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Abstract

Pathfinding algorithms have found many different applications. Route-planning and pathfind-
ing in video games are two such applications with similar requirements but different strategies
for achieving good performance. Speedup techniques for route-planning make use of a certain
property of road networks: small highway dimension. This paper investigates whether other
properties of graphs can help explain the variance in effectiveness of a number of pathfinding
algorithms from route-planning and video game literature when they are used on different
kinds of maps. We also investigate whether looking at these graph properties can help make
a choice between two algorithms with similar performance. We find that graph properties
have a significant influence on algorithm performance, but that the graph properties we chose
cannot help choose between the similarly performing HPA* and contraction hierarchies.
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1 Introduction

Context

There are many different applications for pathfinding algorithms, some examples being simulation
(particularly video games), route-planning, robotics (also related are self-driving cars), and prob-
lem solving (problems may be reduced to finding the shortest path in a (weighted) graph). In
many of these applications, pathfinding can become a major bottleneck for performance as the in-
put gets larger. This has led to a large number of speedup techniques being developed for different
applications, often making use of characteristics that are specific to the input of that particular
field. For instance, many pathfinding algorithms from the route-planning field take advantage of
the fact that - when travelling a large enough distance - you are likely to have to take a central
highway. This specific observation has been formalized by [11], leading to the concept of highway
dimension: a way to characterize a graph as ‘easy’ for route-planning algorithms. However, less
is known about how to characterize a graph as ‘easy’ for algorithms from other fields. There is
indication that this is possible, as [7] finds that there are significant differences between ‘easy’ and
‘hard’ maps for different algorithms.

Hence, there is clear indication that the ‘shape’ of the input graph affects the running time of
pathfinding algorithms. This ‘shape’ can be described by a set of graph metrics: (numerical)
properties of the graph that can be computed. One well-known graph metric is planarity (i.e. can
the graph be drawn in such a way that no two edges cross?), however a graph metric can be as
simple as the number of nodes in the graph. For a graph we can get an idea of its ‘shape’ by
calculating the values of such metrics.

Goal

The goal of this paper is as follows: Explore to what extent the ‘shape’ of the graph, expressed
though graph metrics, has a meaningful impact on the performance of pathfinding algorithms and
find the best algorithm for a map based on the metrics. By investigating this question we want
to provide an overview of the performance of a number of algorithms and see to what degree the
map metrics affect the choice of algorithm.

Scope

We restrict this study to the following map metrics: the number of states, the longest path, the
average degree, the difficulty, the dimension, and the highway dimension. Precise definitions of
these metrics can be found in section 5. We then compare how these metrics affect the performance
of the chosen algorithms. What the performance of an algorithm means can be unclear, so we
restrict ourselves to the following measures of performance:

1. Running time, measured as the time it takes for a query to be answered.

2. Memory use, measured as total memory allocated during the algorithm’s run.

3. Space use, measured as the amount of memory it takes to store the data required to answer
queries, divided by the amount of memory it takes to store the graph. The precise definition
varies based on the algorithm, section 6 explains how this metric is calculated for each of the
algorithms.

4. Preprocessing time, measured as the time it takes for preprocessing to finish on a given graph.

Additionally, we restrict ourselves to CPU-based pathfinding algorithms, since massively parallel
pathfinding algorithms are still in their infancy and have not seen any sort of widespread adoption
yet. Finally, we also consider only informed search algorithms, as this is the most active area of
research and most pathfinding algorithms are informed search algorithms. Specifically, we have
compared HPA* [1] from the simulation literature and contraction hierarchies [2] and hub labels
[3] from the route-planning literature. In addition, Dijkstra’s algorithm and A* were also used
to produce baseline measures. Since HPA* is made specifically for grid maps, the benchmarks
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were performed on a set of grid maps taken from [4], which was chosen because it has a variety of
different map types.

Contributions

We provide an overview of how the performance of the chosen pathfinding algorithms varies based
on the chosen map metrics, in addition, we also show how these algorithms compare to each other.
We also attempt to use the metrics to characterize maps on which one algorithm will outperform
another and provide guidance on when to choose a certain algorithm, based on the metrics.

Approach

First, we established a set of benchmark problems, based on the benchmark problems from [5]
and computed or collected the metric values for each of these problems. These should cover a
wide range of map metrics. The algorithms were implemented in a custom graph framework in
the C# language to allow them to be compared to each other. Benchmarks were then performed
using the BenchmarkDotNet library [13]. The benchmarks were run on a home computer with
hardware suited for gaming, see section 6 for specifications. Finally, the results were examined for
any relationship between the map metrics and algorithm performance.

2 Background

Formally, the shortest path problem is defined as follows: given a weighted (di)graph G = (V,E)
and two nodes s and t find either the length of the shortest path between s and t (known as a dis-
tance query) or the shortest path between between s and t (known as a path query). This problem
statement remains largely consistent between fields, but there are many auxiliary requirements
that vary between fields. For instance, while the base search is one-to-one, searches can also be
one-to-many, many-to-one, or many-to-many. In modern route-planning solutions, edge weights
often change based on real time traffic data. In modern simulation applications, agents may need
to avoid moving obstacles, coordinate with other agents to avoid collisions, or chase another agent
instead of moving to a static goal. In robotics, agents may have a limited range of movement
(for instance, the turn radius of wheeled vehicles) and factors such as acceleration and braking
determine movement, turning the search space into a continuous ‘field’ as opposed to the discrete
graph space. The following is a non-exhaustive list of some concrete requirements:

• Informed vs. uninformed: In an informed search, the entire search space and the location of
the goal node are available from the start of the search. This contrasts with an uninformed
search, where the algorithm must (blindly) ‘explore’ the search space to look for the goal.

• Heuristics: Certain algorithms (like the A* algorithm) use heuristics to speed up the search.
It may not always be possible to define a proper heuristic for an application, and it is usually
impossible for an uninformed search.

• Hardware: The restrictions and opportunities provided by hardware vary between applica-
tions: do we have just one processing core or multiple? Are we working with a massively
parallel (GPU) computing system? How much memory do we have available? Do we want
the lowest memory use or the fastest running time (or a bit of both)? Mobile systems tend
to impose tight restrictions on hardware.

• Optimality: Path optimality (defined informally as the deviation of a path from the optimal
path) may or may not be desired in certain applications. Academic route-planning appli-
cations tend to see 100% optimal paths as required (however, commercial route-planning
applications often don’t use 100% optimal paths [9]), whilst simulation applications tolerate
a degree of suboptimality.

• Dynamism: how much the search space changes over time depends on the application. In
video games the map might change when structures are built or destroyed, in route-planning
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the travelling times change depending on traffic data and road construction may block certain
nodes altogether. However, certain applications may feature more static search spaces that
never change at all or only infrequently.

• Representation: certain algorithms may take advantage of underlying map representations
(e.g. grid, polygons) beyond the abstract graph, or properties of the graph (e.g. planarity).
This limits in what situations these algorithms can be applied. HPA*, for instance, relies on
the map representation being a grid.

Beyond the criteria mentioned above, the ‘shape’ of the search space might vary greatly between
applications as discussed earlier. For instance, the requirements for simulation and route-planning
algorithms are similar: both are informed one-to-one searches for which a heuristic can be formu-
lated, both have a degree of dynamism (e.g. traffic and road obstructions for route-planning, and
mutable environments for video games), both allow for a degree of suboptimality, and both don’t
impose strict hardware requirements but do require that the system be able to answer queries in
real-time (i.e. less than a 100 milliseconds, preferably even faster) on substantially large inputs.
However, there are differences: In simulation applications, the input is often a grid, whilst in
route-planning applications the input is a road network. These two graph types are different from
each other in the following ways:

• Grids are typically planar, whilst road networks are often nonplanar.

