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Abstract

The Skyscrapers puzzle is an NP-complete logical puzzle, meaning that a
solution to this puzzle can be verified in polynomial time but as of yet there
is no way to solve this puzzle in polynomial time. Additionally, every other
problem that is in NP is reducible to the problem of solving the Skyscrapers
puzzle. The aim of this thesis is to transform this puzzle into a Boolean
satisfiability (SAT) problem and use a SAT solver to solve puzzles of any
dimension. Using the SAT encoding and the SAT solver we will also create
a program to generate new Skyscrapers puzzles. We experiment with a min-
imal and extended encoding for Latin Squares and find that the extended
encoding provides a small advantage in time when generating puzzles with
the Glucose SAT solver. With the Kissat SAT solver this effect is not evi-
dent. Furthermore, we experiment with two different ways of encoding the
clues around the puzzle and we conclude that directly encoding the clues as
variables provides a small advantage in time over encoding the consequences
of the clues. Lastly, with the way the experiments are set up, the Glucose
SAT solver seems to be more efficient when it comes to solving/generating
of the Skyscrapers puzzle.
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Chapter 1

Introduction

Logic puzzles, puzzles that can be solved using deduction techniques, have
been gaining popularity over the years. The most famous logic puzzle prob-
ably being the Sudoku, there are many other kinds of logic puzzles of all
shapes and sizes, like Slitherlink1 and Akari2. The common denominator
in most of these puzzles is that they are usually described using a concise
and simple rule set, despite being very hard to solve. With the ever-rising
increase in popularity also comes attention from the scientific world. Over
the past years, a lot of research has been conducted on different logic puzzles
and different aspects of these puzzles.

One of the lesser-known puzzles is the Skyscrapers puzzle (also known
as Towers or the Building puzzle). This puzzle has been proven to be NP-
complete [8]. A decision problem P is NP-complete if it satisfies two condi-
tions. The first of the two conditions is that P needs to be in NP (nonde-
terministic polynomial time complexity class), which means that a solution
to this problem can be verified in polynomial time but as of yet there is no
way to solve the problem in polynomial time. The second condition is that
every problem in NP is reducible to P in polynomial time.

In this thesis, the aim is to transform the Skyscrapers puzzle into another
well-known NP-complete problem, namely a Boolean satisfiability problem.
The resulting CNF formula for the Skyscrapers puzzle, can be used as input
to a SAT solver to solve existing puzzles or to generate new puzzles. Showing
how a logic puzzle can be solved as a SAT problem, can also be useful when
solving other mathematical problems or even in real world applications.

First, chapter 2 provides some background information about the Skyscrap-
ers puzzle, its rules, Conjunctive Normal Form and the Boolean satisfiability
problem. In chapter 3, the translation from the Skyscrapers puzzle into a
SAT problem will be described. Next, in chapter 4, some experiments con-
ducted with this coding will be described. Chapter 5 will provide more
information on other scientific research that has already been done on this
subject. Finally, in chapter 6 the research is concluded.

1https://www.nikoli.co.jp/en/puzzles/slitherlink/
2https://www.nikoli.co.jp/en/puzzles/akari/
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Chapter 2

Preliminaries

2.1 Skyscrapers

Skyscrapers, also called ‘Towers’ or ‘Building (City) Puzzle’ is a logical puz-
zle that was invented in 1992 by Masanori Natsuhara [4]. The Skyscrapers
puzzle is a type of Latin square completion puzzle, like Sudoku. A Latin
square is an n by n grid, filled with n different symbols. Each of these n
symbols occurs exactly once in each row and exactly once in each column.

The Skyscrapers puzzle consists of an n by n grid with clues along the
sides. The grid can be seen as the top view of a city(block) with skyscrapers
of different heights in each cell.

The goal of the puzzle is to place a number between 1 and n, indicating
the height of the skyscraper in each square in such a way that the grid forms
a Latin square. Next to this, the clues along the sides of the grid indicate
how many skyscrapers can be seen along that particular row or column when
looking from that direction. A skyscraper can only be seen if there is no
taller skyscraper in front of it blocking the view of the lower skyscraper, as
can be seen in figure 2.1. Figure 2.2 shows an example of a Skyscrapers
puzzle and its solution.

Figure 2.1: An example of how taller skyscrapers block the view of lower
skyscrapers, with on the right the front view of what the person would see
at the location of the clue
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(a) An unsolved puzzle (b) A solved puzzle

Figure 2.2: A Skyscrapers puzzle and its solution

2.2 Conjunctive Normal Form

In Boolean logic, a formula is in conjunctive normal form (CNF) if it is
composed of a conjunction of clauses. Each of these clauses in turn consists
of a disjunction of literals, a literal being a Boolean variable or its negation.
Equation 2.1 would be an example of a formula in conjunctive normal form.

(a ∨ b ∨ d) ∧ (a ∨ c) ∧ (¬b ∨ c) ∧ e (2.1)

As can be sees from this equation, each clause in the conjunction consists
either of a disjunction of literals or of a single literal. A clause that consists
of a single literal is also called a unit clause, so in equation 2.1 “e” is a unit
clause.

2.2.1 Rules of Replacement

In order to convert a formula in classical Boolean logic to a CNF formula,
there are so-called rules of replacement that can be used. These rules of
replacement are logical equivalences, of which the following equivalences are
often used when converting a propositional formula into a CNF formula [16]:

• Double negation law:
¬(¬p) ≡ p (2.2)

• Distributive law:

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) (2.3)

• De Morgan’s laws:
¬(p ∧ q) ≡ ¬p ∨ ¬q (2.4)

¬(p ∨ q) ≡ ¬p ∧ ¬q (2.5)
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• Material implication:
p→ q ≡ ¬p ∨ q (2.6)

• Equivalence(s) involving bi-implications:

p↔ q ≡ (p→ q) ∧ (q → p)

≡ (¬p ∨ q) ∧ (¬q ∨ p)
(2.7)

2.2.2 DIMACS CNF

The DIMACS CNF format is a widely accepted standard format for CNF
formulas. A file in this format is constructed as follows:

1. The first line(s) of the file may be comment lines. These lines start
with a lowercase ‘c’ followed by a space and then the comment itself.

