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Abstract

When an advancement is made in state-of-the-art performance for the audio

source separation task, it is often the case that an entirely new architecture

is published along with it. Even though these models contribute greatly

to advancing the field, it can be difficult to determine what components

of a new architecture make it perform better than the rest. The goal of

this thesis is to analyze some of the basic methods that architectures can

implement to improve audio source separation performance.

We looked at various relevant optimizers to find that RMSprop and

Adam are both optimizers that we recommend for our task. We found

that increasing the depth of feature extracting architectures such as an auto

encoder can negatively impact the results, but if skip connections are added,

deepening the network greatly improves performance. Furthermore, we saw

that using mask synthesis over spectrogram synthesis improves both training

stability and performance. We tested the use of dynamic mixing of source

signals to create additional samples, but our measurements showed that this

form of data augmentation negatively impacted our results, likely due to the

large number of samples added to the training data. Finally, we compared

using depth-wise separable convolutions instead of standard convolutions to

show the trade-off between model size and performance.
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Chapter 1

Introduction

Audio Source Separation is the task of isolating a signal from a mixture of

multiple signals. The individual signals that are heard in the mixture are

called sources because that signal comes from a single source. Sources can

be anything from vocals, and instruments to background noise. There are

many useful application of audio source separation, such as the practical ap-

plication of removing background noise from voice calls, or fun applications

like being able to create instrumental tracks for karaoke, given any song. In

Figure 1.1 we see a graphical illustration of what audio source separation is.

Figure 1.1: This figure illustrates what can be classified as a mix of sources,

and what the separation of those sources entails [8].
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When given a mixture of audio sources, we can define that mixture as

the sum of all the sources. We define the mixed source signal as a function

of time y(t), as the sum of N source signals xn(t), where n = 1 . . . N . We

can write this down as Equation 1.1 [8].

y(t) =

N∑
i=0

xi(t) (1.1)

In order to perform the separation of the signals xn from the mixture y

we will use a neural network. To have a neural network perform the sep-

aration we use supervised learning by training the network using a large

amount of example songs where the separate sources are available. To train

our models we used the MUSDB18 dataset [30], containing 150 songs and

their separated sources. Using this data, the characteristics of the source

signal can be learned by the neural network and be used to recognize the

source for separation.

In the last decades we have seen lots of improvement in the audio

source separation space. Before the popularization of deep neural networks

(DNNs), various approaches to tackle source separation were introduced.

These include local Gaussian modeling [7, 11], non-negative factorization

[22, 20, 26], kernel additive modeling [24], and a combination of multiple

approaches [28, 23, 10]. Currently, DNNs are the dominant method of

achieving state-of-the-art performance in source separation tasks. In ear-

lier work, feed forward fully connected neural networks (FNNs) were used

[27, 38]. These would take multiple frames as input, concatenated, to uti-

lize temporal context. These standard FNN were soon replaced by long

short-term memory (LSTM) based models, that were able to model a longer

context, as in [39]. LSTM based models showed performance increase over

the previous FNNs, but they suffer from longer training times. Longer train-

ing times are detrimental for testing architecture changes or re-training the

model for a new purpose, making it more difficult to find good models.
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With the research being done on image classification using convolutional

neural networks (CNNs) [21, 32, 35, 19, 36], prepossessing the audio signal

using the Short-Time Fourier Transform (STFT) has proven to be a suc-

cessful way to perform audio source separation using CNNs. CNNs are able

to take long contexts, similar to LSTMs. The receptive field of a CNN is

increased as the network deepens. However, modeling a larger context re-

quired deeper models, which suffer from vanishing gradients, leading to a

decrease in performance. CNN based architectures such as UNets, ResNet

[13] and densely connected CNNs [37] alleviated this problem by adding skip

connections to join layers in the network. This allowed both the original in-

put to be passed further down the network to preservation of details, and for

the gradient to flow to earlier layers, directly bypassing the layers in between.

Throughout the years of research in the field of audio source separation

we have seen many different approaches and model architectures. We have

end-to-end models that work in the amplitude-time domain [33], and we have

seen models that work in the frequency-time domain that use the STFT as

prepossessing step. When a new model gets released that outperforms the

current state-of-the-art, a comparison is given between the new model and

previously viable models, to show the improvement in performance. The

downside of these comparisons is that we do not get to see what design

choices improved the model itself, but only as a whole when compared to

other solutions. In this thesis we will focus on CNNs trained to perform

audio source separation in frequency-time domain. We use the STFT on

a segment of audio to transform it to a spectrogram which is then used

as input to the network. The network is then also trained to synthesis

the spectrogram of the target source as output. We will be using a UNet

architecture to see how different design choices and techniques effect audio

source separation performance of the architecture.
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In Chapter 2 we go over the preliminary knowledge to aid in the un-

derstanding of our research. We explain the STFT and its subsidiary, the

Fourier Transform (FT), which we use to process our data, in Sections 2.1

and 2.2. In Section 2.3 we go over the Constant Overlap Add (COLA)

condition that is required for the STFT and its inverse to be lossless. We

finalize the Chapter of preliminaries by explaining what depth-wise separa-

ble convolutions are in order to compare them with standard convolutions.

