
Bachelor thesis
Computing Science

Radboud University

Improving reinforcement learning
performance in 2048 using expert

knowledge

Author:
Koen Sauren
s1024202

First supervisor/assessor:
Dr. Nils Jansen

N.Jansen@cs.ru.nl

Second assessor:
Dr. Daniel Strüber

d.strueber@cs.ru.nl

August 23, 2022

Abstract

We developed a method for playing 2048 using a deep reinforcement learning
agent using expert knowledge. Previous deep RL-based agents only achieved
poor performance, never exceeding a 1024 tile. We acknowledge that a
specific strategy for moving the tiles is required to win in 2048 and that
enforcing such a strategy is a form of enforcing strict safety on the agent. We
allow the policy to deviate from the chosen strategy at key states in the game,
using expert knowledge to find such states. We define metrics to compare
states and actions, as well as a heuristic to embed the expert knowledge
into the policy. The construction of our system is inspired by shielding,
a method used to guarantee safety in reinforcement learning. Using this
method, performance increases noticeably, as compared to greedy, strategy-
less agents. agents adhering to strict safety. In total, we study three different
agents: a greedy agent, which optimises immediate reward, a naive safe
agent, which strictly adheres to the strategy, and an agent using expert
knowledge. Experiments show that the greedy agent performs poorly and
is not able to reliably get a score higher than 256. The naive, safe agent,
outperforms the greedy agent, more reliably achieving a 512 tile, but it
cannot win the game. The agent using expert knowledge outperforms both.
Our agent is able to achieve a 1024 tile reliably and achieves a 2048 tile,
thus winning the game, on several occasions.

Contents

1 Introduction 2

2 Preliminaries 6
2.1 (Deep) Reinforcement Learning 6
2.2 Safety for Reinforcement Learning 9
2.3 Shielding for Reinforcement Learning 10

3 Problem statement 12

4 Our solution 16
4.1 Reverse Shielding . 16
4.2 State Score . 17
4.3 Objective reward . 18
4.4 Mergeable tiles . 19
4.5 Precedence of moves . 20

5 Implementation 22
5.1 Categorical Q network . 22
5.2 Reward scheme . 23
5.3 Masking . 24
5.4 Implementing the reverse shield 26
5.5 Reverse shield and training 30

6 Results 32
6.1 Preliminaries . 32
6.2 Greedy agent . 33
6.3 Naive agent . 36
6.4 Reverse shielded Agent . 38

7 Related Work 42

8 Conclusion 44

A The reverse shield at work 49

1

Chapter 1

Introduction

2048 is a sliding puzzle video game, where the player’s objective is to combine
numbered tiles on a 4x4 grid by sliding them until a tile with a value of 2048
is achieved [8]. After each move, a new, low-valued tile appears on the grid.
This ensures that the player does not run out of tiles to combine, but it also
makes unsolvable grid arrangements possible. To prevent such unsolvable
arrangements, i.e., arrangements where no tiles can be combined and no
new tiles can be added, keeping the grid ordered is essential. Doing so will
require that the tiles are moved according to a certain strategy.
The grid is small, so a simple strategy, such as keeping the highest value tile
in a certain corner, suffices. As an example, consider the grid on the left side
of figure 1.1. The board is not ordered, which makes lining up tiles of equal
value and merging them near impossible. By extension, this also means that
it is nearly impossible to reach 2048. In the grid on the right of 1.1, the
highest tile is kept in the bottom-left corner, and by only using LEFT and
DOWN (a LEFT-DOWN strategy), the desired ordering is maintained. For
consistency, we will always use this strategy going forward. It might now
be easy to conclude that an easy way to solve 2048 is by simply marking
certain moves as unsafe. In the case of the previous example, these moves
would be UP and RIGHT.

2

(a) An unordered grid (b) A well-ordered grid

Figure 1.1: 2 example grid arrangements.

This would be simple to implement, but will not work to solve the game.
As there, at some point, will be an arrangement of the grid where the legal
moves are not possible, the player will in such a case be forced to make a
disallowed move. This will almost certainly reduce the ’ordered-ness’ of the
grid, and increase the chance of game-over. For an example, see figure 1.2.

(a) (b)

Figure 1.2: In the grid arrangement on the left, UP is the only possible
move. The right shows the resulting grid after performing this move and
playing a few more moves. While it is sometimes possible to recover from a
situation like this, it is more likely to lead to game-over quickly.

Deep reinforcement learning is a tool well suited to solve this problem. The
agent can be trained to avoid states that require a disallowed move and
learn to recover quickly from unfavorable states. It would even be possible
to strictly disallow unsafe moves in states where any safe move is possible.
While this generally yields fairly good results, it does not take into account
subtle nuances of the game, which human players are able to perceive and use
to their advantage. For example, figure 1.3 shows a well-ordered grid, which

3

allows for both a move left and a move down. However, the more practiced
player will quickly see that moving right will be better in this state. Since
the bottom row, where the most valuable tile is, would not be affected by
any move besides UP, moving right will have few serious consequences for
the ordering of the grid, because restoring the ordering when only low-value
tiles are not ordered is relatively easy. Moving right will position the two
64 tiles above each other, allowing them to be combined into a 128 tile,
right next to the existing 128 tile. These tiles can then be combined into a
256 tile. This progression is shown in the bottom half of figure 1.3. This
nuance, however, will not be detected by the naive reinforcement learning
agent described previously, because it would not consider an unsafe action
if a safe action is available. As a result, in a situation like the one described
in figure 1.3, the agent will not choose the unsafe move, even though it is
better. This is problematic, as such moves are usually the key to success
in 2048. For an agent that performs such technically unsafe, but valuable
moves it may be easier to achieve a 2048 tile, thus winning the game, and
it may be easier to do so in fewer moves. To train an agent to act in this
manner, a new approach is required.

(a) Arrangement where moving
right is better

Right−−−→

(b)

Down−−−→

(c)

Left−−→

(d)

Figure 1.3: Progression of grid arrangements after moving right, showing
that merging up to a 256 tile is made easier.

4

We will now further introduce the problem at hand, and introduce a method
to improve the performance of a deep reinforcement learning agent using ex-
pert knowledge. The resulting policy will play more like a human player by
learning to perceive nuances in the game state and use them to its advantage.
This is achieved by introducing a second layer between an agent aiming for
strict safety and the environment, which checks if an unsafe action entails
an acceptable risk and high potential reward and, if this is the case, over-
rides the command issued by the baseline agent. We will also show that
our approach outperforms both unchecked agents (which only optimise re-
ward) and agents aiming for strict safety, such as the naive agent described
previously.

5

Chapter 2

Preliminaries

2.1 (Deep) Reinforcement Learning

In Reinforcement Learning (RL) [24], a policy is learned by an agent through
interacting with an environment. The agent selects an action at each timestep
(game state) and the environment responds with the new state resulting from
the chosen action, and a reward, which is used by the agent to determine if
the chosen action was good or bad. The agent’s objective is to maximise the
cumulative reward. Doing this gives rise to the optimal policy, a set of rules
the agent can follow to get the maximum reward in each state. The reward
is useful for immediately evaluating states after they arise from some action.
In the longer term, however, it is useful to know how valuable a state is to
the agent if the optimal policy is followed from that state. To do this, the
agent can define a value function on the states, which describes how much
reward the agent can expect to get in the future if it starts from a certain
state.