2. Next is the so-called “problem” line. This line starts with a lowercase
‘p’, followed by a space. Then the problem type is mentioned, which is
‘cnf’ for CNF files, followed by the number of variables in the encoding
and the number of clauses in the encoding.

3. The next lines of the file consist of the clauses, with each of the clauses
on a new line. Each clause is defined by listing the indices of the literals
in the clause. For a positive literal, the index is used and for a negative
literal, the negation of the index is used. These indices start at 1, since
‘0’ marks the end of a clause.

The CNF file corresponding to (2.1) would look as follows:

c CNF file for the example formula

c

p cnf 5 4

1 2 4 0

1 3 0

-2 3 0

5 0
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2.3 Boolean Satisfiability Problem

The Boolean satisfiability problem, abbreviated SATISFIABILITY, is the
problem of determining whether there exists an assignment of values to the
variables in a Boolean formula φ such that φ evaluates to True.

There are many variants of the SATISFIABILITY problem, one of them
being CNF-SAT or SAT for short. CNF-SAT is the problem of determining
the satisfiability of a Boolean formula in conjunctive normal form (CNF).
For more information on formulas in CNF, refer back to section 2.2.

SAT was the first problem proven to be NP-complete. In 1971, Cook
published his paper “The complexity of theorem-proving procedures” [6]. In
this paper, Cook shows that any problem in the non-deterministic polyno-
mial time complexity class (NP) can be reduced to an instance of the SAT-
problem for CNF formulas, thereby proving that CNF-SAT is NP-complete.

2.4 SAT Solver

A SAT solver is a tool that takes a CNF formula f in DIMACS format (sec-
tion 2.2.2) as input and outputs whether or not there exists an assignment
to the variables that evaluates the formula to True. If there exists such an
assignment, the SAT solver outputs ‘SAT’ (for “satisfiable”) together with
the satisfying assignment that was found. When no satisfying assignment
exists, the SAT solver outputs ‘UNSAT’ (for “unsatisfiable”).

There could be more than one assignment that satisfies the formula, but
the only goal of the solver is to find whether or not there exists a satisfying
assignment and therefore it will only output the assignment that was found.

The SAT solvers that will be used in the experiments in section 4 are
the Glucose SAT solver [17] and the Kissat SAT Solver [3].

Glucose is a SAT solver that is heavily based on MiniSat [13], but it
is more recently developed and, like most newer SAT solvers, it has the
option to output a clausal proof for UNSAT. This clausal proof enables us
to analyze exactly what clauses cause the solver to return ‘UNSAT’.

Kissat is a new SAT solver, which won the two most recent SAT Com-
petitions [2] of 2020 and 2021. This SAT solver is based on the CaDiCaL
SAT solver, which is a lot less or even unaffected by the Minisat SAT solver.
Therefore, this solver is ideally suited to use to make a comparison between
two different SAT solvers.
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Chapter 3

Translating Skyscrapers into
a SAT problem

In order to be able to solve Skyscrapers with a SAT solver, the puzzle needs
to be transformed into a CNF formula. In this chapter, it will be discussed
how each Skyscrapers puzzle can be encoded as a SAT problem (section 2.3)
such that the resulting CNF formula can be used as input to the SAT solver.

3.1 Constants

The first thing to establish are the aspects of the puzzle that cannot be
influenced by the user: the constants. In the case of a Skyscrapers puzzle,
there are three different constants.

• The first of these constants is a game parameter n, representing the
dimension of the board. This parameter also dictates the maximum
height a skyscraper in this puzzle can have, since each cell needs to
contain a number between 1 and n.

• The second constant is a property of the field, namely the clues around
the outside of the board. In order to access these clues, the following
function is defined:

clues(i, dir): Given a direction (North, East, South or West), this
function produces the ith clue that is located to the direction dir of
the board. For any clues that are not filled in, 0 will be returned.

For this function, dir ∈ {North, East, South, West} and i ∈ {1, . . . , n}.
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• The third constant is the following function:

move(dir): Given a cardinal direction (North, East, South or West),
this function returns how the x coordinate and the y coordinate will
change, respectively, when moving in that specified direction.
For example, move(North) will return (0, -1) since the movement is to
the cell above it in the same column. This means that the y coordinate
does not change and 1 must be subtracted from the old x coordinate
to arrive at the new x coordinate. Subtracting one when moving up
may seem counter-intuitive, but that is because the top left cell in our
grid has coordinates (1, 1) as can be seen in figure 3.1.

Figure 3.1: The coordinates of the cells in the puzzle.

3.2 Variables

In addition to the constants defined in the previous section, two more vari-
ables are needed to translate Skyscrapers into a SAT problem.

The first variable to be used is the Boolean variable sx,y,h. This variable
indicates whether a skyscraper of height h is present in cell (x, y).
For this variable, x, y, h ∈ {1, . . . , n}.

Example:
Assume we have a 3× 3 grid.
s3,1,3 means that number 3 is in the last cell of the top row (3, 1).
¬s3,3,2 means that number 2 is not in the bottom right cell (3, 3).
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The next variable to be used is the Boolean variable visiblex,y,h,d,v.
This variable is assigned true if and only if a person hovering above cell
(x, y) at height h and looking in direction d, can see v skyscrapers that are
taller than h. For this variable, x, y ∈ {0, . . . , n+ 1}, h, v ∈ {0, . . . , n} and
d ∈ {North, East, South, West}.

