easily
be found.

Finding a solution when the table size is limited is a bit more tricky. For
LBW one can kind of simulate the table by first moving all blocks to two
temporary towers. Whenever a block is needed for the goal state, move all
blocks above that block to the other temporary tower, and then move the
now-free block to its position in the goal state. This method can solve LBW
problems in O(n log n) moves. More details can be found in [11].
Finding any solution for VLBW is a lot harder, but how hard exactly this is
has not been explored.

2.2.2 Finding an optimal solution

Unlike finding any solution, finding an optimal solution of a Blocks World
problem is very hard. This can be shown by analyzing the decision problem:
’Given a Blocks World problem and a positive integer L, is there a solution
that solves the problem in L moves or less?’.
For EBW, this decision problem has been proven to be NP-complete [11].
Thus, finding an optimal solution for EBW problems is NP-hard. A similar
result has been found for VBW and LBW. For VLBW however, the deci-
sion problem was just found to be NP-hard. For some VLBW problems the
shortest solution has exponential length, so there is no NP-time algorithm
that can find an optimal solution for all VLBW problems [11].
Chenoweth proved NP-completeness for the decision problem of his version,
so finding an optimal solution is also NP-hard for Blocks World problems
with duplicate blocks [6].

While finding an optimal solution for EBW is NP-hard, polynomial time
algorithms have been found that come close to finding an optimal solution.
[11] describes an algorithm that runs in O(n3) time, which solves CBW prob-
lems in no more than twice the length of the optimal plan. [16] improves
the implementation of this algorithm to make it run in O(n) time. It also
introduces two other algorithms that run in O(n) time, of which the most
efficient one finds a solution that is on average only 1.05 times as long as the
optimal solution.

6

Chapter 3

Confined Blocks World

In this chapter we will analyse Blocks World with a limit on both the num-
ber of towers and the height of the towers. We call this variation of blocks
world Confined Blocks World (CBW). We denote the maximum height of
the towers as h, and the maximum mumber of towers as m.
Since there is a limit on the size of the table, finding any solution for a CBW
problem is not trivial. On top of that, the limit on the tower height means
the trick used for finding an LBW solution cannot be used here either. We
will provide an algorithm that can solve CBW problems (if a solution is ac-
tually possible), and show how hard finding an optimal solution for CBW
problems is.
We will denote a CBW state as a ’configuration’. Such a configuration can
be seen as a grid with h rows and m columns, where every block has to be
within that grid. An example can be seen in figure 3.1, where h = m = 3.

Figure 3.1: A simple CBW problem

7

3.1 Definitions

3.1.1 Configuration

As stated above, a CBW configuration is visualised as a grid with h rows
and m columns. We define row 1 as the bottom row, row h as the top row,
etc. Similarly we define column 1 as the left-most column, column m as the
right-most column, etc. Position (x, y) indicates the slot at column x and
row y.
A CBW configuration is built from a set of blocks B. 0 indicates an empty
slot, so 0 /∈ B.

Definition 3.1 (Configuration)
We formally define a configuration C as a total function:

C : {1, ...,m} × {1, ..., h} → B ∪ {0},where
∀(i, j) ∈ {1, ...,m} × {1, ..., h} : (C(i, j) = 0 ∧ j < h)→ C(i, j + 1) = 0

Note that every block in a CBW configuration is unique, meaning the part
of function C with codomain B is injective.
We can then identify a block in 2 ways: by its position in the configura-
tion it’s in, or by its name. A block with name ’NAME’ will be represented
by [NAME]. For example, in figure 3.1 we have I(3, 2) = [F], and I(3, 3) = 0.

Bear in mind that a side effect of this notation is that columns have a specific
position in a configuration, which is not the case for towers in an EBW state.

3.1.2 Auxiliary functions

Auxiliary 3.1 (top)
The function top(x,C) indicates the height of the highest block in column
x in configuration C. In more formal terms:

top(x,C) = max({j ∈ {1, ..., h}|C(x, j) ∈ B})

This means ∀i ∈ {1, ...,m} : (top(i, C) = h) ∨ (C(i, top(i, C) + 1) = 0).
In figure 3.1 we get top(3, I) = 2, and top(3, G) = 3.

Auxiliary 3.2 (clear)
A block is said to be clear if it is free to be moved. In other words, a block is
clear if there are no blocks on top of it. To reflect this we define the function
clear(b, C), which returns True if block b is clear in configuration C. For ex-
ample, in figure 3.1 we get clear([A], I) = False, and clear([D], I) = True.

8

Auxiliary 3.3 (pos)
Lastly, we define the function pos(b, C), which returns the position of a block
b in configuration C. So pos(b, C) = (x, y) when C(x, y) = b. For example,
in figure 3.1 we have Pos([D], I) = (1, 2) and Pos([D], G) = (3, 3).

3.1.3 Moving blocks

Like every Blocks World variant, the only possible action for CBW is moving
a block. A CBW configuration can therefore only be changed by moving a
single block from one column to another. We call this a ’basic move’, which
we define as follows:

Definition 3.2 (move)
We define a basic move with the function move(xS , xD, C), which moves the
highest block in column xS to column xD in configuration C. The move func-
tion is only possible if C(xS , 1) ∈ B ∧C(xD, h) = 0. This function results in
a new configuration C ′ where:
C ′(xS , top(xS , C)) = 0,
C ′(xD, top(xD, C) + 1) = C(xS , top(xS , C)), and
C ′(i, j) = C(i, j) for every other slot.
The problem in figure 3.1 can be solved in a single basic move. We get
G = move(1, 3, I).

3.2 Solving CBW

A CBW problem can be indicated as (I,G), where I is the initial CBW
configuration, and G is the goal configuration. The aim of a CBW problem
is to transform I into G with a sequence of basic moves. Here, the maximum
height h and table size m should be the same for I and G. For a problem to
be solvable, clearly the set of blocks B should also be the same for I and G.
We will therefore only look at CBW problems where this is indeed the case.
The number of blocks in a problem will be indicated by n, so n = |B|.
One last assumption we make is that for all CBW problems m > 2 holds
(more info on this can be found in section 3.2.5).

3.2.1 Solvability

However even with the rules described above, not every CBW problem is
solvable. Consider the example in figure 3.2. Here it is impossible to ever
move block [A] to a different position, since the only way to make block
[A] clear is by filling up the other two columns completely. This means the
problem cannot be solved. As we can see, the number of blocks n is simply
too high for the given dimensions m and h to solve to problem.

9

Figure 3.2: An unsolvable CBW problem

Lemma 1: If n ≤ h(m− 1) holds for a CBW configuration C, any block in
C is able to be moved to a different position eventually.

Proof : Let C be a CBW configuration for which n ≤ h(m − 1) holds,
and C(x, y) be the block we want to move. Let r be the number of blocks
in column x, so r = top(x,C). Since n ≤ h(m− 1), and the total number of
slots in any CBW configuration is m · h, we get that the number of empty
slots in C is m · h− n ≥ m · h− h(m− 1) = h. There are at least h empty
slots in C, and there are h − r empty slots in column x. This means there
are at least h − (h − r) = r empty slots in other columns. Since column x
has r blocks, we can move every block in column x to a different column,
including block C(x, y).

As we can see, if a CBW configuration has at least h empty slots, we
can guarantee that every block can be moved. If we look at the problem in
figure 3.2 again we find that m = 3, h = 4 and n = 9. We get that there are
m · h − n = 3 empty slots in the configuration. And indeed 3 < h, so some
blocks cannot be moved to a different position (specifically, the blocks in the
bottom row). For this problem it holds that n = h(m − 1) + 1. From this
and lemma 1 we can conclude that that n = h(m− 1) is indeed the highest
n can be to guarantee that every block can be moved.