We follow up the Chapter on preliminaries with Chapter 3 describing our

research comparing design choices for spectrogram based audio source sep-

aration. We first look at what optimizer is best for audio source separation

in Section 3.2.2. In Section 3.2.3 we discuss the effect of skip connections in

a comparison between Auto Encoders (AEs) and UNets at various depths.

Furthermore we discuss the approach of soft mask synthesis and how it

compares to directly synthesising the source spectrogram in Section 3.2.4.

Section 3.2.5 discusses the use of dynamic mixing as a data augmentation

strategy. Finally, Section 3.2.6 goes over the effect of replacing standard

convolution layers with depth-wise separable convolutions and what impact

this has on model size and performance. After our research, we move on

to Chapter 4 covering related work in the field of audio source separation.

We end our thesis with a discussion about research we have done and the

conclusions we have made, in Chapter 5.
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Chapter 2

Preliminaries

In this chapter we will discuss the preliminary knowledge. Throughout this

thesis the input to a model is a spectral representation of the audio. The

audio is converted from a waveform to an 2D (frequency, time) representa-

tion, using the Short-Time Fourier Transform (STFT). The STFT applies

the Fourier Transform (FT) on multiple overlapping time frames across the

given audio. For a better understanding of the information that a spectro-

gram contains, we explain what the FT is in Section 2.1 and what the STFT

is in Section 2.2. Next, we go over Constant Overlap Add (COLA) condition

required for the STFT and its inverse to be lossless in Section 2.3. We con-

clude the preliminary knowledge Chapter with Section 2.4, explaining how

depth-wise separable convolutions work for our comparison with standard

convolutions.

2.1 The Fourier Transform

We explain the Fourier Transform (FT) by sketching the following scenario.

Suppose we have an environment with two sources that create a sound, and

both sources produce that sound with a constant volume and frequency.

When recording both sources separately, we would get a measurement show-

ing two pure sinusoids. For the sake of this example let source one produces

sinusoid 1 shown in red (Figure 2.1), at a frequency of 500Hz, and source

two produces sinusoid 2 shown in blue (Figure 2.1), at a frequency of 750Hz.

Since these sources produce sound in the same environment it would be

difficult to record one of them without interference from the other. For sim-
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Figure 2.1: Two pure sinusoids and their super-position

plicity sake, we say that both sources are equally audible from the position

of the measuring instrument. If this is the case, the sound that would be

measured in the current environment would be the superposition of sinu-

soid 1 and 2, shown in green (Figure 2.1). The superposition is no longer

a pure sinusoid. As we increase the number of sources that produce pure

sinusoids, this impurity will further be amplified. The superposition of all

the sinusoids would look increasingly random and it would be more difficult

to distinguish what feature of the superposed waveform is caused by what

signal.

To solve this problem and decompose the superposed waveform into the

pure frequencies that made it, we can use the Fourier Transform (FT). The

FT is used to transform a finite sequence, of a function of time, to a sequence

of a complex valued function of frequency. Mathematically the FT of a time

signal y(t), where ξ is frequency and t is time, is given by

FT(ξ) =

∫ ∞
−∞

y(t)e−2πitξdt (2.1)

For source separation, it is important to note that the FT is a linear transfor-

mation. This is helpful because this means we can take the FT of a mixture

of noise and a source, and subtract the FT of the noise in order to get the

FT of the source.
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FT(y1 + y2) = FT(y1) + FT(y2) (2.2)

After performing the FT on a signal, we are able to pick out and manip-

ulate the frequencies that are of interest to us. Once the frequency domain

changes have been made we can go back to the time domain with the in-

verse Fourier Transform (iFT). Here we see the importance of the FT being

a linear transformation, because this allows us to remove the noise in the

FT of a signal, and then transform it back into an audio signal using the

iFT, to get the source without the noise. Mathematically the iFT is given

as

y(t) =

∫ ∞
−∞

FT(ξ)e2πitξdξ (2.3)

Before we take a look at an example, it is important to know how we

look at the FT. Taking the FT of a signal gives a sequence of complex values

as result. In order to get the magnitude at which the frequencies occur, we

take the absolute values of the FT. When we visualize the FT we always

show the magnitude. We can also recover the phase from the FT by taking

the argument of the complex values.

Figure 2.2: Fourier Transform of simple and complex sinusoids.
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In Figure 2.2 we see the FT of the sinusoids from Figure 2.1. As expected,

we can see a clear peak at 500 Hz for sinusoid 1, and a peak at 750 Hz for

sinusoid 2. Looking at the FT of the superposition of the two sinusoids we

can see the two frequencies clearly. We also observe the linear transformation

property, shown by the fact that the FT of the superposition of the sinusoids

is the same as the sum of the FT of sinusiod 1 and sinudoid 2.