Example:
Assume a 3× 3 grid with a clue 2 located to the left of the top row.
Figure 3.2a: A clue of 2 located to the left of the top row means that a
person who is standing to the West of the top left cell (x = 0, y = 1) on
the ground (h = 0), should be able to see a total of 2 skyscrapers from
that point. This situation can be encoded as follows, using the visible

variable: visible0,1,0,East,2.
Figure 3.2b: If a skyscraper of height 2 is in cell (1, 1), this means that
the person can see this skyscraper from their position West of the top
left cell. This implies that the person, when hovering at height 2 above
(or: standing on) this skyscraper in cell (1, 1) and looking East, should
be able to see one skyscraper with a height bigger than 2 from that point.
This would give visible1,1,2,East,1.
Figure 3.2c: Subsequently, if a skyscraper of height 1 is in cell (2, 1), this
skyscraper is not visible for a person hovering at height 2 above cell (1, 1)
and looking East. This means that the person should still be able to see
one skyscraper when they move to cell (2, 1), hovering at height 2 and
looking East. The resulting variable is then visible2,1,2,East,1.

(a) visible0,1,0,East,2 (b) visible1,1,2,East,1 (c) visible2,1,2,East,1

Figure 3.2: Example situations to illustrate the use of the visible variable.
The (parts of the) skyscrapers that are visible, are colored green, with the
numbers indicating the number of visible skyscrapers.

These variables are used together to encode the Skyscrapers puzzle into a
SAT problem. In the end, the assignments to the Boolean variable sx,y,h will
be used to represent the solution. The assignments to variable visiblex,y,h,d,v
on the other hand, are needed to represent the implications of the different
clues around the board on the solution.

To arrive at a solution, it is necessary to ensure that the variables are
subject to the constraints that are part of the ruleset for the Skyscrapers
puzzle. Those constraints are defined in the next section.
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3.3 Constraints

To implement the rules of the Skyscrapers puzzle described in section 2.1,
several constraints must be added to the CNF encoding.

As can be read in section 2.1, the Skyscrapers puzzle is a type of Latin
square completion puzzle. This implies that the constraints for a Latin
square should be added to the encoding. There are two ways of encoding
the Latin square completion problem: the “minimal encoding” and the “ex-
tended encoding” [7]. These ways of encoding are described in section 3.3.1
and section 3.3.2, respectively.

Next to this, there are the clues around the board that indicate how
many skyscrapers are visible from that point of view. Section 3.3.3 describes
the way of encoding these clues. Section 3.3.4 describes how to encode the
different situations that can be derived from visible variables.

3.3.1 Latin Square Completion: Minimal Encoding

The “minimal encoding” for the Latin square completion problem states
only the constraints that are absolutely necessary to represent the problem.
For this encoding the following constraints need to be expressed:

1. There is at least one skyscraper (e.g., number) in each cell.

More formally, this formula needs to express that each cell contains at
least one of the numbers between 1 and n. This results in the following
formula:

n∧
x=1

n∧
y=1

n∨
h=1

sx,y,h (3.1)

2. A skyscraper of each height between 1 and n (e.g., every number be-
tween 1 and n) appears at most once in each row.

More formally, this formula should express that in any row y the num-
ber h cannot be in both column x and column i where x 6= i for any
possible combination of x and i and for any value of the number h.
This results in the following formula:

n∧
y=1

n∧
h=1

n∧
x=1

n∧
i=x+1

(¬(sx,y,h ∧ si,y,h))

However, this formula is not CNF, meaning that the rules of replace-
ment (section 2.2.1) must be used. In this case de Morgan’s law (2.4)
is applied, which gives the final CNF formula:

n∧
y=1

n∧
h=1

n∧
x=1

n∧
i=x+1

(¬sx,y,h ∨ ¬si,y,h) (3.2)
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3. A skyscraper of each height between 1 and n (e.g., every number be-
tween 1 and n) appears at most once in each column.

For this constraint, the same reasoning can be applied as for 2, but
with rows and columns interchanged.

This results in the following CNF formula for this constraint:

n∧
x=1

n∧
h=1

n∧
y=1

n∧
i=y+1

(¬sx,y,h ∨ ¬sx,i,h) (3.3)

3.3.2 Latin Square Completion: Extended Encoding

As mentioned, it is also possible to encode the Latin square completion
problem using the so-called “extended encoding”. For this encoding, the
constraints defined for the minimum encoding in section 3.3.1 are used,
along with three additional constraints. These extra constraints are the
following:

4. There is at most one skyscraper (e.g., number) in each cell.

More formally, this formula needs to express that there cannot be a
cell that contains two distinct numbers between 1 and n. This results
in the following formula:

n∧
x=1

n∧
y=1

n+1∧
h=1

n∧
i=h+1

(¬(sx,y,h ∧ sx,y,i))

However, this formula is not CNF, meaning that the rules of replace-
ment (section 2.2.1) must be used. De Morgan’s law (2.4) can be
applied in this case, which leads to the final CNF formula:

n∧
x=1

n∧
y=1

n+1∧
h=1

n∧
i=h+1

(¬sx,y,h ∨ ¬sx,y,i) (3.4)

5. A skyscraper of each height between 1 and n (e.g., every number be-
tween 1 and n) appears at least once in each row.

More formally, this formula needs to express that every number h
(between 1 and n) should be contained in at least one of the columns
x for every row y. This results in the following formula:

n∧
y=1

n∧
h=1

n∨
x=1

sx,y,h (3.5)
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6. A skyscraper of each height between 1 and n (e.g., every number be-
tween 1 and n) appears at least once in each column.

Applying the same formal definition as for 5, but with rows replaced
by columns and vice versa, yields the following formula:

n∧
x=1

n∧
h=1

n∨
y=1

sx,y,h (3.6)

This extended encoding explicitly expresses the following properties of a
Latin square:

• There is exactly one number in each cell.

• Each number between 1 and n appears exactly once in each row.