• Grids have uniform edge weights - depending on the application - whilst road networks have
varying edge weights: some edges (like those representing long stretches of highway or ferry
rides) are long, whilst others (like those in the middle of a town) are shorter.

• Road networks are known to have a sort of ‘hierarchical structure’. Informally, this means
that a small number of ‘highway nodes’ are almost certainly going to be present on a shortest
path of sufficient length. Contrast with grids, where shortest paths may or may not have
significant overlap. This observation is formalized in the notion of ‘highway dimension’ by
[11], see section 5.6 for a more detailed explanation.

These differences have had steered the development of algorithms for both applications: many
route-planning algorithms make use (either directly or indirectly) of the concept of highway di-
mension, i.e. these algorithms are designed for graphs with a low highway dimension. Algorithms
from the simulation literature tend to make use of graph abstraction [1, 12, 15] - constructing a
simplified, abstract representation of the search space - or geometric [16] techniques.

3 Algorithms

3.1 HPA*

Hierarchical pathfinding A* (HPA*) [1] limits the search space by generating an abstract graph
on top of the original graph and searching in the smaller abstract space for a shortest path. The
preprocessing phase starts by dividing the grid into rectangles of n ×m cells. It then scans the
edges of these rectangles for sections where walkable cells belonging to different rectangles lie next
to each other (these are known as ‘doors’). Based on the length of the door, we choose either the
middle cell or the two edge cells to represent the door in the abstract graph. Once the abstract
graph has been populated with all the door nodes, two kinds of edges are added to the abstract
graph:

1. Edges with weight 1 between adjacent doors belonging to different rectangles.

2. Edges between different doors of the same rectangle. The edge weight is calculated by
performing a shortest path query between the two doors.

Once the first abstract graph is fully constructed, we can add additional layers of abstract graphs
on top of it by ‘merging’ adjacent rectangles. This removes internal doors and keeps doors on the
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edges of the new, larger rectangle. Note that the distances between doors in the larger rectangle
need to be calculated again, but this can be done in the abstract graph that already exists.

Making a distance query then requires inserting the source node v and destination node u into the
abstract graph(s). This is done by running a one-to-all distance query from the v to all door nodes
in its rectangle to generate all the edge weights. Once the v and u have been inserted, we simply
use A* to make a distance query between them in the highest layer abstract graph. Do note that
this distance query will not always return the true distance between v and u. This is because the
search will only move through the door nodes, which may not actually be on the shortest path
between v and u. The size of the error thus depends strongly on the amount and placement of the
door nodes. HPA* has quite a few hyperparameters to configure:

1. The width of the initial rectangles: wa

2. The height of the initial rectangles: ha

3. The number of abstract layers: n

4. The amount of rectangles to merge when moving up an abstract layer: m, representing
that a m × m square of rectangles is to be merged. We only use 2 as the value for this
hyperparameter.

Through some trial and error, reasonable formulas for these hyperparameters have been found.
These formulas have been constructed such that the query time is low, whilst offering at least 90%
accuracy for distance queries. The formulas are as follows, where w is the grid width and h is the
grid height:

r = min(w, h)

n =


1 r < 200

2 200 ≤ r < 500

3 else

wa = max

4,

 w

2
⌊ √

r
1.65

⌋


ha = max

4,

 h

2
⌊ √

r
1.65

⌋


3.2 Contraction hierarchies

The contraction hierarchies algorithm [2] (sometimes abbreviated as CH within this text) limits
the search space by defining a total order on all the nodes in a graph. Shortcut edges might also
have to be added to preserve shortest paths. Once the total order is established and the shortcut
edges have been added, the query is simple: run a forward Dijkstra search from the source node
and a backward Dijkstra search from the destination node. These Dijkstra searches only go ‘up’
in the order, i.e. the forward search only considers an edge (u, v) if u < v in the total order, and
the backward search only considers (u, v) if u > v.

Computing an optimal total order is an NP-complete problem, so we use heuristic techniques
to compute a total order that performs adequately (even if it is non-optimal). This results in a
procedure where we contract nodes one-by-one, with the total order defined as the order in which
we contracted the nodes. Node contraction consists of removing a node u from the graph while
preserving shortest paths that include u. Hence, for each path P = ⟨v, u, w⟩, we must check if it
is the shortest path between v and w. If P is such a shortest path, we add a shortcut edge (v, w),
with weight equal to the length of P .
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In particular, nodes are assigned a priority value based on the following equation:

priority (v) = 2 · ED(v) + CB(v) + 5 · level (v)

And then contracted in order of increasing priority. Here ED(v) is the edge difference of v, defined
as the amount of shortcut edges that need to be added when v is contracted minus the degree of v
(i.e. the net amount of edges added when v is contracted). Nodes that are part of a lot of shortest
paths are considered more ‘important’, and should end up higher in the hierarchy. Consequently,
these nodes will have a high edge difference and end up being contracted later. CB(v) is defined as
the amount of neighbors of v that have already been contracted (called the contracted neighbors
heuristic). This term increases the priority of nodes in ‘hot zones’ where many other nodes are
also contracted. The goal of including the contracted neighbors is to make the hierarchy more
‘flat’ (that is to say, evenly distributed over the graph). The level of a node v (denoted level (v))
is defined as follows:

level (v) =

{
0 if u > v for all (u, v) and (v, u) in E

level (u) + 1 else, where u = max {u | (v, u), (u, v) ∈ E}

Note that the priority of a node might change after contraction of another node. Hence, before
extracting the node with the lowest priority to be contracted next, we recalculate its priority first.
If it is still the lowest, it will be contracted, otherwise we repeat this procedure for the new bottom
node (this is known as lazy updating).

3.2.1 Contraction hierarchies with A*

The contraction hierarchies query algorithm can easily be altered to use the A* algorithm instead
of Dijkstra’s algorithm for the forward and reverse searches. This offers a significant speedup in
certain situations. If contraction hierarchies is used in this way, it will be referred to as “contraction
hierarchies with A*” or abbreviated as ‘CHH’ (contraction hierarchies heuristic) within this text.

3.3 Hub labels

Hub labelling [3] is based on assigning a forward and reverse label to each node v. The forward
label LBf (v) is a set of nodes along with all the distances from v to those nodes. The reverse
label LBr(v) is a set of nodes along with all the distances from those nodes to v. The labels of a
graph must have the cover property: for every two nodes v and u, LBf (v) ∩ LBr(u) contains a
node on the shortest path between v and u. A labelling with the cover property is called valid.
We generate a labelling based on a node ordering generated by CH. The forward label of a node v
is all nodes visited by a forward search with source v, and the reverse label is all those visited in
a backwards search with source v. It is easy to see that this labelling is valid, after all if it wasn’t
a valid labelling, there would be nodes v and u for which (LBf (v) ∩ LBr(u)) ∩ P (v, u) = ∅ (here
P (v, u) denotes the shortest path between u and v). However, this would mean that a contraction
hierarchies query from v to u wouldn’t find the shortest path. Hence, if the underlying contraction
hierarchies implementation is correct, the generated labelling will be valid. Note however, that
not all nodes contained in the labels generated this way are necessary and some nodes could be
removed from the label. In particular, if for a node u the distance d′ found during the forward
search is greater than the true distance d(v, u), we can exclude u from the forward label of v (idem
dito for backward labels). Computing the true distance checking the labels for redundant nodes
is called a ‘check query’. In our case, contraction hierarchies was used for the check queries but
other choices are also possible.

