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Abstract

Alzheimer’s disease (AD) is the most common type of dementia. Early
diagnosis of AD is crucial in the management of the disease. Manually an-
alyzing brain scans can be time-consuming and challenging. Researchers
and doctors can benefit from computer-assisted interventions; in particular,
convolutional neural networks (CNNs) can help in the automation of this
process.

However, automated AD diagnosis with 3D MRI images is also memory
intensive and time consuming, due to need to train 3D convolutional neural
networks for this task. An approach to overcome these issues is to trans-
form 3D MRI images into 2D. This can be done by using temporal pooling
at the input (pixel) level (early fusion) or by applying the transformation at
the feature map level (late fusion). Various temporal pooling methods have
been introduced, but it is not clear which one should be preferred.

This study compares different temporal pooling methods, fusion strategies,
data splitting techniques and pooling dimensions for the conversion of 3-D
MRI images to 2-D for Alzheimer’s Disease Classification using 2-D Convo-
lutional Neural Networks. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) has gathered data that can be utilized to further research into the
diagnosis of AD. In this study ADNI MRI images are used to train the 2D
CNN models.

This research evaluates the performance of CNN classifiers for AD diagnosis
with combinations of different temporal pooling methods, fusion strategies,
data splitting techniques and pooling dimensions. We find the best results
for Segmented Max pooling, a temporal pooling method based on a recent
research on the classification of digital breast tomosynthesis (DBT), which
is an emerging imaging technique for breast cancer screening. [36]

Acknowledgement

Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As
such, the investigators within the ADNI contributed to the design and im-
plementation of ADNI and/or provided data but did not participate in anal-
ysis or writing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_

apply/ADNI_Acknowledgement_List.pdf

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


Contents

1 Introduction 3
1.1 Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Deep learning in medical image analysis . . . . . . . . . . . . 3

2 Background 5
2.1 Image classification tasks . . . . . . . . . . . . . . . . . . . . 5
2.2 Convolutional neural networks . . . . . . . . . . . . . . . . . 5
2.3 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . 7

3 Methodology 8
3.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Image pre-procesing . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Skull stripping . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Registering to a brain template . . . . . . . . . . . . . 10
3.2.3 Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 CNN Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Weighted binary cross-entropy . . . . . . . . . . . . . 11
3.3.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.3 Feature extractor . . . . . . . . . . . . . . . . . . . . . 11
3.3.4 Fusion strategies . . . . . . . . . . . . . . . . . . . . . 11
3.3.5 Pooling strategies . . . . . . . . . . . . . . . . . . . . . 12
3.3.6 Pooling dimension . . . . . . . . . . . . . . . . . . . . 15

3.4 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Experimental Setup 17
4.1 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 NIfTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Reproduced model . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Early fusion strategy . . . . . . . . . . . . . . . . . . . 18
4.3.3 Late fusion strategy . . . . . . . . . . . . . . . . . . . 18

4.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



4.4.1 Reproduced model . . . . . . . . . . . . . . . . . . . . 19
4.4.2 Custom model . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5.1 4:1 ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5.2 Cross-validation . . . . . . . . . . . . . . . . . . . . . 21

4.6 Statistical significance . . . . . . . . . . . . . . . . . . . . . . 22
4.6.1 McNemar’s test . . . . . . . . . . . . . . . . . . . . . . 22
4.6.2 Bonferroni correction . . . . . . . . . . . . . . . . . . . 22

5 Related Work 24
5.1 Max pooling late fusion and dynamic pooling . . . . . . . . . 24
5.2 CNN comparison studies for AD classification . . . . . . . . . 25
5.3 Segmented max pooling . . . . . . . . . . . . . . . . . . . . . 26

6 Results 27
6.1 Reproducibility of previous research . . . . . . . . . . . . . . 27
6.2 Influence of experimental setup . . . . . . . . . . . . . . . . . 28
6.3 Influence of pooling dimensions . . . . . . . . . . . . . . . . . 29

6.3.1 4:1 ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.2 Cross-validation . . . . . . . . . . . . . . . . . . . . . 30

6.4 Comparison of temporal pooling methods . . . . . . . . . . . 32
6.4.1 4:1 ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4.2 Cross-validation . . . . . . . . . . . . . . . . . . . . . 34

7 Discussion 36

8 Conclusions and future work 38
8.1 Limitations and future work . . . . . . . . . . . . . . . . . . . 39

A Appendix 45
A.1 ADNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 CNN models evaluation . . . . . . . . . . . . . . . . . . . . . 45

2



Chapter 1

Introduction

1.1 Alzheimer’s disease

The Alzheimer’s disease (AD) is the most common type of dementia. The
cumulative incidence of Alzheimer’s dementia is expected to climb from 5%
by age 70 to 50% by age 90, making it a fairly prevalent disease.[16]

Early diagnosis of AD is crucial in the management of the disease. Pa-
tients with early diagnosis can work with their family, caregivers and general
practitioner to construct advanced care plans. [29] It also allows patients
to get symptomatic relief and lifestyle adjustments to maintain quality of
life. Unfortunately, due to a number of factors such as time constraints for
clinicians, the difficulty of accurately diagnosing Alzheimer’s pathology, and
the fact that patients and healthcare providers frequently dismiss symptoms
as part of the normal ageing process, it is very hard to detect the disease at
an early stage. [29] Therefore it is important to find ways to speed up the
detection of Alzheimer’s disease.