• Each number between 1 and n appears exactly once in each column.

However, the constraints in the minimal encoding already implicitly enforce
these three properties.

While constraint 1 leaves room for more than one number in a cell,
constraints 2 and 3 prevent this from actually happening. To illustrate this,
take a row with a length of 3, where the first cell contains both numbers 1
and 2. This would mean that, according to constraint 2, the two remaining
cells in the row could only contain the number 3, which in turn means that
one cell will remain empty. However, constraint 1 does not allow for cells
without a number, so it is not possible to have more than one number in a
cell.

Similarly, constraints 2 and 3 leave room for a number not to appear in
a row or column, since each number has to be at most once in each row and
column. Having said that, if a number does not appear in a row or column,
this would mean that one cell would remain empty and this is not allowed
by constraint 1.

The extra clauses in the extended coding may seem redundant and there-
fore one would intuitively think that the SAT solver would take longer to
solve the puzzle with the extended coding as opposed to the minimal cod-
ing. In some cases, however, the additional clauses help the SAT solver reach
a conclusion more quickly regarding a possible solution to the problem at
hand. This will be expanded upon in section 4.
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3.3.3 Clues

In addition to the requirement that the resulting grid forms a Latin square,
there are the clues around the board that must be taken into account. This
section will describe two ways to encode these clues as a CNF formula:
encoding the clues themselves or encoding the consequences of the clue for
the first cell that is encountered from the position of the clue.

Encoding Clues

The first way of encoding the clues as a CNF formula is to express the clues
as a visible variable, as was described in section 3.2. This results in the
following CNF formula:

∧
dir∈{North,East,South,West}

n∧
i=1

Clues0(dir, i)

Clues0(dir, i) =



visiblei,0,0,South,clues(i,dir), if dir = North and
clues(i, dir) 6= 0

visiblei,n+1,0,North,clues(i,dir), if dir = South and
clues(i, dir) 6= 0

visible0,i,0,East,clues(i,dir), if dir = West and
clues(i, dir) 6= 0

visiblen+1,i,0,West,clues(i,dir), if dir = East and
clues(i, dir) 6= 0

(3.7)

Encoding Consequences of Clues

In addition to directly expressing the clues as visible variables, here too
the clues can be rewritten in more elaborate encoding. To do this, the im-
plications that the various clues have on the final solution must be expressed
as a CNF formula. There are three different possibilities:

1. The clue is equal to 1.

When this is the case, it is known that there can only be one skyscraper
visible from the position of that clue. From this it follows that the
first skyscraper that is encountered, needs to block the view of all
skyscrapers behind it, which means that the first building that is seen
from that clue needs to be height n. Since the first skyscraper blocks
the view of all other skyscrapers in that particular row or column, it
is not possible to reason further with this clue.

13



This results in the following CNF formula:

∧
dir∈{North,East,South,West}

n∧
i=1

Clues1(dir, i)

Clues1(dir, i) =



si,1,n, if dir = North and clues(i, dir) = 1

si,n,n, if dir = South and clues(i, dir) = 1

s1,i,n, if dir = West and clues(i, dir) = 1

sn,i,n, if dir = East and clues(i, dir) = 1

(3.8)

2. The clue is equal to n.

When this is the case, there should be n skyscrapers visible from the
position of that clue. Since there are exactly n cells in each row and
column, this means that no skyscraper can be blocking the view of
another skyscraper. From this it follows that the skyscrapers have to
be arranged in ascending order seen from the position of that clue.

This results in the following CNF formula:

∧
dir∈{North,East,South,West}

n∧
i=1

n∧
k=1

Clues2(dir, i, k)

Clues2(dir, i, k) =



si,k,k, if dir = North and clues(i, dir) = n

si,(n−k+1),k, if dir = South and clues(i, dir) = n

sk,i,k, if dir = West and clues(i, dir) = n

s(n−k+1),i,k, if dir = East and clues(i, dir) = n

(3.9)

3. The clue is equal to any number between 1 and n.

When this is the case, it is not possible for any cell in the row or col-
umn associated with the clue to directly infer which number it should
contain. However, some numbers can be excluded for the first cell(s)
in the concerned row or column.

14



Example:
Suppose there is a board of 4× 4 which contains a row with clue 3.
Then for the first cell in that row, the values 4 and 3 can be ex-
cluded. This is because a 4 in that cell would mean that the view
of all skyscrapers is blocked, so that only 1 skyscraper is visible
instead of 3. Similarly, a 3 in that cell would mean that only a
skyscraper with height 4 further down the row could still be visible
making a total of 2 skyscrapers visible instead of the required 3.
For the second cell, the value 4 can be excluded: a skyscraper
with the maximum height in this cell would mean that only this
skyscraper and the one before it are visible, resulting in a total of
2 visible skyscrapers instead of 3.

Given a clue c, it is known that there must be c skyscrapers visible
from the position of that clue. A skyscraper of height h in the first
cell seen from the clue, means that skyscrapers further in the row or
column with a height between 1 and h − 1 will not be visible. Given
that c skyscrapers should be visible, the first skyscraper can block the
view of at most n − c skyscrapers. This gives h − 1 ≤ n − c, which
can be rewritten to h ≤ n− c+ 1, meaning that the height of the first
skyscraper cannot exceed n− c+ 1.
This idea can be generalized to apply it to all the cell(s): for the ith

cell in a row or column with clue c, the value cannot be any of the
numbers starting from n− c+ i+ 1 up to and including n.

