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Abstract

To find implementation issues in software, automated testing can be
applied. An effective way to find security vulnerabilities in a system under
test (SUT) is fuzzing.

Fuzzing in a simple form sends a larger number of randomly generated
inputs to a SUT and checks unexpected behaviour. For programs implement-
ing a stateless protocol, this can already be an effective strategy. However,
for stateful protocols, more advanced methods are required to reach deeper
states. For instance, a deeper state is only reached after completion of a
particular sequence of messages.

To optimise fuzzing of stateful protocols, four approaches have been
evaluated in this thesis. These approaches are all based on the stateful
greybox fuzzer AFLNet with the IRC protocol as a case study. This fuzzer
has been extended to support:

1. the IRC protocol as baseline;

2. a dictionary for the IRC protocol;

3. state-aware fuzzing based on IRC responses;

4. checkpointing for any protocol supporting state-aware mode.

For approaches one, three, and four, new functionality has been imple-
mented. The second approach, using a dictionary, is directly supported by
AFLNet. For many protocols dictionaries are supplied, however, for the IRC
protocol no dictionary was previously available. Therefore, a new dictionary
has been constructed. The principles of these four approaches can be used
for most stateful protocols. The approaches are empirically compared on
path coverage, maximum depth and crashes found, using a case study on
the Internet Relay Server ngIRCd.

Significantly more paths have been found when using a dictionary com-
pared to the baseline. State-aware fuzzing does not improve the total paths
found and maximum depth significantly. Combining these approaches re-
sulted in a decrease in coverage and depth compared to using only a dictio-
nary.

While using the four approaches, no new bugs were found in the SUT.
To estimate whether there are no bugs in the SUT or whether the scope
of the experiments was too limited, a number of synthetic bugs has been
introduced in the SUT. Several of these bugs have been found by the fuzzer.
This suggests the scope of the conducted experiments is sufficient.
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Chapter 1

Introduction

Fuzzing is an approach to automate software testing by sending several
test inputs to a target system. Unexpected behaviour of a system under
test (SUT), such as a crash or hang, is monitored by the fuzzer during
the procedure. This can be used to identify security vulnerabilities in an
implementation that May remain unnoticed by manual code inspection [1].

Often fuzzing is directed towards stateless protocols. In this context,
stateless protocols are programs where the program input cannot be divided
into a sequence of independent messages. This implies that all program
states can be reached with a single input message. An example of a stateless
SUT is a PDF reader that can be fuzzed by creating several input PDF files.

Stateful protocols require input message sequences to reach deeper states.
For instance, a deeper state might be only reachable after completing a
handshake sequence successfully [2]. If a fuzzer does not consider input as a
sequence, this creates a risk of directing most fuzzing efforts to some initial
states of a SUT. As a result, stateful protocol implementations are often
assumed to be more complicated to fuzz effectively.

This thesis evaluates the improvement of four measures to optimise
fuzzing in a stateful protocol implementation. Network protocols are a
widely used example of stateful protocols. A case study is conducted to fuzz
a specific network protocol. In this case study, the SUT is an implementa-
tion [3] of the IRC protocol [4].

Fuzz testing in this thesis is focused on client-to-server communication.
Background information about several fuzzing techniques is given in chap-
ter 2. To test several measures to optimise fuzzing of stateful protocols, a
multistep approach, is applied. As initial step, several fuzzers are assessed.
Most widely used fuzzers do not support the same protocols. Therefore,
instead of evaluating fuzzers based on specific protocol support, fuzzers are
evaluated on the support of stateful fuzzing. In chapter 3, a number of
fuzzing frameworks is evaluated.

The IRC protocol is a standardised protocol for text messaging. Origi-
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nally specified in 1993, this protocol is updated with more recent RFCs and
with implementation specific modifications. Both client-to-server as server-
to-server communication is possible. Server-to-server communication allows
several servers to connect and form a network. More information regarding
the IRC protocol is provided in chapter 4.

Base on the evaluation of several fuzzers, AFLNet has been chosen as
basis for the experiments in chapter 5. To compare several approaches,
a baseline is created. For this baseline, AFLNet is extended to support
fuzzing of the IRC protocol by implementing a request extraction function
for IRC. Additionally, the IRC server is prepared for fuzz testing. More
details regarding testing the first approach are described in section 5.3.

Further experiments are used to test approaches to grammar based
fuzzing with a dictionary (section 5.4), state-aware fuzzing (section 5.5)
and checkpointing (section 5.6):

• Creating a dictionary enables the fuzzer to use high level information
regarding the protocol, which can help reaching deeper states.

• state-aware fuzzing tries to determine the state of the SUT. This could
be used to aid the fuzzer to cover all known states of the SUT.

• Stateful protocols require a sequence of input messages to reach deeper
states. Part of this sequence forms a prefix that has to be repeated
each time to fuzz a deep target state. By using checkpointing, this
prefix can be saved and restored the next time that a specific state is
fuzzed.

These approaches are compared in experiments based on the evaluation
measures defined in section 5.2.1. Additional experiments have been designed
to determine (i) the sufficiency of the scope of the previous experiments
and (ii) the impact of the initial seed. In case fuzz testing does not find
any vulnerabilities, this can imply that either a SUT has no detectable
vulnerabilities or the time budget of the fuzzer was too low. To distinguish
between the first and last two categories, synthetic vulnerabilities have been
injected as described in section 5.8.

Alternative approaches regarding stateful fuzzing are identified in this
thesis. These are summarised as recommendations for further research in
chapter 6. Finally, in chapter 7 the overall conclusions of this thesis are
discussed.
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Chapter 2

Background on fuzzing

In this chapter background information regarding stateful fuzzing techniques
is presented. Fuzzing is often used in an automated software testing setup.
Depending on the SUT, there are several approaches possible. In general,
three high-level approaches to fuzz testing are distinguished [2]. A high level
overview of blackbox and whitebox fuzz testing is given in section 2.1. More
details regarding greybox fuzzing, a specific approach to fuzz testing, are
given in section 2.2. Greybox fuzzing is applied in the experimental settings
introduced in this thesis in chapter 5. Some often used techniques to mutate
messages are explained in section 2.3. To measure performance of fuzzing,
some feedback metrics are introduced in section 2.4.

2.1 White- and blackbox fuzzing
Blackbox fuzzing is an approach where input is generated without imple-
mentation knowledge of the SUT. This approach is successfully used to test
for instance compilers and database systems [5]. In a simple form blackbox
fuzzing executes random test cases. An often implemented variant attempts
to minimise the similarity of random tests over the input space. This variant
is based on the concept that similar test cases will often test the same part of
a code base and therefore yield similar results. To promote different results,
an equal division in partitions is an option to ensure that all test cases are
overall the least similar. Proportional sampling from partitions is proven
to give better results than strictly random testing in some cases [6]. In
practice, sampling from the specified input space results in a focus mostly
on the specified behaviour. However, some vulnerabilities are only triggered
by undefined behaviour and may be missed by this approach.

On the other side of the spectrum, there is whitebox fuzzing. This
approach requires full access to the source code of the SUT. Often program
analysis techniques such as symbolic execution and constraint programming
are applied [7, 8]. These techniques enable whitebox fuzzers to ideally
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execute a new path on each execution. In larger programs there often too
much paths to do an exhaustive search. With a low time budget, this results
in whitebox fuzzing not outperforming blackbox fuzzing for programs with
a complex input [9].

2.2 Greybox fuzzing
A compromise between blackbox and whitebox fuzzing approaches is greybox
fuzzing. Greybox fuzzing incorporates some feedback from the SUT, often
by either automatically or manually instrumenting key locations such as
branch points. Compared to black box fuzzing, this method often results in
more program coverage. However, especially manual defined feedback, can
introduce bias to specific program states.

Since greybox fuzzing makes use of feedback from the SUT, several forms
of feedback can be applied. Based on received feedback from the SUT, other
techniques can be applied to increase effectivity of a fuzzer. Feedback from
the SUT is often used to guide the fuzzing process. Depending on the type
of feedback, a metric can be generated automatically or requires manual
annotation. Metrics commonly used and introduced in section 2.4 are code
coverage, program state coverage, branch coverage, number of unique crashes
and number of unique bugs [10, 11]. Some metrics such as unique crashes
and unique bugs can also be used as metric for white- and blackbox fuzzing.

2.3 Input generation strategies
The first known fuzzer has been used in 1990 to test a corpus of 90 pro-
grams. This fuzzer used randomly constructed characters as input for the
tested systems. This method found vulnerabilities in more than 24% of the
systems [12].

Since most random input is expected to be invalid, a SUT often rejects
an input in an early state. Therefore, a completely random fuzzer might
not reach deeper states of a SUT. A popular approach to automatically
generate input with a higher validity probability is using random mutations
of an input sequence [13]. One of the first popular mutation based fuzzers is
AFL [14]. AFLNet, a derivative of AFL is described in section 3.1. Both AFL
and AFLNet mutate input messages that uncover new transitions between
states of the SUT. These inputs are used as seed for further mutations 1.

A different, but not mutually exclusive approach to input generation is
applying a grammar. A grammar can be used to generate syntactically valid
input messages. Especially, if a SUT uses a complex input this could help
to reach deeper states. However, creating a complete grammar of a protocol
might be challenging depending on the protocol complexity.

1https://afl-1.readthedocs.io/en/latest/about_afl.html#how-afl-works
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Additionally, certain rules in a grammar could have a higher probability
to be used compared to other rules [15]. Optimally assigning such probabil-
ities is a non-trivial problem. An approach to get reasonable initial values
is by measuring frequencies of rules occurring in a larger sample. Promising
results are also achieved by using an evolutionary process to increase the
probability of generating interesting rules at runtime [16].

These input generation strategies can be applied not only on stateful
fuzzing but also on stateless fuzzing. However, some additional considera-
tions are useful depending on if the SUT is stateful. For instance fuzzing a
stateless image library requires only a single input for each iteration. There-
fore, when using mutations to generate new inputs, a mutation could in
principle occur in the complete input space. On the other hand, when
fuzzing a stateful protocol it can be useful to mutate only a specific part of
the input. This input forms a sequence where later parts of the sequence
depend on previous parts. Therefore, mutations in the entire input sequence
could result in fuzzing only initial states.