If there are h empty slots in a configuration, we know that every block
can at least be moved. But the question still remains if all CBW problems
with h or more empty slots can be solved. To answer this we need to try
finding an algorithm that solves all CBW problems for which n ≤ h(m− 1).
We tried two approaches for this: building the goal configuration up column
by column, and building the goal configuration up row by row.
The first approach works if all columns in the goal configuration have the
same number of blocks, but it can lead to trouble if there are columns with h

10

blocks. Consider the problem in figure 3.3. The leftmost column is finished,
so moving a block away from there would seem to be counterproductive.
However, switching blocks B and D for the middle column is impossible
without moving block E at some point.

Figure 3.3: A tricky CBW problem

The second approach on the other hand does always work. We came up with
an algorithm that uses this approach to solve any CBW problem for which
n ≤ h(m − 1). This algorithm does this in no more than 3hn + 6n basic
moves. For simplicity, we will denote this function as F (h, n) for the rest of
this chapter:

F (h, n) = 3hn+ 6n

We can now prove the following theorem:

Theorem: For any CBW problem (I,G) where n ≤ h(m − 1), the ini-
tial configuration I can be transformed to the goal configuration G in no
more than F (h, n) basic moves.

To prove the above theorem, we define the algorithm for solve(I,G), which
solves any CBW problem (I,G) where n ≤ h(m − 1). We will first define
the functions HMove and VMove, which will be centerpieces of this algorithm.
Both these functions use a series of basic moves to move a block from an ini-
tial position (xS , yS) to another position (xD, yD). HMove is used if xS 6= xD,
and VMove is used if xS = xD. These functions could be combined into a
single function, but for clarity we seperate them here.
For both of these functions n ≤ h(m − 1) is a requirement, so we assume
this holds for the rest of this section.

11

3.2.2 HMove

HMove(xS , yS , xD, yD, C) moves block C(xS , yS) to position (xD, yD), where
xS 6= xD. This function can be used whenever the following properties hold:
- C(xS , yS) ∈ B
- 1 ≤ xD ≤ m
- 1 ≤ yD ≤ h
- yD ≤ top(xD, C) ∨ yD = top(xD, C) + 1

Our implementation of HMove with explanation can be found in appendix
A.1.

Using C ′ = HMove(xS , yS , xD, yD, C) transforms C into a configuration C ′

with the following properties:
For column xD:
- ∀j ∈ {1, ..., yD − 1} : C ′(xD, j) = C(xD, j) (no changes)
- C ′(xD, yD) = C(xS , yS)
If yD ≤ top(xD, C):
- ∀j ∈ {yD + 1, ..., top(xD, C)} : C ′(xD, j) = C(xD, j − 1)
- ∀j ∈ {top(xD, C) + 1, ..., h} : C ′(xD, j) = 0

If yD = top(xD, C) + 1:
- ∀j ∈ {yD + 1, ..., h} : C ′(xD, j) = 0

For column xS :
- For ∀j ∈ {1, ..., yS − 1} : C ′(xS , j) = C(xS , j) (no changes)
If yD ≤ top(xD, C):
- C ′(xS , yS) = C(xD, top(xD, C))
- ∀j ∈ {yS + 1, ..., h} : C ′(xS , j) = C(xS , j) (no changes)

If yD = top(xD, C) + 1:
- ∀j ∈ {yS , ..., h− 1} : C ′(xS , j) = C(xS , j + 1)
- C ′(xS , h) = 0

For every other column:
- No changes

An example where yD ≤ top(xD, C) and one where yD = top(xD, C) + 1
can be seen in figures 3.4 and 3.5 respectively.

12

Figure 3.4: C ′ = HMove(2, 2, 4, 1, C)

Figure 3.5: C ′ = HMove(1, 1, 3, 4, C)

In particular the properties in the following lemmas will be important to us.
The proof of these lemmas can be found in appendix A.2.

Lemma 2: Executing HMove(xS , yS , xD, yD, C) takes at most
2(top(xS , C)− yS) + 2(top(xD, C)− yD) + 8 basic moves.

Lemma 3: When executing C ′ = HMove(xS , yS , xD, yD, C), the following
properties hold for configuration C ′:
- C ′(xD, yD) = C(xS , yS)
- ∀j ∈ {1, .., yD − 1} : C ′(xD, j) = C(xD, j)
- ∀j ∈ {1, .., yS − 1} : C ′(xS , j) = C(xS , j)
- ∀i ∈ {1, ..,m} : (i 6= xS ∧ i 6= xD)→ (∀j ∈ {1, .., h} : C ′(i, j) = C(i, j))

In other words, HMove(xS , yS , xD, yD, C) ensures not only that block C(xS , yS)
gets moved to its destination (xD, yD), but also that no blocks below yS in
column xS get changed, no blocks below yD in column xD get changed, and
no blocks in any other column get changed.

13

3.2.3 VMove

VMove(x, yS , yD, C) moves block C(x, yS) to position (x, yD). This function
can be used whenever the following properties hold:
- 1 ≤ x ≤ m
- yS ≤ top(x,C)
- yD ≤ top(x,C)

Our implementation of VMove with explanation can be found in appendix
B.1.

Using C ′ = VMove(x, yS , yD, C) transforms C into a configuration C ′ with
the following properties:
For column x:
If yS = yD:
- No changes

If yS > yD:
- ∀j ∈ {1, ..., yD − 1} : C ′(x, j) = C(x, j) (no changes)
- C ′(x, yD) = C(x, yS)
- ∀j ∈ {yD + 1, ..., yS} : C ′(x, j) = C ′(x, j − 1)
- ∀j ∈ {yS + 1, ..., h} : C ′(x, j) = C(x, j) (no changes)

If yS < yD:
- ∀j ∈ {1, ..., yS − 1} : C ′(x, j) = C(x, j) (no changes)
- ∀j ∈ {yS , ..., yD − 1} : C ′(x, j) = C ′(x, j + 1)
- C ′(x, yD) = C(x, yS)
- ∀j ∈ {yD + 1, ..., h} : C ′(x, j) = C(x, j) (no changes)

For every other column:
- No changes

Figure 3.6: C ′ = VMove(1, 4, 2, C)

14

An example can be seen in figure 3.6, where yS > yD.

Again, in particular the properties in the following lemmas will be important
to us. The proof of these lemmas can be found in appendix B.2.

Lemma 4: Executing VMove(x, yS , yD, C) where yS ≥ yD takes at most
2(top(x,C)− yD) + 6 basic moves.

Lemma 5: When executing C ′ = VMove(x, yS , yD, C) where yS ≥ yD, the
following properties hold for configuration C ′:
- C ′(x, yD) = C(x, yS)
- ∀j ∈ {1, ..., yD − 1} : C ′(x, j) = C(x, j)
- ∀i ∈ {1, ...,m} : i 6= x→ (∀j ∈ {1, ..., h} : C ′(i, j) = C(i, j))

In other words VMove(x, yS , yD, C) moves block C(x, yS) to position (x, yD),
and if yS ≥ yD then in the resulting configuration no columns besides column
x are changed, and in column x no blocks below yD are changed.

3.2.4 Finding the solution

With these functions, we can now prove the main theorem:

Theorem: For any CBW problem (I,G) where n ≤ h(m − 1), the ini-
tial configuration I can be transformed to the goal configuration G in no
more than F (h, n) basic moves.