2.2 Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) takes the FT one step further,

with the goal to keep the time domain that is otherwise lost with the FT.

The STFT performs the FT multiple times on different parts of the same

signal. For the STFT we require a window size and hop size, which define

for us the number of samples we use for the FT and how many samples we

should step across time for the next window of samples to perform the FT on.

Doing so for many windows of time across a signal gives us a visualization

of how the intensity of certain frequencies changes throughout that signal.

Intuitively, to go from multiple FTs to the visualisation of the STFT, we

stack the FTs vertically next to each other in chronological order, and we

represent the intensity that a frequency occurs at using a color scale. let us

take a look at the STFT of the complex signal from Figure 2.1.

Figure 2.3: Short-Time Fourier Transform of a composed sinusoids from

Figure 2.1
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As we can see in Figure 2.3, both the frequencies of the pure sinusiods,

that make up the superposed signal, persist over the entire duration at a

constant magnitude. This transformation is used throughout this paper to

create the model input. It is important to note that a window function is

applied to each window before the FT is performed on that window. This

window function has to be COLA compliant (2.3) in order for the STFT to

be near perfectly invertable.

2.3 Constant Overlap Add (COLA)

The STFT is a lossy transformation if the window function used is not COLA

compliant. It is common to take a hop size that is half the window size or

less to refine the detail of the STFT. This causes the windows to overlap, and

during the inverse-STFT, when the signal is reconstructed, these overlapping

windows don’t overlap smoothly. To solve this issue, a window function is

applied to each window of samples that the FT is performed on. The window

function usually limits the intensity towards the edges of a window, such that

when they overlap with another window they yield the full intensity again.

To achieve this near perfect overlap, the window function has to be COLA

compliant. We use Figure 2.4 to illustrate what this means.

Figure 2.4: Shows multiple instances of the Hamming window function over-

lapping and their sum. [5]

In Figure 2.4 we see the Hamming window function in red, overlapping

with multiple instances of itself. In blue we see the sum of the overlapping
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windows. The fact that the Hamming window is COLA compliant at this

amount of overlap can be seen by the blue line being perfectly horizontal.

2.4 Depth-wise Separable Convolutions

In Section 3.2.6 we will compare depth-wise separable convolutions and stan-

dard convolutions, analyzing the trade-off between the number of parame-

ters and the performance. In this section we look at depth-wise separable

convolutions and how they work differently then standard 2D convolution.

Depth-wise separable convolutions are used as an alternative to standard

convolutions with the purpose of having less parameters with comparable

results. The ability to achieve comparable accuracy with less parameters is

becoming increasingly valuable as machine learning becomes more and more

popular in applications running on edge devices.

In order to explain depth-wise separable convolutions we are going to

define a 3D network input F as having a width Dr, height Dr and depth

M , being the number of channels. Instead of applying a single convolution

layer, depth-wise separable convolutions are done using two steps. We first

perform depth-wise convolution on the input F to get intermediate output

G1, followed by point-wise convolution on G1 to get the final output G2.

Figure 2.5: Illustration of depth-wise convolution [3]

Depth-wise convolutions are done by performing separate convolutions

on each of the M input channels. For each of the channels in the input we
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have one kernel, this results in an intermediate output G1 with the same

dimensions as input F .

Figure 2.6: Illustration of point-wise convolution [3]

Next, we perform point-wise convolutions on G1. Point-wise convolu-

tions are identical to standard convolutions but the kernel size is limited

to 1 × 1 ×M . The number of filters chosen for the point-wise convolution

dictates the number channels N in the output G2.

For a better understanding of depth-wise separable convolutions we can

take a look at Figures 2.5 and Figure 2.6, which illustrate depth-wise con-

volutions and point-wise convolutions respectively.
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Chapter 3

Research

This chapter contains the details on the research we have done. We start

with Section 3.1 where we go over the setup of our research. In Section 3.2

we discuss the research we have done and analyze our measurement.

3.1 The Setup

The section starts with Section 3.1.1 which describes the dataset used to

train and evaluate our models. In Section 3.1.2 we cover the processing

steps that we apply to the data in the dataset before we use it for our

research. We then explain how we perform audio source separation using

the spectrograms from preprocessing, in Section 3.1.3. Section 3.1.4 explains

how we evaluate and compare our models. Lastly, in Section 3.1.5 we go

over the architecture and parameters used for training and inference during

this research.

3.1.1 The Dataset

In order to answer our research questions we are going to train our models

on the standard non-HQ variant of the musdb18 dataset[31]. The dataset

contains a total of 150 full length songs with a variety of different genres,

encoded in the Native Instruments stems format (.mp4)[16]. Each file is a

multitrack format, composed of 5 stereo streams[29]. The tracks provided for

each song are the mixture, vocals, drums, bass and other accompaniment.