2.4 Feedback metrics
Performance metrics can be used to evaluate the performance of a fuzzer on
a SUT. Additionally, greybox fuzzers can use certain metrics as feedback
during fuzzing.

Code coverage is a relatively simple metric where the number of lines of
the SUT executed during fuzzing is counted. This can be compared without
manual validation. Therefore, code coverage can be used as an objective
metric that correlates with the number of bugs [17]. Intuitively, full code
coverage is a requirement to find all bugs in a SUT. However, the inverse
that all bugs in a SUT are found if full code coverage is achieved does not
hold true.

Program state coverage forms an abstraction of code coverage. Parts of
a SUT are grouped together based on, for instance, variable instantiation or
execution path to form a state. State coverage can yield more insight in the
actual functionality of a program, but requires a state machine model. Such
a model can either be generated or provided by specification. Generation
or learning of a state model can be done in advance or while fuzzing. To
assist in this process there are tools such as LearnLib that implement several
automata learning algorithms [18]. Sometimes a state machine is provided
with the SUT or protocol specification. More details regarding a state
machine for the IRC protocol are provided in section 5.5.

Branch coverage can be used to keep track of how many different exe-
cution paths are found by the fuzzer. Similary to state coverage, branch
coverage can be regards as an abstraction of code coverage. Execution paths
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can be used to gain understanding in the flow of a SUT, which aids in
manually analysing bugs.

The number of unique crashes can be approximated during the fuzzing
of a SUT. A new crash can be compared with all previous occurred crashes.
In case a crash is not equivalent to previous crashes, the crash is seen as
a unique crash. Different methods to define equivalence could introduce
bias. Bias could result in under- or overcounting the number of crashes.
An example that is expected to result in overcounting crashes is defining
equivalence if several crashes have an identical checksum of the call stack.
Undercounting could occur if equivalence is based on the instruction address
where the crash occurs2.

The number of bugs found in SUT as performance metric, aligns well
with the intention of a fuzzer to find vulnerabilities. However, to determine
a unique bug from a set of crashes is often a manual process. A single bug
might result in several crashes in different parts of the SUT, depending on
the input message sequence. This makes this metric more suitable for an
overall performance evaluation than as a heuristic during fuzzing.

2https://github.com/aflnet/aflnet/blob/master/docs/technical_details.txt
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Chapter 3

Fuzzing frameworks

In this chapter several fuzzing frameworks based on AFL are described. AFL
is a popular foundation for domain specific fuzzers such as AFLNet, AFLNwe
and AFLSmart. Based on the overall evaluation in section 3.4, the greybox
fuzzer AFLNet is chosen as base program for experiments in chapter 5 [11].
More details regarding AFLNet are provided in section 3.1. Boofuzz, another
greybox fuzzer, is evaluated in section 3.2.

Greybox fuzzing frameworks are often targeted at programs implement-
ing stateless protocols as described in chapter 2. In this context a program
implementing a stateless protocol is defined as a protocol where a set of single
inputs can cover the entire SUT. This kind of programs is further referred to
as stateless programs. Programs implementing stateful protocols require a
set of input sequences to cover the SUT instead. Such programs are referred
to as stateful programs. To fuzz stateful programs with a fuzzer intended
for stateless programs could reduce performance (see section 2.3). Blackbox
fuzzing is currently often the preferred fuzzing approach for stateful pro-
grams [11]. Peach, a blackbox fuzzing framework is analysed in section 3.3.

3.1 Greybox fuzzing with AFLNet
AFLNet is an extended version of AFL which implements strategies to
fuzz stateful programs in addition to most features of AFL [11, 14]. Most
properties of AFL also hold for its derivatives such as AFLNet, AFLSmart
and AFLNwe.

A difference between AFLNet compared to AFL is that AFL is intended
to fuzz stateless programs. To enable stateful fuzzing, AFLNet implements
both sending messages to and receiving messages from the SUT. AFLNet
requires an initial seed. This seed consists of a set of messages. These
messages are recorded packets of regular or simulated traffic to the SUT in
the PCAP Capture File Format [19]. Such recordings can be made using
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for instance Wireshark1 or tcpdump2. Since, only messages to the SUT are
used by the fuzzer as initial input, responses of the SUT can be discarded.

AFL applies a mutation based algorithm to create input message se-
quences. AFL supports several mutation strategies. For instance mutations
can consist of replacement, duplication, insertion and deletion of a message
or a block of bytes in a message. To fuzz stateful programs, AFLNet mutates
a message sequence by first dividing it in three parts. The first part of the
sequence is considered to be a prefix. This part is required to reach a certain
state and will therefore not be mutated. The second part consists of all
messages where the SUT will remain in the same target state. In this part
a mutation will occur. The last part is considered irrelevant for the current
target state. This part will, similar to the first part, not be mutated. For
the next fuzzing iteration all three parts are combined to a single sequence
again.

During fuzzing, both AFL and AFLNet make use of instrumentation
of the SUT to guide the fuzzer. Modified compiler variants for automatic
instrumentation of C and C++ are provided. Projects to instrument other
programming languages are also available. In the experimental setup compile
time instrumentation is used as baseline in section 5.3. In case only a
binary version of a SUT is available, QEMU is integrated for instrumentation
without additional preparation [20].

3.1.1 AFLNwe and AFLSmart

Like AFLNet, AFLNwe and AFLSmart are both extensions to AFL. Prac-
tically, AFLNet can be seen as an extension of AFLNwe and AFLSMart
too. AFLNwe is a minimally extended version of AFL that has only ex-
tensions added to enable fuzzing network protocols using sockets [11]. This
potentially could make AFLNwe simpler to extend than AFLNet.

In AFL and AFLNet a protocol can be fuzzed with the help of a dictionary.
Such a dictionary forms a basic grammar that describes the protocol. This
does not solve mutations on an abstract protocol level instead of a message
level directly. AFLSmart, which is mostly developed by the same team of
researchers as AFLNet, attempts to mitigate this issue by applying mutation
operators that work on the virtual structure of the file instead. AFLSmart
introduced interesting concepts regarding fuzzing of a protocol such as region-
based mutation. Region-based mutations allow mutating multiple symbols at
once, which substantially improves branch coverage [21]. This functionality
is also integrated in AFLNet.

1https://www.wireshark.org/
2http://www.tcpdump.org/
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3.2 Greybox fuzzing with Boofuzz
Boofuzz3 is a popular fuzzing framework for stateful SUTs [2]. Boofuzz uses
protocol specifications to generate message sequences. Additional instrumen-
tation and monitoring of the SUT allows analysing and categorising faults.
Additionally, a form of checkpointing is built which enables reverting to a
known non-crashing state. Boofuzz is a further developed version of Sulley4

and among others enables easier extension. In literature there is no clear
consensus whether to classify Boofuzz as whitebox or blackbox fuzzer [2, 22].
By the definition used in this thesis defined in chapter 2, Boofuzz is classified
as greybox fuzzer.

3.3 Blackbox fuzzing with Peach
Blackbox fuzzing uses at most protocol specifications to fuzz a SUT. Since
only the input and output of the SUT is known, a blackbox fuzzer cannot
use instrumentation to increase performance. Peach is a popular blackbox
fuzzing framework5 first developed in 20046[23]. Like Boofuzz, Peach is
a generation based fuzzing framework. This allows generating new input
messages that preserve integrity constraints. This approach helps to reach
deeper states of a SUT [7].

3.4 Comparison of fuzzing frameworks
Based on a comparison with some other popular fuzzers described in this
chapter, AFLNet has been chosen as a base for the experiments in this thesis.
AFLNet is a maintained project with an open source licence (Apache-2.0).
However the code base itself is not extensively documented. Additionally,
parts of the code base appear to have duplicate code.

AFLNet is based on AFL. AFL is one of the most prominent greybox
fuzzers and is tested in practise since 20147. Besides a quite extensive first
party documentation, there are many third party articles available for AFL
that are also mostly applicable to AFLNet.

Unlike AFL and AFLSmart, AFLNet has support for stateful network
protocols. AFLNwe and Boofuzz also support stateful protocols. However,
According to the benchmarks conducted by introducing AFLNet there is
a statistically significant difference in most test cases in favour of AFLNet
compared to AFLNwe and Boofuzz.

3https://github.com/jtpereyda/boofuzz
4https://github.com/OpenRCE/sulley
5https://github.com/asudhak/peachfuzz-code
6https://web.archive.org/web/20201001072717/https://community.peach-

fuzzer.com/WhatIsPeach.html
7https://lcamtuf.coredump.cx/afl/releases
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AFLNet does not support fuzzing with a protocol grammar. Advantages
of using a grammar to fuzz complex protocols are described in section 2.3.
However, AFLnet tries to reconstruct a grammar at run time based on
responses of the SUT. Optionally, this grammar reconstruction can be
assisted by creating a dictionary for a SUT8. This enables AFLNet to create
with relatively high probability valid input messages, without crafting a
detailed grammar for each target protocol. Such a dictionary is constructed
for the IRC protocol in section 5.4.

8https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
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Chapter 4

Background on IRC

In this chapter background information regarding the IRC protocol and a
server implementation is presented. A SUT implementing the IRC protocol
is used in the case study. The case study is presented in chapter 5.

The IRC protocol is documented in several Request for Comments (RFCs).
The original specifications were drafted in RFC 1459 from 1993. Further
revisions were made in RFCs 2810, 2811, 2812, 2813 and 7194. RFC 1459
is mostly superseded by RFCs 2810 till 2813. RFC 7194 only suggests a
standardised approach to transport layer security for client-to-server (C2S)
communication. In this research the main focus will be on the application
level IRC protocol as described in RFCs 2810 till 2813.

• RFC 2810 Architecture [4]: This RFC describes the architecture of the
most recent IRC protocol specification with a high level overview of
its different sub components.

• RFC 2811 Channel management [24]: This RFC describes channel
management by IRC servers. Channels can have a namespace and
several modes. These modes can be used as permission management.