1.2 Deep learning in medical image analysis

Medical image interpretation has traditionally been done in clinics by hu-
man experts such as radiologists and physicians. Researchers and doctors
have begun to benefit from computer-assisted interventions due to wide vari-
ations in pathology and the potential fatigue of human experts.[33] Machine
learning algorithms can find and learn informative features in data. These
algorithms are widely used in medical image analysis to find patterns in data
and be able to detect pathological images that can be further manually anal-
ysed by medical specialists. Deep learning requires a set of labelled images,
after which it self-teaches itself to discover informative representations.[33]

Convolutional neural networks (CNN) is a class of deep learning that is often
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used to classify medical images. By taking 2D or 3D images as input, CNNs
are developed to use spatial and configural information. Convolutional lay-
ers are interleaved with pooling layers in a CNNs structure, followed by fully
linked layers, as in a normal multilayer neural network. [33]

In this study 3-dimensional (3D) magnetic resonance images (MRI) are
analysed. The classification task is to distinguish between subjects with
Alzheimer’s disease (AD) and cognitively normal subjects (CN). Data for
this study was taken from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a
long-term natural history study whose main goal is to inform the design of
Alzheimer’s disease therapy trials (AD). [7]

3D information is often a necessity for good performance in object clas-
sification tasks in medical imaging, however 3D CNNs are computationally
costly and hard to be optimized with small datasets. [23] A paper by Gongbo
Liang et. al. [22] proposes to use 2D CNN models as alternative approaches
for MRI classification. The key idea is to convert 3D MRI scans to a 2D
format using temporal pooling and fusion strategies.

This study compares three temporal pooling methods, max pooling, seg-
mented max pooling and dynamic pooling; two fusion strategies, early fu-
sion and late fusion; two data splitting techniques, 4:1 ratio and cross-
validation; and all pooling dimensions, X, Y and Z. For the used images, the
X-dimension is the front-back view of the brain (coronal), the Y dimension
is the side-view of the brain (saggital) and the Z dimension the top-down
view of the brain (axial). The following research questions are addressed:

1. Are the results found in the research of Gongbo Liang et al. [22]
reproducible?

2. How do the evaluation results vary when using different data splitting
strategies?

3. How does the pooling dimension affect the performance of the temporal
pooling methods?

4. How do the temporal pooling methods compare in terms of predictive
performance and training time?

1adni.loni.usc.edu
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Chapter 2

Background

2.1 Image classification tasks

Image classification is a critical task in a variety of medical imaging appli-
cations. To achieve good classification performance in image classification
tasks, the descriptiveness and the discriminative capability of the extracted
features are important.[21] Convolutional Neural Networks are a powerful
classification tool that have been proven very successful in solving image
classification problems.[21]

2.2 Convolutional neural networks

A Convolutional Neural Network (CNN) is a deep neural network. It takes
this name from a mathematical operation between matrices called convolu-
tion. Convolution is achieved by multiplying the pixel’s intensity value with
the intensity values of its neighbors using a matrix. CNN’s are mostly used
for image-driven pattern recognition tasks. [25]

A CNN has multiple types of layers:

1. A convolutional layer consists of a set of small filters or kernels that is
moved over the input. [2] The kernel is a filter that is used to extract
features from the images. The calculations and the resulting feature
is shown in Figure 2.1. The weighted sum of the values in the kernel
is used to determine the output value for each patch of the input.

2. A non-linearity layer is used to adjust the generated output. This
layer is applied in order to saturate the output or limit the generated
output. It yields a reduced form without sacrificing crucial elements
for accurate prediction, making the input easier to handle. [2]

3. A pooling layer is used to reduce the complexity for further layers
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by down-sampling. In image analysis, pooling can be considered a
resolution reduction. [2]

4. A fully-connected layer is a feed forward neural network. Each node
of the fully-connected layer is connected to every node in the previous
and in the next layer. [2]

Figure 2.1: Convolutional Layer Example

The first three layers form a convolutional block and a CNN usually con-
tains several of these blocks. More such blocks increase the complexity of
extracted features. The output of the last convolutional block is flattened or
averaged, and connected to the output layer through fully connected layers.

2.3 Transfer learning

Transfer learning is the improvement of learning in a new task (called tar-
get) through the transfer of knowledge from a related task (called source)
that has already been learned. [37] The purpose of transfer learning is to
use information from the source task to increase learning in the target task.
Transfer learning becomes necessary when there is a limited supply of target
training data. [40]

Usually, the convolutional layers of an existing pre-trained model are used,
such as AlexNet trained on a large dataset like Imagenet [8]. AlexNet is
part of a deep CNN framework created by Krizhevsky, which debuted in
the ImageNet LSVRC-2010 contest and got incredible results. [19] In med-
ical analysis, more recent models such as Inception V3 [35], MobileNet V2
[32] and ResNet V2[13] are often used.[9] However, this study focuses on
AlexNet, because of its usage by Gongbo Liang et al. [22] research, which

6



we aim to reproduce and expand on.