This results in the following CNF formula:

∧
dir∈{North, East,

South, West}

n∧
i=1

(clues(i,dir)−1)∧
k=1

n∧
o=n−clues(i,dir)+1+k

Clues3(dir, i, k, o)

Clues3(dir, i, k, o) =



¬si,k,o, if dir = North and
1 < clues(i, dir) < n

¬si,(n−k+1),o, if dir = South and
1 < clues(i, dir) < n

¬sk,i,o, if dir = West and
1 < clues(i, dir) < n

¬s(n−k+1),i,o, if dir = East and
1 < clues(i, dir) < n

(3.10)

In addition to excluding some values for certain cells, something can
also be said about the effect of placing any of the values not excluded
by (3.10) in the first cell next to the clue. If a skyscraper of any
height is placed in the first cell next to a clue, it will always be visible,
regardless of its height. This means that it needs to be expressed that
the number of skyscrapers that must be visible from that first cell

15



is one less than the number indicated by the value of the clue. In
other words, if a skyscraper of a certain height is placed in the first
cell, then a person hovering directly above that skyscraper should be
able to see exactly clue minus one skyscraper higher than the first
skyscraper when looking directly ahead. To express this, the visible

variable introduced in section 3.2 is used.

This results in the following CNF formula:

∧
dir∈{North,East,South,West}

n∧
i=1

n−clues(i,dir)+1∧
k=1

Clues4(dir, i, k)

with

Clues4(dir, i, k, o) =



si,1,k → visiblei,1,k,South,clues(i,dir)−1, if dir = North and
1 < clues(i, dir) < n

si,n,k → visiblei,n,k,North,clues(i,dir)−1, if dir = South and
1 < clues(i, dir) < n

s1,i,k → visible1,i,k,East,clues(i,dir)−1, if dir = West and
1 < clues(i, dir) < n

sn,i,k → visiblen,i,k,West,clues(i,dir)−1, if dir = East and
1 < clues(i, dir) < n

≡



¬si,1,k ∨ visiblei,1,k,South,clues(i,dir)−1, if dir = North and
1 < clues(i, dir) < n

¬si,n,k ∨ visiblei,n,k,North,clues(i,dir)−1, if dir = South and
1 < clues(i, dir) < n

¬s1,i,k ∨ visible1,i,k,East,clues(i,dir)−1, if dir = West and
1 < clues(i, dir) < n

¬sn,i,k ∨ visiblen,i,k,West,clues(i,dir)−1, if dir = East and
1 < clues(i, dir) < n

(3.11)

3.3.4 Reasoning With the visible Variable

Defining all possible visible variables would result in a huge number of
variables, most of which are not needed to solve the problem. Therefore,
only those visible variables will be used that are required to encode the
clues and that are derived from further reasoning with these variables, as
can be seen in algorithm 1. There are three different cases to consider when
reasoning with visible variables:

(i) The variable indicates that you are in the last cell (looking from the
clue), but either there should still be skyscrapers visible or you have
not yet encountered the highest building. Being in the last cell is
indicated by either an x or a y coordinate with a value less than one
or greater than the dimensions of the board when moving one cell
further in the direction corresponding to the clue.
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(ii) The variable indicates that you should be able to see x number of
skyscrapers, but you are less than x cells away from the last cell.

(iii) The cases that are not covered by (i) or (ii).

Cases (i) and (ii) have the same outcome with regards to the clauses
that will be added to the CNF formula. The variable associated with either
of these situations will evaluate to false since both cases are impossible:

• Case (i) is impossible, because in the last cell there cannot be any
skyscrapers left to see if there is no place where that skyscraper can
be.

• Case (ii) is impossible for a similar reason, namely that no x number
of skyscrapers can be seen if there are not enough cells left to place
this number of skyscrapers.

Suppose the variable being reasoned with is visiblex,y,h,d,v, then the
following unit clause is added to the CNF formula:

¬visiblex,y,h,d,v (3.12)

For case (iii), every value between 1 and n for the next cell is considered
and the consequences of that particular value on, for example, how many
skyscrapers are visible are looked at. There are three situations that need
to be looked at:

1. In case the current visible variable indicates that no skyscrapers can
be seen straight ahead when hovering at height h, there cannot be a
skyscraper with a height greater than h in the next cell. If there would
be a skyscraper ahead with a height greater than h, this skyscraper
would have been visible.

2. If the skyscraper in the next cell has a greater height than the height
being hovered at according to the current visible variable, for the
next cell the height being hovered at increases to that greater value. If
a skyscraper has a height greater than the height being hovered at, it
will be visible when looking directly ahead and therefore the number of
skyscrapers visible from the next cell will be one less than the number
visible from the current cell.

3. In case the skyscraper in the next cell has a lesser height than the
height being hovered at according to the current visible variable,
then the height being hovered at will not change. Furthermore, the
same number of skyscrapers will be visible from the next cell, since a
skyscraper with a height less than the height being hovered at will not
be visible when looking directly ahead.
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Suppose that the variable being reasoned with is visiblex,y,h,d,v, then
this results in the following clauses, where (d0, d1) = move(d):

n∧
i=1


visiblex,y,h,d,v → ¬sx+d0,y+d1,i, if v = 0 and i > h

visiblex,y,h,d,v → (sx+d0,y+d1,i → visiblex+d0,y+d1,i,d,v−1) , if i > h

visiblex,y,h,d,v → (sx+d0,y+d1,i → visiblex+d0,y+d1,h,d,v) , otherwise

≡
n∧

i=1


¬visiblex,y,h,d,v ∨ ¬sx+d0,y+d1,i, if v = 0 and i > h

¬visiblex,y,h,d,v ∨ (sx+d0,y+d1,i → visiblex+d0,y+d1,i,d,v−1) , if i > h

¬visiblex,y,h,d,v ∨ (sx+d0,y+d1,i → visiblex+d0,y+d1,h,d,v) , otherwise

≡
n∧

i=1


¬visiblex,y,h,d,v ∨ ¬sx+d0,y+d1,i, if v = 0 and i > h

¬visiblex,y,h,d,v ∨ ¬sx+d0,y+d1,i ∨ visiblex+d0,y+d1,i,d,v−1, if i > h

¬visiblex,y,h,d,v ∨ ¬sx+d0,y+d1,i ∨ visiblex+d0,y+d1,h,d,v, otherwise

(3.13)

Looking back at figure 3.2b, the third situation would apply: the variable
visible1,1,2,East,1 indicates that one skyscraper should be visible, so the first
situation does not apply. In addition, the skyscraper at the position adjacent
to the person’s current position is lower than the height at which the person
is hovering so the second situation is dropped. This would leave us with the
following formula: ¬visible1,1,2,East,1 ∨ ¬s2,1,1 ∨ visible2,1,2,East,1.