• RFC 2812 Client Protocol [25]: This RFC specifies the C2S communi-
cation protocol.

• RFC 2813 Server Protocol [26]: Due to the federated nature of IRC,
server-to-server (S2S) communication occurs not only as C2S but also
between servers. This RFC describes the protocol between servers.

Both the C2S and S2S protocol are stateful. The C2S protocol is widely
used with several third party clients such as Quassel IRC1 and Weechat2.
These IRC clients are typically used by an end user and expose the chat
functionality of the IRC protocol. Often a single IRC server is used for several

1https://github.com/quassel/quassel
2https://github.com/weechat/weechat
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clients. Besides end user clients, the IRC protocol additionally defines service
clients. Service clients are often automated to provide some additional service
to an end user. These clients should have limited access to IRC protocol
functionality. In this thesis fuzz testing is mostly directed to the end user
client communication with the server.

In section 4.1 more details of a message between the client and server
are given. Some notable protocol extensions are highlighted in section 4.2.
On the choice of an IRC server implementation as SUT more information is
given in section 4.3.

4.1 RFC 2812: Client protocol
RFC 2812 is the latest RFC that specifies the C2S part of the IRC protocol.
Based on this RFC several requirements for a valid IRC message can be
constructed.

According to section 2.3 of RRC 2812, any valid request of the client
should get a response. There is no maximum response time specified. Any-
way, when fuzzing on a local system long timeouts are not expected.

An IRC response consists of at most three parts. Each part is separated
with a space (0×20). The first part is an optional prefix. This prefix is
indicated with a special character at the start of a message. In the RFC, there
is a mistake regarding the prefix presence indication symbol. In practice,
this is done with a colon character (0×3a) instead of a semicolon character
(0×3b). This error is corrected in errata 3843. The prefix is in principle only
used from server responses to the client to indicate the origin of a message.
The second part of a response message contains a valid IRC command or a
three-digit numerical representation of a command. A full list of numeric
commands is given in RFC 2812 section 5.1.

The final part of a message consists of command parameters. Such a
parameter is for instance used by a server response message to acknowledge
a request of a client. A complete message consists of at most 512 charac-
ters. This includes then optional initial prefix and the message termination
character CR-LF (0×0d0a).

To register on an IRC server there are several message sequences possible.
The recommended registration sequence is shown in fig. 4.1. The Password
message is optional depending on the server configuration. Also, clients are
allowed to first send a User message before the Nick message. Specifying
such variations results in a more complex code base, which increases the risk
of vulnerabilities.

3https://www.rfc-editor.org/errata/eid384

14



Figure 4.1: The recommended sequence for registration on an IRC server
according to RFC 2812. This diagram is generated with PlantUML [27]

4.2 IRC protocol extensions
The most recent major updates of RFCs regarding the IRC protocol are
made in the year 2000. To adapt to new requirements, there is an ongoing
effort to document a next iteration of the IRC C2S protocol as IRCv3. This
specification effort explicitly excludes S2S connections. Currently, some IRC
servers support a subset of the proposed IRCv3 extensions. For instance the
ngIRCd server described in section 4.3 partially implements IRCv3 proposals.
Additionally, this server implements some extensions in the form of the
“IRC+” protocol. This mode is active by default, however it is possible to
enable an RFC only mode4.

4.3 IRC server implementations
There are several implementations of IRC servers. For greybox fuzzing it
is preferred that the source code of an implementation is available. An
available source code gives several advantages for fuzz testing. Automated
instrumentation, if done at compile time, results in less performance over-
head. Additional optimisations, such as disabling non-essential parts of the
program, can be applied to improve fuzzing performance. Moreover, by
disabling non-essential parts, specific bugs can be easier identified, in case
potential vulnerabilities are found.

Lower level languages such as C and C++ have more potential for memory
related issues. Especially when using stack protectors and sanitizers, this
kind of issues can be identified efficiently by fuzzers. Therefore, for testing
purposes a lower level language is preferred.

Servers that fulfil the requirements to be open source and written in
lower level languages are among others ngIRCd[3] and InspIRCd5. For this
thesis ngIRCd is chosen as preferred SUT.

4https://github.com/ngircd/ngircd/blob/master/doc/Protocol.txt
5https://github.com/inspircd/inspircd
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NgIRCd is an open source (GPL licensed) IRC server developed in C since
2001. At the time of writing, the latest release is version 26.1. In 2020 some
fuzz testing has been done using AFL on version 26 rc2. This fuzz testing
has lead to two publicly known vulnerabilities in the S2S communication67,
of which one is documented in CVE–2020–14148. These vulnerabilities seem
to involve exclusively authenticated S2S communication. Due to the trusted
by design nature of S2S communications, these vulnerabilities are currently
not prioritised to be resolved by the main software maintainer8.

Furthermore, seven older CVEs9 for ngIRCd are documented. These are
published between 2005 and 2013 and currently not registered as open issues.
Therefore, these CVEs are assumed to be mitigated in the current version
of ngIRCd.

6https://github.com/ngircd/ngircd/issues/274
7https://github.com/ngircd/ngircd/issues/277
8https://github.com/ngircd/ngircd/pull/276
9Older CVEs for ngIRCd are CVE-2013-5580, CVE-2013-1747, CVE-2009-4652, CVE-

2008-0285, CVE-2007-6062, CVE-2005-0199 and CVE-2005-0226.
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Chapter 5

Experiments

At the start of this chapter (section 5.1), considerations regarding the over-
all testing setup are given. With this testing setup, four different fuzzing
techniques are compared:

1. A baseline approach based on AFLNet. This approach uses only es-
sential features to enable fuzzing of the IRC protocol and is described
in section 5.3.

2. A configuration to AFLNet given in section 5.4 to apply a dictionary
based on the IRC specifications as described in chapter 4.

3. Instrumentation of the SUT to provide information about the current
state to AFLNet is described in section 5.5.

4. An extension to AFLNet to use checkpointing is described in sec-
tion 5.6.

An evaluation of the performance of each approach is given based on
the evaluation criteria that are discussed in section 5.2. It is expected that
the three optimisation approaches (approaches two, three and four) and
the combination of these approaches will perform better than the baseline
approach. Both, a comparison of the performance of each approach and a
combination of the second and third approach are given in section 5.7.

To evaluate the performance of different fuzzing approaches more inde-
pendent of the SUT, several synthetic bugs are introduced as described in
section 5.8.
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5.1 Testing setup
The hardware aspects of the testing setup used in this thesis are described in
section 5.1.1. Secondly, the expected performance of this setup is evaluated
in section 5.1.2.

5.1.1 Testing hardware

Fuzzing is often non-deterministic, which can influence performance. Addi-
tionally, performance can be effected by external influences such as other
resource intensive programs. To keep benchmarks comparable between dif-
ferent runs of a fuzzing program, a machine with minimal external influences
is recommended. As suggested in the documentation of AFLNet, otherwise
idle machines running Linux without non-essential programs have been used
in this case study.

To be able to repeat experiments sufficiently some experiments are done
locally and others on virtual servers. The local experiments are run on several
different machines. To reduce load times, all binary and configuration files
are stored on a SSD.

The fuzzing process and SUT run locally on multi-core systems. This
could allow speeding up the fuzzing process by using several cores in parallel,
however this option has not been used. Online multiple virtual machines of
Linode are rented1. At Linode the rented servers have a single CPU core
and one gigabyte RAM available. Faster options with a dedicated CPU are
also available. Such servers seem to perform about twice as fast compared to
the shared single core servers for fuzzing with AFLNet. However, the price
increased six times when upgrading to the more expensive model. For an
optimal price-performance ratio, the case study used the cheaper single-core
servers.

5.1.2 Expected testing performance

Additional configuration instructions regarding fuzzing performance are pro-
vided in the respective AFLNet documentation2. Applying the OS configura-
tion recommendations results locally in a peak speed increase of about sixty
executions per second from 32 up to 93 executions per second with ngIRCd
as SUT. On longer test runs, the execution speed slows down considerably
to even below one execution per second.

According to the documentation of AFLNet, around 500 executions per
second is preferred3. However, this guideline seems to be equal to the

1https://www.linode.com
2https://github.com/aflnet/aflnet/blob/master/docs/perf_tips.txt
3Stage progress in https://github.com/aflnet/aflnet/blob/master/docs/sta-

tus_screen.txt
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guideline of AFL. Due to the overhead of among others (local) network com-
munication, slower executions speeds are expected. Other benchmarks for
stateful programs also only reach speeds up to five executions per second [28].

To asses the impact of using a different system than the authors of
AFLNet, the execution speed of the example SUT is compared. The Live555
media streaming server4 is used as an example in the instructions of AFLNet
and as SUT in the paper introducing AFLNet [11]. Comparable perfor-
mance is observed with the streaming and the IRC server. Therefore, it is
assumed that differences between the used systems account for execution
speed differences. Possible opportunities to analyse and partly mitigate this
performance gap in more detail are summarised in section 6.2.

5.2 Evaluation of experiments
To evaluate the results of the experiments, several measures are used. These
measures are elaborated in section 5.2.1. To compare the results of sev-
eral experiments, statistical tests are used. Details regarding the choice of
statistical tests are provided in section 5.2.2.

5.2.1 Evaluation Measures

To evaluate the progress and effectivity of the fuzzing approaches, three key
elements are required. First, a baseline is used to compare the impact of the
tested approaches. This baseline is described in section 5.3.

Second, a metric is needed to compare the tested fuzzer with the baseline.
In the literature, several metrics are used as described in section 2.2. Since
the experimental setup is based around AFLNet, as performance metrics
total execution paths found, maximum sequence depth reached and unique
crashes triggered are used.

Fuzzing is a time intensive process. To get meaningful results, it is not
unusual that fuzzing still yields new findings after a month of fuzz testing5.
For this experimental setup, fuzzing is conducted for 500.000 executions each.
This roughly corresponds to a four days fuzzing experiment. Recommenda-
tions to select an appropriate stopping point based on achieved results are
given in section 6.5.