When transfer learning, the weights of convolutional layers are typically
frozen, preventing them from updating. Because AlexNet has 60 million
parameters, retraining the entire structure takes a long time and effort.
Furthermore, previous research showed that it is not necessary to fine-tune
every parameter in AlexNet in order to detect pathological brain.[24] The
next stage is to add a classifier with one or more fully connected layers,
which is the part of the model that is trained.

2.4 Magnetic resonance imaging

Magnetic resonance imaging (MRI) of the brain produces a high-quality
three-dimensional image for visualization and neuroanatomical classification
of the brain structure. It is composed of 2D imaging slices. The voxels in
MRIs correlate to physical locations in the brain. In Figure 2.2, the slices
of an MRI from the Z dimension perspective are shown.

Figure 2.2: The individual slices of a 3-D MRI image
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Chapter 3

Methodology

This chapter contains an overview of the methods that are used in this study.
The code is accessible on GitLab1.

3.1 Subjects

Data for this study was taken from Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database2. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) is a long-term natural history study whose main goal is to inform
the design of Alzheimer’s disease therapy trials (AD). [7] ADNI was estab-
lished in 2004 as a public-private collaboration under the direction of Dr.
Michael W. Weiner.

A total of 223 images were downloaded from ADNI database for this re-
search. After skull stripping, the resulting MRIs were visually verified and
the ones that also had brain tissue removed were excluded. This resulted
in a total of 198 images. The summary of the subjects is shown in Table
3.1. The subjects are divided in cognitive normal (CN) and Alzheimer’s dis-
ease (AD) group. The age is represented as a mean ± standard deviation.
Subjects are also divided in males (M) and females (F) by gender.

Group Subjects Age Gender

CN 108 76.1± 5.2 52 M / 56 F

AD 90 76.6± 7.2 46 M / 44 F

Table 3.1: Subject data distribution summary.

1https://gitlab.science.ru.nl/pmoroza/bachelorthesis
2https://adni.loni.usc.edu/
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3.2 Image pre-procesing

The MRIs taken from ADNI database have already undergone several pre-
processing correction steps:

• T1 - all T1 images include an on-scanner non-uniformity correction.

• GradWarp - system-specific correction of image geometry distortion
due to gradient non-linearity.

• B1 corrected - corrects the image intensity non-uniformity that results
when radiofrequency transmission is performed with a more uniform
body coil while reception is performed with a less uniform head coil.

• N3 - histogram peak sharpening algorithm. It is used to reduce residual
intensity non-uniformity.

All scans were taken with 1.5T scanner.3 An example of an original image
is shown in Figure 3.1.

Figure 3.1: Example of an MRI before skullstripping

3.2.1 Skull stripping

A high resolution MRI contains some non-brain tissues such as skin, fat,
muscle, neck, and eye balls. The presence of these tissues is considered a
major obstacle for automatic brain image analysis. Skull-stripping is de-
signed to eliminate non-brain tissues from an MRI.[26]

In this study structural MRI analysis software package FreeSurfer is used. It
was developed by Laboratory for Computational Neuroimaging at the Athi-
noula A. Martinos Center for Biomedical Imaging for the analysis and visu-
alization of structural and functional neuroimaging data from cross-sectional
or longitudinal studies. [11] An example of a skull stripped image is shown
in Figure 3.2.

3https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/#mri-pre-processing-
container
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Figure 3.2: Skull-stripped image

3.2.2 Registering to a brain template

Registration to a brain template is the next step following skull-stripping.
The most well-known and widely used template is provided by Montreal
Neurological Institute (MNI).[38] By registering with MNI, all patients’
brains are at the same place in the image box, and the network can learn
the proper position of each image patch.

In this study registering a brain template to MNI is done using FSL FLIRT
tool.[17] An example of skull-stripped and registered to a brain template
image is shown in Figure 3.3.

Figure 3.3: Skull-stripped and registered to a brain template image

3.2.3 Rescaling

The last pre-processing step is rescaling. The original images were of shape
182x218x182. Rescaling the images makes the data augmentation process
easier. First, the images are rescaled with the scikit-image library by a
factor of 0.504, which results in a shape of 92x110x92. Next, the images are
padded and this gives a new image dimension of 110x110x110.
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3.3 CNN Models

3.3.1 Weighted binary cross-entropy

Weighted binary cross-entropy is used to deal with imbalanced data set prob-
lem in neural networks. [4] It results into additional accuracy improvements
compared to not modified loss function.[27]

3.3.2 Dropout

Dropout is a method for dealing with model over-fitting. For each training
batch in every epoch, a dropout layer randomly omits each neuron with
a given probability, so that a neuron cannot rely on the presence of other
neurons. [14] In this study, the dropout probability is set to 50% and it is
added after fully connected layers as it is known to perform well in prior
research. [39, 42]

3.3.3 Feature extractor

All the convolutional layers of AlexNet are used as feature extractors in the
models. [19] The approach is described in Section 2.3 .

3.3.4 Fusion strategies

The core idea of the fusion strategies is to down-sample the MRIs. It can
be done in two ways:

Early Fusion

The feature extraction is done on a pre-pooled MRI. First, a 3D image is
converted to 2D by applying one of the pooling strategies across one of the
dimensions. After that, the features are extracted by giving the 2D image
to the feature extractor.