Agent

Environment

a
ct
io
n

rew
a
rd

n
ew

sta
te

Figure 2.1: Diagram of the interaction between agent and environment in a
simple reinforcement learning system.

6

Formally, we can describe these concepts as follows:
The policy followed by the agent at each timestep t, denoted πt, is a map-
ping from state-action pairs to the probability that an action is chosen in
that state. So, πt(a|s) = p(At = a|St = s).
The return Gt defines a function on a sequence of rewards Rt, Rt+1, It
is the agent’s objective to maximise the value of this function. Usually, the
discounted return at some timestep is maximised, defined as

Gt =
∞∑
k=0

γkRt+k+1

where γ is the discount factor, γ ∈ [0, 1] ⊆ R, which determines the value of
future rewards in the present.
Then, the value function defines the expected value of a state-action pair in
the long term when following some policy π, vπ(s, a) = E[Gt|St = s,At = a].
A probability distribution over some set X is a function µ : X → [0, 1] ⊆
R, and

∑
x∈X µ(x) = 1. Then, Distr(X) denotes all distributions on X.

The environment is usually formalised using a Markov Decision Process
(MDP), represented by a 4-tuple (S,A,P,R), where:

� S is a set of states (the state space).

� A is a set of actions (the action space).

� P : S × A → Distr(S) is a probability function on state-action pairs.
For each such pair, a probability distribution is returned, which de-
fines the probabilities of reaching successor states s′ from state s using
action a.

� R : S×A → R is the immediate reward function, denoting the reward
received after moving from state s to state s′ using action a.

Further, we have that for all states s ∈ S the available actions are As =
{a ∈ A|P(s, a) ̸= ⊥}.

7

Applying this framework to 2048 gives the following definition for the 4-tuple
defined above:

� S =
⋃
g
{gx,y|x, y ∈ {1, 2, 3, 4}}, where gx,y is the value of the tile at loca-

tion (x, y) in some grid g, i.e., gx,y =

2n, with n ∈ {1, . . . , 11}

0, if the tile at (x, y) is empty.

� A = {UP, DOWN, LEFT, RIGHT}

� P(s, a, s′) =

1, if s ̸= s′, a ∈ As, and performing a in s indeed leads to s′.

0, otherwise.

� RS (the reward) can be implemented in various different ways. Imple-
menting this function in a certain way will allow us to push the agent
in a certain direction, something we will use later on.

As discussed previously, the objective of the RL agent will be to learn a
policy that maximises the expected cumulative return for every state-action
pair. To do this, it is necessary for the agent to explore new states, as well
as using (exploiting) the value of states it has seen before. However, it is
also necessary to prevent the agent from getting stuck in familiar territory,
where it only uses state-action pairs it already knows to have high value. To
counter this, the agent has to be forced to explore new, potentially better,
states. An ϵ-greedy policy can be used for this. An ϵ-greedy policy is an
extension of the ’normal’ policy πt, where we redefine the policy as follows:

πϵ−greedy(a|s) =

πt(a|s) with probability 1 - ϵ,

random value ∈ [0, 1], with probability ϵ.

where 0 ≤ ϵ ≤ 1. Usually the chosen value for ϵ is initially quite high, but
decreased as training progresses, because we want to explore as many states
as possible in the initial stages of training. Later on, however, we want to
exploit the known values of states and actions more.
Several approaches exist for learning the policy πt, but here we will discuss
Q-Learning [16]. This method is well suited to environments with stochas-
tic transitions and rewards, like in 2048. Furthermore, Q-learning is very
suitable for environments with discrete action and state spaces, like 2048.
In this approach, a Q-value is learned for each state-action pair. A higher
Q-value then indicates that action a is better in state s. The best action
in state s is then the action with the highest Q-value. During training the
Q-values are updated iteratively based on what the agent observes during
exploration. Formally, we can define this as:

Q(s, a) = Q(s, a) + α(r + γmaxa′Q(s′, a′)−Q(s, a))

8

Here, α is the learning rate and γ is a discount factor which determines how
important long-term reward will be. Essentially, the Q-value is updated
towards the observed reward plus how good the state we end up in is (the
max Q-value of the next state). To learn an optimal policy, i.e, the optimal
action for each state, we would need to learn a Q-value for each state-action
pair. If S is sufficiently large, however, this quickly becomes infeasible, like
for, for example, 2048. When this is the case, we can approximate the Q-
values for each state-action pair by learning a model. This can be done using
Deep Q-learning [19][20]. In Deep Q-learning, we learn a neural network,
and Q-values are estimated by querying this network with a state as input.
As usual with neural networks, we update the weights and biases of the
network to optimise a loss function. Internally, two networks are used, a
main network and a target network. The parameters of the target network
are updated at an interval set by a hyperparameter, using the weights of
the main network at that time. The target network is used during training
(and after training) to provide stable Q-value estimates for updating the
main network. To further improve stability, correlations in training data
(between consecutive transitions) are removed by storing transitions in a
replay buffer and sampling randomly from this buffer to train the network.
Note that our previous definitions for the MDP representing 2048 can be
used unchanged with Deep Q-learning.

2.2 Safety for Reinforcement Learning

While reinforcement learning is a powerful tool to achieve certain tasks,
it can be hard to train agents capable of operating in safety-critical envi-
ronments. During exploration, states can be visited which are considered
unsafe. In certain use cases, the mere possibility that an unsafe state will be
reached can be undesirable or even unacceptable. As an example, consider
a robot moving through a grid world. The goal state is a certain cell in
this world. An adversary moves through the same grid world randomly. If
the adversary spots the robot, i.e., it has a direct line of sight, it is game
over. To explore the state space safely, the robot will have to avoid states
where the game-over condition exists. Since a reinforcement learning agent
will aim for optimality and convergence, it is by definition not concerned
with safety. Most RL algorithms instead focus on exploration, but they as-
sume that the used MDP is ergodic, meaning that any state can be reached
from any other state by following a policy that does not end in termina-
tion. In certain systems, however, this cannot safely be assumed, as some
states are not reachable from all other states during exploration, because
those states are unsafe and should not be visited. Marking such states as
unvisitable would violate ergodicity, however, so certain properties of the
algorithm used may no longer hold. This problem gives rise to safe explo-

9

ration [14] [21] [22] in reinforcement learning. These techniques aim to make
exploration safe and by extension provide a safety guarantee on the agent.
Besides safe exploration, other techniques may be used for providing such
a safety guarantee, some of which may be found in [11]. To provide such
a guarantee, it is necessary to incorporate external knowledge of whatever
process is being learned into the learning process. By incorporating such
knowledge, a guiding hand is introduced, which will help the agent see its
own blind spots [9]. For example, it is possible to implement the agent such
that it will consult a teacher, which may be a human being, if it cannot de-
cide for itself whether an action might give rise to a catastrophic situation.
Conversely, the teacher may monitor the agent and intervene when it deems
appropriate. It is also possible to use apprenticeship learning [2], where the
reinforcement learning agent resembles a supervised learning agent. The
teacher provides example policies, which the RL agent can follow and then
learn from. There are many different notions of safety for reinforcement
learning, as well as many approaches to ensuring safety. A good survey of
definitions and methods for safe RL can be found in [11]. One such approach
is generally called Shielding, and we will focus on that method here.

2.3 Shielding for Reinforcement Learning

Generally speaking, a shield in the context of RL is a layer between the agent
and the environment, which verifies commands issued by the agent, before
they are executed in the environment [3]. The shield can then filter out any
unsafe commands from the agent. If the shield detects that a command from
the agent will lead to an unsafe state, it can cancel that command and issue
a new command, which is not (or less) problematic. Also see figure 2.2.