Proof :
We can apply the following algorithm to transform a CBW configuration I
into G in no more than F (h, n) basic moves. For these configurations it holds
that n ≤ h(m− 1). C indicates the current configuration in the algorithm.

Algorithm solve(I,G):
1 C = I
2 for (jD = 1, jD ≤ h, jD ++):
3 for (iD = 1, iD ≤ m, iD ++):
4 if G(iD, jD) ∈ B:
5 (iS , jS) = pos(G(iD, jD), C)
6 if (iS = iD):
7 C = VMove(iS , jS , jD, C)
8 else:
9 C = HMove(iS , jS , iD, jD, C)
10 return C

15

This algorithm builds up G from bottom to top; first every block that is in
row 1 in G gets moved to its goal position in C, then row 2, etc.

Lemma 3 ensures that every time HMove(iS , jS , iD, jD, C) is used, no
columns besides columns iS and iD change. On top of that, no blocks below
position (iS , jS) and no blocks below position (iD, jD) are changed. Because
the algorithm builds up the goal configuration from the bottom up, positions
(iS , jS) and (iD, jD) cannot be below blocks that were moved to their goal
position earlier during the algorithm. This means that lemma 3 essentially
ensures that every block that is moved to its goal position during line 7 or 9
of the algorithm, won’t get moved again by a HMove afterwards.

Similarly, since the goal configuration is built from the bottom up, we
know every time VMove(iS , jS , jD, C) is used in line 9 it holds that jS ≥ jD.
This means we can use lemma 5, which ensures that every time VMove(iS , jS , jD, C)
is used no columns besides column iS change, and no blocks below position
(iS , jD) are changed. Again position (iS , jD) cannot be be below blocks that
were moved to their goal position earlier during the algorithm, since jD goes
up linearly during the algorithm. So lemma 5 ensures that all blocks that
were moved to their goal position earlier cannot have their position changed
again during an VMove either.

As a result of these 2 lemmas, we know that every block that gets moved
to its goal position in line 7 or 9, will stay in that position forever. This
means we can move all blocks to their correct position from the ground up
without worrying about displacing them again afterwards. Once this is done
for every position, we result in configuration G.

Maximum Basic Moves
There are 2 lines in the algorithm where basic moves get made: line 7 and
line 9. One of these lines is executed every time G(iD, jD) ∈ B, which hap-
pens exactly n times.
During line 7, at most 2(top(iS , C)− jD) + 6 basic moves get made (lemma
4).
During line 9, at most 2(top(iS , C)−jS)+2(top(iD, C)−jD)+8 basic moves
get made (lemma 2).
This means that in the worst case scenario, line 9 gets called n times, and
line 7 zero times. In this scenario we end up with a total of
n · (2(top(iS , C)− jS) + 2(top(iD, C)− jD) + 8) maximum basic moves.

To convert this term into a function of n,m and/or h we need to find the
average values of top(iS , C)− jS and top(iD, C)− jD throughout the algo-
rithm.

For top(iS , C)−jS this is very hard to compute, as these values will both
be completely dependent on the input CBW configurations. Therefore we
will use the theoretical worst-case scenario: top(iS , C) = h, and jS = 1, so
top(iS , C)− jS ≤ h− 1.

16

For top(iD, C) − jD we can slightly improve this: Since jD goes up
linearly from 1 to h throughout the algorithm (line 2), we know that the
average of top(iD, C) − jD cannot be more than 0.5h. This results in:
n · (2(top(iS , C)− jS) + 2(top(iD, C)− jD) + 8) ≤
n · (2(h− 1) + 2(0.5h) + 8).

This means the total number of basic moves of the algorithm cannot be
more than:

n · (2(top(iS , C)− jS) + 2(top(iD, C)− jD) + 8) ≤
n · (2(h− 1) + 2(0.5h) + 8) =

n · (3h+ 6) =

3hn+ 6n = F (h, n) ∈ O(hn)

3.2.5 Other observations

Optimality

One thing to note is that the number of basic moves that get made in the
above algorithm is by no means the most optimal. As we will prove later
finding an optimal solution is NP-hard, but even in the setting of polyno-
mial algorithms several changes can be made to decrease the number of basic
moves that get made. One example would be to constantly check for every
clear block if it can be moved constructively (meaning it can be moved to
its goal position, and every block below that goal position is also in its goal
position) in a single move. If so, make the constructive move and then im-
plement a way to ensure that block doesn’t gets moved again.
However, implementing additions like this would clutter up both the algo-
rithm and its respective proofs. Since one of the main aims of our algorithm
is to be clear, we chose not to include these changes.

CBW problems with 1 or 2 columns

As stated before, we only considered CBW problems for which m > 2 holds.
This is because CBW problems with only 1 or 2 columns are either trivial
or impossible to solve. For m = 1 this is easy to see: since there is only one
column, blocks simply cannot get moved. Therefore a problem (I,G) is only
solvable if I = G.
Ifm = 2, blocks can only get moved back and forth between the two columns.
Without a third column is it impossible to swap the positions of two blocks.
This means the order of blocks in which they appear in the two columns
can never be changed. Consider the example in figure 3.7. Block [A] will
always be below block [C] in the left column, and always be above [C] in the
right column. Without a third column, it is not possible to change this. As

17

a result, a problem (I,G) can only be solved if the order of the blocks in
which they appear in I is the same as in G.

Figure 3.7: A CBW configuration where m = 2

Block Uniqueness

Since EBW was the original inspiration for this problem, we defined a CBW
configuration to be one where no block can appear twice in a single configura-
tion. The algorithm above assumes this and wouldn’t work if a configuration
had duplicate blocks.
However, we can still very easily transform a CBW problem where blocks
appear multiple times into a problem that can be solved by the algorithm.
We can do this by changing both the initial and goal configuration such that
every block appears to be unique: For every block that appears multiple
times in the configurations, add a different identifier to each of those blocks
(for example an integer). Say we have 6 yellow blocks, we now identify these
blocks by yellow-1,...,yellow-6. After this is done every block is unique again,
and the algorithm can solve the problem (although some very suboptimal
moves might get made).

18

3.3 Finding an optimal solution

As stated in chapter 2, an optimal solution for Blocks World is a solution
that makes the lowest number of basic moves possible. Finding an optimal
solution for EBW problems (as well as most other versions of Blocks World)
is known to be NP-hard. In this section we will show that this is also the
case for CBW. To prove this, we follow the standard procedure of converting
the optimization problem into a yes/no decision problem. We then prove
NP-completeness for this decision problem.

3.3.1 NP-completeness of CBW

To prove NP-completeness, we need to convert the problem of finding an
optimal solution for CBW into a yes/no decision problem. We then reduce
a known NP-complete problem to an instance of a CBW problem. For this
purpose we will use the FEEDBACK ARC SET problem. This problem is
defined as follows:

Given a directed graph (V,E) and an integer k, is there a set of
edges F such that |F | ≤ k and the graph (V,E − F) is acyclic?

This problem is known to be NP-complete [9].
We define CBW SOLUTION to be the following decision problem:

Given a CBW problem (I,G) and an integer L > 0, can (I,G)
be solved in L basic moves or less?

Our proof is based on the initial NP-completeness proof for EBW by Gupta
and Nau [11], and as a result shares a lot of similarities.

Lemma 6: CBW SOLUTION is in NP.

Proof : Suppose S is a certificate for the problem, so S is a sequence of
L or less basic moves. We can then simply perform every basic move in S,
starting with configuration I. If the resulting configuration is equal to G, S
is a correct solution. This can clearly be decided in polynomial time, so the
problem is in NP.