Late Fusion

The feature extraction happens before applying the pooling operation. First,
features are extracted from each slice individually and then the resulting fea-
ture maps are combined by applying a pooling operation.

The next section discusses the pooling methods and in Figures 3.5 and 3.6
application of max pooling with different fusion strategies is shown.
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3.3.5 Pooling strategies

Pooling is a crucial step in further decreasing the dimensions of the acti-
vation map, preserving just the most relevant properties while diminishing
spatial invariance. As a result, the number of learnable characteristics for
the model is reduced. This aids in resolving the issue of overfitting. CNN
uses pooling to absorb all of an image’s dimensions, allowing it to recognize
a particular item even if its form is warped or present at a different angle.[1]

A temporal pooling layer is placed either before the first fully connected
layer (late fusion) or the feature extractor (early fusion) and it is used to
convert 3D MRI’s to 2D images by replacing temporal dimension values with
a single value. Temporal pooling can be applied on the image-level and the
feature-level.[22] In this study 3 different pooling strategies are used:

Max pooling

One of the most popular types of pooling is max pooling. [1] It extracts the
greatest value from each sub matrix of the activation map and creates a new
matrix. This guarantees that the number of learnable aspects remains lim-
ited while the important elements of any image are preserved. In this study,
it is used to flatten one of the three dimensions of an MRI by extracting the
maximum values. A simple example on a 2D matrix is shown in Figure 3.4.

Figure 3.4: Max pooling on Y dimension.

In Figures 3.6 and 3.5 two different fusion strategies in combination with
max pooling are shown. Early fusion selects the highest value of each pixel
across all slices and passes it to the feature extractor. In the case of late
fusion, all slices are fed into the feature extractor first, and then the largest
values are extracted across all feature maps.
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Figure 3.5: An example of Max Pooling Early Fusion. A 3D MRI is reduced
to 2D by taking the maximum values across all slices. The result is then
given to the feature extractor.

Figure 3.6: An example of Max Pooling Late Fusion. The slices are given
to the feature extractor one by one. The resulting feature maps are then
combined to one feature map by taking the maximum values across them.

Segmented max pooling

Segmented max pooling is inspired by a recent research on the classification
of digital breast tomosynthesis (DBT), which is an emerging imaging tech-
nique for breast cancer screening. [36] These images also consist of slices
and, Mickael Tardy and Diana Mateus [36] propose to summarise slices to
slabs with an operation, for example, max pooling.

In this study, segmented max pooling works in a similar way as max pool-
ing, but it takes a few slices at a time and summarises them into slabs by
extracting the maximum values across them. The size T of the slabs is a
hyper-parameter. For example, segmented max pooling on the Z dimension
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reduces an MRI V ∈ RY×X×Z to V ′ ∈ RY×X×S , where S = dZT e. [36] This
pooling method is only used with a late fusion strategy, because early fusion
segmented max pooling is just early fusion max-pooling with an extra step
(i.e. T = Z).

In Figure 3.7 segmented max pooling with T=2 is shown, where T is the
amount of slices grouped together.

Figure 3.7: An example of Segmented Max Pooling Late Fusion. Every two
slices are combined to a slab by applying max pooling. The three slabs
are then given to AlexNet. The resulting feature maps are reduced to one
feature map by applying max pooling.

Dynamic pooling

Dynamic image pooling is a temporal pooling method that was originally
proposed for video clips summarization and is also referred to as rank pool-
ing. [6] The paper by Basure Fernando et al. [10] proposes to capture the
temporal ordering of a particular video by training a linear ranking machine
on the frames of that video. The procedure entails arranging all of the video
frames in chronological order based on their content. The parameters of the
linear ranking function indicate the video’s temporal appearance evolution
in a systematic way.

The paper by Gongbo Liang et. al. [22] proposes that 3D MRIs can be
treated like video clips, with each slice of the MRI acting as a video frame.
After that, dynamic image pooling learns a dynamic image that can rank
all of the MRI slices. This is done with rankSVM, one of the widely used
methods for learning to rank.[20]

The MRI is represented as a sequence of vectors V , with each slice rep-
resented as a single vector. In this study, these vectors are obtained by ap-
plying max pooling on the individual slices. The paper by Basure Fernando
et al. [10] applies a smoothing and non-linearity operation on V to account
for the effect of noise, violent abrupt variation and the sometimes non-linear
relation of these between frames. Since MRIs are not affected by speed of
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the action, these steps are skipped in this study. A rankSVM model4 is then
fit on the transpose of V and used to learn the dynamic image of the MRI.
Formally, given an MRI as a sequence of slices, V = [x1, x2, x3, . . . , xn], with
a shape of w × h × n, dynamic image µ is able to rank all the slices of the
MRI, such that [22]:

∀i, j ∈ [1..n] : i < j ⇐⇒ µT · xi < µT · xj

In the case of late fusion, the feature maps of each slice are seen as the video
frames instead. This study uses the implementation of Basure Fernando et
al. for dynamic pooling5.

Figure 3.8 shows an MRI after applying max pooling early fusion on the
left and dynamic pooling early fusion on the right. The latter contains more
details compared to the former.

Figure 3.8: MRI after having undergone max pooling early fusion (on the
left) and dynamic pooling early fusion (on the right).