Once the labels are generated, making a distance query is simple: for source node v and destination
node u simply return:

min {d(v, w) + d(w, u) | w ∈ LBf (v) ∩ LBr(u)}
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4 Literature

4.1 Simulation

Zarembo et al [6] compare BFS, Dijkstra’s algorithm, A*, HPA* and LPA*. Their grids differ
from ours, since they don’t allow for diagonal motion between grid cells. This permits the use of
the Manhattan distance as a heuristic, which has the advantage of being substantially cheaper to
calculate than the Euclidean distance, since the Euclidean distance requires computing a square
root. We did not use the Manhattan distance since we allow diagonal motion through the grid
- this causes the Manhattan distance to overestimate true distances, making it an inadmissible
heuristic. The hyperparameters for HPA* were chosen as follows:

wa = ha = 4 n = 3 m = 2

The benchmarks were conducted on randomly generated grids, where 20% of the cells were ran-
domly filled in with walls. This corresponds to the random-20 category of maps in our benchmark
set. The sizes of the randomly generated maps in their benchmark set ranged from 64 × 64 to
1024× 1024.

Noori et al [8] compare Dijkstra, A*, HPA* and a number of other algorithms that aren’t relevant
for us. The benchmarks were performed on 64 × 64 grids with either 10% or 50% of the grid
randomly filled in with walls. Diagonal motion was allowed, but Manhattan distance was used
as a heuristic, which casts doubt on the validity of the results. In addition, the hyperparameters
used for HPA* are not specified, which makes it much harder to interpret the results found by
this paper.

Sturtevant et al [7] compare A*, A* with improved heuristics, sector abstraction and contraction
hierarchies. Sector abstraction is a pathfinding algorithm that was developed in a company setting
for a video game, which is similar to HPA*. The sector sizes vary between 8×8 and 16×16 based
on the map size (however, only 8×8 sectors were used in the benchmarks) and two layers of sectors
where used (a 2× 2, 3× 3 or 4× 4 square of sectors is merged). Two versions of of the contraction
hierarchies algorithm were used: a faster version that used more memory, and a slower version
that used less memory. The slower version uses a simple contraction heuristic: it is based on a
single term - called σ - defined as the amount of ‘real’ edges that will be merged into shortcut
edges when a node is contracted. The faster version uses the following heuristic:

25 · ED(v) + 60 · σ(v) + 20 · level (v) + 2 · CB(v)

Benchmarks were only performed using the slower version, as the full version used too much
memory. In addition, a distinction is made between the ‘full’ and ‘mobile’ versions of the algorithm:
the mobile version uses a compression scheme to significantly reduce memory usage but which
degrades runtime performance. The benchmarks were performed on maps from the game Baldur’s
Gate, scaled to size 512× 512.

Table 1 gives an overview of the runtime results of each paper. The HPA* listing for [7] gives
the runtimes for 16× 16 sector abstraction, since that represents the closest analog for the HPA*
hyperparameters used in [6]. Results from [6] are as expected: A* is significantly faster than
Dijkstra, and HPA* is significantly faster than both Dijkstra and A*. Note that the speedup for
HPA* over Dijkstra is about 2 for the small 64×64 map listed in the table. This speedup improves
monotonically to about 3 for the largest 1024×1024 map. The speedup for A* remains at about 2
for all map sizes. There aren’t many interesting results to report from [8], other than the fact that
A* had higher reported runtimes than Dijkstra for 10% filled random maps, which is a surprising
result: A* tends to perform better on open maps, since the heuristic gives a better estimation of
the true distance in those cases. The degradation in performance observed may be connected to
the erroneous use of the Manhattan distance as a heuristic, since it gives incorrect estimates of
the distance when diagonal motion is allowed. Besides that, [8] finds about a 2 times speedup for
HPA*.
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Paper Algorithm Runtime (ms)
[6] Dijkstra (64× 64) 6.00

A* (64× 64) 4.00
HPA* (64× 64) 3.00
A* (512× 512) 265.00

HPA* (512× 512) 190.00
[7] A* (512× 512) 0.23

HPA* (512× 512) 0.08
CH (high memory) 0.04
CH (low memory) 0.06

[8] Dijkstra (64× 64) 1.89
A* (64× 64) 1.96

HPA* (64× 64) 1.11

Table 1: Runtime found for Dijkstra, A*, HPA* (or HPA* analog) and CH by various other papers

Figure 1: (taken directly from [7]) Hard and easy maps for sector abstraction and contraction
hierarchies

The most interesting results come from [7]: it finds that, on average, contraction hierarchies is
slower than sector abstraction. However, when looking at longer queries (i.e. queries where the
true distance is larger), contraction hierarchies is faster than sector abstraction. This difference is
illustrated by what maps are more difficult for each algorithm: maps where more paths are long
are more difficult for sector abstraction, while maps where more paths are short are more difficult
for contraction hierarchies (figure 1 gives two example maps). This finding is what inspired this
study: among other things, we want quantify this notion that there are certain situations in which
contraction hierarchies (or some other algorithm) performs better.

4.2 Route planning

Citations [9] and [10] are two meta-analyses of papers from the route-planning literature. The most
important conclusion to draw from these papers is the sheer efficiency of contraction hierarchies
and hub labels: [9] reports a speedup of 41 thousands times (relative to Dijkstra’s algorithm) for
contraction hierarchies and [10] reports a speedup of anywhere from 14 thousand to 22 thousands
times for contraction hierarchies and 1.5 to 7.3 million times for hub labels. This is countered
by the preprocessing times of these algorithms: [9] gives a preprocessing time of 32 minutes for
contraction hierarches, and [10] anywhere from 2 to 10 minutes for contraction hierarchies and
anywhere from 10.5 to 1200 minutes (20 hours) for hub labels.
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Abraham et al [11] - in an attempt to explain why route-planning algorithms are so effective on
road networks - introduce the concept of highway dimension and provide bounds on the amount
of work done by theoretical versions of several route-planning algorithms based on the highway
dimension: for contraction hierarchies queries take O((h logD)2) time and hub label queries take
O(h logD) time. Here, h is the highway dimension and D is the diameter of the input graph, i.e.
max {d(v, u) | v, u ∈ V }. These bounds are based on undirected graphs, but [11] mentions that
the results could be extended to work for directed graphs with some extra work. An explanation
is also provided for why road networks tend to have relatively low highway dimension: a model
that is meant to approximate the formation of a road network is defined, and it is shown that
graphs produced under this model have constant highway dimension.

Storandt [12] examined the performance of contraction hierarchies in a completely different setting:
grid maps. The preprocessing phase of the algorithm was modified to work better on grid maps,
both in terms of computation time and the quality of the node order. During preprocessing,
a modified version of the edge difference was used as the heuristic value. Benchmarks where
performed on the maps in [5], both for query time and preprocessing time. For mazes, a speedup of
198 was observed and a speedup of 67 was observed for room maps (see section 6 for an explanation
of these map types). While a smaller speedup than for road networks, this is still significant.
However, speedups observed for random and game maps were only 10 and 7, respectively. Averaged
over all map types, the speedup comes out to about 50. This suggests that, while contraction
hierarchies is still effective on grid maps, it offers a smaller advantage for this map type. As for
preprocessing, the observed time was around 10 seconds for all map types - again less than on
road networks.

5 Metrics

5.1 Number of states

This is a simple metric, defined as the number of nodes in the graph. Thus, this metric indicates
the size of the search space the algorithm must comb through to find the destination node, but
doesn’t give any indication about the shape of that search space. Nonetheless, this metric could
have a significant impact on the performance of an algorithm. A search by Dijkstra’s algorithm,
for example, will expand in a sort of bubble until the bubble contains the destination node. In
this case, more room for the bubble to grow (because the graph has more nodes) will mean a
longer running time. The A* algorithm should be affected less, since it actively directs the search
towards the goal. Do note however that A* has worst case graphs where it expands the same
amount of nodes as Dijkstra’s algorithm.

5.2 Longest path

The longest path (also known as the diameter D of a graph) is defined as the greatest distance
(i.e. the longest shortest path) between any pair of nodes in the graph, and it is estimated by
running n Dijkstra searches and taking the maximum across all distances found. In our case, n
was 1 million. On grid maps, the longest path metric tells us something about the ‘windiness’ of
the map. Here, by windiness, we mean the average ‘directness’ by which a path leads from a given
source node to a destination node. For instance, paths in an open map tend to be more direct
than those in a maze.