In total the dataset contains ∼ 10 hours of audio, with the length of an
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average song being 4 minutes. All the audio is available at a sample rate of

44100 Hz. The dataset is divided into a training set and a test set. The set

used for training contains 100 songs, and the test set the remaining 50. We

further discuss how this data is prepared for the purpose of our research in

Section 3.1.2.

3.1.2 Data Preparation

The audio from the MUSDB18 dataset is first down sampled from the orig-

inal sample rate of 44100Hz, to a sample rate of 22050Hz. Other work on

spectral based audio source separation often down samples the audio to a

sample rate of 16000Hz, however we find that this results in a significant

audible loss of quality of the audio. For this reason we down sample to

22050Hz, which reduces the number of samples that need to be processed

for a specific duration of the audio, without a noticeable loss in quality to

the listener.

To prepare the audio for the STFT, we segment the full length songs and

their sources. We have chosen for each segment to have a length of 65536

samples, resulting in each segment having a duration of 2.97 seconds. To

go from one segment to the next, we move forward over the audio track by

32768 samples. This results in the segments overlapping by 1
2 , such that the

overlap is 1.49 seconds in duration. When we segment the audio in this way,

the average song with a duration of 4 minutes is divided into 159 segments.

Each song is segmented and the segments are stored in separate files for

training.

During training we compute the STFT of each segment. When we com-

pute the STFT of a segment, we use a window size (WS) of 512 samples,

a hop size (HS) of 128 samples, and we use the Hamming window (HW)

function. When using this window size and hop size we have an overlap of
3
4 , which in combination with the Hamming windowing function is COLA

compliant 2.3. Using the given parameters and the segment length (SL) we

are able to calculate the format of our spectrograms.
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FR =
SL−WS

HS
+ 1

=
65536− 512

128
+ 1

= 509

(3.1)

FB =
WS

2
+ 1

=
512

2
+ 1

= 257

(3.2)

In Eq. 3.1 & Eq. 3.2 we see that computing the STFT of a segment (S)

of length 65536, gives us a spectrogram with 509 frames (FR) on the time

axis, and 257 frequency bins (FB) on the frequency axis. After transforming

our audio segments to complex valued spectrograms, we want to compute

the magnitude for each of those values. We compute the magnitude spec-

trogram by taking the absolute values of the complex spectrogram. We now

want to convert the magnitude spectrogram to the decibel scale and then

normalize the decibel values to be between 0 and 1. The current magni-

tude spectrograms contain values below 1, so before the decibel conversion

we first increment all magnitude values by 1. After that, we move to the

decibel scale by taking the log10 of each value. Once in the decibel scale,

our spectrogram values range between 0 and 2.10. To normalize the spectro-

grams we divide all values by 2.10 in order to get a range of values between 0

and 1. Eq. 3.3 shows the entire data preparation process as a single formula.

Once all these steps have been applied, the data is ready for training.

I =
1

2.10
· log10

(
|F(S,WS,HS,HW )|+ 1

)
(3.3)

16



3.1.3 Audio Source Separation using Spectrograms

In this Section we describe how we go about the task of audio source sepa-

ration throughout our research. We start by processing the audio from the

dataset, transforming all to audio segments to normalized magnitude spec-

trograms, as described in Section 3.1.2. We use the prepared spectrogram

of the mixture of sources as input to our network architecture, training it to

produce the normalized magnitude spectrogram for a single source, vocals in

our case, as shown in Figure 3.1. We also include an example spectrogram

for a mixture and its vocals in Sections A.2 and A.3.

Figure 3.1: A UNet architecture producing a source spectrogram from a

mixture spectrogram.

To reconstruct the complex valued spectrogram of the source using the

predicted source magnitude spectrogram, we copy over the phase from the

mixture’s spectrogram. In Eq. 3.4 & 3.5 we show how we obtain real com-

ponent (RC) and imaginary component (IC) of the complex valued source

spectrogram, using the mixture’s complex spectrogram (MCS) and the pre-

dicted source magnitude spectrogram (SMS). Once the complex valued spec-

trogram is constructed, we use the inverse Short-Time Fourier Transform on

it, to calculate the source’s audio signal.

RC = SMS× cos(phase(MCS)) (3.4)

IC = SMS× sin(phase(MCS)) (3.5)

17



3.1.4 Model Evaluation

Signal to Distortion Ratio (SDR) is by far the most compared metric across

various audio source separation papers. Even though SDR is an indication

on the quality of the separation, it is not the definitive measure of quality.

The developers of SDR mention this in their evaluation tutorial [9]. The

authors show that two different predicted audio samples, with a distinct

audible quality difference, achieve the same SDR. They emphasise that ‘the

metrics are a good estimate of the quality, but human evaluation is the gold

standard of measuring the quality of a system’ [9].