Definition 3.3 (reduction)

We show that an arbitrary instance of FEEDBACK ARC SET can be trans-
formed into an instance of a CBW problem in a polynomial number of steps.
Let (V,E, k) be an instance of FEEDBACK ARC SET, where (V,E) is
a directed graph, and k is the maximum number of edges that can be
removed. We may assume without loss of generality that V is the set

19

of integers {1, 2, .., p} for p = |V |. E can be seen as the set of edges
{(v1, w1), (v2, w2), ..., (vq, wq)} for q = |E|.
We then define the following instance (I,G, L) of CBW SOLUTION :

1. L = 2q + k

2. For both I and G:
m = p+ 2q
h = 2p

3. I is defined as follows:

• For the leftmost p columns
For every vertex v ∈ V , Let Iv ⊆ E be the set of incoming edges
to v, and Ov ⊆ E be the set of outgoing edges from v. We can
then say that Iv = {(i1, v), (i2, v), ..., (i|Iv |, v)}, and
Ov = {(v, o1), (v, o2), ..., (v, o|Ov |)}.

We then have for every v ∈ V :
∀j ∈ {1, ..., |Iv|} : I(v, j) = [v, In, ij]
∀j ∈ {1, ..., |Ov|} : I(v, |Iv|+ j) = [v,Out, oj]
∀j ∈ {|Iv|+ |Ov|+ 1, ..., 2p} : I(v, j) = 0

An example can be seen in figure 3.8. Note that the order of
the edges in Iv and Ov is irrelevant. The important thing is that
all ’In’ blocks are below all ’Out’ blocks in I.

Figure 3.8: A vertex and its corresponding column in I

• For the rightmost 2q columns
∀(i, j) ∈ {p+ 1, ..., p+ 2q} × {1, ..., 2p} : I(i, j) = 0.
In other words, the rightmost 2q columns in I are empty.

20

4. G is defined as follows:

• For the leftmost p columns:
∀(i, j) ∈ {1, ..., p} × {1, ..., 2p} : G(i, j) = 0.
So the leftmost p columns in G are empty.

• For the middle q columns:
As stated before, E is the set of edges {(v1, w1), (v2, w2), ..., (vq, wq)}.
Then for all r ∈ {1, ..., q} we know (vr, wr) ∈ E, and we have the
following:
G(p+ r, 1) = [wr, In, vr]
G(p+ r, 2) = [vr,Out, wr]
∀j ∈ {3, ..., 2p} : G(p+ r, j) = 0.

An example can be seen in figure 3.9.

Figure 3.9: An edge and its corresponding column in G

• For the rightmost q columns:
∀(i, j) ∈ {p+ q + 1, ..., p+ 2q} × {1, ..., 2p} : G(i, j) = 0.
So the rightmost q columns in G are empty.

An example of a reduction can be seen in figure 3.10. As we can see there
are 2 blocks for every edge in E: One for the incoming part of the edge, and
one for the outgoing part. This means the total number of blocks (n) for
problem (I,G) is exactly 2q.

21

Figure 3.10: A graph (V,E) and the derived CBW problem (I,G)

Lemma 6: If (V,E) has no cycles, the optimal solution for (I,G) contains
exactly 2q basic moves.

Proof : Assume (V,E) is an acyclic graph, and (I,G) is the correspond-
ing CBW problem.
Since (V,E) is acyclic, we know it has a topological ordering v1, v2, ..., vp such
that there can be no edge (vi, vj) ∈ E for i ≥ j. This means vertex vp only
has possible incoming edges, and no outgoing edges. From this it follows
that column vp in I only has blocks of the format [vp, In, w] for some w ∈ V ,
and no blocks of the format [vp,Out, w]. This means the ’In’ blocks in this
column aren’t blocked by the ’Out’ blocks from moving, and can simply all

22

be moved to their goal position. For example, let the top block of column vp
be [vp, In, w] for some w ∈ V . Let (w, vp) be the rth edge in E. We can then
perform move(vp, p + r, I) to move the block to its goal position in a single
basic move. We can then repeat this for every ’In’ block under this. Once
this is done, every block in column vp has been moved to its goal position in
a single basic move.
We can then continue with vertex vp−1. From the topological ordering we
know that the only possible outgoing edge for this vertex is edge (vp−1, vp),
and hence the only possible ’Out’ block in column vp−1 is [vp−1,Out, vp].
But if this block exists then from the previous part we know that block
[vp, In, vp−1] has already been moved to its goal position. The goal position
of [vp−1,Out, vp] is on top of this block, so we can simply move it there in a
single basic move. This unblocks the ’In’ blocks of column vp−1, which can
again also be moved to their goal position in a single basic move. Once this
is done, the blocks in the important section of column vp−1 have all been
moved to their goal position in a single basic move.
We can repeat this process for vertices vp−2, vp−3, ..., v1. Eventually every
block has been moved to its goal position in a single basic move. Configura-
tion I contains 2 blocks for every edge in E (one for the incoming part and
one for the outgoing part). Since these 2q blocks all get moved to their goal
position in a single basic move, it takes 2q basic moves to solve this problem
optimally. The optimal solution also can’t be less than 2q basic moves, since
none of the 2q blocks can be in their goal position in I.

Lemma 7: For every cycle in (V,E), one of the ’Out’ blocks corresponding
to the edges in this cycle has to be moved twice to solve (I,G).

Proof : Assume (V,E) contains a cycle (v1, v2, ..., vp, v1).
This means (v1, v2), (v2, v3), ..., (vp, v1) ∈ E.
In the goal configuration G we then get [v1,Out, v2] on top of [v2, In, v1],
[v2,Out, v3] on top of [v3, In, v2], ..., and [vp,Out, v1] on top of [v1, In, vp].
But in configuration I we have [v1,Out, v2] above [v1, In, vp], [v2,Out, v3]
above [v2, In, v1], ..., and [vp,Out, v1] above [vp, In, vp−1].
This means every ’In’ block that corresponds to an edge in the cycle is locked
from getting moved to its final location in a single basic move. We can only
resolve this by moving a single ’Out’ block to a temporary location, which is
what the right-most q columns are for. We can for example do this with block
[v2,Out, v3]. Say (v2, v3) is the rth edge in E. We can move [v2,Out, v3] to
its temporary location in column p+ q + r with C = move(v2, p+ q + r, C).
This unlocks block [v2, In, v1]. Once [v2, In, v1] is clear and can be moved
to its final location, we can move block [v1,Out, v2] on top of it, which in
turn unlocks [v1, In, vp], etc. Eventually block [v3, In, v2] will be able to get
moved to its final location with C = move(v3, p + r, C), at which point we

23

can finally move [v2,Out, v3] on top of it with C = move(p+ q+ r, p+ r, C).
As we can see, moving a single ’Out’ block to its temporary location resolves
the lock created by the cycle that its corresponding edge is part of.

Lemma 8: (I,G) has a solution of L basic moves or less iff (V,E) has
a feedback arc set of size k or less.

Proof : (→): Suppose (I,G) has a solution of L basic moves or less. Let P
be the length of an optimal solution for (I,G), so P ≤ L. We know from
lemma 6 and 7 that the optimal solution moves all 2q blocks either once or
twice. Hence, P ≥ 2q. Let T be the set of blocks that are moved twice in the
optimal solution of (I,G) (once to their temporary spot and once to their
final location). Since 2q blocks need to be moved to their final position, we
get that:

|T | = P − 2q ≤ L− 2q = k

From the proof of lemma 7 we know that every block in T is associated
with an edge that is part of a cycle, and is of the format [x,Out, y] for
some edge (x, y) ∈ E that is in a cycle. Furthermore, from lemma 7 it
follows that for every cycle at least one of the ’Out’ blocks associated with
the edges in the cycle needs to be moved twice. Thus, T contains blocks
[x1,Out, y1],...,[xr,Out, yr] such that every cycle in (V,E) contains one of
the edges (x1, y1), ..., (xr, yr).
So (V,E) has a feedback arc set of size r = |T | ≤ k.