Agent

Environment

Shield

action

safe action

rew
a
rd

n
ew

sta
te

Figure 2.2: Diagram of a shielded reinforcement learning system.

Shielding can be seen as a form of RL with a teacher, as described in the
previous section. The key difference is that the shield is in principle al-
ways monitoring the agent, whereas teacher-guided RL may only consult
the teacher when the agent being trained deems it necessary. Furthermore,
in teacher-guided RL the teacher is only active during training, so its advice
must be incorporated into the agent’s policy during training. Shields, on

10

the other hand, may also be active when the agent is deployed in some real-
world scenario. Critically, combining a shield with a fundamentally flawed
agent means that the combined system can act correctly and safely. This
notion is used extensively in our approach.

As with other methods for safety in RL, several approaches to shielding
exist. Some approaches compute the shield before training starts [3]. The
shield can then be deployed in two different ways. It is interesting, for
our understanding, to discuss these two briefly. In [3], the authors make the
distinction between Preemptive Shielding and Post-Posed Shielding. A post-
posed shield, as shown in figure 2.2, verifies actions selected by the agent,
and interferes if the chosen action is unsafe. A preemptive shield, as shown
in figure 2.3, will be consulted each time the agent makes a move. The shield
will provide a list of safe actions, and the agent will use its own structure
and training to determine the optimal move out of the ones available to it.

Shield

Environment Agent

safe action

sa
fe

ac
ti
on

s

new state

reward

Figure 2.3: Diagram of preemptive shielding.

It is also possible to compute the shield on the fly and update it at an interval
during training, like in [23]. Here, the shield is essentially a separate learning
agent, which uses a version of the MDP used by the main agent. The benefit
of an approach like this is that it is more dynamic, allowing for changes in
the environment and behaviour of the agent to be captured in the shield.
For complex environments, where dynamics may change over time, this is
more effective than a static shield.

11

Chapter 3

Problem statement

As already stated in the introduction, winning in 2048 requires the use of a
strategy. Creating a reinforcement learning agent which can adhere to such
a strategy is relatively straightforward; by implementing the reward func-
tion such that the two safe moves given by the chosen strategy are heavily
incentivised, the agent should quickly learn to adhere to such a strategy.
Alternatively, we could explicitly disallow the unsafe moves given by the
strategy, unless a safe move is not available. This approach is, however, too
straightforward to solve 2048. Using only the two moves given by the strat-
egy at all times results in an agent that is too naive, and will only achieve
relatively low scores. A strict safety requirement would mean that no unsafe
state can ever be reached, i.e., game-over is not possible. Such a requirement
is too strict, as it is usually not possible to achieve the goal state by only
making legal moves. It is almost inevitable that we will, at some point, end
up in an unsafe state, meaning a state where only illegal moves are possible.
This does not have to be very consequential to our ability to win the game,
however. As a result, using a shield in the form as it is usually described
is not really helpful, as shielding is usually used to (try to) provide a strict
safety guarantee. In order to further specify the problem at hand, it is help-
ful to first define explicitly what an unsafe state is for 2048. We will consider
the state after merging two 1024 tiles, the first state where a 2048 tile exists,
to be the final ’victory’ state for the player. 1 It follows then, that when
the board has become saturated with tiles that cannot be merged, this is
a game-over state. These states are obviously unsafe, but other states can
also be considered unsafe. The left side of figure 3.1, for example, shows a
state where the only move possible is UP (which is assumed to be an unsafe
move).

1Most versions of 2048 allow the player to continue the game beyond this state, however.
In these versions the game could theoretically go on forever, reaching a 4096 and 8192 tile
and even higher.

12

(a)

UP−→

(b)

Figure 3.1: An unsafe state and its successor.

It is easy to see that this state is very likely to lead to game over. If we
move UP, a low-valued tile will be spawned in the bottom row, and it will
be very difficult to recover the state ordering after this. This is shown on
the right side of figure 3.1.

For other types of states, however, it is not as clear whether or not they are
unsafe. Consider, for example, the states in figures 3.2 and 3.3. These states
are very similar, but the left state is considered safe, while the right state is
considered ’unsafe’. To see that this is the case, we will perform RIGHT, an
unsafe move, in both states. The resulting states are shown in the bottom
halves of the same figures.

13

yRIGHT

Figure 3.2: An unsafe state and
its successor.

yRIGHT

Figure 3.3: A safe state and its
successor.

It is clear that the successor state in figure 3.2 is undesirable; a low tile has
spawned in the bottom right, where the highest tile should be. The succes-
sor state in figure 3.3, on the other hand, is very desirable; using DOWN
here will give us a second 128 tile which can then safely be merged with
the other 128 tile. Also note that the first state in 3.3 can be achieved by
performing DOWN in the first state of 3.1, showing that an unsafe state
can sometimes be made safe easily. This point is non-trivial, as the unsafe
move (RIGHT) is optimal in the safe state. If the agent strictly avoids un-
safe states, DOWN would be chosen in the unsafe state, which is good, but
in the resulting state, RIGHT would not be considered. Because of this,
an agent aiming for strict safety is not optimal, but an agent which does
not do this will also not learn the nuance demonstrated by this example.
In practice, the agent will not learn to reliably recover unsafe states first,
before taking a risk with high reward (as in figure 3.3).

It might seem then, that removing the strict safety requirement from the
agent will solve the problem. By doing this, the agent will learn to achieve an
optimal reward in the next state, but it will also be very short-sighted. The
agent will not learn to take into account the longer-term consequences of its
actions. This problem can be alleviated somewhat by tweaking the discount
value γ, but this is an imperfect solution. Solving this problem would require

14

an agent to learn the difference between safe and unsafe states. But, the
agent only learns what action to choose to get an optimal reward in the next
state, not what sequence of moves is required to balance safety and reward.
So the objective of our agent will be to avoid unsafe states, but if this cannot
be done by merely avoiding all unsafe moves, how do we balance safety with
taking acceptable risks? As we have seen, simply applying a solution that
achieves safety, like a shield, is unsuitable (and also unnecessarily compli-
cated). Instead, a different approach is needed.

Even though 2048 is a relatively niche use case, this problem, balancing the
need for safety and the need for taking risks, can in fact be seen in all kinds
of real-world use cases. For example, self-driving vehicles are systems where
reinforcement learning can come in very useful. In such cases, making the
wrong move could have catastrophic consequences, so safety is an obvious
requirement. Ideally, safety could be guaranteed by using, for example,
shielding. However, shields are not perfect, so we could end up with a system
that either does not guarantee safety, which is unacceptable, or a system that
is overly cautious. The latter could, for example, cause the system to refuse
to enter an intersection if the shield does not deem it perfectly safe to do
so. This problem is not solved by lowering the safety standards imposed by
the shield, as that could cause unacceptable actions to be taken in different,
similar cases. Participating in traffic means that taking risks is unavoidable,
but a strict safety guarantee would make it hard to strike a balance. If we
use a system adhering to strict safety, it might occur that, when no safe
move is available, no choice is made. It is precisely in such situations that a
choice has to be made, because not doing so could be more dangerous than
making a slightly risky choice. In such cases, a system that balances out the
strict safety guarantee would be useful.