In our research, we do not need to compare our work with state-of-the-art

work that reports SDR, instead we need to asses the performance difference

between two of our models, to conclude how useful a change to a model

is. To quantify the value of the quality at which people perceive the source

separation to be, is very difficult. In order to compare our models, we need

a metric that is sensitive to small differences in quality between the original

source audio and the predicted source audio. We have chosen to use the

Mean Squared Error (MSE) as the metric by which we compare our models.

We wanted to use the full 100 training songs for training, so we used our

test set, of 50 songs, to calculate the MSE validation loss during training,

in order to compare our models. MSE is a an error metric, this means that

the lower the MSE the closer the predicted output is to the desired output.

This is why we often report the Minimum Validation Loss (MVL) as the

metric by which we compare our models in our research.

3.1.5 Network and Parameters

We implemented our own UNet architecture from scratch. We provide a

detailed visualization of our UNet architecture in Section A.1. When we

remove the skip connections and concatenations from a UNet architecture

we are left with an architecture called an Auto Encoder. The Auto Encoder

(AE) used in Section 3.2.3, is our UNet architecture without the skip con-

nections and concatenation layers. To build and train these networks we

used Tensorflow 2.0 [1]. In Table 3.1 we show the parameters used during

the experiments.
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Table 3.1: Contains the parameters used for the network and its training,

in order to recreate the experiments. The section column indicates if a

parameter is tweaked in a specific section, for the purpose of the experiment.

parameter value section

optimizer Adam 3.2.2

learning rate 0.00001 -

batch size 8 -

layer type conv2d 3.2.6

activation function Leaky ReLU -

output activation function Leaky ReLU 3.2.4

loss function Mean Squared Error -

spacial dropout 10% -

network depth 3 3.2.3

target source vocals -

output format spectrogram 3.2.4

3.2 The Research

We begin with Section 3.2.1, where we go over the preparations we did before

starting performing our main research. Our main research starts in Section

3.2.2 where we compare various relevant optimizers. In Section 3.2.3 we

compare AEs and UNets at various depths, to see the effects of skip connec-

tions. Then we discuss the difference in performance when training a model

to predict a soft mask instead of the source spectrogram, in Section 3.2.4.

Section 3.2.5 details our experiments on using dynamic mixing as a data

augmentation method. Finally, in Section 3.2.6 we compare standard con-

volutions to depth-wise separable convolutions to view the trade-off between

performance and number of parameters.
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3.2.1 Research Preparation

Before we started running our experiments we performed a couple of smaller

experiments as preparation to ensure the following: avoid erratic validation

loss curves, avoid over fitting and avoid dead weights for as many epochs

as possible. We tested: spacial dropout, number of layers per depth level,

activation functions, loss functions and initial learning rate. The outcome

of the tests led us to use the following: a spacial dropout of 10%, 1 layer per

depth level, the Leaky ReLU activation function, the Mean Squared Error

loss function and an initial learning rate of 0.00001.

3.2.2 Optimizer Comparison

In this section we take a look at various relevant optimizers, and how they

perform at the task of Audio Source Separation compared to the popular

Adam optimizer. All the optimizers are used in combination with a UNet

model that directly predicts the spectrogram of the target source audio. We

compare each optimizer based on the validation loss over 100 epochs. To

calculate the validation loss between the predicted source spectrogram and

the target source spectrogram, we use the Mean Squared Error (MSE) loss

function. The optimizers that we compared are: Adadelta[40], Adagrad[6],

Adamax[17, 12], Nadam[4], RMSprop[15], SGD[34] and Adam[18].

To compare the optimizers we performed a randomly initialized training,

three times, for each optimizer, totaling 21 experiments. In Figure 3.2 we

plot the average validation loss of the three runs for each of the optimizers.
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Figure 3.2: The validation loss (MSE) of models trained with different op-

timizers.

In Figure 3.2 we observe that SGD, Adadelta and Adagrad all perform

more then twice as bad as the rest of the optimizers, based on average

validation loss. They do show improvement in the first ∼ 20 epochs, after

which they level out. That the validation loss for these optimizers platues,

may indicate overfitting, or that the optimizer is not able to help the network

to grasp the underlying concepts/patters needed to separate the source audio

from the mixture.

Adam, RMSprop, Nadam and Adamax all perform well, and have valida-

tion loss values in similar ranges. In order to compare these four optimizers

in more detail we are going to compare the measurements in Table 3.2.

Table 3.2: Shows the minimum validation loss (MVL), average epoch run-

time in seconds (AERT) and Improvement Over Baseline (IOB) for each of

the four optimizers.

Optimizer MVL AERT (s) IOB

Adam 0.000653 344.63 0.00%

RMSprop 0.000608 376.39 7.32%

Nadam 0.000625 404.09 4.40%

Adamax 0.000711 359.21 −8.22 %
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Due to the popularity of the Adam optimizer we have used it as a baseline

to compare the other measurements with. The Improvement Over Baseline

(IOB) shows us how much an optimizer’s Minimum Validation Loss (MVL)

differs, percentage wise, from the MVL of the Adam optimizer. Table 3.2

also shows the Average Epoch Runtime (AERT) in seconds in order to com-

pare the optimizers based on how long they take to achieve their MVL.