3.3.6 Pooling dimension

In different sources authors give preference to different dimensions for the
pooling direction. In this study all experiments are run for all dimensions
X, Y and Z. The directions of all pooling dimensions is shown in Figure 3.9.

Figure 3.9: Pooling dimensions.

4https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
5https://github.com/MRzzm/rank-pooling-python/blob/master/rank pooling.py
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3.4 Data augmentation

CNNs are reliant on big data to avoid overfitting, which is a phenomenon
when a network perfectly models the training data. [34] This often results
in poor classification of unseen data. Data augmentation refers to a set of
techniques that are used to enhance the size and quality of training data
sets. [34]

In this study, random affine transformations that consist of a rotation, trans-
lation and scaling in all three dimension of the MRI are used to augment the
training data. In order to implement these random affine transformations,
the source code for data augmentation from a Master thesis ”Computational
diagnosis of Alzheimer’s Disease” of Wieske de Swart6.

The augmentation is done at the start of the training phase of each model.
All MRIs in the training set are transformed and the results are then ap-
pended after which the new data is randomly shuffled. The data augmenta-
tion is exclusively done on the training data and increases its size by a factor
of two. To not affect the class of the images, the random affine transforma-
tions are kept small at a maximum of 5% rotation, scaling or translation.

6https://github.com/Wieske/AD thesis
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Chapter 4

Experimental Setup

The models, data loading (with four CPU cores), training loop and testing
loop are implemented with PyTorch, NumPy, scikit-learn (resizing and eval-
uation metrics) and nilearn (loading NIfTI format). All models are trained
on a NVIDIA GeForce RTX 2080 Ti (11 GB) GPU using Python 3.9 and
PyTorch 1.11.0.

4.1 PyTorch

PyTorch is a useful machine learning library for deep neural network devel-
opment. It delivers a high-performance environment with simple access to
automatic model differentiation across CPU and GPU.

4.2 NIfTI

NIfTI is a commonly used data format for neuroimaging data. Using NIfTI
reduces the neccessary disk space by 70% due to used compression. [30]

4.3 CNN architecture

In this section the architecture of the model and the parameters are de-
scribed.

4.3.1 Reproduced model

The code from the research of Gongbo Liang et. al. [22] was not ready at
the time of writing this thesis, so the AlexLate−Max model is recreated as
precisely as possible based on what is written in the research article. Table
4.1 shows the detailed architecture of the reproduced model.

17



CCN layer Layer type Layer activations

110x110x110 input layer Input 110x110x110

AlexNet convolutional layers (frozen) Feature extractor 110x256x2x2

Temporal pooling layer (late fusion) Pooling operation 256x2x2

256 1x1 convolutional layer Convolutional 256x2x2

ReLU ReLU 256x2x2

Flatten layer Flatten 1x1x1024

512 fully connected layer FC 1x1x512

2 fully connected layer FC 1x1x2

Table 4.1: Generic reproduced model architecture. [22]

4.3.2 Early fusion strategy

Table 4.2 shows the detailed architecture of models with early fusion strat-
egy.

CCN layer Layer type Layer activations

110x110x110 input layer Input 110x110x110

Temporal pooling layer (early fusion) Pooling operation 3x110x110

AlexNet convolutional layers (frozen) Feature extractor 256x2x2

256 1x1 convolutional layer Convolutional 256x2x2

ReLU ReLU 256x2x2

Flatten layer Flatten 1x1x1024

Dropout layer (p = 0.5)[39] Dropout 1x1x1024

512 fully connected layer FC 1x1x512

Dropout layer (p = 0.5)[39] Dropout 1x1x512

1 fully connected layer FC 1x1x1

Table 4.2: Generic early fusion model architecture.

4.3.3 Late fusion strategy

Table 4.3 shows the detailed architecture of models with late fusion strategy.
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CCN layer Layer type Layer activations

110x110x110 input layer Input 110x110x110

AlexNet convolutional layers (frozen) Feature extractor 110x256x2x2

Temporal pooling layer (late fusion) Pooling operation 256x2x2

256 1x1 convolutional layer Convolutional 256x2x2

ReLU ReLU 256x2x2

Flatten layer Flatten 1x1x1024

Dropout layer (p = 0.5)[39] Dropout 1x1x1024

512 fully connected layer FC 1x1x512

Dropout layer (p = 0.5)[39] Dropout 1x1x512

1 fully connected layer FC 1x1x1

Table 4.3: Generic late fusion model architecture.

4.4 Parameters

4.4.1 Reproduced model

The reproduced model is trained with the settings shown below. The loss
function is given slightly different weights for the output neurons, because
the data set contains 18 more CN images than AD images. The normaliza-
tion method is taken from another paper, because Gongbo Liang et al. [22]
do not mention how their data is normalized.

• Pooled on Z dimension

• Loss function: weighted cross entropy, weights [1−108/198, 1−90/198]

• Learning rate: 0.0001

• Optimizer: Adam

• On-the-fly data augmentation of random horizontal flips and random
rotations of 90, 180 or 270 degrees

• Min-Max normalization to [0,1] range [41]

• 100 epochs

• 4:1 data split

• Batch size 16

• Data is skull-stripped, registered to a brain template and resized to a
shape of 110x110x110.
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4.4.2 Custom model

The custom model is trained with the settings shown below. This model
uses weighted binary-cross entropy, because it has only one output neuron.
The loss function is given a positive weight, because the data set contains
18 more CN images than AD images.