15

Chapter 4

Our solution

4.1 Reverse Shielding

To achieve an agent that performs as desired, by balancing safety and adher-
ence to the strategy with taking acceptable risks under certain requirements,
we can use the intuition of shielding in a different way. While the final result
should not be referred to as shielding, as it does not guarantee safety or cor-
rectness, it is helpful to first explain it as a form of (post-posed) shielding,
namely reverse shielding. Under the ’classic’ notion of shielding, the shield
acts as a check on the agent by overriding unsafe moves. In our solution,
the shield acts as a check on safe moves, by overriding them with an unsafe
move if such a move carries an acceptable risk and high potential reward. As
stated, this does not guarantee safety, and might thus be better described as
infusing an agent with expert knowledge. As the concept described closely
matches the structure of a shield, however, we will intuitively refer to our
method as reverse shielding.
It would of course also have been possible to constrain a greedy agent, which
does not consider safety at all, using a ’normal’ shield. In this setup, the
shield would override unsafe actions. This, however, would also be subopti-
mal as the strict adherence to safety (as a consequence of the shield) may
cause deadlocks, where the shield causes the agent to get stuck in a known
safe zone of the state space. The shield only enforces safety and does not
enforce that good rewards are obtained or that some target (in our case,
reaching 2048) is reached. This is a known problem with shields, discussed
in, for instance, Carr et al. [6].

In this architecture, we use a naive agent biased towards safety as a baseline.
The majority of moves actually being executed in the game will come from
this agent. However, a second layer (the ’shield’) checks every safe action
selected by the agent and checks if an unsafe move might be better. The
second layer might thus be described as being biased towards taking risks.

16

Note that the naive agent does not only select safe actions, as it is possible
to end up in a state where only unsafe actions are possible. In a state like
that, the naive agent will act risk-averse, and select the ’safest’ unsafe move.

Because the second layer is modelled after a shield, it needs to fulfill two
main requirements [3], namely 1) minimal interference, i.e., that it only in-
tervenes when actually necessary, and 2) correctness, i.e., that when it does
intervene, it does not issue commands that are disadvantageous. In our
case, the commands issued by the second layer are, by definition, considered
unsafe, so we adjust this definition to mean that commands issued by the
second layer do not carry an unacceptable risk.

Meeting the second requirement (correctness) is achieved by constructing
an adequate method for evaluating states and moves. If this requirement is
met, the first requirement will also be met, because a safe move will only be
overridden by an unsafe move if that unsafe move is not too unsafe, and the
metrics used for satisfying the first requirement can also be used for com-
paring unsafe moves with safe moves. We only need to define a threshold
value that defines when the safe move is inferior to the unsafe move.

So, we will need metrics for evaluating states and moves. These metrics
can then be combined in several ways to obtain a qualitative comparison.
The method chosen should be able to distinguish between unsafe moves that
create a real advantage and moves that may contribute in the short term,
but are not necessarily more valuable than an allowed move. To find this
method, we need to first determine what defines such a move.

4.2 State Score

Firstly, we need a measure of ’goodness’ for the state resulting from a move.
As discussed, the strategy chosen is aimed at retaining well-orderedness of
the state, so a good way to ensure adherence to the strategy would be to
encode this property in the agent’s reward function. The state score is
defined for each row and column as follows:

StateScore(Sx) =

1, if Sx is well-ordered according to the chosen strategy

0, otherwise

where S is the state and x is the index of the row or column. The definition
of well-orderedness is usually equivalent to the row or column being mono-
tonically increasing (or decreasing) in some direction. The state score for
the full state S is then defined as the sum of the scores for all the rows and

17

columns, i.e.:

StateScore(S) =

8∑
i=1

(StateScore(Si))

For completeness, define the four rows (of a 4x4 grid) to be numbered 1 to
4, where 1 is the top-most row and 4 is the bottom-most row. The columns
are numbered in a similar fashion, with 5 being the left-most column, and
8 being the right-most column. As an example, take the LEFT-DOWN
strategy we have been using so far (LEFT and DOWN are the legal moves,
UP and RIGHT the illegal moves). Figure 4.1 shows a number of states
with their state scores according to this strategy.

(a) According to the LEFT-DOWN
strategy, this grid is well-ordered
and has a state score of 8 (the

maximum).

(b) This grid is not well ordered
and has a state score of 1 (as only

the left-most column is
monotonically increasing).

Figure 4.1: 2 example grid arrangements.

Note that, for practical reasons, we also compute the horizontal and vertical
state scores separately, in addition to the full state score as described above.
The horizontal state score is the sum of the state score of all the rows, and
the vertical state score is defined the same way, but for the columns.

4.3 Objective reward

We will also need a more objective measure of the value of a move. This
measure will be defined as the sum of the tiles merged because of a move.
Observe that this measure is more localised, as it only relates to pairs of
tiles, regardless of their position on the grid. The state score, in contrast,
is more global, as it relates to the entire state. Choosing the move that
merges the tiles with the highest value ensures quick progression toward the
objective and prevents the board from filling up with low to medium-valued
tiles. Figure 4.2 shows a move progression and the associated move rewards.

18

(a) Initial state

Left−−→

(b) Reward = 8

Left−−→

(c) Reward = 16

Figure 4.2: Move progression and rewards per move.

Going further, we will refer to this measure as the reward R of a move. This
measure, however, is not the final form of the reward scheme we will use in
the reinforcement learning agent. We then have

R =
∑
t∈T

(t)

where T denotes the values of all tiles created (as a result of merging two
tiles) by a move.

4.4 Mergeable tiles

Finally, we need a measure of the potential value of a state. This measure
should thus describe how much reward can be obtained if it were possible to
perform all 4 moves at once in a state 1. A good way to do this is to find all
the pairs of tiles that can be merged in a state, i.e., all adjacent pairs with
equal value. Some pairs may be more valuable than others, for example, a
pair of tiles with value 2 is less valuable than a pair of tiles with value 128.
To capture this in our measure, we can compute the sum of all mergeable
pairs, denoted byM. Further, let M(g) denote all pairs of mergeable tiles,
as a pair of coordinates (x, y) and (i, j) in some grid g, and gi,j the value of
the tile at column i and row j in g. Then

M(g) =
∑
p∈M

(gpx,py + gpi,pj)

For an example, see figure 4.3.

1Because moves on the same axis are symmetric, we would technically only have to
perform 1 move in each direction.

19

Figure 4.3: In this state, the mergeable pairs have been marked. The total
value of all the mergeable pairs,M, is 8 + 16 + 256 = 280.

4.5 Precedence of moves

One further thing worth noting is that not all unsafe moves are created
equally. In the strategy we have been using so far, LEFT-DOWN, there
are two unsafe moves: RIGHT and UP. It is easy to see that of these two,
RIGHT, is the ’least’ unsafe. We will demonstrate this with an example.
Consider the initial state in 4.4, as shown on the left of that figure. The
bottom row is, as a consequence of the LEFT-DOWN strategy, almost al-
ways the most critical to success. In 4.4, the bottom row is ’locked’, i.e,
moving right cannot alter it. Moving right thus has minimal effect on the
state score and is very beneficial. Conversely, moving UP is very bad, as it
spawns a low-valued tile underneath the highest-value tile. When we then
move DOWN again, this tile will still be in place and we will have to work
around it. This is indicative of a problem with the move UP under our cho-
sen strategy. We can observe that moving UP is virtually always too risky,
and almost never has better value. Because of this, we have to choose to only
move DOWN, LEFT, sometimes RIGHT, and UP only if no other move is
available. This establishes a certain order of precedence of the moves, which
is useful when we have to implement our shield later on. Formally, we can
define the ’locked row’ phenomenon as follows:

isRowLocked(i) =

T, if g1,i ̸= g2,i ̸= g3,i ̸= g4,i

F, otherwise

Note that a row does not need to be well-ordered to be locked, and vice-
versa.