5.2.2 Comparison of experiments

To determine if potential differences between the fuzzing approaches are
statistically significant, the effect size of the experiments is calculated based

4http://www.live555.com/mediaServer/
5https://blog.trailofbits.com/2021/03/23/a-year-in-the-life-of-a-compiler-fuzzing-

campaign/
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on the results of the base line in section 5.3.4. Additionally, statistical tests
are used to compare the results of different approaches.

The results of each approach are compared with the baseline. This can be
regarded as two groups of observations. Since, these observations cannot be
paired uniquely with observations from another approach, the observations
represent independent events.

Each experiment to evaluate an approach is repeated five times to reduce
non-structural differences caused by uncontrolled variables in the testing
setup or the non-deterministic behaviour of the fuzzer. For each repetition
the fuzzer uses the exact same settings, input seed and SUT.

Preferably the same statistical test is used to compare all conducted
experiments with the baseline. However, it is not predictable upfront whether
all results are normally distributed and of similar variance (homoskedastic).

The Shapiro-Wilk’s test is used to check normal distribution. A result
of p ≥ 0.05 implies it is unlikely that the data is not normally distributed.
Under the assumption that the data is normally distributed, it is possible to
use Welch’s t-test instead of the Mann Whitney U-test.
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5.3 Baseline with AFLNet
All evaluated approaches are compared with a baseline. As a baseline,
AFLNet (see section 3.1) is used. Since AFLNet by default does not sup-
port the IRC protocol, a protocol extension is implemented as described
in section 5.3.1. For creating the baseline, no further changes are made to
the fuzzer. The goal of the baseline experiments is to be able to compare
the performance impact of optimalisation approaches. The exact setup of
AFLNet is discussed in section 5.3.2. Unless mentioned otherwise, the same
configuration parameters are also used in experiments to test additional
approaches. Results of the baseline experiment are given in section 5.3.4.

5.3.1 Implementation of the IRC protocol

To fuzz the SUT, AFLNet must be extended to support the IRC protocol.
In order to support a new protocol in AFLNet a function has to be imple-
mented to extract responses of the SUT. Additionally, the protocol should
be added to the list of supported protocols to be able to actually use a newly
implemented protocol.

For the baseline experiment only the function:
region_t*extract_requests_irc() has been implemented. Further sup-
port for state-aware fuzzing is implemented for the experiments described in
section 5.5.

The “request extraction” function has similarities with the function for
other already implemented protocols. Therefore, it is possible to base the
IRC support on the implementation of the SMTP protocol. The used imple-
mentation is provided in listing 1.

5.3.2 Configuration of AFLNet

AFLNet has multiple configuration options. Both runtime parameters and
compile time environment variables impact the fuzzing performance of AFLNet.
The script used to configure some environment variables and performance set-
tings is provided in appendix A.1. Compile-time settings regarding AFLNet
include enabling LLVM and options to catch memory faults.

Run time parameters of AFLNet can be used to control the fuzzing. Two
parameters, netinfo and protocol are mandatory. In this experiment netinfo
(-N) points to localhost with the default IRC port 6667. The protocol (-
P) parameter is set to IRC to use the implemented function described in
section 5.3.1.

The following runtime parameters are set to gain reasonable performance:

• Skip deterministic fuzzing steps (-d) is enabled to improve fuzzing
performance. This gives quicker results earlier in the fuzzing process,
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which allows shorter test runs. The disadvantage of this options is that
potentially found crashes are harder to reproduce.

• False negative reduction mode (-F) is activated. According to the
documentation of AFLNet, this mode aids AFLNet to distinguish
between longer executions and crashes.

• Region-level mutation operators (-R) allow larger mutations to occur.
In stateless programs this often improves the fuzzing performance [21].
Therefore this parameter is activated.

Additionally, some runtime parameters are set to improve reproducibility
between test runs. These parameters are unchanged in all experiments:

• A server cleanup script (-C) is unspecified. The SUT seems to store
no files influencing the state on a subsequent run. Therefore, this
parameter is not expected to improve reproducibility.

• Waiting time (-D) specifies in micro seconds how long AFLNet should
wait till the SUT is started. For all experiments a timeout of 10000
microseconds is used to improve reproducibility.

• Sending a SIGTERM signal (-K) allows the SUT to shutdown properly.
Based on a testing setup, without this parameter AFLNet fails the dry
run of the initial seed. This prevents AFLNet from starting to fuzz.

• Both state selection (-q) and seed selection (-s) algorithms are set to
“favor”.

5.3.3 Configuration of ngIRCd

To apply AFLNet on ngIRCd some minor modification have been made to the
ngIRCd binary. The makefiles of ngIRCd are generated using a configuration
script. NgIRCd is mainly written in C. Therefore to instrument the SUT,
the compiler afl-clang-fast can be used. This compiler is available along with
AFLNet and implements coverage feedback-enabled instrumentation. Addi-
tionally, LLVM6 is installed to enable AFLNets LLVM mode7. This allows
AFLNet to use compiler-level instead of assembly-level instrumentation.

Other configuration changes reduce logging and disable zlib compression
for a potential speed-up. The complete configuration command becomes:

./configure --without-syslog --witouth-zlib CC=afl-clang-fast CFLAGS=m32
6https://llvm.org/
7https://github.com/aflnet/aflnet/tree/master/llvm_mode
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For this experiment the AddressSanitizer (ASan) is not used. However,
if one chooses to use ASan, one should ensure that ngIRCd is built as 32-bit
binary. Compiling the binary in 32-bit mode ensures memory usage of ASan
remains reasonable. According to the documentation of AFLNet using a
64-bit binary can require up to 20 TB of memory allocations instead of up
to 800 MB. The reserved memory can be checked with:

ulimit -Sv \$[999 << 10]; ./ngircd-64-asan

Using this command shows that the process indeed tries to reserve 15TB
when compiled in 64-bit mode. Some background information regarding
ASan is provided in section 3.1.

5.3.4 Baseline results

The baseline is evaluated on maximum depth reached, total paths found
and unique crashes found as described in section 5.1. This experiment is
repeated five times. Each repetition uses the same settings, initial seed and
SUT and is terminated after approximately 500.000 executions. Results of
each test repetition can be found in table 5.1. The number of paths found
and the maximum depth reached per execution are shown in fig. 5.1a and
fig. 5.1b. No iteration of this experiment found any bugs.

Intuitively, a correlation is expected between the paths found and the
maximum depth reaches. The baseline experiments suggest a weak positive
correlation (Pearson correlation coefficient 0.19), however this relation is not
statistically significant (p ≈ 0.76). This weak correlation might be caused
by the findings in experiment 0 and 2. For these two experiments less paths
are found when a higher depth was reached.

Effect size

Based on analysis of the baseline result, the measured effect size is calculated
using eq. (5.1) [29]. This effect size allows to reason whether a difference
between experiments is a real effect or caused by a measurement error. Intu-
itively, if more experiments are conducted, less variation between experiments
occurs. Alternatively, if more errors are accepted, it would be possible to
measure smaller differences between the different fuzzing approaches with
the same sample size. To adhere to common practice the type-1 error proba-
bility (α) is set to 5%. The type-2 error (β) is set to 20% [30][31]. And, the
population standard deviation is estimated using the conducted experiments
as samples.

ES =

√
2 ·

σ2(zα − zβ)
2

n
(5.1)
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Max Depth Total Paths

Exp. 0 20 260
Exp. 1 19 282
Exp. 2 16 296
Exp. 3 21 296
Exp. 4 21 331
Average 19 293
Standard deviation 2 23
Normal distribution p-value 0.17 0.79

Table 5.1: Results of the five baseline test runs after approximately 500.000
executions. Each test case makes use of the same seed and runtime pa-
rameters. Additionally the average, standard deviation and the p-value of
the Shapiro-Wilk’s test is provided. Based on the Shapiro-Wilk’s test each
measurement of the baseline is normally distributed (p ≥ 0.05). No test run
found any vulnerabilities, therfore these data are not shown.

Based on this calculation, a difference of approximately 114 paths found
and a reached maximum depth of 11 in the SUT can be measured.
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Figure 5.1: Visualisation of the number of paths found and maximum depth
reached with the base line experiments. The detailed results per experiment
are provided in table 5.1

25



region_t* extract_requests_irc(unsigned char* buf, unsigned int buf_size,
unsigned int* region_count_ref) {

char *mem;
unsigned int byte_count = 0;
unsigned int mem_count = 0;
unsigned int mem_size = 1024;
unsigned int region_count = 0;
region_t *regions = NULL;
char terminator[2] = {0x0D, 0x0A};
mem = (char *)ck_alloc(mem_size);
unsigned int cur_start = 0;
unsigned int cur_end = 0;
while (byte_count < buf_size) {

memcpy(&mem[mem_count], buf + byte_count++, 1);
//Check if the last two bytes are the IRC message terminating bytes
if ((mem_count > 1) && (memcmp(&mem[mem_count - 1], terminator, 2) == 0)) {
region_count++;
regions = (region_t *)ck_realloc(regions, region_count * sizeof(region_t));
regions[region_count - 1].start_byte = cur_start;
regions[region_count - 1].end_byte = cur_end;
regions[region_count - 1].state_sequence = NULL;
regions[region_count - 1].state_count = 0;
mem_count = 0;
cur_start = cur_end + 1;
cur_end = cur_start;

} else {
mem_count++;
cur_end++;
if (cur_end == buf_size - 1) { //Check if the last byte has been reached
region_count++;
regions = (region_t *)ck_realloc(regions, region_count * sizeof(region_t));
regions[region_count - 1].start_byte = cur_start;
regions[region_count - 1].end_byte = cur_end;
regions[region_count - 1].state_sequence = NULL;
regions[region_count - 1].state_count = 0;
break;

}
if (mem_count == mem_size) { // Double the buffer size
mem_size = mem_size * 2;
mem=(char *)ck_realloc(mem, mem_size);

}
}

}
if (mem) ck_free(mem);
//in case region_count equals zero, it means that the structure of the buffer is broken
//hence we create one region for the whole buffer
if ((region_count == 0) && (buf_size > 0)) {

regions = (region_t *)ck_realloc(regions, sizeof(region_t));
regions[0].start_byte = 0;
regions[0].end_byte = buf_size - 1;
regions[0].state_sequence = NULL;
regions[0].state_count = 0;
region_count = 1;

}
*region_count_ref = region_count;
return regions;

}

Listing 1: Implementation of the message parse function in AFLNet for the
IRC protocol.
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5.4 Grammar based fuzzing for the IRC protocol
A grammar can improve fuzzing of protocol syntax. Specifying syntactically
correct input mutations can potentially increase coverage while fuzzing. More
background information regarding grammar based fuzzing is provided in
section 2.3. Grammar based fuzzing with an upfront specified grammar
is not supported in AFLNet. However, an alternative in a simple form
is provided with dictionaries. More information regarding the dictionary
implementation can be found in section 5.4.1. In section 5.4.2 the results
are summarised.