5.3 Average degree

The average degree indicates the density of the graph. On grid maps, the degree of nodes is any
value from 0 to 8, but on arbitrary graphs the degree can range from 0 to |V |. On grid maps,
this metric says something about the ‘openness’ of the map: open areas contain many nodes of
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degree eight, as no neighbors are walls, hence the greater the average degree, the larger and more
open areas the map contains.

5.4 Dimension

The dimension metric is another way to indicate the ‘openness’ of a map and was taken from [4].
We estimate it as follows: run n Dijkstra searches from random locations on the map. During
these searches we keep track of the depth of each node, i.e. its distance (in number of nodes)
from the source. We then fit the number of nodes at each depth to the polynomial a+ bx+ cx2.
We estimate the dimension as the value of c. Since the amount of nodes at each depth tends to
decrease as the search comes closer to its end, we only consider the first half of the search.

5.5 Difficulty

This metric gives some indication as to how well ‘basic’ searches perform, and how much of a help
the Euclidean distance heuristic is. It is based on the ‘nodes expanded’ and ‘heuristic accuracy’
metrics from [4]. It is defined as the number of nodes expanded by A* during a search divided by
the number of nodes in the path. We average this over different path lengths by going through
all the buckets in a scenario. Note that this metric is only defined for maps where the Euclidean
distance heuristic can be applied.

5.6 Highway dimension

We draw our definition of highway dimension from [11]:

The highway dimension h of a graph G = (V,E) is the smallest integer such that:
for all v ∈ V and r > 0 there exists a set H ⊆ V such that:

|H | ≤ h and H ∩ P ̸= ∅ for all paths P that are (r, 2r)-close to v

Here, a path P being (r, d)-close to a node v means two things:

1. P is r-significant, which is to say that it has an r-witness path P ′. An r-witness path P ′

of a path P is P extended with at most one node at each end such that the length of P ′ is
greater than r.

2. The r-witness path P ′ has distance at most d from v. The distance between a path P and
a node v is defined as min {d(v, w) | w ∈ P}.

In this definition of highway dimension, H represents a ‘hub set’: a set of ‘important’ nodes that
are on all shortest paths for a node v, at scale r. The scale component is important, as v might
have a small H at small scales, but large H at larger scale, or vice versa. The maximum size
of such a hub set is taken as the highway dimension of the graph. The highway dimension of a
graph, then, gives some indication of how ‘hub-based’ the graph is, i.e. a low highway dimension
indicates that a small group of nodes are on many of the shortest paths at each scale.

5.6.1 Theoretical examples

The definition of highway dimension can be hard to parse without concrete examples. This section
will provide values for the highway dimension of a number of graph types to clarify the concept.
Figure 2 gives some examples of these graph types.

The star graph Sn is defined as a center node connected with n− 1 leaf nodes. It can also be seen
as a tree graph with branching factor n− 1 and depth 1. The highway dimension of Sn is always
equal to n, as follows: first, note that all paths fall into one of three categories:

1. The path consists of a single node from the graph, call these paths P0. These paths all have
length 0.
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Star graph S6

Complete graph on 4 nodes

Line graph L3

Figure 2: Several different types of graph

2. The path consists of the center node and a leaf node, call these paths P1. These paths all
have length 1.

3. The path consists of a leaf node, the center node and another leaf node, call these paths P2.
These are the longest paths possible and all have length 2.

If we now take the center node as v and r = 0.9, the set of all paths that are (0.9, 1.8)-close to
v is all paths: all paths P ∈ P0 are 0.9-significant, since they can be extended with the center
node to make a witness path P ′ of length 1 - since this witness path includes the center node v
d(v, P ′) = 0 it is (0.9, 1.8)-close to v. For P ∈ P1∪P2 we have that the length of P is ≥ 1 and that
they include v, hence they are (0.9, 1.8)-close to v. Now, we have to construct the set H that ‘hits’
all of these paths. Since H needs to hit all P ∈ P0, we have H = P0 = V . Hence, |H | = n. We
know that this must be the highway dimension, since the highway dimension cannot be greater
than the number of nodes in the graph. Note that the same holds for the complete graph on n
nodes, since the star graph Sn is embedded in this graph.

Next we will examine the line graph Ln, defined simply as a ‘line’ of n nodes, each connected to
the previous and next in the line. A closely related graph is the cycle graph Cn, in which the
‘head’ and ‘tail’ nodes of the line graph are connected, such that the graph forms a closed circle of
n nodes. We will see that for n ≤ 5 the highway dimension of Ln and Cn is n, while for n > 5 it is
always 5. Take the line graph L5, with v the middle node of the line, and r = 0.9. Once again, all
paths are (0.9, 1.8)-close to v. This means that H = V and thus that the highway dimension of L5

is 5. Note that if we make the line shorter, we’re simply removing one of the singleton paths from
the set of paths that need to be hit, hence H = V will also hold for n < 5. If we make the line
longer by adding a node w, we are adding a singleton path, but it will not be (0.9, 1.8)-close to the
chosen v (see figure 3). Thus, w will not be added to H, so |H | = 5 still holds. Note that this H
is indeed the largest H possible - if we take r = 1.1, the set of all paths that are (1.1, 2.2)-close to
v becomes all paths except the singleton paths. We could make an H that hits all of these easily:
for instance, take H to be the set containing w and the neighbors of v. Now we have |H | = 2.
Hence, adding a node does not increase the highway dimension of a line graph. Note that the
same holds for cycle graphs, since any node we pick will be essentially the ‘middle’ of a line.
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v w′ w

Figure 3: d(v, w′) = 2 > 1.8, hence P = ⟨w⟩ with 0.9-witness P ′ = ⟨w,w′⟩ is not (0.9, 1.8)-close
to v

Graph F2 F3 F4 F5 F6 F7

HD 4 9 11 13 18 24

Table 2: Highway dimension for some field graphs

The closest analog to the maps used for benchmarking is the field graph Fn, consisting of a n× n
square ‘net’ of nodes. See figure 4(a) for an example. The highway dimension of these graphs is
harder to precisely determine theoretically, especially as n grows larger. One way to determine
the highway dimension of field graphs is to look at the (r, 2r)-neighborhoods for low values of r.
We define the (r, 2r)-neighborhood of a node v as the set of all paths P that are (r, 2r)-close to v.
See figure 4(b), 4(c) and 4(d) for some ‘maximal’ neighborhoods. We can construct a hitting set
H such that H ∩P ̸= ∅ for all P in a neighborhood, such that |H | gives the ‘highway dimension’
of that neighborhood. In the figure, red nodes represent nodes that are in such an H. Overlaying
these neighbors on a field graph Fn and counting the maximum number of red nodes possible will
give some idea of the highway dimension (see table 2).

5.6.2 Estimating highway dimension

Algorithm 1 describes a procedure for estimating the highway dimension. This procedure is based
on the definitions and theory of sparse hitting sets in [21], specifically definition 4.1 and theorem
4.2. Note that it is possible for this procedure to both over- and underestimate the true highway
dimension of the given graph. The highway dimension can be underestimated in two ways: either
the procedure doesn’t pick enough paths based on the nodes, which causes an undersized hitting
set, or the procedure doesn’t investigate the right scale, as it only looks at scales ma, mi and
mv. Overestimation is possible due to the greedy generation of minimal hitting sets, which might
cause an oversized hitting set. Despite these limitations, the procedure seems to give reasonable
estimates of the highway dimension (see table 3). As can be seen in the table, the procedure tends
to underestimate, and not overestimate, the highway dimension on field graphs.