20

UP

RI
GH

T

DOWN

DOWN

Figure 4.4

With the architecture of the agent and the necessary metrics defined, we
can move on to the actual implementation of the agent, and the results it
achieves.

21

Chapter 5

Implementation

For the implementation, we will use TensorFlow Agents [1], on Python
3.8.10. TensorFlow Agents recommends using Reverb [7] as the experience
replay system, so we use it here as well. Further, to implement, for exam-
ple, the grid dynamics and metrics, we used NumPy extensively [15]. We
implemented three different agents in total:

� A greedy agent; this agent tries to maximise the reward (as defined in
the previous section).

� A naive, safe agent; this agent makes only safe moves, unless a safe
move is not possible.

� An optimised agent, based on the naive, safe agent.

The entire implementation is available on GitHub, at
https://github.com/TheRealKS/2048-solver.
We will now discuss some details of the implementation that are worth
mentioning.

5.1 Categorical Q network

Deep reinforcement learning methods tend to be quite unstable during train-
ing. This is a notorious problem [5], and an active field of study. Especially
while learning a game like 2048, this problem manifests itself. In 2048, there
is a high degree of non-determinism, as the placement of new tiles is ran-
dom. Because of this, the input of actions by the agent naturally causes
a high degree of variance in the training data. For Deep Q-learning (the
method we will be using) several optimisations exist. Most prominently, we
use a Categorical Deep-Q network [4], also known as C51. In this method,
the distribution of the return for each state-action pair is learned, instead
of just a single Q-value. This distribution is discretised into 51 bins, called
atoms (hence the name C51). This requires knowing the range of the returns

22

[Vmin, Vmax], the minimum and maximum value the return for a single action
can take.
In our problem, this is easy to define beforehand. The lowest reward is 0,
for termination. The highest reward is obtained by merging two 1024 tiles,
to get the final 2048 tiles. So the range of rewards is [0, 2048]. This range
does not take into account that more than two pairs of tiles may be merged
at the same time. But as it is highly unlikely that we will, say, merge 4 1024
tiles in the same move, we disregard this possibility to avoid increasing the
size of the range. As the range becomes larger, the bins will also become
large (because the amount of bins is fixed). This will make the distribution
estimation less precise.
Once the distribution of Q-values has been learned, the exact Q-value for
a state-action pair can be determined by simply taking the mean of the
learned distribution:

Q(s, a) =
N∑
i=1

(pi(s, a) · zi)

Here pi(s, a) denotes the probability that the return for Q(s, a) lies within
the ith bin. zi denotes the i

th atom. Note that N will usually be 51, as that
is what the authors of C51 [4] found to be the optimal number of atoms.
The big advantage of using this method is that, instead of trying to learn
the average of the distribution of the return, we learn the entire distribution
and can then precisely compute the average. In our case, as we have already
shown, the return of the same action can vary greatly, because the return
will also incorporate longer-term rewards. These longer-term rewards can
be vastly different from game to game, based on the overall course of that
game. Capturing this variance in the training data is thus very useful, as it
means that the average (which is a measure notoriously sensitive to outliers)
used to determine the optimal action will better capture all the episodes seen
so far. This increases training stability and final performance.

5.2 Reward scheme

As already discussed, the reward scheme for our agent requires special at-
tention. In general, using just the notion of reward as defined previously is
too simplistic for non-greedy agents. If we want the agent to learn to adhere
to a strategy, and by extension the state ordering, we need to enforce this
by incorporating it into the final reward. This can be done by scaling the
greedy reward r (the sum of all the merged tiles) by a scalar (defined to be
between 0 and 1) s. We can obtain such a scalar easily by performing simple
arithmetic on the state score as previously defined.
This means that the reward scheme (as used by all agents except the greedy

23

one) will be:
r′ = s · r

Using this scheme ensures that the agent will learn to adhere to the strat-
egy, while at the same time also learning to distinguish between the two safe
moves, as one of the two can be more valuable than the other, as demon-
strated in figure 5.1.

Figure 5.1: In this state, both safe moves (LEFT and DOWN) are available.
It is clear, however, that LEFT is more valuable as it will merge the two 64
tiles into a 128 tile.

5.3 Masking

Even though using the reward scheme as defined should cause the agent to
learn to adhere to the strategy, it will not learn to do so perfectly. When
an unseen state is presented to the neural network, the network will try to
predict the optimal action based on previous experience. This means that
a certain randomness will be present. Especially in edge cases, an unsafe
action might be chosen when a safe action is also available. In such a case,
the constraints set by the strategy are violated. Also, enforcing exploration
through, for example, an ϵ-greedy policy is necessary to reach optimal per-
formance. But this may also cause unsafe actions to be selected and trained
into the network. The reward scheme should disincentive such moves, which
generally causes the agent to behave as intended, but in practice it can still
occur that an unsafe move is selected by the agent even when that is unac-
ceptable. To remedy this, we will need to be more aggressive in disallowing
unsafe moves. Fortunately, TF-agents allows a mask to be defined on the
actions available for selection. This is available both for the ϵ-greedy policy
used and the agent itself. We will use this feature extensively to prevent

24

unsafe moves being chosen when the strategy disallows this. Furthermore,
it allows us to disallow impossible moves at each step, which prevents the
agent from getting stuck and selecting the same move over and over even
though that move is not possible (and does not change the grid arrange-
ment). With our heavy emphasis on safe moves during training this might
happen, for example, if a safe move is not available and an unsafe move
must be chosen (which the agent will be reluctant to do).

25

5.4 Implementing the reverse shield

For implementing the reverse shield, we have two different options. We could
try to learn the behaviour in a separate agent, or we can construct a heuristic
to determine if an unsafe move is superior. In our case, we choose the latter.
Before this heuristic is computed, however, certain requirements must be
met. Imposing these requirements will prevent unnecessary computations.
The requirements for when the heuristic should be evaluated on the current
state-action pair are as follows:

� The chosen action should be defined as safe by the current strategy.

� In the state under consideration, an unsafe move is available.

� The amount of moves played in the current episode exceeds a certain
threshold.

The last requirement is necessary to prevent unsafe moves from being played
in the early stages of the game when the groundwork is laid for maintaining
good state ordering during the rest of the game. During these stages, it is
more vital to maintain safety. A wrong move in the early stages of the game
can sabotage the agent for the rest of the game and we should thus not work
against the agent by replacing a safe move in the early stages of the game.
A good example of why this is important can be found in figure 5.2.

26

Down−−−→

(a)

Right−−−→

(b)

Down−−−→

(c)

(d) The final state of the
game

Figure 5.2: a) shows the 9th state of a game. In this state, the chosen
(safe) move is replaced by the shield with RIGHT, an unsafe move. As the
heuristic used by the shield does not distinguish between low and high-valued
tiles, RIGHT was determined to have better value. Because of this, a low-
valued tile is moved into the bottom-left corner, where the most valuable tile
should be. This tile is still in place in the final state of the episode. If this
had not occurred, the agent would have had a better chance of progressing
further, and maybe even winning the game, as evidenced by the high values
of the other tiles.