(←): Suppose (V,E) has a feedback arc set F = (x1, y1), ..., (xr, yr) such
that r ≤ k. From the proof of lemma 6 we know that (I,G) has 2q blocks
that are not in their final position, and if (V,E) has no cycles all of these 2q
blocks only need to get moved once. From the proof of lemma 7 we know
that a cycle in (V,E) produces a lock in (I,G), and this lock can only be
resolved by moving block [v,Out, w] to a temporary position for any edge
(v, w) which is in the cycle. If F is a feedback arc set of (V,E), it means
that every cycle in (V,E) has an edge that is in F . This means that to solve
(I,G) we can move all blocks [x1,Out, y1],...,[xr,Out, yr] to their temporary
position whenever they become clear. Since the associated edges are part of
all the cycles in (V,E), all the locks in (I,G) will get resolved by moving
these blocks to their temporary positions. This means all other blocks in
(I,G) can get moved to their final position in a single basic move. The re-
sult is a solution for (I,G) of (2q−r)+2r = 2q+r ≤ 2q+k = L basic moves.

Theorem: CBW SOLUTION is NP-complete.

Proof : Lemma 8 shows that an arbitrary instance of FEEDBACK ARC

24

SET can be reduced to an instance of a CBW problem. This reduction runs
in polynomial time, so this means CBW SOLUTION is NP-hard. Lemma
5 shows CBW SOLUTION is in NP. Thus we can conclude that CBW SO-
LUTION is NP-complete.

Corollary: Finding an optimal solution for CBW problems is NP-hard,
but no worse.

Proof : If an optimal solution for CBW can be found, then for any L one
can immediately tell whether a solution of L basic moves or less exists. So
from the theorem, finding an optimal solution is NP-hard.

To prove finding an optimal solution is no worse than NP-hard, suppose
we have an oracle which tells whether the answer is yes or no for an instance
(I,G, L) of CBW SOLUTION. Then given any CBW problem (I,G), we can
find the length L of the optimal solution for (I,G) by repeatedly guessing
a value for L and asking the oracle for (I,G, L). Once we know L, we can
figure out the first basic move of the optimal solution by repeatedly guess-
ing a first move move(gS , gD, I) and asking the oracle to solve (I ′, G, L− 1),
where I ′ = move(gS , gD, I). Once we know the first basic move, we can fig-
ure out the rest of solution in the same way. This process makes at most
polynomially many calls to the oracle.

3.3.2 CBW with pre-established restrictions

In the previous section we reduced a FEEDBACK ARC SET instance to a
CBW problem. For this problem m = p+ 2q, and h = 2p, and n = 2q.

But if we had specific pre-established restrictions on the CBW prob-
lem, this reduction would likely not work. Say we wanted to prove NP-
completeness for all CBW problems where n = h(m− 1). In section 3.2 we
showed that these problems are always solvable. However, since this equa-
tion does not hold for the CBW problem resulting from the reduction, our
current NP-completeness proof does not work. To solve this, we can adapt
the current reduction as follows:

Below the current configurations of both I and G, we add a bunch of ’dummy
rows’. These are rows that are completely filled with blocks, and are entirely
equal in I and G. More formally, if row y is a dummy row, then:
∀i ∈ {1, ...,m} : I(i, y) ∈ B ∧ I(i, y) = G(i, y).
The names of the blocks in these rows are irrelevant, as long as they are
equal in I and G.

In the case of n = h(m − 1), we can achieve this property by adding
2p2 + 4pq− 2q− 2p dummy rows below the original configurations. This re-
sults inm staying the same (p+2q), but h increasing from 2p to 2p2+4pq−2q.
Furthermore, the bottom 2p2 +4pq− 2q− 2p rows are now completely filled

25

with blocks. If we add the original 2q blocks to this, the new total number
of blocks is:

n =

(2p2 + 4pq − 2p− 2q)(p+ 2q) + 2q =

(2p2 + 4pq − 2q)(p+ 2q)− (2p2 + 4pq) + 2q =

(2p2 + 4pq − 2q)(p+ 2q)− (2p2 + 4pq − 2q) =

(2p2 + 4pq − 2q)(p+ 2q − 1) =

h(m− 1)

So indeed, the property n = h(m − 1) holds. An example of this can be
seen in figure 3.11. Here the names of the dummy blocks are simply their
coordinates.

This technique works because none of the blocks in the dummy rows have to
be moved, since they are all already in their goal position. Since the original
problem can be solved by moving every block either once or twice, the only
reason to move a block from its goal position would be if moving that block
is necessary to solve the problem (figure 3.3 depicts a situation like this).
But in this case we know the original problem was solvable, which means
the new problem is also solvable without moving any of the dummy blocks,
so moving any dummy block would be suboptimal. This means the new
CBW problem we just produced is essentially the same one as the original
problem, but with the additional property that n = h(m− 1).

Now let’s say we not only have the requirement n = h(m − 1), but also
m = h. We can again achieve with a similar concept: on top of the previous
adaptation, we now also add dummy columns. Since h = 2p2+4pq− 2q and
m = p+ 2q, the number of dummy columns we need to add is:
(2p2 + 4pq − 2q)− (p+ 2q) = 2p2 + 4pq − 4q − p.
Since neither h nor the number of empty slots change, the property n =
h(m− 1) also still holds after adding these columns. An example of this can
also be seen in figure 3.11.

As we can see NP-completeness can also be proven for CBW problems with
pre-established restrictions, by adding an number of dummy rows and/or
columns appropriate to the restriction.

Do keep in mind that this technique only works for restrictions where
n,m and h are written in terms of each other, so e.g. a restriction of the
form m = C where C is a constant cannot be satisfied.

26

Figure 3.11: A simple reduction and two adaptations

27

Chapter 4

Related Work

Over the last few decades, Blocks World has been one of the most popular
planning domains in artificial intelligence. Consequently, it has been re-
searched several times before. Finding an optimal solution was first proven
tp be NP-hard by S. V. Chenoweth [6]. However, in his version of Blocks
World, blocks could appear multiple times in a given problem. The version
of Blocks World with unique blocks, EBW, went on to become more popular,
and was proven to be NP-hard in [10] and [11]. One of the authors of [11],
J. Slaney, later revisits this paper with S. Thiébaux in [16], providing mul-
tiple improved algorithms to solve EBW problems. It also presents several
other results about EBW, such as a method to generate random problem
instances. Before this, Slaney and Thiébaux published several other papers
on EBW, such as [14] and [15].

Multiple other planning systems for solving Blocks World have been de-
scribed since, such as in [4], [12], [17] and [2]. Later, a deep learning-approach
for solving Blocks World problems was presented in [1]. The results of this
approach among others were then used in [5], which contains an analysis of
Blocks World state space by evaluating the size of the search graph associ-
ated with Blocks World problems. [7] includes a very mathematical approach
to Blocks World, as this paper formalizes Blocks World by giving a complete
axiomatization of the domain.

Our research analyses a specific variation of Blocks World, where both the
number of towers and height of the towers are limited. To the best of our
knowledge, there is no public literature about this exact version of Blocks
World. Nevertheless, general planning methods such as the ones the de-
scribed in [3] and [8] can still provide to be useful in planning for this varia-
tion of Blocks World.