We compare the IOB to see that Adamax performs the worst out of

all the optimizers in Table 3.2, performing ∼ 8% worse then the Adam

optimizer. In addition, we also observe that the AERT of Adamax is longer

then Adam’s AERT. This tells us that Adamax both performs worse and

takes longer to do so then Adam, leading us to conclude that Adamax is not

an optimizer we recommend for spectrogram based audio source separation.

Looking at the other entries in Table 3.2 we see that RMSprop and

Nadam both outperform Adam based on MVL. RMSprop achieves a larger

IOB then Nadam, and it is able to do so in less time then Nadam. This tells

us that RMSprop is the best alternative to the Adam optimizer at this task,

with an IOB of ∼ 7%. On average RMSprop takes ∼ 9% longer then Adam

to achieve its MVL.

In conclusion, we can recommend the use of the RMSprop optimizer over

the Adam optimizer when training to achieve the lowest MVL for spectro-

gram based audio source separation. However, during testing, or when time

is limited and training times are long, we can still recommend the Adam

optimizer to achieve adequate performance in a shorter time.

IOB =
MV LAdam

MV LOptimizer
− 1 (3.6)

3.2.3 Depth of Auto-encoders and UNets

This section has two main focuses. First, we look at the effect of skip con-

nections in UNets, in a comparison between AEs and UNets as we increase

their depth. Second, we observe the effectiveness of using deeper UNets,

when trying to achieve the minimum validation loss.
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Depth variations in Auto Encoders and UNets

In order to compare Auto Encoders (AEs) and UNets we performed three

runs for each of the architectures at five different depths, totalling 30 runs.

In Figure 3.3 we plot the average validation loss for each of the three runs.

Figure 3.3: The average validation loss (MSE) of unet models trained at

various depths.

Figure 3.3 shows us the opposing effect of deepening AEs versus UNets.

The lines are colored such that the lighter the color, the deeper the network.

Looking at validation loss lines for the AEs (solid) we see that as the network

gets deeper, the average validation loss goes up. Similarly, but opposite,

the validation loss lines for the UNets (dotdash) show that as the network

becomes deeper, the average validation loss goes down. In conclusion, this

indicates that as AEs get deeper and the dimension of the latent space

decreases, it becomes harder to recover the larger dimension’s higher detail,

required for the output. The use of skip connections in UNets allow the

detail of the higher dimension input to bypass the down sampling. This

allows the network to utilize both the original high dimension input details

as well as the extracted spectral characteristics from the latent space to be

used to synthesise the output.
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The Effectiveness of Deepening UNets

Table 3.3: Shows the minimum validation loss (MVL), average epoch run-

time in seconds (AERT), number of parameters (#PARAM) and Improve-

ment Over Previous (IOP) for unets at diffirent depths.

Depth MVL AERT (s) #PARAM IOP

1 0.001249 563.22 5759 0.00%

2 0.001179 567.70 27855 5.61%

3 0.001167 570.55 115567 1.03%

4 0.001017 574.38 465071 12.86%

5 0.000825 585.43 1860399 18.88%

Table 3.3 contains the IOP metric, which tells us the percentage im-

provement in MVL compared to the previous depth. The IOP is a positive

percentage for all non trivial depths, indicating that in our experiments, a

depth increase always led to lower MVL. We can see significant increases in

prediction quality when we use a depth of 4 or 5.

Increasing the depth even more would most likely lower the MVL even

further. However, at some point the depth is limited by the resolution of

the input which can no longer be down sampled.

IOP =
(MV Ln−1
MV Ln

− 1
)

(3.7)

3.2.4 Spectral Synthesis and Mask Synthesis

In this section we compare direct synthesis to mask synthesis. Doing direct

synthesis means the task of the network is to produce a source spectrogram

that matches the target source spectrogram. The goal of mask synthesis is to

produce an output of the same dimensions as the target source spectrogram,

which is then multiplied with the mixture spectrogram, to get the target

source spectrogram. In Figure 3.4 we show how the network is trained to

predict the source spectrogram as output. In Figure 3.5 we show how the

network is trained to produce a soft mask as output.
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Figure 3.4: Illustrates how the network trains to produce a spectrogram.

Figure 3.5: Illustrates how the network trains to produce a soft mask for

source separation.

In order to compare direct and mask synthesis we performed three runs

for each output type, spanning 100 epochs. We tested direct synthesis with

Leaky ReLU as the output layer activation function. The two masks we

tested where, with Leaky ReLU as the output layer activation function, and

with Swish as the output layer activation function. In Figure 3.6 we can see

the minimum validation loss (MVL) up until each epoch.
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Figure 3.6: The minimum achieved validation loss (MSE) up until each

epoch for unet performing direct synthesis, leaky relu masking, and swish

masking.