Before we can compute the heuristic, we need to perform the safe move and
collect metrics (the value of the mergeable tiles and the state score in the
state after performing the safe move). Once the requirements for computing
the heuristic have then been met, we can perform the unsafe move and
collect the same metrics. The main metric we will use to determine if the
unsafe move is better is the ’mergeable’ metric. The state score is used
to determine the risk presented by this unsafe move. Before the heuristic
is computed, there is one additional check, namely that the unsafe move
did not lead to termination of the game. Such moves are of course never
advantageous. The heuristic used is best described using pseudocode, as in
algorithm 1. For simplicity, we will refer to the horizontal state score as
’hscore’, and the value of the mergeable tiles as ’mergeable’. We will also

27

use a function called getNumEmptyRows which returns the number of empty
rows, and a function called isRowLocked(i), which returns whether or not
the ith row is locked (as discussed before).

Algorithm 1 Reverse shield heuristic

procedure heuristic(grid, safe hscore, unsafe hscore, safe mergeable,
unsafe mergable)

Require: grid is the grid after the unsafe move has been performed
1: if safe hscore ≥ unsafe hscore ∧ safe mergeable = unsafe mergeable

then
2: return safe move is better
3: else
4: zero rows← grid.getNumEmptyRows
5: if unsafe hscore − zero rows > 0 ∧ grid.isRowLocked(3) then
6: if unsafe mergeable > safe mergeable then
7: return unsafe move is better
8: end if
9: end if

10: return safe move is better
11: end if
end procedure

Note that this particular version of the heuristic has been written to work
for the strategy we’ve been using throughout this thesis, namely the down-
left strategy, but that the procedure is analogous for other strategies. Also
note that under our chosen strategy, we only have to evaluate this heuristic
for RIGHT. We never consider UP to be a viable alternative if other moves
are available, due to the order of precedence as established in 4.5.
Now, we will go through the checks one by one:

� Line 1 contains the first safety check. If the value of the mergeable
tiles is the same for both the safe move and the unsafe move, and the
horizontal state score after the unsafe move is not better, we err on
the side of caution and choose the safe move.

� Line 5 contains the second safety check. This check is primarily to
verify that the unsafe move presents an acceptable risk. The idea is
that, if the bottom row is locked, the unsafe move will generally present
an acceptable risk. To this end, we check that (1) the horizontal state
score, not taking into account empty rows (which will always be well
ordered), is at least 1, so at least one row is well-ordered, and (2) that
the bottom row is locked. It might seem that one of these checks is
redundant, as they seem to check for more or less the same thing. In
certain cases that may indeed be possible, but in other critical edge

28

cases the combination of these checks can prevent disadvantageous
moves. Under our strategy, the bottom row will generally be well-
ordered if there is only 1 well-ordered row. But if a row is well-ordered,
it does not mean that it is locked. If, for example, we consider a bottom
row like in figure 5.3. We can easily see that performing LEFT (safe)
is better. Critically, this row is well-ordered, but not locked, which
means it passes the first check, but not the second. If the bottom row
is locked, however, but not well-ordered, moving right is suboptimal,
as we should be aiming to restore the ordering of the bottom row. This
can not be done using RIGHT. As a result, both checks are necessary
to make a good assessment.

� Line 6 contains the value check. Here, we check if performing the
unsafe move actually has merit. We use the value of the mergeable
tiles for this, as discussed before.

Figure 5.3: In this state, the bottom row is well-ordered, but not locked. This
means LEFT is optimal.

29

With the heuristic defined, we can capture the entire procedure for the
reverse shield in the following algorithm:

Algorithm 2 Reverse shield

procedure reverse shield(grid, previous_move)
Require: grid is the grid returned directly after the previous move
1: prev state legal moves← grid.getLegalMoves
2: safe_grid← grid.performMove(safe move)
3: safe hscore, safe mergeable← safe_grid.collectMetrics
4: if previous_move = LEFT ∨ previous_move = DOWN then
5: if RIGHT is in prev state legal moves then
6: unsafe_grid← grid.performMove(unsafe move)
7: if ¬unsafe_grid.isGameOver then
8: unsafe hscore, unsafe mergeable← unsafe_grid.collectMetrics
9: return heuristic(unsafe_grid, safe hscore, unsafe hscore,

safe mergeable, unsafe mergeable)
10: end if
11: end if
12: return safe move is better
13: end if
end procedure

For an example of this procedure at work, see appendix A.

5.5 Reverse shield and training

Now that we have defined the reverse shield, we can think about how to
integrate it with the agent. As mentioned before, we will be using the naive,
safe agent as the baseline agent. One option is to train the naive agent,
and then add the reverse shield, so that it will only be active when the
policy of the naive agent has already been trained. Alternatively, we could
deploy the reverse shield during training. In that way, the agent should
learn the behaviour of the shield and be able to function on its own. While
this approach has many advantages, it has one key disadvantage. Unsafe
moves will need to be allowed at all times, but the main feature of the safe
agent is that this is not the case. If we deviate from this notion of strict
safety, the agent will learn to perform unsafe moves when that is, in fact,
unacceptable. The reward scheme we are using, where the agent is penalised
for reducing the state score, should theoretically make the agent replicate
the heuristic’s behaviour exactly. However, this is not the case in practice,
as we have already discussed in section 5.3.
To strike a compromise between these two options, we will deploy the reverse
shield during training, but the agent will not observe the moves chosen (i.e.,

30

use these moves as training data) by the reverse shield. During training,
the agent will progress further in the game and observe states that would
only occur in later stages of the game. This way, the safe policy is better
trained for a wider variety of states, but it will not be necessary to deviate
from strict safety.

31

Chapter 6

Results

In this section, we will evaluate the performance of the three agents and see
how they compare.

6.1 Preliminaries

All experiments were run with an Intel Core i7 Processor, 8GB of ram, and
an NVIDIA GTX1050Ti as an accelerator, on the Linux 5.11 kernel.
For all agents and all experiments, unless otherwise noted, the same parame-
ters are used. The general setup uses the categorical Q network, as discussed
before, with a neural network containing 128 fully connected hidden layers.
A standard ϵ-greedy policy is used with the probability for a random action
set to 0.1. Below, we will note the values used for the hyperparameters.

� Learning rate: 0.001

� Discount factor γ: 0.95

� Q target network update interval: 50 episodes

� Replay buffer sample size: 64

� Replay buffer capacity: 10000 observations

The data was gathered by evaluating the policy learned every 25 episodes.
At each evaluation point, 10 episodes are run by the policy as it is at that
point learned by the agent. Of these 10 episodes, the mean length and mean
return value is recorded, as well as the maximum tile value reached in any
one of the 10 episodes.