In figure 3.2c, the second situation would apply since there still needs to
be one skyscraper visible according to the variable visible2,1,2,East,1 and in
addition to that the skyscraper that the person is looking at is higher than
the current height that the person is hovering at. This would result in the fol-
lowing clause being added: ¬visible2,1,2,East,1∨¬s3,1,3∨visible3,1,3,East,0.

What is described in this section can be represented as an algorithm as
follows:

Algorithm 1 Reasoning with visible variables

Input: A list L of all visible variables encountered when applying (3.11).
for Every variable v with parameters x, y, h, d, v in L do

Apply (3.12) or (3.13) based on the parameters of v.
Add new visible variables that are encountered to L.

end for
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3.4 Generating Puzzles

With the CNF encoding that is created using the set of constraints that
were defined in section 3.3, any Skyscrapers puzzle can be solved. This was
confirmed by solving ten different puzzles downloaded from Simon Tatham’s
Portable Puzzle Collection [18] and checking whether the solution that the
SAT solver came up with, matched the solution given on the website.

Next to solving Skyscrapers puzzles, the CNF encoding can also be used
to generate new puzzles. To generate new puzzles, a similar strategy will
be used as is described in [5] for Sudoku puzzles. To start with, a random
solution to a Skyscrapers puzzle will be generated. This is done by first
calling the SAT solver with either the minimal or extended encoding to
create a Latin square. To ensure that the SAT solver will create a unique
Latin square every time, a random seed is passed to the SAT solver. With
the Latin square that the SAT solver outputs, the clues that are associated
with this Latin square can be computed.

To make sure that the set of clues that is computed, yields a unique
solution to this puzzle, the SAT solver is run again. This time, the con-
straints for the clues are added to the CNF encoding and on top of that an
additional constraint that blocks the solution that was generated earlier is
added. This additional constraint looks as follows:∨

z=Gx,y

¬sx,y,z, where Gx,y is the value of cell (x, y) in the solution (3.14)

If the puzzle has a unique solution, the SAT solver will return ‘UNSAT’,
since the only solution to the puzzle was blocked in the CNF encoding.
If the puzzle does not have a unique solution, the SAT solver will return
another solution than the one that was randomly generated. When this is
the case, the cells that have different values in the two solutions will be
identified. One of these cells is then chosen at random and the value that
was in that cell in the original solution is fixed. After adding this fixed
value to the encoding, the SAT solver is run again to see whether the puzzle
configuration is unique. If fixing the value also does not produce a unique
puzzle configuration, the process is repeated: the original field that was
generated is compared to the new solution given by the SAT solver and one
value that differs between the two fields is fixed. This process of fixing one
value at a time is repeated until the puzzle configuration is unique.

The focus in generating the puzzles is not on finding a puzzle config-
uration with as few clues as possible, but on finding any unique puzzle
configuration. Thus, all puzzles that are generated have 4× n clues around
the board (where n is the dimension of the board) and zero or more values
that are fixed on the board.
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Chapter 4

Experiments

4.1 Comparison of Encodings and SAT Solvers

As can be read in section 3.3, there are two different ways of encoding
possible for the Latin square constraint: the minimal encoding and the
extended encoding. Despite the fact that the time to generate the encoding
will increase due to the additional clauses added for the extended encoding,
it may be the case that the total time to generate puzzles decreases. The
reason for this is that the additional clauses allow the SAT solver to apply
more optimizations, for example. This experiment will look at the difference
in time taken to generate new puzzles of different sizes when the minimal
encoding is used and when the extended encoding is used.

In addition, as can be read in section 3.3.3, there are two different ways
to encode the clues around the puzzle. In this experiment the difference in
efficiency between the two ways of encoding the clues is being looked at.

Next to this, there are also a lot of different SAT solvers. Each SAT
solver uses a slightly different technique to solve the Boolean satisfiability
problem it received as input. This can lead to differences in the time it
takes to solve a particular problem. This experiment uses two SAT solvers,
described in section 2.4, and compares the time required to generate new
puzzles of different sizes. The code for these experiments can be found at
https://gitlab.science.ru.nl/lkolijn/Skyscrapers.

4.1.1 Set Up of the Experiments

A script is run to generate one hundred puzzles with the consequences of
the clues encoded (section 3.3.3), both with the minimal and extended en-
coding. This is done for both SAT solvers and for each grid size from 4 up
to and including 7. For each puzzle generated, the time it took to do so is
recorded. Finally, the minimum and maximum times, mean and standard
deviation can be calculated for each combination of SAT solver and grid size
to compare the times and draw conclusions from the measurements. This is
script is repeated with an encoding where the clues are encoded directly.
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4.1.2 Results

The results of the experiments can be found in tables 4.1 and 4.2.