5.4.1 Dictionary implementation

AFLNet can be provided with a dictionary. A dictionary is conceptually
a list of keywords that is used to mutate messages. Such a dictionary
lacks specifications of protocol structure. Therefore, created messages do
not always adhere to protocol constraints. For instance, a channel name
should always follow after a new channel command. However, mutations
that are rejected due to incorrect syntax, will often quickly be discarded by
the fuzzer8. This concept allows to approximate a grammar at run time.
Another limitation when using a dictionary instead of a more expressive
grammar is the missing option to recurse or expand rules.

A dictionary can be specified in two formats. A single keyword can be
stored in each file. In this case an entire directory forms a single dictionary.
Alternatively, a single file can be used with a list of keywords between
quotations marks. Special and unprintable characters have to be represented
in a hexadecimal ASCII value. Single digit hexadecimal numbers also need
an additional zero as prefix.

For the IRC protocol a set of commands and special characters is ex-
tracted from the RFC and ngIRCd9 specifications. These keywords are
used to create a dictionary of the second single file format. This dictionary
is shown in Figure 5.2. In this dictionary several characters with a spe-
cial meaning in the IRC protocol and commands of the IRC protocol are
included.

5.4.2 Dictionary experiment results

A higher performance is expected compared to the baseline experiments in
section 5.3.4. The results are summarised in table 5.2. Graphical represen-
tations of the paths found and maximum depth reached per execution are
shown in fig. 5.3a and fig. 5.3b.

8https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
9https://github.com/ngircd/ngircd/blob/master/doc/Commands.txt
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#
# AFL Dictionary for
# the IRC protocol
"\x00"
"\x07"
"\x15"
"\x012"
" "
","
"@"
"#"
"&"
"$"
"HELP"
"CAP"
"CAP LS"
"CAP LIST"
"CAP REQ"
"CAP ACK"
"CAP NAK"
"CAP CLEAR"
"CAP END"
"CHARCONV"
"PASS"
"NICK"
"WEBIRC"
"LUSER"
"MOTD"
"PART"
"DIE"
"DISCONNECT"

"GLINE"
"KLINE"
"SERVICE"
"SERVLIST"
"SQUERY"
"SVSNICK"
"CHANINFO"
"METADATA"
"GET"
"POST"
"NJOIN"
":"
"ERR_NONICKNAMEGIVEN"
"ERR_NICKNAMEINUSE"
"ERR_ERRONEUSNICKNAME"
"ERR_NICKCOLLISION"
"ERR_NEEDMOREPARAMS"
"ERR_ALREADYREGISTRED"
"USER"
"SERVER"
"ERR_ALREADYREGISTRED"
"OPER"
"ERR_NEEDMOREPARAMS"
"ERR_NOOPERHOST"
"RPL_YOUREOPER"
"ERR_PASSWDMISMATCH"
"QUIT"
"SQUIT"
"JOIN"
"MODE"
"TOPIC"

"NAMES"
"LIST"
"INVITE"
"KICK"
"VERSION"
"STATS"
"LINKS"
"TIME"
"CONNECT"
"TRACE"
"ADMIN"
"INFO"
"PRIVMSG"
"NOTICE"
"WHO"
"WHOIS"
"WHOWAS"
"KILL"
"PING"
"PONG"
"ERROR"
"AWAY"
"REHASH"
"RESTART"
"SUMMON"
"USERS"
"WALLOPS"
"USERHOST"
"ISON"

Figure 5.2: Dictionary for the IRC protocol.
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Contrary to the baseline experiments, when using a dictionary there
appears to be an insignificant (p ≈ 0.49) negative correlation (pearson =
−0.51) between max depth and paths found. Partly, this can be explained
by experiment 0. This experiment reaches an approximately two standard
deviations higher max depth compared to the average. At the same time,
this experiment has a slightly below average total paths found. This could
indicate that the sample size is too low, further research is required to
investigate if there is indeed a negative correlation.

Additionally, the cut-off point of 500.000 executions might be not suf-
ficient to find a correlation. It seems that a fuzzer with a dictionary still
frequently finds new paths after around 500.000 executions.

Max Depth Total Paths

Exp. 0 44 449
Exp. 1 18 514
Exp. 2 25 417
Exp. 3 21 450
Exp. 4 27 479
Average 27 462
Standard deviation 9 33
Normal distribution p-value 0.21 0.84

Table 5.2: Results of the five test runs using a dictionary after approximately
500.000 executions. Each test case makes use of the same initial seed and
runtime parameters. Additionally the average, standard deviation and re-
sults of the Shapiro-Wilk’s test is provided. Based on the Shapiro-Wilk’s
test each measurement of the baseline is normally distributed (p ≥ 0.05).
No test run found any vulnerabilities, therfore these data are not shown.
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Figure 5.3: Visualisation of the number of paths found and maximum depth
reached with the dictionary experiments. The results per experiment are
provided in table 5.2.
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5.5 State-aware fuzzing
A SUT can be divided into different states. The state of a SUT depends on
the content of the program’s memory and is influenced by sending instruc-
tions to the SUT. By extracting information regarding the current state it
is possible to target a specific states of the SUT. During fuzzing, AFLNet
can use this information to learn the state machine of the SUT.

To aid implementing state-aware fuzzing and to be able to verify the
results, a state machine has been constructed for the IRC protocol. This
state machine can be found in section 5.5.1.

Details regarding the implementation of state-aware fuzzing for the IRC
protocol are provided in section 5.5.2. Results of the experiment can be
found in section 5.5.3.

5.5.1 State machine of the IRC protocol

A state machine is not provided in the IRC specifications. Therefore, a
manual construction of the state machine is conducted based on the IRC
protocol specified in RFC 2812 [25]. Graphviz [32] has been used to generate
the state machine.

This machine is visualised as graph and shown in Figure 5.4. In this
graph a node is defined as a state of the IRC protocol and an edge as
transition between states. Each edge represents one or more requests. Any
request can potentially fail, which results in an error response and no change
of state. These connections were removed from the visualisation. Also, the
authenticated commands Mode, Topic, Names, List, Invite, Kick, Privmsg,
Notice, Motd, Luser, Version, Stats, Links, Time, Connect, Trace, Admin,
info, Serverlist, Squery, Who, Whois, Whowas, Kill, Ping, Pong, Away,
Rehash, Die, Restart, Summon, Users, Oper, Operwall, Userhost and Ison
are combined in the edges labelled as “Queries”.

In this state machine three high level phases are identified.

• The authentication phase where the client connects to the server. In
this phase the SUT responses with the CAP command. CAP com-
mands are used to negotiate server functionality. This phase is nor-
mally ended by the client by sending the CAP END command.

• The messaging phase consists of most IRC commands. During this
phase for instance channels could be joined or permissions escalated.

• The termination phase should start after the SUT receives a (S)Quit
message. The only expected response would be a NOTICE command
that the client is disconnected.
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Figure 5.4: Manually constructed state machine of IRC protocol based on
RFC 2812. There are tree phases identified in the protocol. The authen-
tication phase (ellipses), the messaging phase (boxes) and the termination
phase (diamond). The expected flow in the authentication phase has been
annotated by bold arrows.

5.5.2 Implementation of state-aware fuzzing

To implement state-aware fuzzing, the fuzzer has to determine the current
state of the SUT. Some information regarding the state of the SUT can
be inferred based on received responses. Additionally, by instrumenting the
SUT, it is possible to receive a response code containing a more precise
indication of the current state of the SUT. To identify different states in the
SUT, the state machine constructed in section 5.5.1 can be used to analyse
the protocol.

Based on these states the SUT could be instrumented. In total 381 dif-
ferent places in the SUT use a function declared in irc-write.h to send
send a IRC message. Some of these messages are only send to other servers.
The testing setup uses only a single SUT. Therefore this part of the func-
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tionality would not need to be instrumented. The only changed function
calls are regarding IRC_WriteStrClient and IRC_WriteErrClient. With
this information, the fuzzer could determine its target state more precisely.
However, this approach could not be used on a different IRC server as SUT,
since this would require each SUT to be instrumented manually.

Alternatively, without instrumentation of the SUT, states can be esti-
mated by AFLNet by implementing extract_response_codes_irc. IRC
instructions can only be validly used in one of the three high level phases
each defined in section 5.5.1. Using a numerical value of each command as
state information can therefore be used as an approximation that is inde-
pendent of the SUT. Therefore this approach could be used to test any IRC
server without additional manual work. This method is used to implement
state-aware fuzzing for the case study. The implementation can be found in
listing 2.

5.5.3 State-aware experiment results

The results of each test repetition with state-aware fuzzing can be found
in table 5.3. The number of paths found and maximum depth reached per
execution are shown in fig. 5.5a and fig. 5.5b. Similary to the baseline, there
is a positive correlation between the depth reached and the paths found.
This correlation is also statistically insignificant (p ≈ 0.14), but has a high
correlation coefficient of 0.76. With a larger sample size, a statistically
significant correlation is likely to occur.