Figure 3.6 shows us that after 100 epochs both the masking methods have

achieved a better validation loss. We also observe that in direct synthesis

the rate at which a lower validation loss is achieved decreases as more epochs

elapse. On the contrary, both mask synthesis methods show a constant rate

of improvement, but not every improvement is as significant.

We look at Figure 3.7 to see the effect that the output method has on

training stability.
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Figure 3.7: Average validation loss (MSE) for each output methods

In Figure 3.7 we see that both direct synthesis and Swish mask synthe-

sis exhibit large peaks in validation loss. Direct synthesis shows training

instability at the first half of training, and Swish mask synthesis has a rare

occurrence of one peak. The results show that Leaky ReLU mask synthesis

is more stable during training then the other two methods, when looking at

average validation loss.

Table 3.4: Shows the minimum validation loss (MLV), average epoch run-

time in seconds (AERT) and Improvement over no mask (IONM) for each

synthesis method.

method MSE AERT (s) IONM

direct 0.001077 537.19 0.00%

leaky relu mask 0.001016 545.92 5.97%

swish mask 0.001006 574.53 7.04%

When looking at the IONM in Table 3.4, we see that both the mask

methods outperform the direct synthesis method. When we compare the

AERT of direct synthesis and leaky relu masking we see that masking takes a

little more time on average then the direct synthesis method. Swish masking

however takes over 37 seconds longer per epoch. When we take both AERT

and IONM into account, we observer that the swish mask advantage over
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the leaky relu mask is less important. Showing that if training time is of

concern, leaky relu masks are the optimal way to get the lowest validation

loss in a shorter time period then the rest.

IONM =
MV Ldirect
MV Lmask

− 1 (3.8)

3.2.5 Data Augmentation using Dynamic Mixing

In this section we discuss dynamic mixing as a data augmentation method.

This means we created new track segments by taking different source seg-

ments for different tracks, and combined them together to give a unique

combination of sources. These new mixed audio segments are then used as

additional training data.

For each of the experiments we used the same network with the same

weight initialization, only changing the training data. For the experiments

that used data augmentation we created 5000 additional audio segments

from the 100 training tracks. Let us take a look at Figure 3.8, showing

the validation loss over 100 epochs, for half the dataset, half the dataset

plus the augmented segments, the full dataset, and the full dataset plus the

augmented segments.

Figure 3.8: Validation loss (MSE) for networks trained on a different (part

of the) dataset.
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What we observe in Figure 3.8 is that our data augmentation did not

benefit training using the full dataset. We see that training using half the

dataset yields roughly the same results as training using the full dataset

with augmented data. Additionally we also see that training using just the

full dataset performs similarly to training using half the dataset with the

augmented data. This is an interesting observation, showing us that adding

our augmented data to the full dataset negatively impacts the performance

of the model. We believe this us due to overfitting. The dynamically mixed

audio segments don’t provide addition spectral characteristics of the vocals

in order to aid the separation. When using half of the dataset, the aug-

mented data did improve training accuracy, because the augmented data

was created using the entire dataset, thus providing unique (unseen) spec-

tral characteristics of the target source to separate.

To conclude, the use of data augmentation in our experiments did not

improve the validation loss when already using the full dataset. In further

research we recommend mixing multiple target sources to encourage the

learning of new spectral characteristics. Using less augmented data during

training may also prevent over fitting, and the dynamic mixing may still

benefit the model performance.
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3.2.6 Depth-wise Separable Convolutions

In this section we look at depth-wise separable convolutions and how they

compare to the use of standard convolutions. For both types of convolution

we ran experiments using UNets at three different depths, running each

experiment three times. Let us look at Table 3.5 showing the measurements

done during the experiments, over the the extent of 60 epochs.

Table 3.5: Shows the minimum validation loss (MVL), average epoch run-

time in seconds (AERT), Parameter difference compared to normal convo-

lution (PDCNC) and Percentage improvement over standard convolutions

(PIOSC) for each synthesis method.

depth, layer type MVL AERT #PARAM PDCNC PIOPD

d3, conv2d 0.001059 370.86 156847 0.00% 0.00%

d3, depthsep 0.001212 628.09 51280 67.31% −12.64 %

d4, conv2d 0.001046 367.42 465071 0.00% 0.00%

d4, depthsep 0.001077 642.16 165776 64.35% −2.86 %

d5, conv2d 0.000890 365.90 1860399 0.00% 0.00%

d5, depthsep 0.000994 643.37 649360 65.10% −10.44 %

We can look at the #PARAM and PDCNC in Table 3.5 to see what the

impact of using depth-wise separable convolution layers is on the number of

parameters. We see that using depth-wise separable convolution to replace

all the convolution layers in a network, reduces the number of parameters

(#PARAM) by ∼ 65%.