Encoding Size Solver Mean Standard Deviation Minimum Maximum

Minimal 4 Glucose 0.044093 0.013651 0.025915 0.080267

Minimal 4 Kissat 0.037857 0.011326 0.023430 0.071046

Extended 4 Glucose 0.032511 0.006023 0.025495 0.067849

Extended 4 Kissat 0.037757 0.010783 0.024371 0.066477

Minimal 5 Glucose 0.207465 0.029993 0.143469 0.277037

Minimal 5 Kissat 0.199486 0.023828 0.145447 0.267250

Extended 5 Glucose 0.174917 0.021184 0.133067 0.234295

Extended 5 Kissat 0.187751 0.022598 0.151924 0.241726

Minimal 6 Glucose 2.754614 0.240025 2.479414 4.724840

Minimal 6 Kissat 2.763092 0.163215 2.318060 3.183430

Extended 6 Glucose 2.444797 0.142189 2.073514 2.841196

Extended 6 Kissat 2.739109 0.167014 2.407224 3.314149

Minimal 7 Glucose 52.451557 2.641039 46.252656 59.012146

Minimal 7 Kissat 57.787661 2.908416 50.681629 64.425849

Extended 7 Glucose 48.558272 2.513411 42.755939 55.184946

Extended 7 Kissat 57.526666 2.673567 51.498779 64.626179

Table 4.1: Results of experiments with different encodings, sizes and SAT
solvers with the consequences of the clues encoded

Encoding Size Solver Mean Standard Deviation Minimum Maximum

Minimal 4 Glucose 0.041908 0.012275 0.029860 0.066387

Minimal 4 Kissat 0.033121 0.007499 0.026219 0.064325

Extended 4 Glucose 0.033220 0.006481 0.029999 0.065829

Extended 4 Kissat 0.037152 0.009260 0.027156 0.058151

Minimal 5 Glucose 0.211810 0.026553 0.161693 0.272114

Minimal 5 Kissat 0.199394 0.018347 0.166830 0.255759

Extended 5 Glucose 0.189218 0.018899 0.161481 0.240587

Extended 5 Kissat 0.192154 0.020072 0.156994 0.241327

Minimal 6 Glucose 2.484660 0.134795 2.260973 2.897709

Minimal 6 Kissat 2.575514 0.130454 2.265213 2.840498

Extended 6 Glucose 2.378198 0.110093 2.126742 2.673342

Extended 6 Kissat 2.580993 0.130648 2.221307 2.983635

Minimal 7 Glucose 47.377423 2.077851 42.394269 53.133937

Minimal 7 Kissat 49.298266 2.407419 43.989253 56.028692

Extended 7 Glucose 43.873165 1.954557 40.401035 49.714977

Extended 7 Kissat 49.777189 2.054759 44.128048 54.358896

Table 4.2: Results of experiments with different encodings, sizes and SAT
solvers with the clues encoded directly
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Minimal and Extended Encoding

To get more insight in the differences between using the minimum and the
extended encoding in combination with the same SAT solver for the different
sizes of puzzles, the mean and standard deviation for the results in table 4.1
are plotted in bar plots in figure 4.1.

As shown in both table 4.1 and figure 4.1, the extended encoding does
have a (limited) positive impact on the mean time required to generate the
puzzles. The difference is most noticeable for the puzzles generated with
the Glucose SAT solver, while the time for the puzzles generated with the
Kissat SAT solver remains almost the same. A possible explanation for this
could be that the optimizations applied by the Glucose SAT solver benefit
more from the extra clauses than those of the Kissat SAT solver.

(a)

(b)

Figure 4.1: The mean and standard deviation of the generation time of
puzzles for the minimal and extended encoding plotted against each other
in a bar plot
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(c)

(d)

(e)

Figure 4.1: The mean and standard deviation of the generation time of
puzzles for the minimal and extended encoding plotted against each other
in a bar plot (cont.)
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(f)

(g)

(h)

Figure 4.1: The mean and standard deviation of the generation time of
puzzles for the minimal and extended encoding plotted against each other
in a bar plot (cont.)
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Different Encodings for Clues

To get more insight in the differences in performance for the two SAT solvers
when using each of the two encodings for clues, the mean and standard
deviation of the generation times that can be found in tables 4.1 and 4.2 are
plotted in bar plots in figure 4.2.

As shown in tables 4.1 and 4.2 and figure 4.2, the differences in generation
time between the two ways of encoding the clues are negligible for puzzles of
sizes 4, 5 and 6. For puzzles of size 7 directly encoding the clues as visible
variables rather than encoding the consequences of the clues seems to be
more efficient. Directly encoding the clues as visible variables adds more
clauses to the CNF encoding, since for clues of 1 and n the visible variable
is not needed when encoding the consequences of the clues. Similarly to
the extended encoding for the Latin Square, the larger number of clauses
could be a potential explanation for the decrease in generation times when
encoding the clues directly as visible variables as this could allow the SAT
solver to apply more optimizations. In addition, it could be that it takes less
time to compute the clauses that are needed for the encoding where clues
are directly encoded as visible variables as opposed to the encoding where
the consequences of the clues are encoded.

(a)

Figure 4.2: The mean and standard deviation of the generation time of
puzzles for the different ways of encoding the clues plotted against each
other in a bar plot
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(b)

(c)

(d)

Figure 4.2: The mean and standard deviation of the generation time of
puzzles for the different ways of encoding the clues plotted against each
other in a bar plot (cont.)
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Glucose SAT Solver and Kissat SAT Solver

To get more insight in the differences between using the Glucose SAT solver
and the Kissat SAT solver to generate the puzzles of different sizes, the mean
and standard deviation of the generation times are plotted in bar plots in
figure 4.3.

As shown in both table 4.1 and figure 4.3, in most cases the puzzles are
generated slightly faster using the Glucose SAT solver than using the Kissat
SAT solver. This could be caused by the Kissat SAT solver working less ef-
ficiently than the Glucose SAT solver for this particular problem. However,
as visible in figure 4.4, in the puzzles generated with the Kissat solver more
numbers are fixed. With the knowledge of how the puzzles are generated
(section 3.4), it can be inferred that there is thus the need to make adjust-
ments to the encoding more often and consequently to run the SAT solver
more often. Since this all adds to the time to generate the puzzle, it cannot
be said with certainty which SAT solver works better for this problem.