Graph Theoretical HD Estimated HD
S10 10 10
S100 100 100
L2 2 2
L4 4 4
L5 5 5
L6 5 5
L10 5 5
L100 5 5
F2 4 4
F3 9 9
F4 11 11
F5 13 13
F6 18 13
F7 24 14

Table 3: Theoretical and estimated (with n = 100) values of highway dimension for a variety of
graphs
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Figure 4: (a): field graph F5. (b): (0.9, 1.8)-neighborhood. (c): (1.1, 2.2)-neighborhood. (d):
(2.1, 4.2)-neighborhood.
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Algorithm 1 Estimate Highway Dimension

1: procedure HighwayDimension(V , E, n)
2: D ← array of distance arrays of length n
3: Π← array of shortest path trees of length n
4: for i from 1 to n do ▷ generate n distance arrays and shortest path trees

5: v
$← V ▷ chosen without replacement

6: D[i],Π[i]← Dijkstra(V,E, v)
7: end for
8: ma ← max {max {d[v] | v ∈ V } | d ∈ D}
9: mi ← min {min {d[v] | v ∈ V } | d ∈ D}

10: mv ← ma+mi

2
11: for i from 1 to n do
12: Trace 100 randomly chosen paths from Π[i] ▷ chosen without replacement
13: Of those, add ma-significant paths to Pa

14: Of those, add mv-significant paths to Pv

15: Of those, add mi-significant paths to Pi

16: end for
17: Sa ←MinHittingSet(Pa) ▷ generated by a basic greedy algorithm
18: Sv ←MinHittingSet(Pv)
19: Si ←MinHittingSet(Pi)
20: HD← 0
21: for each chosen v do
22: HD← max(HD, |Bma(v) ∩ Sa |)
23: HD← max(HD, |Bmv

(v) ∩ Sv |)
24: HD← max(HD, |Bmi

(v) ∩ Si |)
25: end for
26: return HD
27: end procedure
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6 Methods

The benchmark maps were taken from [5]. These maps are divided into categories: there are 17
types of ‘artificial’ map and a number of maps that are taken from different video games. The
artificial maps are all 512 × 512 maps. This was too big to allow for timely preprocessing for
contraction hierarchies and hub labels, so we reduced their size to 80 × 80 by taking the top-left
80× 80 square as the new map. This leaves the following different map types:

1. 8rooms and 16rooms: 8 × 8 or 16 × 16 square rooms divided by walls. Holes are randomly
placed in the walls between rooms to act as doors.

2. maze-1, maze-2, maze-4 and maze-8: mazes with corridors of width 1, 2, 4 or 8.

3. random-10, random-15, random-20, random-25, random-30, random-35: empty maps where
10% to 35% (in increments of 5%) of the map is randomly turned into a wall.

4. game: maps that where taken from video games (referred to as ‘misc’ in some figures)

Where possible, map metrics where taken from [5], otherwise they where calculated according to
the definitions and methods given in section 5. In order to be able to compare the runtimes of
the algorithms to each other, custom implementations of the algorithms were produced, rather
than using pre-made implementations. The implementation was done in C# and benchmarks
were performed using the BenchmarkDotNet library [13]. For non-preprocessing benchmarks, the
preprocessing was done beforehand and the result was serialized to a file. Before running the
benchmarks, the data was deserialized again. The benchmarks were run on a machine with an
AMD Ryzen 5 5600x hexacore processor running at 3.7 GHz, 32 GB of DDR4 memory running at
2133 MHz, on the Windows 10 version 20H2 operating system. The query benchmarks consisted of
10 queries with a true length between 100 and 104. Benchmarks were run on all maps for Dijkstra,
A* and HPA*, on maps with grid size at most 420× 420 for contraction hierarchies and on maps
with grid size at most 140 × 140 for hub labels. Preprocessing was also benchmarked for HPA*,
contraction hierarchies and hub labels. Preprocessing for contraction hierarchies and especially
hub labels took too long on game maps, hence it was only benchmarked on the non-game maps.
Preprocessing was benchmarked on all maps for HPA*.

The method for calculating the space use varied per algorithm. For HPA*, the space use is
measured as the sum of the amount of space taken up by all the abstract graphs and the input
graph, divided by the size of the input graph. We calculate the space taken up by a graph as
follows: for each edge, 1 unit of memory is required to store the source node, 1 unit for the
destination node and 2 units for the weight of the edge. This corresponds to using 32-bit integers
for the node IDs and a double precision (64-bit) floating point number for the edge weight. The
same method can be applied to contraction hierarchies: in our case, we discarded the input graph
and stored the results of the preprocessing as two graphs: one up-graph where the edges only go
up in the node order, and one down-graph where the edges only go down in the node order. The
space use of contraction hierarchies is then the space required to store these graphs divided by the
space required for the input graph. For hub labels, there is no graph required to make queries,
only the labels. The size of a label is calculated as the amount of label entries times three: one
unit to store the node ID (a 32-bit integer) and two units to store the distance to that node (a
double precision floating point number). The space use is then defined as the sum of the sizes of
all the labels, divided by the space use for the input graph.

7 Results

7.1 Overview

The average values for the performance metrics for each of the algorithms can be found in table
4. The preprocessing for contraction hierarchies and hub labels took too long for them to be
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Algorithm Time (µs) Memory (B) Space Preprocessing (ms) Speedup
Dijkstra 15,629.46 15,054,816.49 1.00 - 1.00
A* 9,258.79 10,003,550.52 1.00 - 1.69
HPA* 1,743.04 719,147.32 1.15 10.20 8.97
CH 1,369.59 3,081,200.25 1.62 2,649.60 11.41
CH with A* 1,079.76 2,992,474.58 1.62 2,649.60 14.47
HL 8.43 56.00 11.04 103,537.52 1,853.22

Table 4: Average running time, memory use, speedup and preprocessing time with respect to
Dijkstra for each algorithm

Algorithm Time (µs) Memory (B) Space Preprocessing (ms) Speedup
Dijkstra 27,100.80 35,367,098.18 1.00 - 1.00
A* 16,600.77 30,727,261.09 1.00 - 1.63
HPA* 3,487.06 1,019,904.00 1.21 10.91 7.77
CH 3,481.26 4,575,604.36 1.94 2,873.40 7.78
CH with A* 1,969.49 3,431,703.27 1.94 2,873.40 13.76
HL 20.94 56.00 21.62 112,909.29 1,294.51

Table 5: Average running time, memory use and speedup with respect to Dijkstra for each algo-
rithm for the top 10 most difficult maps

run on some larger maps, hence these results are averages over the maps on which all of the
algorithms were run. A straightforward summary of the results would be thus: hub labels has
the lowest running time and memory use of all the algorithms, but also the highest space use
and preprocessing time. Contraction hierarchies (with and without A*) and HPA* exhibit lower
running times and memory use than both Dijkstra and A*. Finally, contraction hierarchies is
about 1.27 times faster than HPA*, but uses more than four times the memory and 1.4 times
the space and has higher preprocessing time. The same holds for contraction hierarchies with A*,
except that it is 1.62 times faster. Looking at the hardest (table 5) and easiest (table 6) top 10’s,
we see that as the maps get harder, the difference in running time between HPA* and contraction
hierarchies shrinks, although the same does not hold for HPA* and contraction hierarchies with
A*: the latter is about 1.77 times faster on the most difficult maps. We can also see that the
effectiveness of using A* with contraction hierarchies shrinks on the easier maps, where using A*
makes no significant difference. For hub labels, the space use is lower for easier maps and higher
for harder maps, however this does not hold for contraction hierarchies or HPA*.