32

6.2 Greedy agent

The greedy agent, as described before, uses the reward metric R without
any scaling. This agent, as a result, uses a fairly random strategy and does
not achieve very good results. Figure 6.1 shows the average reward and
average episode length plotted. Figure 6.2 shows a plot of the maximum
tile value reached. As can be seen, the agent does not improve much. This
fits what we have theorised before, namely that when only the immediate
reward is maximised, the overall performance will be quite bad. However,
the agent is in fact optimising somewhat as evidenced by the ever-decreasing
loss values, as shown in figure 6.3. The agent does manage to achieve a 512
tile sometimes, probably because it learns how to combine high-value tiles
and is thus not entirely random, but the most frequent highest tile value is
256. Figure 6.4 shows the return and episode length for 10 episodes played
with an entirely random policy (no learning whatsoever). We can now see
that the greedy agent is, in effect, not much better than this. To show this
further, figure 6.5 shows 3 final states reached by the greedy agent after
training 1000 episodes. Figure 6.6 shows the same, but for the random pol-
icy.
It is also interesting to note that the results are quite unstable. This is a
hard problem to solve. As discussed previously, reinforcement learning is
notoriously unstable during training. Especially with a fairly random dis-
tribution of returns (the outcome of the game can vary drastically from
episode to episode). This also means that applying a policy that worked
well in the previous episode might be counterproductive in the next. As we
have already seen, the spawning of a single, low-valued tile in an unfortunate
position can be disastrous for the outcome of the game. This means that,
even with countermeasures in place, the training will unfortunately be rel-
atively unstable. This is a problem that would require further investigation
and experimentation to solve.

Figure 6.1: Average return vs average reward of the greedy agent.

33

Figure 6.2: Maximum tile values achieved by the greedy agent.

Figure 6.3: Loss achieved by the greedy agent. Figure 6.4: Results achieved by a random policy.

34

(a) Highest tile = 256 (b) Highest tile = 64 (c) Highest tile = 64

Figure 6.5: Final states achieved by the greedy agent.

(a) Highest tile = 128 (b) Highest tile = 32 (c) Highest tile = 64

Figure 6.6: Final states achieved by the random agent.

35

6.3 Naive agent

The naive agent plays only safe moves unless such a move is unavailable.
This means that for this agent, safety is strictly observed. This agent
achieves much better results already than the greedy agent. While the vari-
ance in the return is still high, an upward trend is visible. We can see in
figure 6.8 that the maximum achieved tile is never lower than 256, and 512
is reached more regularly. Most importantly, however, the kinds of states
reached are much more usable and have higher potential. Figure 6.9 shows
the final state of a game played by the naive agent. Clearly, this state is
much more favourable than any of the states achieved by the greedy agent
(as shown in figure 6.5).

Figure 6.7: Average return vs average reward of the naive agent.

Figure 6.8: Maximum tile values achieved by the naive agent.

36

Crucially, however, analysing these states once again shows that the strictly
safe policy is sub-optimal. In figure 6.9, the tiles are available to form a 128
tile, which might have allowed us to continue the game. Further analysing
this game shows that game-over would have been averted if the reverse
shield had been in place. Consider the initial state in figure 6.10, which
is the state a few moves before the final state in figure 6.9. In this state,
choosing RIGHT would have merged the two 32 tiles into a 64 tile, and
positioned that tile above the existing 64 tile. Because the naive agent will
never consider such a move, however, this is not done and the agent chooses
LEFT. As a result, the two 32 tiles are still merged, but the resulting tile is
not positioned correctly and the game ends soon after. It is clear then, that
while the naive agent is much better than the greedy agent, there is room
for improvement. We will now see that using the reverse shield does just
that.

Figure 6.9: Final state achieved by the naive agent.

(a)

Left−−→

(b)

Figure 6.10: Move progression chosen by the naive agent.

37

6.4 Reverse shielded Agent

This agent achieves by far the best results. Here, we trained for 500 episodes
total. Figure 6.11 shows the average reward vs average lengths. Stability is,
once again, not great, but an upward trend is visible, and after 225 episodes,
a 2048 tile is achieved, as shown in figure 6.12. After this, the agent stabilises
somewhat, before performance peaks quite high and falls back down again.
A long, annotated move progression can be found in appendix A.

Figure 6.11: Average return vs average reward of the reverse shielded agent.

Figure 6.12: Maximum tile values achieved by the reverse shielded agent.

Most importantly, however, a 2048 tile is achieved twice, and this agent is
able to easily reach a 1024 tile. Also note that the measure of the maximum
tile, while more concrete than the average cumulative return, does not take
into account whether, for example, two 1024 tiles exist on the board, but it
is not possible to merge them. The maximum tile value measure does not

38

capture this. The average length measure can do a better job here, but as
evidenced by figures 6.11 and 6.12, the number of moves needed to reach a
certain tile might differ greatly. If the agent is inefficient, i.e., it creates a
lot of high-valued tiles that cannot be merged, the average length, as well
as the average return, will be high, but the maximum tile value may still be
quite low. The reverse shielded agent should be more efficient than the naive
agent. To show this, we trained both agents for 250 episodes and recorded
the average of the sums of all the tiles on the board at each evaluation.
Figure 6.13 shows the results of this.

Figure 6.13: Sum of the tiles on the board of the reverse shielded agent and
the naive agent.

It is very clear that the reverse shielded agent always performs much better
than the naive agent. For completeness, see figure 6.14 for the maximum
tile values achieved by both agents. Here, it can be seen clearly that the
higher sum of tiles value corresponds to a higher maximum tile value in most
of the cases. This shows that the reverse shielded agent is able to create
more high-valued tiles, and while they may not always be mergeable, this is
something that a further improved agent could take advantage of.

39

Figure 6.14: Sum of the tiles on the board of the reverse shielded agent and
the naive agent.

Most importantly, however, is that we want our agent to create opportunities
and then use them to its advantage. To show that the reverse shielded agent
does this best, figure 6.15 shows how many times tiles of values between 32
and 1024 were lined up, i.e., able to be merged, for each of the 3 agents.
Each agent was trained for 500 moves. The results were taken as an average
of the results for 10 games played after training had finished.

Figure 6.15: Bar plot showing how often certain pairs of tiles were lined up
to be merged. The greedy agent never lines up tiles with a value higher than
256, and none of the agents achieve this for 2048 tiles.

Here, we can again clearly see that the naive agent outperforms the greedy

40

agent and that the reverse shielded agent outperforms the naive agent. In-
terestingly, we can see that at some point, the reverse shielded agent lined
up two 2048 tiles, but did not merge them. This shows that while the re-
verse shielded agent performs well, it could still do better. The underlying
strategy of the naive agent, could, for instance, be improved. Then, the two
1024 tiles might have been combined and the game would have been won.
It is also possible that in that particular state an unsafe move would have
merged the two tiles, but that the heuristic used did not evaluate that move
as better.

41

Chapter 7

Related Work

Ever since 2048 was first released in march of 2014, solving the game using a
computer player has been a popular subject of study. As such, many differ-
ent approaches have been described, with a wide variety of results. Besides
published work, many different efforts using a variety of different methods
can be found across the internet. Early efforts used tree search, with care-
fully designed evaluation functions. These methods, therefore, use expert
knowledge, much like our reverse shielding approach.
Later methods use non-deep temporal difference learning (TDL), such as
[25] and [26]. In the former of these, the authors were able to win (achieve a
2048 tile) in 97% of games. In the latter, the authors used TDL in a 3-stage
approach, performing TDL on a different aspect of the game at each stage.
Using this method, they are able to always achieve a 2048 tile, and even
achieve a 32768 tile in 10.9% of games. Later techniques, such as the one
described in [13], managed to increase this to 72%.
Further, attempts have been made to solve 2048 using supervised learning,
such as in [17]. Here, a network is trained to classify states into 4 classes,
corresponding to the 4 moves. The training data was obtained by running a
number of strong, TDL-based agents. This approach was successful, achiev-
ing a 2048 tile in 98.8% of played games.
The first attempt at using deep reinforcement learning for 2048 used a stan-
dard deep-Q network [12]. Here, the authors based their method on the
first version of deep-Q learning, as described in [19]. This method uses a
convolutional neural network, which was suitable for playing Atari games in
[19], but this method did not work well for 2048. The highest tile achieved
using this method was 1024. The authors conclude that a convolutional net-
work is not suitable for a game like 2048, because the state is compact and
patterns in the grid arrangement are not very meaningful. In [10], the au-
thors also tried to use deep-Q learning, but also did not achieve a 2048 tile.
The authors also discuss incorporating expert knowledge, by implementing a
state evaluation function, like the state score we have described. Using this

42

metric, they try to learn human-like playing behaviour by using the state
evaluation metric to enforce adherence to a strategy, much like we do in our
approach. Ultimately, however, this specific approach was unsuccessful.
So far, the best, published results have been achieved using TDL. It is worth
noting, however, that several users on the internet claim they have been able
to achieve very high win rates using deep-Q learning, like in [18]. Here, the
author claims to achieve 1024 in all games, and 2048 in 40% of games. The
specific results claimed here, however, could not be verified, because the
specific implementation used was not publically available.