28

Chapter 5

Conclusions

In this thesis we have analysed Confined Blocks World, which is a slightly
more realistic approach of Blocks World. We have found that solving a CBW
problem is a lot more difficult than most other variations of Blocks World.
While finding a solution for e.g. an EBW problem is always possible (as-
suming the blocks in the initial state and the goal state are the same) and
trivial, this is not the case for CBW. Instead, there is only guaranteed to
be a solution for CBW problems for which n ≤ h(m − 1) holds. In other
words, the number of empty slots in a CBW problem needs to be at least as
high as the limit on the height of the towers in that problem. We provided
an algorithm that will solve any CBW problem for which this is indeed the
case. It does this in O(hn) basic moves.

We have also found that finding an optimal solution for a CBW problem
is NP-hard, and the related decision problem is NP-complete. The proof for
this can be adapted to fit CBW problems with pre-established restrictions
on the dimensions and/or the amount of blocks. This puts CBW in the same
complexity class as EBW, and most other variations of Blocks World.

Future research could focus on algorithms that can solve CBW problems
more efficiently. As stated in section 3.2.5, the number of basic moves made
in our algorithm can still be improved, as this was not one of our major goals.
A more efficient algorithm can be made by implementing more heuristics, as
well as improving the implementations of CMove and HMove.

29

Bibliography

[1] Edward Ayunts and Aleksandr Panov. Task Planning in “Block World”
with Deep Reinforcement Learning. pages 3–9, 01 2018.

[2] A. Babiarz, T. Grzejszczak, A. Łęgowski, M. Niezabitowski, and J. Or-
wat. Planning and heuristics of assistant manipulator. In 2016 12th
World Congress on Intelligent Control and Automation (WCICA), pages
2824–2828, 2016.

[3] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to control
search in a forward chaining planner. In Proceedings of the 3rd European
Workshop on Planning, pages 141–153, 1995.

[4] A. Bieszczad and B. Pagurek. Neurosolver solves blocks world prob-
lems. In Proceedings of International Conference on Neural Networks
(ICNN’96), volume 2, pages 1215–1220 vol.2, 1996.

[5] A. Bădică, C. Bădică, I. Buligiu, L. I. Ciora, and F. Petcuşin. Quanti-
fying Blocks World State Space. In 2020 International Conference on
INnovations in Intelligent SysTems and Applications (INISTA), pages
1–7, 2020.

[6] Stephen V. Chenoweth. On the NP-Hardness of Blocks World. In AAAI,
1991.

[7] Stephen Cook and Yongmei Liu. A Complete Axiomatization for Blocks
World. Journal of Logic and Computation, 13, 12 2001.

[8] Michael D Ernst, Todd D Millstein, and Daniel S Weld. Automatic
SAT-compilation of planning problems. In IJCAI, volume 97, pages
1169–1176, 1997.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. USA, 1990.

[10] N. Gupta and D. Nau. Complexity Results for Blocks-World Planning.
In AAAI, 1991.

30

[11] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world
planning. Artificial Intelligence, 56(2):223 – 254, 1992.

[12] B. Prasad. A Planning System for Blocks-World Domain. In Proceedings
ACS/IEEE International Conference on Computer Systems and Appli-
cations, page 0059, Los Alamitos, CA, USA, jun 2001. IEEE Computer
Society.

[13] S.J. Russell, S.J. Russell, P. Norvig, and E. Davis. Artificial Intelligence:
A Modern Approach. Prentice Hall series in artificial intelligence. Pren-
tice Hall, 2010.

[14] John Slaney and Sylvie Thiébaux. Blocks World Tamed–Ten thousand
blocks in under a second. 1995.

[15] John Slaney and Sylvie Thiébaux. Linear time near-optimal planning in
the blocks world. In Proceedings of the National Conference on Artificial
Intelligence, pages 1208–1214, 1996.

[16] John Slaney and Sylvie Thiébaux. Blocks World revisited. Artificial
Intelligence, 125(1):119 – 153, 2001.

[17] M. Toussaint, N. Plath, T. Lang, and N. Jetchev. Integrated motor
control, planning, grasping and high-level reasoning in a blocks world
using probabilistic inference. In 2010 IEEE International Conference
on Robotics and Automation, pages 385–391, 2010.

[18] Terry Winograd. Understanding natural language. Cognitive Psychol-
ogy, 3(1):1 – 191, 1972.

31

Appendix A

HMove

A.1 Algorithm

In this section we will show our implementation of HMove. For clarity we di-
vide our algorithm in 5 steps. To help visualise this process, we will show the
result after every step for the HMove of figure 3.4 (C ′ = Hmove(2, 2, 4, 1, C)),
which can be seen in figure A.1. The values of the variables that are known
after every step can also be seen.
Note that we assume n ≤ h(m− 1) ∧m > 2 holds, since this is required for
HMove to work.

Definition: Say block C(xS , yS) ∈ B needs to be moved to position (xD, yD),
where xS 6= xD. We define HMove(xS , yS , xD, yD, C) in 5 steps:

Step 1
1 List L1 = []
2 T1 = C
3 while (top(xS , T1) > yS):
4 p = any column for which p 6= xS ∧ top(p, T1) < h
5 L1.append(p)
6 T1 = move(xS , p, T1)
7 T2 = T1

The purpose of this step is to make block C(xS , yS) clear. It does so by
moving every block above it to a different column, so every block above po-
sition (xS , yS) gets moved away. This results in a temporary configuration
T2, for which clear(C(xS , yS), T2) = True.
From the proof of lemma 1 we know every block in a column can get moved
out of that column if n ≤ h(m− 1). Thus, we know every block above posi-
tion (xS , yS) can get moved away, so executing these lines is always possible.
List L1 keeps track of the order of the columns to which the blocks of column
xS were moved. This will be used later.

32

Step 2
8 List L2 = []
9 PosChange = False
10 while (top(xD, T2) ≥ yD):
11 if (∃q ∈ {1, ..,m} : i 6= xS ∧ i 6= xD ∧ top(i, T2) < h):
12 L2.append(q)
13 T2 = move(xD, q, T2) < h
14 else:
15 r = any column for which r 6= xS ∧ r 6= xD
16 PosChange = True
17 L2.append(−1)
18 T2 = move(r, xD, T2)
19 T2 = move(xS , r, T2)
20 T2 = move(xD, xS , T2)
21 while (top(xD, T2) ≥ yD):
22 L2.append(xS)
23 T2 = move(xD, xS , T2)
24 T3 = T2

The purpose of step 2 is to free up column xD so that block C(xS , yS)
can get moved to its goal position there. To do so it moves every block that
is at position (xD, yD) or above to a different column.
We move these blocks to any column q for which q 6= xS ∧ q 6= xD ∧
top(q, T2) < h, so any column with empty space that isn’t xS or xD. How-
ever, since we now need to keep 2 columns open, we cannot ensure that such
a column q always exists.
If we get the situation that such a column does not exist, the h or more
empty slots of the configuration are all in columns xS and xD. In this case
we enter the ’else’ clause in line 14, and we need to use column xS to move
out the remaining blocks of column xD. However, we also need to make sure
that block C(xS , yS) stays clear.
To accomplish this we use any column r for which r 6= xS∧r 6= xD. Since we
know all the empty slots are in column xS or xD, currently top(r, T2) = h.
We then perform the three basic moves in lines 18-20. This swaps block
C(xS , yS) and the highest block of column r. Since block C(xS , yS) is now
at height h, it is clear, and can thus be moved later.
Finally, we can perform T2 = move(xD, xS , T2) until top(xD, T2) = yD − 1.
Since every other column is full and there are at least h empty slots, this is
always possible. Again, list L2 keeps track of the order of the columns to
which the blocks of column xD were moved. The boolean variable PosChange
keeps track of whether block C(xS , yS) got moved to column r or stayed in
column xS . Line 17 enables us to know later when exactly the else clause

33

of line 14 got entered, which enables us to move the blocks back later in the
right way.
We end up in a configuration T3 for which:
clear(C(xS , yS), T3) = True∧ T3(xD, yD) = 0∧ (yD = 1∨ T3(xD, yD − 1) ∈
B).