• Pooled on all dimensions

• Loss function: weighted binary-cross entropy, positive weight 108/90

• Learning rate: 0.0001 [22]

• Optimizer: Adam, weight decay of 0.001 [41]

• Data augmentation mentioned in section 3.4

• Min-Max normalization to [0,1] range [41]

• 100 epochs and, for cross validation, early stopping with patience of
15 [41]

• 4:1 and cross-validation data split

• Batch size 16

• Data is skull-stripped, registered to a brain template and resized to a
shape of 110x110x110.

4.5 Evaluation

Unbiased evaluation is essential to examine the potential clinical value of
classification models. [41] Using test data in any part of the training pro-
cess is one of the main sources of bias. [41] Therefore, any data set that is
used to train a machine learning model must be divided into training data
and independent, unseen testing data.

In this study, two different data splitting approaches are used and com-
pared for the evaluation. No samples for the same patient can appear in
both training and testing sets, because this would introduce bias. Accord-
ing to Junhao Wen et al. [41] bias from subjects appearing in both training
and test data can lead to up to 8% increase of accuracy.

4.5.1 4:1 ratio

One of the most common data splits is the 4:1 ratio, which means that 80%
of the data will be used to train the model and 20% will be used to test
the model after it is trained on the training data. This is the evaluation
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approach used by Gongbo Liang et al. [22].

All splitting and shuffling is seeded both for reproducibility and to make
sure that all models see the same splits. The models are trained for 100
epochs on the training data and then evaluated on the test set. For each
model, this is repeated three times to get a better estimate of the average
performance. The 4:1 accuracy is the average of the three accuracy mea-
surements across the test set. The 4:1 auROC score is the average of the
three auROC measurements across the test set.

4.5.2 Cross-validation

Another extensively used data resampling approach for estimating the true
prediction error of models and tuning model parameters is cross-validation
[5]. The data set is assumed to be a sample from a population of interest.
In this paper, stratified k-fold cross-validation sub-sampling method is used
to generate a training set and validation set with k equal to five. Stratified
ensures that each fold reflects the proportion of AD and CN subjects of the
entire training data. [5]

The available training set (80% of the original data) is divided into k dis-
joint subsets (folds) of approximately equal size. This division is done by
selecting cases from the learning set at random and not replacing them. All
random selection and/or shuffling is seeded for both reproducibility and to
make sure that all models see the exact same splits.

The model is trained with k-1 subsets and the model is then evaluated on
the remaining subset, the validation set, each epoch to monitor the training
progress. This process is repeated until all k subsets have served as valida-
tion sets [41]. A test set (20% of the original data) is kept separate for the
final evaluation of each model and this is also the same test set used in the
4:1 ratio evaluation.

The reported cross-validated accuracy in this study is the average of the
k accuracy measurements across the test set. The reported cross-validated
auROC score is the average of the k auROCs achieved on the test set. This
cross validation process is repeated three times to get a more reliable esti-
mate of the performance.

Early stopping

Early stopping is a technique which stops the learning process at an earlier
point than the predefined number of epochs. Its goal is to figure out the
epoch at which to stop training the model in order to prevent severe overfit-
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ting [41]. Furthermore, it is also a solution for reducing training time [15].

In this study, early stopping is used in combination with cross-validation.
The validation loss is monitored and, when it does not improve for fifteen
epochs, the training is interrupted. Otherwise, the model is trained for 100
epochs. When the training of a fold is finished, the model’s weights are re-
stored to those of the epoch with the highest auROC score. This approach
is the same as Junhao Wen et al. [41] have for a similar 2D slice-based CNN
model.

4.6 Statistical significance

4.6.1 McNemar’s test

In this study the non-parametric McNemar’s statistical test is used to com-
pare the performance of the best trained classifiers with 4:1 ratio dataset
split.[31] The first step to apply McNemar’s test is to summarize the number
of agreements and disagreements between the trained classifiers as shown in
Table 4.4.

Classifier2 Incorrect Classifier2 Correct

Classifier1 Incorrect No\No No \Yes

Classifier1 Correct Yes \No Yes \Yes

Table 4.4: First step of McNemar statistical analysis.

The second step is to test whether two classifiers have the same error rate.
The chi-square value is computed and tested against the theoretical chi-
square with one degree of freedom with the following formula [18]:

χ̃2 =
(|nNo\Y es − nY es\No| − 1)2

nNo\Y es + nY es\No

4.6.2 Bonferroni correction

The Bonferroni correction is applied to P values when numerous dependent
or independent statistical tests are run simultaneously on a single data set.
It was created to address the problem that as the number of tests increases,
the risk of concluding that a significant difference exists, when it does not,
increases.[3]

In this study, Bonferroni correction is used to adjust the critical P value
when comparing different classifiers. To perform a Bonferroni correction,
divide the critical P value by the number of comparisons being made. For
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example, when we compare three models we get three comparisons (A with
B, A with C and B with C), so the critical value becomes 0.05/3. When
comparing five models we get ten comparisons, so the critical value becomes
0.05/10.
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Chapter 5

Related Work

5.1 Max pooling late fusion and dynamic pooling

The research of Gongbo Liang et al. [22] uses two types of temporal pool-
ing methods; max pooling and dynamic image pooling, two types of fusion
strategies; early fusion and late fusion, and two types of feature extractors;
AlexNet and ResNet-18.[12, 19, 28]. All models are trained for 100 epochs
and the models are evaluated with the 4:1 data split earlier explained in
this paper. The authors of [22] find that their proposed models are able to
improve the classification performance by 10.11% in terms of auROC score
compared to a conventional 3D CNN. In the upcoming Section (6), their
results are discussed in more detail, as well as, our findings regarding our
attempt to reproduce their models.