43

Chapter 8

Conclusion

In this thesis, we have investigated improving reinforcement learning perfor-
mance for agents playing 2048 by using expert knowledge. We have made a
number of key observations, namely:

1. To win in 2048, a strategy is required. Throughout this thesis, we have
used the LEFT-DOWN strategy.

2. However, deviation from the strategy is needed at certain key points
in the game.

3. Learning such a nuanced strategy using deep reinforcement learning
requires a new approach.

Enforcing the strategy in the naive agent has been shown to yield superior
results, as opposed to a greedy agent. We have found that in order to
solve the key problem - learning a nuanced strategy - incorporating expert
knowledge into the policy through a process similar to shielding worked
well. Through our method, we are able to reliable achieve a 1024 tile,
and on occasion we are even able to win the game by achieving a 2048
tile. This presents an improvement over previous techniques, though TDL-
based methods are still superior. The main shortcomings of our technique
are that the training process lacks stability, a common problem in deep
RL. Implementing countermeasures, such as the categorical Q-network, have
helped somewhat, but improving the training stability is an important topic
for future work.
Another topic for future work is learning the nuanced policy directly into
the final policy, instead of requiring a second layer to be active at all times.
Currently, the shield-like structure requires a rigid heuristic to be evaluated
for every single move, and the expert knowledge used is not learned into the
agent’s policy. Learning the interventions of the reverse shield into the final
policy would require relaxing the requirement that the agent adheres to the
strategy, which yields inferior performance. Lastly, the code used by the

44

agent is very suitable for research and evaluation uses in its current form.
However, training performance could be increased by optimising the code.
Doing so could make training more episodes feasible, and might then as a
result also improve performance and stability.

45

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Pieter Abbeel and Andrew Y. Ng. Exploration and apprenticeship
learning in reinforcement learning. In Proceedings of the 22nd Inter-
national Conference on Machine Learning, ICML ’05, page 1–8, New
York, NY, USA, 2005. Association for Computing Machinery.

[3] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement learn-
ing via shielding. CoRR, abs/1708.08611, 2017.

[4] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional
perspective on reinforcement learning. CoRR, abs/1707.06887, 2017.

[5] Lucian Buşoniu, Tim de Bruin, Domagoj Tolić, Jens Kober, and Ivana
Palunko. Reinforcement learning for control: Performance, stability,
and deep approximators. Annual Reviews in Control, 46:8–28, 2018.

[6] Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. Safe
reinforcement learning via shielding for pomdps. arXiv preprint
arXiv:2204.00755, 2022.

[7] Albin Cassirer, Gabriel Barth-Maron, Eugene Brevdo, Sabela Ramos,
Toby Boyd, Thibault Sottiaux, and Manuel Kroiss. Reverb: A frame-
work for experience replay, 2021.

[8] G Cirulli. 2048. http://gabrielecirulli.github.io/2048/, 2014.

46

[9] Jeffery A Clouse and Paul E Utgoff. A teaching method for reinforce-
ment learning. In Machine learning proceedings 1992, pages 92–101.
Elsevier, 1992.

[10] Antoine Dedieu and Jonathan Amar. Deep reinforcement learning for
2048. http://www.mit.edu/people/adedieu/pdf/2048.pdf. [Online,
accessed 07-10-2021].

[11] Javier Garcıa and Fernando Fernández. A comprehensive survey on
safe reinforcement learning. Journal of Machine Learning Research,
16(1):1437–1480, 2015.

[12] H Guei, T Wei, JB Huang, and IC Wu. An early attempt at applying
deep reinforcement learning to the game 2048. In Workshop on Neural
Networks in Games, 2016.

[13] Hung Guei, Lung-Pin Chen, and I-Chen Wu. Optimistic temporal dif-
ference learning for 2048. CoRR, abs/2111.11090, 2021.

[14] Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, and
Steffen Udluft. Safe exploration for reinforcement learning. In ESANN,
pages 143–148. Citeseer, 2008.

[15] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020.

[16] Michael L. Littman. Markov games as a framework for multi-agent
reinforcement learning. In In Proceedings of the Eleventh International
Conference on Machine Learning, pages 157–163. Morgan Kaufmann,
1994.

[17] Kiminori Matsuzaki. A further investigation of neural network players
for game 2048. In Advances in Computer Games: 16th International
Conference, ACG 2019, Macao, China, August 11–13, 2019, Revised
Selected Papers, page 53–65, Berlin, Heidelberg, 2019. Springer-Verlag.

[18] Anav Mehta. Reinforcement learning for constraint satisfaction
game agents (15-puzzle, minesweeper, 2048, and sudoku). CoRR,
abs/2102.06019, 2021.

47

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing
atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel
Veness, Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518:529–33, 02 2015.

[21] Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in markov
decision processes. CoRR, abs/1205.4810, 2012.

[22] Martin Pecka and Tomas Svoboda. Safe exploration techniques for
reinforcement learning – an overview. In Jan Hodicky, editor, Modelling
and Simulation for Autonomous Systems, pages 357–375, Cham, 2014.
Springer International Publishing.

[23] Stefan Pranger, Bettina Könighofer, Martin Tappler, Martin Deixel-
berger, Nils Jansen, and Roderick Bloem. Adaptive shielding under
uncertainty. CoRR, abs/2010.03842, 2020.

[24] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An
introduction. IEEE Transactions on Neural Networks, 9(5):1054, 1998.

[25] M. Szubert and W. Jaśkowski. Temporal difference learning of n-tuple
network for the game 2048. In IEEE Computational Intelligence and
Games 2014, pages 1–8, Dortmund, Germany, 2014. IEEE Press.

[26] I-Chen Wu, Kun-Hao Yeh, Chao-Chin Liang, Chia-Chuan Chang, and
Han Chiang. Multi-stage temporal difference learning for 2048. In
Shin-Ming Cheng and Min-Yuh Day, editors, Technologies and Appli-
cations of Artificial Intelligence, pages 366–378, Cham, 2014. Springer
International Publishing.

48

Appendix A

The reverse shield at work

On the following page is a sequence of moves achieved by the reverse shielded
agent.

49

F
ig
u
re

A
.1
:
S
eq
u
en

ce
o
f
m
o
ve
s
a
s
a
ch
ie
ve
d
by

th
e
re
ve
rs
e
sh
ie
ld
ed

a
ge
n
t.

50