Max Depth Total Paths

Exp. 0 21 342
Exp. 1 13 305
Exp. 2 15 283
Exp. 3 13 321
Exp. 4 22 347
Average 17 320
Standard deviation 4 24
Normal distribution p-value 0.11 0.69

Table 5.3: Results of the five state-aware test runs after approximately
500000 executions. Each test case makes use of the same seed, parameters
and SUT. Additionally the average, standard deviation and results of the
Levene test is provided. Based on the Levene test each measurement of
the baseline is normally distributed (p ≥ 0.05). No test run found any
vulnerabilities, therfore these data are not shown.
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Figure 5.5: Visualisation of the number of paths found and maximum depth
reached with the state-aware experiments. The results per experiment are
provided in table 5.3.

34



unsigned int* extract_response_codes_irc(unsigned char* buf, unsigned int buf_size,
unsigned int* state_count_ref)

{
char *mem;
unsigned int byte_count = 0;
unsigned int mem_count = 0;
unsigned int mem_size = 512;
unsigned int *state_sequence = NULL;
unsigned int state_count = 1; // Allocate room for the sequence
const char terminator[2] = {0x0D, 0x0A};
const char space[1] = {0x20};
mem=(char *)ck_alloc(mem_size);
state_sequence = (unsigned int *)ck_realloc(state_sequence,

state_count * sizeof(unsigned int));
state_sequence[state_count - 1] = 0;

while (byte_count < buf_size) {
memcpy(&mem[mem_count], buf + byte_count++, sizeof(char));

if ((mem_count > 0) && (memcmp(&mem[mem_count - 1], terminator, 2) == 0)) {
char temp[5];
memcpy(temp, mem, 2);
int incr = 0;
if(temp[0] == 0x3a){

while ((incr < mem_count) && (memcmp(&mem[incr], space, 1) != 0)) {
incr++;

}
}
memcpy(&temp[0], &mem[incr], 5);
unsigned int message_code = (unsigned int) atoi(temp);
state_count++;
state_sequence = (unsigned int *)ck_realloc(state_sequence,

state_count * sizeof(unsigned int));
state_sequence[state_count - 1] = message_code;
mem_count = 0;

} else {
mem_count++;

}
}
if (mem){ ck_free(mem); }
*state_count_ref = state_count;

return state_sequence;
}

Listing 2: Implementation of the response extraction function in AFLNet
for the IRC protocol.
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5.6 Checkpointing the SUT
Stateful fuzzing uses a sequence of input messages to test the SUT. De-
pending on the target, long sequences are required to fuzz a deep state.
Checkpointing aims to increase fuzzing speed by restoring a message at the
end of a sequence instead of repeating the same sequence. More background
information regarding the concept of checkpointing in the context of stateful
fuzzing is provided in section 5.6.1. To implement checkpointing, several ap-
proaches were evaluated. The first two approaches mentioned in section 5.6.2
attempted to use containerisation and were based on Docker and Podman.
Due to technical constraints, this approach cannot be used without extensive
changes to AFLNet. An alternative approach using DMTCP is introduced
in section 5.6.3. This approach does not have the same limitations as the
containerisation approach.

5.6.1 Checkpointing a stateful protocol

Checkpoints enable saving the complete state of the SUT after several ex-
ecutions. This prevents repeating longer message sequences and therefore
reduces duplication while fuzzing. An example sequence with four messages
is shown in Figure 5.6. In this example s4 is the target state. To reach this
state, usually the sequence m1,m2,m3 has to be repeated before m4 can
be used to fuzz state s4. With checkpointing it would be possible to save
s3 after visiting this state. To fuzz s4, a checkpoint of s3 could ideally be
restored to prevent sending the entire message sequence repeatedly.

S0 s1 s2 s3

Checkpoint

s3

s4
m1 m2 m3 m4

m4

Figure 5.6: Visualisation of the optimal benefit of checkpointing with a four
message long sequence. In this graph S0 is the starting state and S4 the
final state.
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5.6.2 Checkpointing with containers

Containers can be checkpointed to restore a previous state of the SUT. Such
checkpoints can be used without modifications to the SUT. The SUT has
to run in a “container”, which is an isolated user space that shares the
kernel with the host operating system10. Crashes of the SUT are monitored
using core dumps. A core dump is managed by the kernel11, therefore crash
monitoring is expected to work even when the SUT is containerised. Some
background information regarding the containerisation platform choice is
provided in this section. An attempt to implement checkpointing with the
chosen container platform Podman is described below.

Containerisation platform

A popular platform to containerise applications is Docker12. However, the
current Docker API does not provide checkpoint functionality13. An alter-
native containerisation platform, Podman, does provide this functionality14.
Therefore, Podman is used for the experiments regarding checkpointing by
containerisation.

Due to an inconsistency in the restore API of Podman, exporting a check-
point to an external archive using the API seems currently not possible15.
This functionality could be used to fuzz multiple versions of the SUT in
parallel. Without this functionality it is still possible to create a checkpoint
of a SUT and restore this serially at a later moment.

Besides checkpointing, Podman offers a similar functionally called ex-
ports. For this use case exporting is not usable. The key difference between
checkpoints and exports is that the entire state of all processes is saved for a
checkpoint. For an export, only the file system is saved. Therefore a restored
export will not be completely equivalent to repetition of a message sequence.

To estimate the feasibility of this approach to checkpointing, the restore
time of a container using the Podman API is measured. A full checkpoint-
restore cycle requires 2.2 s±0.1. More details regarding the measurement
setup are provided in appendix A.2.

Podman approach

To integrate checkpointing with AFLNet, modifications to the fuzzer are
required. Primarily, checkpoints have to be created after finding new states.

10https://www.redhat.com/en/blog/architecting-containers-part-1-why-understanding-
user-space-vs-kernel-space-matters

11https://man7.org/linux/man-pages/man5/core.5.html
12https://www.docker.com/
13https://docs.docker.com/engine/api/v1.41/
14https://docs.podman.io/en/latest/_static/api.html
15https://github.com/containers/podman/issues/6517
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Additionally, these checkpoints should be used to restore a state instead of
replaying a message sequence. AFLNet uses two approaches to choose a
target, either with or without state-aware mode. Therefore, implementing a
restore functionality should ideally occur for both the state-aware and regular
mode. In this thesis, state-aware targeting a state has been extended with
the implementation of checkpointing. This could allow testing of a combined
improvement of checkpointing and state-aware fuzzing as implemented in
section 5.5.

To interact with the Podman API libcurl has been used16. Libcurl
provides a C API to make synchronous requests. Synchronous requests will
halt the program until in this case a checkpoint is either created or restored.
For testing purposes a function is added to prevent duplicating code. This
function is shown in listing 3.

By default AFLNet uses a fork server to quickly start a new version of
the SUT. To implement a minimal working concept of containerised check-
pointing, requests have been added to run_target(). An implementation
using this approach can successfully start, checkpoint and restore a SUT.
For testing purposes a container for the SUT is build using the Dockerfile
provided in listing 4.

However, this method turned out not to work with the instrumentation
of AFLNet. Instrumentation could not be observed by the fuzzer anymore.
This issue prevented, in the contexts of this thesis, the usage of AFLNet as
greybox fuzzer with containerised checkpoints. A possible solution could be
interpreting instrumentation in each container independently and sending
this data back to the host process.

5.6.3 Checkpointing with DMTCP

Another method to checkpoint a program is with Distributed MultiThreaded
Checkpointing (DMTCP) [33]. This program can checkpoint programs on
Linux systems written in many frequently used languages such as C, C++
and Python.

Research has been conducted previously on using DMTCP to optimise
generating state machines of programs [34]. This task, similary to fuzzing,
benefits from a high coverage of the SUT. Measurements indicate that
DMTCP can positively impact performance while exploring a stateful pro-
gram.

Implementing checkpointing with DMTCP instead of Podman check-
points would allow AFLNet to observe instrumentation of the SUT. On a
high level, DMTCP checkpointing will require adjustments when starting
the SUT, storing a SUT state and seeking to a target state.

Implementing DMTCP is preferred to be based on the execve mode
16https://curl.se/libcurl/
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u32 post_request(const char url[100], const char params[100]){
u32 returnv = 0;
CURL *curl;
CURLcode res;
curl_global_init(CURL_GLOBAL_ALL);
curl = curl_easy_init();

if(curl){
curl_easy_setopt(curl, CURLOPT_URL, url);
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, params);
res = curl_easy_perform(curl);
if(res != CURLE_OK){

fprintf(stderr, "curl post_request() failes: %s\n",
curl_easy_strerror(res));

returnv=1;
}
curl_easy_cleanup(curl);

} else{
returnv=1;

}
curl_global_cleanup();

return returnv;

Listing 3: To test the integration with the Podman API, a function to write
synchronous post requests has been used based on the examples provided in
the libcurl documentation.

FROM fedora
COPY ./ngircd ngircd
RUN chmod +x ngircd
COPY ./ngircd.conf /usr/local/etc/ngircd.conf
EXPOSE 6667
CMD [ "./ngircd", "-np" ]

Listing 4: The dockerfile used to build a container containing ngIRCd. For
this container, ngIRCd has been compiled previously with instrumentation.
The default generated configuration file has been used.
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of AFLNet. By default AFLNet uses a fork server to improve execution
speed17. More research is needed to evaluate the possible advantages of
using principles of the AFLNet fork server in combination with checkpoints.
Another consideration when integrating DMTCP in AFLNet is that DMTCP
appears to depend on a shell environment. Therefore, while calling DMTCP
commands using system() is functional, using execv() is malfunction.

When saving a state, the state id could be used as a reference to the
checkpoint. It should be noted that the state id used by AFLNet is not
guaranteed to be unique. However, the likelihood of a collision is expected
to be low enough to not negatively impact fuzzing performance in general.
A checkpoint could be loaded if a state is targeted, that has been reached
before. A possibility to prevent a continuous growth of checkpoints, is to
prune checkpoints of states that can be reached with only a fraction of the
maximum depth of messages. Further research is needed to find a guideline
when a checkpoint should be pruned. This depends on the target state
selection algorithm, speed of the SUT and overhead of the checkpoint.