Figure 5.1: An illustration of different fusion strategies. Early fusion (Top)
converts 3D images to 2D before feeding the data into a feature extractor.
Late fusion (Bottom) converts 3D images to 2D after feeding the data into
a feature extractor by Gongbo Liang et al.[22]

In Figure 5.1, an illustration is shown of the different fusion strategies pro-
posed by Gongbo Liang et al. [22], which are coherent with the descriptions
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in Chapter 2. An illustration of dynamic image pooling proposed by Gongbo
Liang et al. [22] is shown in Figure 5.2. It shows how the learned dynamic
image µ can rank the sequence of slices, V = [x1, xx, x3, . . . , xn], of the
original MRI, such that [22]:

∀i, j ∈ [1..n] : i < j ⇐⇒ µT · xi < µT · xj

Figure 5.2: An illustration of dynamic image pooling. If the index of the
blue slice (SliceB) smaller than the index of the green slice (SliceG), Dynam-
icImage × SliceB < DynamicImage × SliceG by Gongbo Liang et al.[22]

5.2 CNN comparison studies for AD classification

Junhao Wen et al. [41] conduct a large comparison study on CNNs for the
classification of Alzheimer’s disease. Their work includes a systemic liter-
ature review and rigorous CNN comparison. A strong motivation for their
study is numerous recent proposals of machine learning approaches for the
automation of Alzheimer’s disease classification. However, those proposals
are often difficult to reproduce due to unavailable frameworks or lack of im-
plementation details.

Their study [41] compares five different CNN models and evaluates them
with cross validation similar to this study. However, only one of their mod-
els is a 2D slice-level model. It uses transfer learning with all layers of ResNet
pretrained on the ImageNet dataset with an additional fully connected layer
at the end. The slices are taken from the Y dimension and repeated to RGB.
All slices go through the entire model and a final prediction is made based
on a majority voting system considering the predictions on all individual
slices. Junhao Wen et al. [41] report an auROC of 76% ± 1.3% on their
ADNI test set.

In this study, only 2D slice level models are compared and the fusion al-
ways happens within the model. All models are also tested with all possible
pooling dimensions.
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5.3 Segmented max pooling

Research on slice level models is not exclusive to Alzheimer’s Disease classi-
fication. Mickael Tardy and Diana Mateus [36] propose a method for sum-
marising slices for the classification of digital breast tomosynthesis (DBT).
Instead of aggregating predictions on all slices [41], the authors of [36] first
partition all slices into N groups and then summarise them to slabs with a
slab-generation function b(·). Predictions are made slab-wise and all pre-
dictions are combined with a function a(·), e.g. a max operation. In their
work [36], a trainable implementation of b(·) is proposed for slab generation.

In this study, inspiration from the slabbing proposal for DBT classification
is taken for the Segmented Max Pooling model in Section 3.3.5. Instead of a
trainable implementation for b(·), this research uses a max pooling operation
to create slabs out of groups of slices. Each slab is then given to the feature
extractor and the resulting feature maps are fused with max pooling.
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Chapter 6

Results

This section will describe the comparison of the results. Detailed results of
all models can be found in Section A.2 .

6.1 Reproducibility of previous research

In Table 6.1 the classification performance of all models from the research
of Gongbo Liang et al. [22] is shown. The AlexLate−Max model, which uses
AlexNet feature extractor, late fusion strategy, max-pooling and pooling
dimension Z, achieves the best results.

Model ACC auROC F1 Prec Recall AP

3D-ResNet 0.84 0.82 0.82 0.86 0.79 0.78

AlexEarly−Dyn 0.90 0.89 0.89 0.93 0.86 0.86

AlexLate−Max 0.91 0.91 0.91 0.97 0.85 0.90

AlexLate−Dyn 0.90 0.88 0.90 0.94 0.88 0.88

ResEarly−Dyn 0.83 0.81 0.82 0.85 0.80 0.78

ResLate−Max 0.84 0.76 0.84 0.85 0.80 0.78

ResLate−Dyn 0.88 0.86 0.86 0.91 0.85 0.84

Table 6.1: The evaluation result for all the compared models from research
of Gongbo Liang et al. [22].

In this study, the AlexLate−Max model is reproduced as close as possible
based on what is described in the research of Gongbo Liang et al. [22] The
only difference from the mentioned paper is the dataset:

• Study of Gongbo Liang et. al. [22] uses 100 cases of spatially normal-
ized, masked, and N3-corrected T1 MRI.
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• This study uses 223 cases of spatially normalized, GradWarp-corrected,
B1-corrected and N3-corrected T1 MRI.