Step 3:
25 if (PosChange):
26 T4 = move(r, xD, T3)
27 else:
28 T4 = move(xS , xD, T3)

This step moves block C(xS , yS) to the destination position (xD, yD).
If the else clause in line 14 got entered, block C(xS , yS) is the highest block
in column r in T3, and if not it is still the highest block in column xS . As
a result, we move block C(xS , yS) from one of those columns to column xD,
depending on the value of PosChange. Because of the properties of T3, the
result is a configuration T4 for which T4(xD, yD) = C(xS , yS).

Step 4:
29 for (a = size(L2)− 1; a > 0; a−−):
30 if (L2[a] = −1):
31 T4 = move(xS , r, T4)
32 else:
33 T4 = move(L2[a], xD, T4)
34 if (yD ≤ top(xD, C)):
35 if (L2[0] = −1):
36 T4 = move(xS , r, T4)
37 T5 = move(xD, xS , T4)
38 else:
39 T5 = move(L2[0], xS , T4)
40 else:
41 if (L2[0] = −1):
42 T5 = move(xS , r, T4)
43 else:
44 T5 = move(L2[0], xD, T4)

This step moves the original blocks of column xD in C back to column
xD.
These are the blocks that got moved during step 2. Since list L2 kept track
of the order of the columns to which these blocks were moved, we can move
these blocks back in the reverse of this order. This means the blocks in col-
umn xD in the resulting configuration T5 are in the same order as they are
in C.

34

If we come across the value ’−1’ in L2, we know this is the point at which
block C(xS , yS) and the original top block of column r were swapped. The
block that was at position (r, h) before line 18 (let’s call this block b) is
currently at the top of column xS . We know this because block b got moved
to column xS in line 20, and because of list L2 every block that got moved
to column xS since has been moved back to column xD at this point. This
means block b is currently clear in column xS , and it can be moved back to
column r (of which we know that the top block is at height h − 1 at this
point), where it originally came from.
Since an extra block has been moved to column xD (this block of course
being C(xS , yS)), the number of blocks of column xD would increase by 1
in the final configuration. However, if top(xD, C) = h the new number of
blocks in column xD would be h+1, which is impossible. Because of this we
move the last block, that is block C(xD, top(xD, C)), to column xS instead
of xD. This way top(xS , C) = top(xS , C ′) and top(xD, C) = top(xD, C ′).
This is done in line 37 or 39, depending on whether -1 was the last item in
L2. This move is always possible since block C(xS , yS) has been moved away
from column i permanently, which means top(xS , T4) < top(xS , C) ≤ h.
If yD = top(xD, C) + 1 however, we need every block in column xD. In
this case we can’t move block C(xD, top(xD, C)) to column xS , so line 34
ensures the move doesn’t happen (which is fine since in this case we know
top(xD, C) + 1 = yD ≤ h).

Step 5:
45 for (a = size(L1)− 1; a ≥ 0; a−−):
46 T5 = move(L1[a], xS , T5)
47 C ′ = T5

48 return C ′

This step moves all original blocks of column xS in C back to column xS in
the current configuration. We do this the same way as in step 4. Since col-
umn xS lost 1 block C(xS , yS) and gained at most 1 block (xD, top(xD, C)),
moving these blocks back is always possible. After this step we result in the
final configuration C ′, with the properties outlined in section 3.3.2.

35

Figure A.1: C ′ = HMove(2, 2, 4, 1, C) in 5 steps

36

A.2 Proofs

Lemma 1: Executing HMove(xS , yS , xD, yD, C) takes at most 2∗(top(xS , C)−
yS) + 2 ∗ (top(xD, C)− yD) + 8 basic moves.

Proof :
Step 1 only executes move in line 6. Line 6 is executed top(xS , C)−yS times,
so step 1 makes top(xS , C)− yS basic moves.
For step 2 there are 2 cases. If the else-clause in line 14 never got entered, only
the move in line 13 gets executed. This line gets executed top(xD, C)−yD+1
times (+1 because position (xD, yD) itself needs to be empty).
In case the else-clause in line 14 does get entered, the move in lines 13, 18,
19, 20 and 23 gets executed. Lines 18, 19 and 20 all get executed once. Lines
13 and 23 combined get executed the same number of times as line 14 in the
first case, so top(xD, C) − yD + 1 times. So in total top(xD, C) − yD + 4
basic moves are made during step 2 in the second case.
Step 3 executes move once.
Step 4 executes one move for every item in L2. size(L2) got increased by 1
every time line 12 or 22 got executed, plus possibly one time in line 17. So
size(L2) = top(xD, C)− yD +1 or size(L2) = top(xD, C)− yD +2. If the
if-clause in line 35 gets entered, move gets executed twice for a single item in
L2 one time. This means step 4 executes move at most top(xD, C)− yD +3
times.
Similarly, step 5 executes move size(L1) times. The size of L1 increases by 1
every time line 5 gets called. So in total step 5 executes move top(xS , C)−yS
times.

Overall, the move command gets executed at most top(xS , C)−yS+top(xD, C)−
yD + 4 + 1 + top(xD, C)− yD + 3 + top(xS , C)− yS =
2 ∗ (top(xS , C)− yS) + 2 ∗ (top(xD, C)− yD) + 8 times.

Lemma 2: When executing C ′ = HMove(xS , yS , xD, yD, C), the following
properties hold for configuration C ′:
- C ′(xD, yD) = C(xS , yS)
- ∀j ∈ {1, .., yD − 1} : C ′(xD, j) = C(xD, j)
- ∀j ∈ {1, .., yS − 1} : C ′(xS , j) = C(xS , j)
- ∀i ∈ {1, ..,m} : (i 6= xS ∧ i 6= xD)→ (∀j ∈ {1, .., h} : C ′(i, j) = C(i, j))

Proof :
C ′(xD, yD) = C(xS , yS)
The property T4(xD, yD) = C(xS , yS) gets achieved in line 26 or 28. After
this, there are 2 possible lines where blocks get moved away from column
xD. The first one is in line 37. However, since -1 cannot be the only element
of L2, we know at least one other block got moved to column xD (in line

37

33) before this line gets executed. This means block C(xS , yS) is never the
block that gets moved away during line 37.
The second possibility is during line 46, if L1[a] = xD. But this line only
moves blocks back that initially got moved away during line 6. We know
block C(xS , yS) never gets moved in line 6, which means it doesn’t get moved
in line 46 either.
It follows that after the property gets achieved in line 26 or 28, block
C(xS , yS) never gets moved again. This means the property C ′(xD, yD) =
C(xS , yS) holds for the final configuration C ′.

∀j ∈ {1, .., yD − 1} : C ′(xD, j) = C(xD, j)
Blocks get moved out of column xD during step 2 of the process. However,
this only happens as long as top(xD, T2) ≥ yD. This means that no blocks
at row yS − 1 or below get moved out of the column, so their positions do
not change.
We showed above that block C(xS , yS) does not get moved again after step
3, at which point it is in (xD, yD). This means the blocks below it do not get
moved either, and thus the blocks below yD in column xD never get moved
during the algorithm. This means the property holds for C ′.