17https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
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5.7 Comparison of approaches
In this section results of the four previously introduced approaches are com-
pared with the baseline described in section 5.3. An overview of paths found
and depth reached in all four approaches can be seen in fig. 5.7. A in-depth
comparison of dictionary-based fuzzing is provided in section 5.7.1. More
details regarding state-aware fuzzing are given in section 5.7.2. The combina-
tion of both approaches is discussed in section 5.7.3. Since for checkpointing
the SUT as described in section 5.6, no working implementation is available,
this approach has not been included in this section. A summary of all results
can be found in table 5.4.

Approach Max Depth (avg±std) Total paths(avg±std)

Baseline 19± 2 293± 23

Dictionary 27± 9 462± 33

State-aware 17± 4 320± 24

State-aware with dictionary 16± 3 395± 38

Table 5.4: High level overview of results from all four experimental ap-
proaches. The average and standard derivation of the maximum depth and
total paths is provided.

5.7.1 Dictionary based fuzzing

From this overview, dictionary based fuzzing finds on average the most paths.
Compared to the baseline almost 60% more paths are found. Intuitively, the
confidence interval of the grammar and baseline do not overlap, indicating
a considerable improvement. Statistically, this difference is significant (p ≈
0.00003) when applying Welch’s t-test. The maximum reached depth is on
average 42% non-significantly increased (p ≈ 0.14). As shown in fig. 5.7b,
the standard deviation of the depth reached is large, and the 95% confidence
interval overlaps with the standard deviation of the baseline. This implies
that on average longer message sequences are tested and an experiment with
more power could show this statistically.

Based on these results a dictionary appears to be essential for fuzzing of
the IRC protocols. This improvement appears to be a result of more syntac-
tically distinguishable mutations, because each mutation used keywords and
tokens of the IRC protocol. This principal can be applied to any structured
input, therefore, this improvement is likely to occur in any protocol with an
extensive syntax. More details regarding fuzzing with a dictionary can be
found in section 2.3.
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Figure 5.7: An overview of the results of the experiments performed to
assess the performance of the baseline, grammar and state-aware approach.
Additionally, a combination of the grammar and state-aware mode has been
evaluated.

5.7.2 State-aware fuzzing

Also in fig. 5.7a, state-aware fuzzing appears to be an improvement on path
coverage to the baseline. This improvement is however less then 10% com-
pared to the baseline. On the other hand, state-aware fuzzing decreases
the depth reached, on average the maximum depth decreases with approxi-
mately 10%. Neither difference is statistically significant. More background
information regarding state-aware fuzzing is provided in section 5.5.

An explanation for this negative result could be that the IRC protocol
does not have many different states. As shown in section 5.5.1 the protocol
can be divided in roughly three main states. Both, the initial authentication
state and the final termination state are relatively small. Most IRC com-
mands are in the authenticated state. In this state commands can be used
in almost any order, which might reduce the effect of state-aware fuzzing.

Another observation is that the by AFLNet learning state machine is
different compared to the state machine designed based on the IRC spec-
ifications. Based on the designed state machine, multiple different states
can be reaches from most states. However, the learned state machine only
branches to several different states from the initial state and continuous with-
out branching. This can be seen in fig. 5.8a. The depth of this state diagram
does not correspond with the length of the initial message sequence. This
could imply that the fuzzing duration used in this experiment was too short.
With more executions, likely more state transitions would be uncovered.

Figure 5.8b shows a visualisation of a state machine generated when
combining state-aware fuzzing with a dictionary. In this combination more
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transitions from the initial state are found.
As shown in fig. 5.9, known numeric replies are replaced with full response

names. When comparing this state machine with the previously constructed
state machine in section 5.5.1, most transitions are expected. The generated
diagrams consist of server responses for the queries described mainly in the
authentication phase of the protocol. State “265” and “266” are not identified
and RPL_STATSDLINE is not part of the RFC analysed in chapter 4.
“ERR_NOMOTD” is a response of the Motd query available in the messaging
phase. The red coloured states are error responses that are by design omitted
in the constructed state machine.

Overall it appears that the messaging and termination phase are not
fuzzed optimally. This strengthened the notion that the fuzzing duration of
the experiments is too short.

5.7.3 Combining dictionary based and state-aware fuzzing

Finally, a combination of state-aware and dictionary based fuzzing is tested.
Surprisingly, this method performed worse compared to only using a dictio-
nary. A possible explanation for this effect could be that parts of a dictionary
are only relevant in certain states, which could result in more semantically
wrong mutations by using syntax only applicable in different states. Further
research is required to find out whether this effect holds true after more
iterations.
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(a) Generated in state-aware mode.
(b) Generated in state-aware mode
with a dictionary provided.

Figure 5.8: State machines generated by AFLNet.

44
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RPL_WELCOME ERR_NOTREGISTERED ERR_NEEDMOREPARAMS ERR_ERRONEUSNICKNAME GONE ERR_ALREADYREGISTRED

RPL_YOURHOST

RPL_CREATED

RPL_MYINFO

RPL_BOUNCE

RPL_LUSERCLIENT

RPL_LUSERCHANNELS

RPL_LUSERME

265

266

RPL_STADSDLINE

ERR_NOMOTD

Figure 5.9: Generated in state-aware mode with a dictionary provided using
AFLNet.
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5.8 Bug Injection
Fuzzing can be used to show that vulnerabilities are present in a SUT.
However, if no vulnerabilities are found this does not necessarily imply that
the SUT contains no vulnerabilities. To assess if bugs are not found due to
a structural problem or that no detectable bugs are present, manual bug
injection has been applied.

For this experiment, eight bugs are introduced in several locations of the
SUT. Several domain specific vulnerabilities are introduced. For instance,
by accepting invalid channel names or allowing users to be kicked multiple
times out of a channel. Other bugs consists of adjusting boundary conditions
and buffer overflows. A full list of changed functions is provided in table 5.5.

File Line number Function name Change summary

channel.c 656 Channel_IsValidName invalid channel names
are accepted

channel.c 434 Channel_Quit buffer overflow in en-
hanced privacy mode

channel.c 354 Channel_Kick

user can be kicked out
of a channel indepen-
dent of if the user is in
the channel

channel.c 270 Channel_Join
user can be added to
the same channel mul-
tiple times

channel.c 148 Channel_InitPredefined boundary condition
changed

conn-func.c 130 Conn_ClearFlags boundary condition
changed

conn-func.c 169 Conn_Next boundary condition
changed

irc-write.c 503 Send_marked_connections buffer size reduced

Table 5.5: An overview of the eight manually injected bugs in the SUT.

Due to time considerations, testing with artificially introduced bugs
is only conducted with 300.000 iterations. Based on the comparison of
approaches in section 5.7, dictionary based fuzzing appears to be the most
promising approach. Therefore, bug injection is tested with the dictionary
based fuzzer described in section 5.4. Each experiment has been repeated five
times. Each repetition uses the same settings, seed and SUT. Surprisingly,
only in some experiments crashes resulting by the introduced bugs are found.
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A summary of the results of these experiments are shown in table 5.6.
The average depth is similar to previous experiments. The number of paths
found is on average 110% higher compared to the dictionary based approach
results in section 5.4.2. This increase is likely caused by injecting bugs.

These experiments allow to measure correlation between the different
metrics. There is no significant correlation between the maximum depth
reached and the number of bugs found. The Pearson correlation coefficient
is 0.04 with p = 0.94. There is a stronger positive correlation (0.7) with
p = 0.18 between the total paths found and number of bugs found. This
correlation is still statistically insignificant. However, a large sample size is
expected to show a significant relation. Graphically, the correlation between
all three metrics is shown in fig. 5.10.

Max Depth Total paths Unique crashes

Exp. 0 16 1011 20
Exp. 1 21 901 0
Exp. 2 26 1086 13
Exp. 3 19 915 2
Exp. 4 16 986 1
Average 20 980 7
Standard deviation 4 67 8
Normal distribution p-value 0.36 0.67 0.15

Table 5.6: Results of the five test runs with artificial bugs after approximately
300.000 executions. Each test case makes use of the same seed and runtime
parameters. Additionally the average, standard deviation and the p-value of
the Shapiro-Wilk’s test is provided. Based on the Shapiro-Wilk’s test each
measurement of the baseline is normally distributed (p ≥ 0.05).

Based on the correlation coefficients found in this experiment, total
paths found is a stronger indicator of the performance of the fuzzer than
the maximum depth reached. Additionally, the fuzzing setup is able to find
vulnerabilities, which validates the fuzzing approach used in the previous
case studies.
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Chapter 6

Future work

In the following sections, recommendations for further research to optimise
fuzzing are summarised.

6.1 Correlating metrics
In general, one could assume that finding more paths in a SUT and fuzzing
longer sequences helps to find bugs. Total paths found is a metric sometimes
used in the literature [10] to asses performance.

In chapter 5 three metrics (total paths found, maximum depth reached
and number of bugs found) were used to evaluate the performance of the
fuzzing approach. However, the power of the conducted experiments was too
low to find significant correlations between the used metrics. Therefore, it is
suggested to investigate the correlation between number of bugs found and
other metrics in more detail. Another possible metric would be measuring
code coverage depending on the age of the code. More recent and therefore
potentially less mature code could be prioritised.

6.2 Improving execution speed
As described in section 5.1, fuzzing seems relatively slow compared to the
execution speed mentioned in the original documentation and in scientific
literature. In addition to the the methods used in this thesis, further sugges-
tions to improve execution speed are provided in the AFLNet documentation.
For instance, improvements might be gained by profiling and optimising the
SUT. Also, brute force protections should be identified and circumvented
before fuzzing.

Disk access is also another potential bottleneck regarding execution speed.
To partly mitigate this it might be possible to replace safe memory methods
with faster alternatives. In this case both the impact on performance and
stability of the SUT have to be considered.
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6.3 Supporting more complex protocols
As discussed in section 5.4, AFLNet cannot fuzz with a more expressive
grammar, but only with a dictionary. A grammar that supports more com-
plex protocol syntax could be evaluated. Replacing a dictionary with such a
grammar, could help improve fuzzing performance. However, a more complex
grammar is also more complex to create for new protocols. Therefore, bene-
fits of such a grammar should be evaluated against the additional manual
work involved.