7.2 Map metrics

The number of states, longest path and dimension metrics are taken from [4], the difficulty metric
is meant to combine the ‘nodes expanded’ and ‘heuristic accuracy’ metrics from this paper. The
highway dimension is defined in [11]. Table 7 shows the median values for each of the metrics per

Algorithm Time (µs) Memory (B) Space Preprocessing (ms) Speedup
Dijkstra 1,230.18 2,708,107.64 1.00 - 1.00
A* 1,011.70 2,542,871.27 1.00 - 1.22
HPA* 222.48 341,085.09 1.25 2.72 5.53
CH 71.08 2,097,152.00 1.76 200.60 17.31
CH with A* 74.86 2,097,152.00 1.76 200.60 16.43
HL 1.65 56.00 5.80 1,802.60 744.62

Table 6: Average running time, memory use and speedup with respect to Dijkstra for each algo-
rithm for the top 10 easiest maps
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Map type States L. path Avg. degree Difficulty Dimension Highway dim.
8room 5065.00 136.20 6.28 23.61 0.66 17.00
16room 5665.50 139.14 7.19 29.97 0.62 10.50
maze-1 3179.00 663.50 1.99 2.78 0.00 5.00
maze-2 4214.00 499.34 4.92 6.76 0.00 9.50
maze-4 5084.00 287.70 6.46 13.35 0.00 11.50
maze-8 5646.50 224.56 7.21 22.24 0.01 11.50
random-10 5742.00 119.10 6.38 20.13 0.97 94.00
random-15 5448.50 123.23 5.79 21.04 0.87 71.00
random-20 5105.00 127.62 5.18 20.42 0.78 47.00
random-25 4742.50 134.19 4.60 20.33 0.66 35.00
random-30 4393.00 144.96 4.16 18.84 0.51 22.00
random-35 3903.50 166.13 3.76 16.35 0.35 12.50
game 64426.00 619.55 7.65 59.32 0.31 -

Table 7: Median values for each of the metrics, categorized by map type

map type. The highway dimension was not feasible to estimate on large maps due to memory
use, hence it has only been calculated for the non-game and some of the smaller game maps on
which contraction hierarchies could be run. For the ‘longest path’ and ‘dimension’ metrics we
find similar results to those found in [4]: mazes have long paths and dimension 0, and the longest
paths for rooms and random maps are similar. However, the values for the ‘dimension’ metric we
found are significantly lower than those mentioned in [4]. This might be a result of the maps being
scaled down. For the ‘difficulty’ metric, we see that mazes with low corridor size are easy, while
random maps and larger corridor mazes have middling difficulty, with rooms being the hardest.
We find that mazes have low highway dimension, and that it increases with corridor size. Rooms
also have low highway dimension and the highway dimension decreases as the rooms get bigger.
This makes sense, since bigger rooms means less rooms and thus less doors. Since the doors
act as choke points, with many shortest paths going through them, less doors will mean a lower
highway dimension. Random maps have high highway dimension, which decreases sharply as the
obstruction ratio increases.

In the following sections, we will illustrate how the different metrics relate to the running time,
memory use, space use and preprocessing time of each algorithm. The values for the metrics have
been normalized to make it easier to compare and combine them.

7.2.1 Dijkstra

Dijkstra shows the strongest correlation overall with difficulty (Pearson correlation coefficient is
0.78). We can combine different metrics to get a cleaner relationship. The strongest overall
correlation is with the following combination of metrics:

difficulty + 0.11 · dimension− 0.6 · states + 0.2 · average degree

This gives a correlation of 0.87 overall, and 0.92 for non-game maps. Figure 5 shows a scatter plot
comparing the runtime to this combination of metrics. For game maps, this relation is still messy,
with a correlation coefficient of 0.78. A different combination of metrics gives a cleaner relation
for game maps:

difficulty + dimension + 15 · average degree

Figure 6 shows a scatter plot illustrating this relation. This gives a good correlation for game
maps of 0.92, but only a 0.71 correlation overall.
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Figure 5: Dijkstra performance in relation to difficulty + 0.11 · dimension − 0.6 · states + 0.2 ·
average degree

Figure 6: Dijkstra performance in relation to difficulty + dimension + 15 · average degree
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Figure 7: A* performance in relation to difficulty + average degree + 0.4 · longest path

7.2.2 A*

A* shows the strongest correlation with difficulty: a Pearson correlation coefficient of 0.81 overall,
and 0.94 for non-game maps. This is to be expected, since the difficulty metric is based directly
on A*. An overall correlation of 0.88 is achieved by the following combination of metrics:

difficulty + average degree + 0.4 · longest path

Figure 7 shows a scatter plot illustrating this relationship. Adding these extra terms, however,
does reduce the correlation coefficient for non-game maps to 0.79. The main reason for this is the
maze maps: these have long paths and A* performs well on them. Hence, the longest path term
inflates their metric-value to higher than it should be.

7.2.3 HPA*

HPA* has the strongest correlation with difficulty (correlation coefficient 0.89), but the cleanest
relationship is with the following combination of difficulty and dimension (correlation coefficient
0.91):

difficulty + 0.17 · dimension

Figure 8 shows this relationship. The major outliers are the ‘rooms’ maps, on which HPA* has a
lower runtime than the formula would suggest. Remember that the searching algorithm for HPA*
consists of two stages: insertion of the source and goal nodes followed by an A* search through
the abstract graph. Table 8 gives an overview of insertion and searching times by map type.
Insertion times are higher for ‘rooms’ maps compared to the other map types. However, this does
not explain the discrepancy. A possible explaination for the low running time is the specific layout
of the rooms maps and choice of hyperparameters: 8× 8 or 16× 16 square rooms with single-cell
doors. Since the size of the initial HPA* cells is 8 × 8, this aligns perfectly with the walls of the
rooms, possibly explaining the low running time.

Finally, there is evidence to suggest that the best choice of hyperparameters for HPA* is influenced
by map metrics. Since the non-game maps are all 80×80 grids, the current method for determining
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Figure 8: HPA* performance in relation to difficulty + 0.17 · dimension

Map type Insertion Searching Proportion spent searching
8rooms 4.10 4.40 52%
16rooms 4.77 7.32 61%
maze-1 0.62 1.57 72%
maze-2 1.46 2.27 61%
maze-4 2.66 4.48 63%
maze-8 3.86 8.73 69%

random-10 4.45 27.45 86%
random-15 4.02 30.66 88%
random-20 3.45 28.77 89%
random-25 2.94 26.76 90%
random-30 2.40 20.10 89%
random-35 1.79 14.17 89%

Table 8: Insertion and searching time averages by map type
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Figure 9: Performance of HPA* on non-game maps for a variety of values for the hyperparameters

the values for the hyperparameters will produce the same result for all of them, namely:

wa = ha = 8 n = 1 m = 2

In order to investigate whether this was the best choice, benchmarks were run for a variety of
different choices for the hyperparameters. See figure 9 for the results (in the figure, the hyper-
parameter values are presented as (wa, ha,m, n)). We found that different map types generally
have different best choices for the hyperparameters, with no one choice being the best for all map
types.
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Figure 10: Contraction hierarchies performance in relation to highway dimension + 144.4 · states

7.2.4 Contraction hierarchies

The runtime performance of contraction hierarchies shows the strongest correlation with the num-
ber of states (correlation coefficient 0.89). Combining this with the highway dimension as follows
yields a clean relationship (correlation coefficient 0.97, see also figure 10):

states + 0.17 · highway dimension

7.2.5 Contraction hierarchies with A*

Using A* with contraction hierarchies has a significant impact on the performance characteristics.
The number of states becomes more strongly correlated with the running time (from 0.84 to 0.94)
and the highway dimension becomes more weakly correlated (from 0.84 to 0.72). Once again,
combining these two metrics yields the best relationship (correlation coefficient 0.96, see figure
11):

states + 0.031 · highway dimension

7.2.6 Hub labels

Hub labels, like contraction hierarchies, shows a strong correlation with highway dimension (cor-
relation coefficient 0.86). Unlike contraction hierarchies, there is also a moderate correlation with
dimension (correlation coefficient 0.66, versus 0.32 for contraction hierarchies). A strong relation-
ship (correlation coefficient 0.92, see also figure 12) is found with the following combination of
metrics:

highway dimension + 0.15 · degree
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Figure 11: Contraction hierarchies with A* performance in relation to states + 0.031 ·
highway dimension

Figure 12: Hub labels performance in relation to highway dimension + 0.15 · degree
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Figure 13: Dijkstra memory use in relation to difficulty+1.15 · longest path+0.53 ·average degree

7.3 Memory use

The memory use data is similar to the running time data, indicating that the amount of allocated
memory is directly related to the running time of each algorithm. However the values are rounded
and displayed as, for instance, ‘3 MB’, instead of a more exact number. The result is that the
memory use data is a sort of ‘banded’ version of the running time data, as if the running times
were rounded. As a result of this, there was no analysis to be performed on the memory use data
for hub labels, since the only unique value was 56 bytes.