∀j ∈ {1, .., yS − 1} : C ′(xS , j) = C(xS , j)
Blocks get moved out of column xS during step 1 of the process. This hap-
pens as long as top(xS , T1) > yS , so no blocks at row yS or below get moved
out of the column during this step. The block at position (xS , yS) might
get moved out in line 19, but no blocks get moved out of column xS after
this. This means the blocks in column xS at row yS − 1 or below don’t get
moved at all, so their positions never change. Blocks can also get moved out
of column xS during step 4, but these are only the blocks that got moved to
the column first in line 20 or 23. This means the property holds for the final
configuration C ′.

∀i ∈ {1, ..,m} : (i 6= xS ∧ i 6= xD)→ (∀j ∈ {1, .., h} : C ′(i, j) = C(i, j))
For this property we need to show that no columns besides xS and xD have
changed. Lists L1 and L2 ensure that every block that gets moved to one of
such columns during step 1 or 2, gets moved back from that column during
step 5 or 4 respectively. The only other time in the algorithm that a differ-
ent column gets changed is in lines 18-20. The top block of column r gets
swapped with block C(xS , yS). However, the initial top block of column r
gets moved back to column r in line 31, 36 or 42. If it got there initially
during step 1 or 2, it will still get moved back to its original column in step
4 or 5, because list L2 keeps track of when exactly the block got swapped.
This means in the final configuration C ′ no columns besides column xS and
xD have changed, so the property holds.

38

Appendix B

VMove

B.1 Algorithm

In this section we will show our implementation of VMove. Since this process
is similar to HMove, our explanation of the algorithm will be shorter. Note
that again we assume n ≤ h(m− 1)∧m > 2 holds, since this is required for
VMove to work. We define VMove as follows:

Definition: Say block C(x, yS) ∈ B needs to be moved to position (x, yD).
There are 3 cases for VMove(x, yS , yD, C) (for one of which we will omit the
algorithm):

case 1
1 if (yS = yD):
2 return C

This case is very straightforward. If (x, yS) = (x, yD), we don’t need to
move any blocks.

case 2
3 if (yS > yD):
4 T = C
5 List L = []
6 while (top(x, T) ≥ yS):
7 p = any column for which p 6= x ∧ top(p, C) < h
8 if (top(x, T) 6= yS):
9 L.append(p)
10 T = move(x, p, T)
11 cb = pos(C(x, yS), T)[0]

39

12 while (top(x, T) ≥ yD):
13 if (∃i ∈ {1, ..,m} : i 6= x ∧ i 6= cb ∧ top(i, T) < h):
14 q = any column for which q 6= x∧ q 6= cb∧ top(x, T) < h
15 L.append(q)
16 T = move(x, q, T)
17 else:
18 r = any column for which r 6= x ∧ r 6= cb
19 PosChange = True
20 L.append(-1)
21 T = move(r, x, T)
22 T = move(cb, r, T)
23 T = move(x, cb, T)
24 while (top(x, T) ≥ yD):
25 L.append(cb)
26 T = move(x, cb, T)
27 if (PosChange):
28 T = move(r, x, T)
29 else:
30 T = move(cb, x, T)
31 for (a = size(L)− 1; a ≤ 0; a−−):
32 if (L2[a] = −1):
33 T = move(cb, r, T)
34 else:
35 T = move(L[a], x, T)
36 return T

The algorithm for this case is very similar to the algorithm of HMove. We
first move out every block that is at position (x, yS) or higher (lines 6-10),
which is possible because there are at least h free spots in the configura-
tion. The result is that block C(x, yS) is currently the highest block in a
column cb where cb 6= x. We then move out every block that is at position
(x, yD) or higher to columns that aren’t x or cb. Once that isn’t possible
anymore, we swap block C(x, yS) with the top block of column r, similar to
step 2 of HMove. We then move the rest of the blocks to column cb (lines
12-26). This is again possible because there are h free spots in the con-
figuration, and every column besides x and cb has no empty slots at this
point. Now clear(C(x, yS), T) = True, and T (x, yD) = 0. This means we
can move block C(x, yS) to position (x, yD) (lines 27-30). Finally, we move
every block back into column i, similar to step 4 of HMove. We know that
top(x,C) = top(x,C ′) (since no extra blocks get moved to any column), so
we don’t have to worry about moving the last block to another column.
The final result is a configuration C ′ where C ′(x, yD) = C(x, yS), and
∀j ∈ {yD + 1, ..., yS} : C ′(x, j) = C(x, yS − 1).

40

case 3: yD > yS
This case is also possible, but the algorithm to do this is more complex than
the previous one. Moreover, this case will never be called in our final algo-
rithm for Solve(I,G). As a result we choose not to further elaborate upon
this case.

B.2 Proofs

Lemma 3: Executing VMove(x, yS , yD, C) where yS ≥ yD takes at most
2 ∗ (top(x,C)− yD) + 6 basic moves.

Proof :
If yS = yD, then no basic moves are made and C gets returned. In this case
VMove takes 0 basic moves.
If yS > yD, move gets executed multiple times. The first time is in line 9.
This line gets called top(x,C)− yS + 1 times. We then have 2 cases again,
similar to HMove. In the first case (where the else-clause in line 17 does not
get called), the move in line 16 gets called yS − yD times. Then either the
move in line 28 or in line 30 gets called once. Line 33 doesn’t get called, and
line 35 gets called size(L) = top(x,C)− yD times.
In the second case, a few moves get added: The moves in lines 20, 21, 22 and
33 all get called once. So in total, the second case adds 4 more basic moves.

Overall, if yS < yD the move command gets executed (top(x,C) − yS +
1) + (yS − yD) + 1 + (top(x,C)− yD)[+4] =
2 ∗ (top(x,C)− yD) + 2 times, or
2 ∗ (top(x,C)− yD) + 6 times.

Lemma 4: When executing C ′ = VMove(x, yS , yD, C) where yS ≥ yD, the
following properties hold for configuration C ′:
- C ′(x, yD) = C(x, yS)
- ∀j ∈ {1, ..., yD − 1} : C ′(x, j) = C(x, j)
- ∀i ∈ {1, ...,m} : i 6= x→ (∀j ∈ {1, ..., h} : C ′(i, j) = C(i, j))

Proof :
C ′(x, yD) = C(x, yS)
The property T (x, yD) = C(x, yS) gets achieved in line 28 or line 30. After
this, no blocks get moved away from column x in the algorithm, which means
block C(x, yS) will not get moved again after line 30. Thus, the property
C ′(x, yD) = C(x, yS) holds for the final configuration C ′.

41

∀j ∈ {1, ..., yD − 1} : C ′(x, j) = C(x, j)
Blocks get moved out of column x in lines 10, 16 and 29. However, all of these
lines only get executed while top(x, T) ≥ yD. This means that no blocks at
row yD − 1 or below get moved, so C ′(x, j) = C(x, j) for all j ≤ yD − 1.

∀i ∈ {1, ...,m} : i 6= x→ (∀j ∈ {1, ..., h} : C ′(i, j) = C(i, j))
List L ensures that every block that gets moved out of column x, eventually
gets moved back in line 34. The only other time in the algorithm that a
different column gets changed is in lines 21-23. The top block of column r
gets swapped with block C(x, yS). However, block C(x, yS) gets moved to
its goal position in column x, and the original top block of column r gets
moved back to column r in line 33. If it got there initially during line 10, 16
or 25, it will still get moved back to its original column in line 34 because of
list L. This means in the final configuration C ′ no columns besides column
x will have changed, so the property holds.

42