Looking at the puzzles1 that are generated with both SAT solvers, it
can be noted that a larger number of unique puzzles are generated using
the Kissat SAT solver than using the Glucose SAT solver. Even when the
puzzles are unique, the solutions generated with the Glucose SAT solver tend
to overlap partially and the differences for the remainder of the solution are
largely limited to shifting numbers by one or two cells. In contrast, in
solutions generated with the Kissat SAT solver, there is virtually no overlap
and the numbers are much more shuffled. A possible explanation for this
could be that the randomness applied by the Glucose SAT solver is less than
the randomness applied by the Kissat SAT solver.

It is to be expected that for similar solutions the amount of numbers to
be fixed will be similar, while for completely different solutions the amount
of numbers to be fixed is more likely to vary more. This could be a possible
explanation for the fact that for some of the puzzles generated with the
Kissat SAT solver, in comparison to puzzles generated with the Glucose
SAT solver, a larger amount of numbers are fixed.

1These can be found in the folder “puzzles” at https://gitlab.science.ru.nl/

lkolijn/Skyscrapers.
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(a)

(b)

(c)

Figure 4.3: The mean and standard deviation of the generation time of
puzzles for the Glucose and Kissat SAT solver plotted against each other in
a bar plot
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(d)

(e)

(f)

Figure 4.3: The mean and standard deviation of the generation time of
puzzles for the Glucose and Kissat SAT solver plotted against each other in
a bar plot (cont.)
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(g)

(h)

Figure 4.3: The mean and standard deviation of the generation time of
puzzles for the Glucose and Kissat SAT solver plotted against each other in
a bar plot (cont.)
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Figure 4.4: Distribution of the number of fixed numbers per combination of
puzzle size, encoding and SAT solver
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Chapter 5

Related Work

In 1971, SAT was the first problem that was classified as NP-complete by
Stephen A. Cook [6]. Since then, a lot of research has been conducted on
how to solve SAT problems, the applications of SAT, encoding other NP-
complete problems as a SAT problem etc. A lot of the work that has been
done, can be found in the Journal on Satisfiability, Boolean Modeling and
Computation (JSAT) [1].

Every year there is a competition for SAT solvers, the purpose of which
is “to identify new challenging benchmarks and to promote new solvers (. . . )
as well as compare them with state-of-the-art solvers” [2]. Every year there
are new and better performing SAT solvers, which also means that these
solvers have more applications. An example of such a new application is the
usage of SAT solvers in cryptanalysis [15].

A lot of research on the subject of logic puzzles has been performed on
Sudoku puzzles, since that is arguably the most well-known logic puzzle.
There are multiple papers on the topic of solving Sudoku puzzles as a SAT
problem [11] [14] [22] and optimizing the SAT encoding [10].

Next to the Sudoku puzzle, there are several other puzzles for which
there are papers on how to solve these puzzles as a SAT problem. Among
these are the Fill-a-Pix puzzle [12], the Binary puzzle [20] and Flood-It [21].
The only research that was found on the Skyscrapers puzzle was research
concerning the computational complexity of the puzzle [8] [9].

The Skyscraper puzzle, however, is different from the other puzzles that
were mentioned before. For the Skyscraper puzzle there are not only the
values in the grid that have to be taken into account, but also the clues that
are located around the grid.

In addition to Boolean satisfiability problems, there is also a similar
problem, the satisfiability modulo theory (SMT) problem. SMT problems
can generalize SAT problems to more complex formulas in which all kinds
of data structures can be used, such as integers, lists, etc. For the binary
puzzle, this technique has already been used to solve the puzzle [19].
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Chapter 6

Conclusion and Future Work

This thesis described how a Skyscrapers puzzle can be encoded as an SAT
problem. This SAT encoding was then used to both solve Skyscrapers puz-
zles and generate new puzzles. From the experiments, it became clear that
the extended encoding provides a small advantage in time over the minimal
encoding for the Glucose SAT solver. For the Kissat SAT solver, this effect
was not evident. In addition, regardless of the type of SAT solver and the
type of encoding for the Latin Square, puzzle generation appears to be more
efficient when clues are directly encoded as visible variables rather than
encoding the consequences of the clues. Furthermore, it seemed that the
Glucose SAT solver works a bit more efficient for this particular problem.
However, full clarity could not be given on this because more numbers were
fixed in the puzzles generated by the Kissat SAT solver, making it difficult to
draw conclusions from the measurements as to a difference in the efficiency
of the two SAT solvers.

As could be seen, the generator is not efficient when it comes to gener-
ating puzzles with n ≥ 7. Future research could be performed to optimize
the CNF encoding for the Skyscrapers puzzle such that generating bigger
puzzles becomes more feasible. One possibility for might be to use other
data structures to store the encoding or possibly use other variables.

In addition, all puzzles that are generated, have a full set of clues around
the board. Further research could be done to find out how many clues are
needed on average for a field of a certain size. If less than the full set of clues
is placed around the board, this may also work in favor of generating larger
puzzles. Fewer clues would mean that fewer variables need to be included in
the encoding and therefore less time would likely need to be spent converting
the puzzle to an encoding.

Another matter that can be addressed in further research is the fact that
for the experiments the clues were computed for a newly generated solution
every time. Therefore, the results of both SAT solver cannot be compared
one to one. To be able to make a fair comparison, it might be an option to
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generate one hundred different sets of fields with the clues associated with
them and use these sets for every combination of encoding and SAT solver.
By doing so, a possible difference in the amount of randomness applied by
both SAT solvers does not affect the initial configurations for the puzzles and
a fairer comparison between the performance of the different SAT solvers
can be made.

Finally, a starting point for more research can also be to investigate
whether and how the skyscrapers puzzle could be rewritten to a satisfiability
modulo theory (SMT) problem and whether an SMT solver can solve this
problem more efficiently than an SAT solver.
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