7.3.1 Dijkstra

Memory use for Dijkstra was most strongly correlated with difficulty (correlation coefficient 0.82),
but the cleanest relationship was with the following combination of metrics, see also figure 13
(correlation coefficient 0.88):

difficulty + 1.15 · longest path + 0.53 · average degree

7.3.2 A*

Memory use for A* was most strongly correlated with the longest path (correlation coefficient
0.82), but the cleanest relationship was with the following combination of metrics, see also figure
14 (correlation coefficient 0.88):

longest path + 0.73 · states + 0.3 · average degree
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Figure 14: A* memory use in relation to longest path + 0.73 · states + 0.3 · average degree

7.3.3 HPA*

Memory use for HPA* was most strongly correlated with the difficulty (correlation coefficient
0.95), but the cleanest relationship was with the following combination of metrics, see also figure
15 (correlation coefficient 0.96):

difficulty + 0.54 · states + 0.41 · longest path

7.3.4 Contraction hierarchies

Memory use for contraction hierarchies was strongly correlated with the number of states (corre-
lation coefficient 0.997), but the cleanest relationship could be achieved by adding the highway
dimension as follows, see also figure 17:

states + 0.01 · highway dimension

7.3.5 Contraction hierarchies with A*

Memory use for contraction hierarchies with A* was strongly correlated with the number of states
(correlation coefficient 0.997). The relationship could not be significantly improved by adding
another metric. See figure 17 for a plot.
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Figure 15: HPA* memory use in relation to difficulty + 0.54 · states + 0.41 · longest path

Figure 16: Contraction hierarchies memory use in relation to states + 0.01 · highway dimension

27



Figure 17: Contraction hierarchies with A* memory use in relation to number of states
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Figure 18: HPA* space use in relation to average degree− 0.31 · dimension

7.4 Space use

7.4.1 HPA*

The space use of HPA* shows a moderate correlation with the average degree (correlation coeffi-
cient -0.78). We can add the dimension to make it slightly stronger - correlation coefficient -0.8
(see figure 18), but we nonetheless don’t get a clean relationship.

7.4.2 Contraction hierarchies

The space use of contraction hierarchies shows no strong correlation with any one metric, but we
can combine the number of states and the highway dimension as follows:

states + 0.09 · highway dimension

To get the relationship seen in figure 19. Again, we don’t see a clean linear relationship, but there
is a hint of a square root or logarithmic relationship. The latter is supported by [11], theorem 6.2,
which states that nodes in a shortcut graph have degree O(h logD), since the space use is based
on the number of shortcuts.

7.4.3 Hub labels

Space use for hub labels shows a strong correlation with highway dimension (correlation coeffi-
cient 0.87). We can combine this with the longest path to get a cleaner relationship (correlation
coefficient 0.9), see figure 20. Note however, that the arrangement is similar to the one in figure
19, but since we lack data for hub labels on some of the larger maps we don’t get the same picture.
Since the space use of hub labels is based on the label size and [11] mentions that the maximum
size of a label is O(h logD), it is plausible that the relationship is similar to the one observed for
contraction hierarchies.
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Figure 19: Contraction hierarchies space use in relation to states + 0.09 · highway dimension

Figure 20: Hub labels space use in relation to highway dimension− 0.32 · longest path
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Figure 21: HPA* preprocessing time in relation to number of states

7.5 Preprocessing

7.5.1 HPA*

HPA* preprocessing time shows a near-perfect correlation with the number of states (correlation
coefficient 0.99, see figure 21). This is to be expected, since the preprocessing time is directly
based on the number of doors, which will increase with the number of states. The non-game maps
all have a similar number of states, and hence show a weaker - but still strong - correlation with
the number of states (correlation coefficient 0.79). By combining the number of states with the
highway dimension and longest path, we get a solid relationship with both the game (correlation
coefficient 0.99) and non-game maps (correlation coefficient 0.95), see also figure 22:

highway dimension + 50 · states− 0.3 · longest path

7.5.2 Contraction hierarchies

Preprocessing time for contraction hierarchies doesn’t appear to show any strong correlation (cor-
relation coefficient greater than 0.8) to a single one of the metrics, nor can we combine them to get
a stronger relationship. Note however that the Pearson correlation coefficient only indicates the
strength of a linear relation. It is plausible that there is a superlinear relation between the pre-
processing time of contraction hierarchies and one of the metrics. For instance, figure 23 appears
to indicate an exponential relation between the preprocessing time and average degree.

7.5.3 Hub labels

Preprocessing time for hub labels shows a strong correlation to highway dimension (correlation
coefficient 0.96). This makes sense, since - because we use contraction hierarchies for the check
queries - preprocessing may involve thousands of distance queries for contraction hierarchies.
Hence, the preprocessing time for hub labels will be mostly based on the runtime performance of
contraction hierarchies. Combining the highway dimension with the number of states, as we did
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Figure 22: HPA* preprocessing time in relation to highway dimension+50·states−0.3·longest path

Figure 23: Contraction hierarchies preprocessing time in relation to average degree
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Figure 24: Hub labels preprocessing in relation to highway dimension + 15 · states

for the runtime of contraction hierarchies, yields a clean relationship (correlation coefficient 0.97,
see also figure 24):

highway dimension + 15 · states
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Figure 25: Comparison of runtime, memory allocation and space use for contraction hierarchies
(with A*) and HPA*

7.6 HPA* vs. contraction hierarchies

In section 7.1 it was mentioned that contraction hierarchies, both with and without A*, is faster
than HPA*, but at the cost of having higher memory and space use. As can be seen in figure 25
the difference in running time is not significant, whilst the differences in memory and space use
are.

This does not mean that the difference in runtime is always insignificant. Figure 26 shows the
running time of contraction hierarchies plotted against the running time of HPA*. The figure shows
that contraction hierarchies is significantly faster on a number of map types, namely random-10 to
random-35 and maze-1. Figure 27 shows the same plot for contraction hierarchies with A*, which
adds random-10 to the list of map types on which contraction hierarchies with A* is significantly
faster. From these figures we can also see that HPA* is significantly faster than both contraction
hierarchies with and without A* on game and maze-2 maps.

Despite this, there seems to be no way to predict, based on the map metrics, whether or not
contraction hierarchies will be faster than HPA*, as is illustrated in figures 28 and 29.
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Figure 26: Contraction hierarchies running time vs HPA* running time, with dotted line indicating
x = y

Figure 27: Contraction hierarchies with A* running time vs HPA* running time, with dotted line
indicating x = y
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Figure 28: Boxplots for all metrics, both when contraction hierarchies is faster and slower than
HPA*

Figure 29: Boxplots for all metrics, both when contraction hierarchies with A* is faster and slower
than HPA*
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8 Discussion

There are a number of limitations of this study to mention and discuss. Firstly, there are some
practical factors which may have influenced the results: the benchmarks were not run in a vacuum,
but on a machine that, besides running the benchmarks, was also running the Windows operating
system and several background processes and daemons. Any spikes in running time caused by
another process running on the machine may have influenced the results, however this effect is
alleviated by the fact that the machine has six logical cores among which to distribute work and
the BenchmarkDotNet library, which detects and removes outliers from the performance measure-
ments. One process in particular that could have had an impact on the results is the garbage
collector. In order to test the extend to which garbage collection influenced performance measure-
ments, we compared a benchmark with garbage collection to one without garbage collection (the
garbage collector was temporarily turned off using the built-in GC.TryStartNoGCRegion method)
and found that turning off the garbage collector actually increased running time by a factor of
about 1.06. This suggests that the garbage collector does not unfairly inflate the running times
of algorithms. Another factor is the hardware: it is possible that a specific, unlucky interaction
with the used hardware might have increased the runtime of an algorithm. While this is does
not necessarily taint the results, re-running the benchmarks on a different machine would improve
confidence in the results.