When using depth-wise separable convolutions we expect a trade off

between the number of parameters and the performance of the model. Ana-

lyzing the PIOSC shows that for a depths three and five, we have an ∼ 11%

decrease in the accuracy in the model. We also observe that with a depth

of four, the model performance only decreased by ∼ 3%. We hypothesise

that this large difference in performance impact is due to the random weight

initialization of each experiment. This makes it difficult to draw an decisive

conclusion and these results are influenced by many different factors. We
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note two important reasons for why this might be. Either, weight initializa-

tion was unlucky and the models with standard convolution layers at depth

four performed sub par, or the weight initialization for the models using

depth-wise separable convolution layers show the possibility for depth-wise

separable convolutions to perform almost as good as standard convolution.

PIOSC =
MV Ldn,conv2d
MV Ldn,depthsep

− 1 (3.9)
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Chapter 4

Related Work

4.1 TRU-Net

Choi et al. published their Tiny Recurrent UNet for the purpose of de-

monising and speech enhancement [2]. They managed to achieve current

state-of-the-art performance with only ∼ 380000 parameters. After their

model had been quantized, the total model size came down to 362 kilobytes,

small enough to deploy on edge devices. In addition, they combined their

model with a method called phase-aware β-sigmoid mask.

4.2 Multi Modal Audio Source Separation

The work of Llùıs et al. explores a multi modal approach to audio source

separation [25]. Their method takes both a spectrogram and a 3D point

cloud as input, to predict a mask used for the source separation. They use

two separate models for processing the different inputs, as well as a third

model to combine the extracted features from both modalities.

4.3 MMDenseNet

MMDenseNet was published in a paper by Takahashi et al. in 2017. Their

model is largly imspired by DenseNet [37], which achieved excellent results

at the task of image classification. In their work their split the spectrogram

input into N frequency bands, which they each process separately using an

MDenseNet. By separating these bands they hope to better extract spectral
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characteristics unique to the range of frequencies in each band. They later

combine the output of processing each band and pass that through a final

dense block to produce their source spectrogram as output.

4.4 Spleeter

Spleeter was created by Hennequin et al. as part of the popular music

streaming service Deezer [14]. The model used for Spleeter is said to be

constructed out of multiple UNets, trained to produce a soft mask, and

using the L1-norm as loss function. Spleeter is one of the most popular

tools for audio source separation for those that don’t want to train their

own models.
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Chapter 5

Conclusions

During our research we have investigated the following topics in relation

to the task of spectrogram based audio source separation: How do popular

optimizers compare at the task? How do skip connections benefit task re-

sults when comparing AEs and UNets at different depths? How do direct

synthesis and mask synthesis compare at the task? How can we use dy-

namic mixing as a data augmentation technique for this task? Finally, how

do depth-wise separable convolutions compare to normal convolutions when

performing the task?

We have examined a multitude of popular optimizers, and our results show

that the RMSprop optimizer achieves the best minimum validation loss

(MVL). When time is of the essence, using the Adam optimizer still achieves

acceptable results.

Our experiments have shown that increasing the depth of an AE reduced

network performance, but adding skip connections to make them UNets al-

lows the model to leverage the better feature extraction of the deeper models.

Thus, increasing the depth of UNets improved the MVL further and further.

When comparing spectrogram synthesis to mask synthesis we found that

our measurements show that using a mask is always a better option. Using

a Leaky ReLU or Swish mask improved training stability and decrease MVL

by up to ∼ 7%.
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The results for using dynamic mixing as a data augmentation method led

us to the conclusion that we added too many augmented samples to our

training data. Adding the augmented samples to the full dataset negatively

impacted the MVL and likely caused the model to overfit sooner. We sug-

gest using less augmented samples, and to experiment with mixing multiple

target sources to generate more relevant spectral characteristics of the target

source.

Finally, the experiments looking into depth-wise separable convolutions led

us to the conclusion that using this type of convolutions reduced the number

of parameters by ∼ 65%. The parameter reduction comes with a trade-off,

increasing MVL by ∼ 3− 11%.

In conclusion, our results suggest that to achieve the best results at spec-

trogram based audio source separation network architectures should adhere

to the following: Use the RMSprop or Adam optimizer for training, deeper

models perform better as long as skip connections are used correctly, syn-

thesising a mask always better then directly predicting the target source

spectrogram, dynamic mixing may be useful but don’t add too many sam-

ples to the training data and using depth-wise separable is a useful technique

to reduce model size for use on edge devices.
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Appendix A

Appendix

In Figure A.1 we show the details of the network we used. It is known

as a UNet, because when shown from left to right with horizontal skip

connections, it takes on the shape of a U. When the skip connections are

left our, we have an architecture known as an Auto-Encoder.
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Figure A.1: The UNet architecture that we use during our research.
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Figure A.2: Spectrogram of a segment of mixed audio sources.

Figure A.3: Spectrogram of a segment from vocal audio.
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