6.4 Alternative fuzzing frameworks
In the literature, multiple fuzzing frameworks are currently used. Some
fuzzing frameworks are introduced in chapter 3. An extensive comparison
between fuzzers is difficult, since most fuzzers focus on specific use cases and
comparisons are highly dependent on the chosen SUT. Additionally, fuzzing
is an active research area where new techniques and frameworks introduced
frequently. This thesis focuses on greybox fuzzing with AFLNet, which
is an extension of AFL. Other extensions of AFL and more independent
alternatives such as Fuzzowski1 might be interesting to compare performance
in specific environments. Also there exist whitebox fuzzers that use the
instrumentation of AFL such as KleeFL2.

6.5 Optimising fuzzing duration
For non-trivial programs, an exhaustive search trough the input space is
infeasible. Therefore, at some point the fuzzer has to be stopped. At
that point there could still be undiscovered vulnerabilities. To determine
a suitable time to stop fuzzing, a Good-Turing frequency estimation might
help [35]. The Good-Turing frequency might help to find the point where
a fuzzer is saturated. A fuzzer is saturated if no new findings are expected
to be found in a reasonable time frame. Suggestions how this could be
implemented in AFL and AFLNet along with possible limitations of this
method can be found online3.

Specifically for stateful fuzzing it would be interesting if a Good-Turing
frequency could also be calculated per state. This could provide an indication
when a fuzzer should select a new target state.

1https://github.com/nccgroup/fuzzowski
2https://github.com/julieeen/kleefl
3https://bshastry.github.io/2018/10/08/good-turing-fuzzing.html
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Chapter 7

Conclusions

Fuzzing is an automated approach to software security testing. As explained
in chapter 2, there are several variants of fuzzing techniques. Fuzzing can
be divided mainly in white-, black- and greybox fuzzing. Depending on the
circumstances such as the specific target, available information and available
fuzzing time, these techniques can outperform each other.

In the experimental setup of this thesis, the greybox fuzzer AFLNet is
used. Background information regarding AFLNet can be found in section 3.1.
AFLNet is a fuzzer that supports stateful fuzzing of network protocols. To
fuzz stateful programs, AFLNet handles input as a sequence of messages
instead of a single message. The initial input messages of AFLNet are also
referred to as initial seed. This allows mutating only a target message instead
of a random part of the input. Selective mutating helps preventing the fuzzer
only reaching several initial states and never reaching deeper states.

AFLNet has been compared with other fuzzers in chapter 3. Based on
this comparison, AFLNet has several advantages. For instance a regional
mutation strategy results in a substantial reduction of time to find bugs
compared to other stateful fuzzers. Also, AFLNet has a maintained code
base with sufficient documentation to use and extend it. However, large
parts of the code base are inherited from AFL. Functionality of AFLNet
appears to be added without major refactoring of the new code base.

As the case study for this research, an implementation of an IRC server,
NgIRCd is used as server under test (SUT). This server implements the
messaging protocol IRC which is described in chapter 4. There are several
versions of the IRC protocol. Ongoing, but not yet finalised, efforts for a new
IRC version have already been partly implemented in the SUT. The existence
of several versions which are mostly backward compatible makes the IRC
protocol difficult to implement. Potentially, this can lead to vulnerabilities
that would not occur with more concise protocol specifications.

In the experimental setup of chapter 5, several extensions of AFLNet
have been evaluated. The focus of the experiments was on the client-to-server
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communication of the IRC protocol. For this purpose an initial seed is used
that consists only of client-to-server communication without any server-to-
server communication. As baseline AFLNet has been extended to implement
fuzzing of the IRC protocol. Furthermore, three approaches extending the
baseline have been evaluated on the SUT:

• Dictionary based fuzzing;

• State-aware fuzzing;

• Fuzzing with checkpoints.

A short overview of the results for each approach can be found below.
Some considerations regarding the conducted case study are discussed later
in this conclusion.

Dictionary based fuzzing

AFLNet already supported fuzzing with dictionaries. However, for the IRC
protocol no dictionary was previously available. Therefore, for this case study
a dictionary has been created for the IRC protocol. This dictionary increases
the number of paths found significantly compared to the baseline. This makes
dictionary based fuzzing the most successful conducted experiment.

State-aware fuzzing

AFLNet supports stateful fuzzing. However, by default AFLNet has no
notion which states of the SUT are fuzzed with a given input. Implementing
state-awareness for the IRC protocol enables the SUT to target specific
states. This could help ensure that all protocol states are covered when
fuzzing. In the case study, state-aware fuzzing does not improve fuzzing
performance significantly. Combining state-aware fuzzing with a dictionary
results in lower performance. Also, the IRC protocol does not enforce specific
command orders in most states. This could explain why the impact of
targeting specific states is low.

Fuzzing with checkpoints

AFLNet handles input as a message sequence. To fuzz a “deep” state, a
large part of this sequence will be repeated once for each tested input. A
sequence in the experiments often contains around twenty messages. And,
the execution speed is often less then one execution per second. So, to
increase execution speed substantially, checkpointing could be used to restore
parts of the input sequence.
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The first attempt to apply checkpointing used a containerised SUT with
Podman. However, this turned out not to work together with instrumenta-
tion injected by AFLNet. An alternative approach with DMTCP has been
identified.

Limitations of results

All experiments have been repeated five times to obtain reliable results. Even
with repetitions, the standard deviation for total paths found and maximum
depth reached, did differ with a factor three between different experiments.
The sample size is large enough to reason about substantial performance
impacts. However, smaller differences might not be noticeable. For instance
a larger sample size could show a significant improvement for state-aware
fuzzing. Further research with a larger sample size is recommended.

Another consideration is that the fuzzing has been terminated after
500.000 executions per experiment. Some results might change if the number
of executions would be increased. Based on the generated state machine in
section 5.7.2 fuzzing had been stopped too soon to reach all states of the
IRC protocol.

To estimate whether there are no bugs in the SUT or whether the scope
of the experiments was too limited, a number of synthetic bugs has been
introduced in the SUT. Several of these bugs have been found by the fuzzer.
This suggests the scope of the conducted experiments is sufficient.

An approach to determine a reasonable time to stop fuzzing based on
the already found results has been identified in section 6.5.
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Appendix A

Appendix

A.1 Configuration of AFLNet
The installation instructions given on the AFLNet project site 1 are clear
and help to get started quickly. Some general performance optimisations
have to be activated at run time. For the case study, this has been done
with the script given in listing 5.

# Set enviroment variables for AFLNet
export AFLNET=$(pwd)/aflnet
export WORKDIR=$(pwd)
export PATH=$AFLNET:$PATH
export AFL_PATH=$AFLNET

# Catch non crashing memory faults
export AFL_HARDEN=1

# Set the scheduler from the default 'ondemand' to 'performance'.
echo performance | sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

# Disable huge pages
echo never > sudo /sys/kernen/mm/transparent_hugepage/enabled

# Set better scheduling strategies
echo 1 > sudo /proc/sys/kernel/sched_child_runs_first
echo 1 > sudo /proc/sys/kernel/sched_autogroup_enabled

Listing 5: A script to configure environment variables and performance
settings for AFLNet.

1https://github.com/aflnet/aflnet
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A.2 Podman checkpointing API
Podman can be used to checkpoint a container. Rootless containers are
currently not supported with checkpointing. To enable fuzzing without root
permissions on the fuzzer, the API can be used to interact with the containers.
In that case the Podman service runs as root.

To test the API some functions are written in Python (3.9.4). This testing
showed some inconsistent behaviour. According to the documentation 2 3 it
is possible to export a checkpoint to a tar.gz archive. This archive should
be possible to import with a different name or on a different host. This
could be used to fuzz multiple versions of SUT in parallel. However, when
completing more than one full checkpoint-pause-restore cycle, the underlying
service criu stops with error code 52. According to the log an invalid cgroup
configuration occurs. This issue does not occur without exporting.

Hyperfine4 is used to measure the required time for a full checkpoint-
pause-restore cycle. These functions are exposed in a Python program shown
in listing 6.

An initial state is created with a single container. For the benchmark
10 runs are measured. Additionally, 5 runs are executed directly before the
benchmark that are discarded. According to this benchmark a full cycle
requires on average 2.2 s±0.1.

A more representative measurement is creating a single checkpoint and
restoring this multiple times. To simulate this behaviour, the same bench-
mark procedure as for the full cycle is used. A single checkpoint is created,
and restored ten times. On average this takes 11.7 s (±0.3).

2http://docs.podman.io/en/latest/markdown/podman-container-checkpoint.1.html
3http://docs.podman.io/en/latest/markdown/podman-container-restore.1.html
4https://github.com/sharkdp/hyperfine
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class PodmanBindings:

def __init__(self, domain="localhost", port="8080", version="1.40.0"):
self.url = f"http://{domain}:{port}/v{version}/libpod/"

def get_containers(self):
response = requests.get(self.url + "containers/json")
response.raise_for_status()
return response

def stop_container(self, name, all=False, Ignore = False, timeout=10):
request_url = self.url + "containers/" + name + "/stop"
params = {"all":all, "Ignore":Ignore, "timeout":timeout,}
response = requests.post(request_url, params = params )
response.raise_for_status()
return response

def checkpoint_container(self, name, export=True, ignoreRootFS=False,
keep=True, leaveRunning=True, tcpEstablished=True):

request_url = self.url + "containers/" + name + "/checkpoint"
params = {"export":export, "ignoreRootFS":ignoreRootFS, "keep":keep,

"leaveRunning":leaveRunning, "tcpEstablished": tcpEstablished}
response = requests.post(request_url, params = params, stream=True )
response.raise_for_status()
return response

def restore_container(self, name, keep=False, leaveRunning=True,
ignoreRootFS=False, podman_import=True, ):

request_url = self.url + "containers/" + name + "/restore"
params = {"import":podman_import, "keep":keep,

}
response = requests.post(request_url, params = params, )
response.raise_for_status()
return response

Listing 6: Bindings to use the Podman api to checkpointing and restore
based on the json and request libraries.
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