It is possible that a programming error may have unnecessarily slowed down one or more of the
algorithms. For the runtime of the algorithms, this does not appear to be an issue since speedups
found for HPA* and contraction hierarchies align with those found in the literature: around a
10 times speedup for HPA* is reported in [1] and speedups of 7, 10 and 20 are reported for
contraction hierarchies in [12]. However, preprocessing for contraction hierarchies and hub labels
took more than an hour on larger maps, whilst this did not seem to be the case in the literature.
For instance, [12] runs the preprocessing phase of contraction hierarchies on the same benchmark
problems we used and reports times of between 9 and 12 seconds for 512× 512 grids. It should be
noted that [12] uses a modified version of the contraction hierarchies algorithm with a significantly
optimized preprocessing phase, so some difference is to be expected. However, the magnitude of
the difference found suggests something may have gone wrong. Note that [7] also ran contraction
hierarchies on large grid maps, but did not report preprocessing times. It is also possible that the
running time of the standard preprocessing algorithm for contraction hierarchies is not suited for
grid maps, causing the slowdown on larger maps.

Finally, there are some methodical limitations to the findings of this study. For one, the measure-
ments were performed only on problems where the true distance was between 100 and 104. We
know from [7] that the running time of contraction hierarchies is low on queries with longer true
distance: [7] reports a running time of 36.4 µs averaged over true distances, and 49.4 µs on the
longest 1% of true distances. The same is not necessarily true for HPA*, hence the comparison
between these two algorithms may have turned out differently if problems with a greater true
distance had been chosen. Some other limitations come up with respect to the metrics, which may
have been altered by scaling the non-game maps down from 512×512 to 80×80. In particular, the
amount of states, longest path, average degree and difficulty all tend to decrease when a grid map
gets smaller. Whilst this does not necessarily spoil the results, also examining different map types
at their full size may improve confidence in the relations between map metrics and performance
given. Lastly, computing (or even estimating) the highway dimension of a graph remains a hard
problem, as mentioned in [11]. The method provided by this paper appears to provide reasonable
values but it is hard to be sure of the validity of the computed values, especially since they cannot
be easily verified. The general trend appears to be underestimation of the highway dimension, as
suggested by table 3.
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9 Conclusions and suggestions for future work

We were able to find strong relations between the map metrics and the performance of the algo-
rithms. Table 9 gives an overview of these correlations.

Algorithm States Longest path Average degree Difficulty Dimension HD
Dijkstra (general) Strong - Weak Strong Weak -
Dijkstra (game) - - Strong Strong Strong -

A* - Weak Strong Strong - -
HPA* - - - Strong Weak -
CH Strong - - - - Strong
CHH Strong - - - - Weak
HL - - Strong - - Strong

Memory use States Longest path Average degree Difficulty Dimension HD
Dijkstra - Strong Weak Strong - -

A* Strong Strong Weak - - -
HPA* Weak Weak - Strong - -
CH Strong - - - - Weak
CHH Strong - - - - -

Preprocessing States Longest path Average degree Difficulty Dimension HD
HPA* Strong Weak - - - Strong
CH - - Strong - - -
HL Strong - - - - Strong

Space use States Longest path Average degree Difficulty Dimension HD
HPA* - - Strong - Weak -
CH Strong - - - - Strong
HL - Weak - - - Strong

Table 9: Overview of how strongly a metric correlates with the performance of a pathfinding
algorithm

The claim that the running time of hub labels and contraction hierarchies increases with the
highway dimension from [11] is reproduced here. Note that we found the running time to also
be dependent on the number of states. This likely corresponds to the diameter component in the
bounds provided by [11] (see section 4.2). It is somewhat strange that the longest path did not
show a strong relation with the running time of contraction hierarchies, since it is equivalent to
the diameter. Although we did find some relation between the running time of HPA* and the
difficulty and dimension, there are some findings which suggest another, unexplained influence.
Namely, the fact that the performance on rooms maps is not well explained by the given metrics,
and the fact that the choice of hyperparameters seems to change how the performance relates to
the map metrics. We have also found a contraction hierarchies-like relation to highway dimension
and number of states for the preprocessing time of HPA*. We suggest further research into
how the choice of hyperparameters relates to the map metrics and preprocessing time. We do
not feel confident in making any strong conclusions about the preprocessing time for contraction
hierarchies and hub labels, as we found preprocessing times that were unexpectedly high and did
not align with those reported in the literature for both algorithms. This suggests that either
something has gone wrong or that significant alteration to the algorithms (as was done in [12]) is
required in order to achieve lower preprocessing times on larger grid maps. We seem to have found
a nonlinear relationship between the space use of contraction hierarchies and the combination of
highway dimension and number of states, although we suggest collecting more data on larger game
maps to improve confidence in this conclusion. A similar relationship might exist for the space
use of hub labels, however more data on game maps is needed in order to verify or falsify this
hypothesis. From our data, it appears as though the space use of hub labels is most strongly
related to the highway dimension, which is supported theoretically by [11]. We were not able
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to establish a clean relationship between the metrics and the space use of HPA*, which suggests
that the chosen metrics are unable to predict the space use of this algorithm. The memory use
results for Dijkstra and A* seem unreliable due to the banding effect described in section 7.3, so
we do not feel confident in those obtained relationships. Finally, note that we found a difference
in behaviour between non-game and game maps for the running time of Dijkstra, which suggests
there might be some difference between the ‘artificial’ and game maps that is not captured in the
chosen metrics.

Finally, some notes on when each of the algorithms are most useful. If the lowest runtime is all that
matters, hub labels is the clear choice. It has the lowest running time of all the chosen algorithms
even on large maps with high highway dimension. However, it also has the highest space use of all
algorithms treated in this paper, using an average of 11 times the amount of space required for the
input graph. This means that memory limitations might restrict when it can be effectively used.
In these situations, contraction hierarchies and HPA* offer low running times with smaller space
requirements. The running times of these two algorithms are comparable, although there can be
significant differences: From the results it is clear that HPA* is faster than contraction hierarchies
on video game maps, however it is unclear in what situations contraction hierarchies is faster. We
found that contraction hierarchies is faster than HPA* on random maps, but could not explain this
result using the map metrics. We suggest expanding the repertoire of map metrics and benchmark
problems in future research to try to explain this result. What is clear, however, is that HPA*
has lower space and memory use than contraction hierarchies. No meaningful comparison can be
made between the observed preprocessing time of contraction hierarchies and HPA*, because of
the limitations discussed earlier. We also found that using A* with contraction hierarchies offers
better runtime performance with no significant drawback. While it may seem that HPA* is the
better choice, the algorithm does have the major drawbacks of being limited specifically to grid
maps and returning suboptimal results. In addition, the values chosen for the hyperparameters
can have a significant, unpredictable effect on the performance. Here, we suggest further research
into the related HNA* algorithm [14], which can be used on any graph, not just grids, to see if it
can also achieve performance that is competitive with that of contraction hierarchies.

In summary, we have shown that in a large number of cases the chosen map metrics have a
significant impact on the performance of the algorithms. However, we were unable to use the map
metrics to decide between two algorithms with comparable running time (contraction hierarchies
and HPA*).
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