Both datasets are taken from ADNI.

The results of the reproduced model are shown in Table 6.2.

Alex ACC auROC ACC auROC Train Time

Late−Max (test) (test) (train) (train) (100 epochs)

Run 1 0.68 0.65 0.88 0.88 430 sec

Run 2 0.63 0.63 0.86 0.86 445 sec

Run 3 0.66 0.65 0.88 0.88 443 sec

Average 0.66± 0.03 0.64± 0.01 0.87± 0.01 0.87± 0.01 439 sec

Table 6.2: The evaluation result of recreated AlexLate−Max model.

The best auROC score reported by Gongbo Liang et al. [22] is 91%, achieved
with their AlexNet max pooling late fusion model. In this study, the auROC
score for the reproduced AlexNet max pooling late fusion with a 4:1 data
split is 66%± 3%.

It is hard to tell what causes this difference. The code used by Gongbo
Liang et al. [22] is not available at the time of writing, so this study might
miss several important implementation details. The performance could also
be different because of differences in the used data sets.

The custom AlexNet max pooling late fusion model achieves an auROC
of 72.93%± 1.52% A.2 with 4:1 data split. The key differences are one out-
put neuron instead of two, different data augmentation, two dropout layers
and weight decay. This further indicates that implementation details can
play an important role.

6.2 Influence of experimental setup

In this section, the best performing models for each data split are compared
to answer the research question ”How do the evaluation results vary when
using different data splitting strategies?”.

The best performing models of each data split are shown in Table 6.3.
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Model Data Split ACC auROC Time

Segmented max pooling 4:1 74.56%± 5.48% 73.58%± 4.72% 555 s± 10 s

Segmented max pooling Cross-validation 71.40%± 4.36% 72.13%± 4.04 1101 s± 57 s

Table 6.3: Best performing CNN custom models for each data split.

It is not possible to statistically compare the results of these two data splits.
However, both splits find the segmented max pooling model to have the best
performance in terms accuracy and auROC score. The performance seems
to be similar, because both accuracy and auROC differ only between 1 to
3 percentage points. The total training time of 4:1 is approximately twice
as fast, but cross validation does consist of five splits training five separate
models.

6.3 Influence of pooling dimensions

In this section, the best performing models for each dimension for both data
splits are compared to answer the research question ”How does the pooling
dimension affect the performance of the temporal pooling methods?”. The
best models are chosen by considering all models for a dimension and then
taking the one with the highest average auROC.

6.3.1 4:1 ratio

The best performing models of each pooling dimension for 4:1 data split are
shown in Table 6.4.

Model ACC auROC

Segmented max pooling (T=2) X 64.04%± 4.02% 65.26%± 3.91%

Segmented max pooling (T=2) Y 73.68%± 2.64% 71.69%± 4.26%

Segmented max pooling (T=5) Z 74.56%± 5.48% 73.58%± 4.27%

Table 6.4: Best performing CNN custom models with data split 4:1 ratio
for each pooling dimension.

McNemar’s test is used to compare the proportion of errors between the
models in table 6.4. The result is statistically significant if the p-value is
below the bonferonni corrected critical value of 0.01667. This value is calcu-
lated by dividing 0.05 by 3, because three models need three comparisons.
Table 6.5 shows the results of run one.
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Run 1

Dimension X Y Z

X 0.71613 0.07544

Y 0.71613 0.90052

Z 0.07544 0.90052

Table 6.5: Results of McNemar’s test on run 1.

Table 6.6 shows the results of run two.

Run 2

Dimension X Y Z

X 0.21841 0.01640

Y 0.21841 0.90052

Z 0.01640 0.90052

Table 6.6: Results of McNemar’s test on run 2.

Table 6.7 shows the results of run three.

Run 3

Dimension X Y Z

X 0.71613 0.93359

Y 0.71613 0.75832

Z 0.93359 0.75832

Table 6.7: Results of McNemar’s test on run 3.

This study finds a significant result for the proportion of errors between
the best model for pooling dimension X and pooling dimension Z in run
2. All other combinations of pooling dimensions in all other runs show no
significant result.

6.3.2 Cross-validation

The best performing models of each pooling dimension for cross validation
are shown in Table 6.8.
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Model ACC auROC

Segmented max pooling (T=2) X 71.40%± 4.36% 72.13%± 4.04%

Segmented max pooling (T=2) Y 68.42%± 3.16% 67.57%± 4.11%

Dynamic pooling early fusion Z 70.70%± 4.38% 71.39%± 3.75%

Table 6.8: Best performing CNN custom models with data split cross-
validation for each pooling dimension.

McNemar’s test is used to compare the proportion of errors between the
models in table 6.8. The result is statistically significant if the p-value is
below the bonferonni corrected critical value of 0.01667. This value is calcu-
lated by dividing 0.05 by 3, because three models need three comparisons.
Table 6.9 shows the results of run one.

Run 1

Dimension X Y Z

X 1.00000 0.80259

Y 1.00000 1.00000

Z 0.80259 1.00000

Table 6.9: Results of McNemar’s test on run 1.

Table 6.10 shows the results of run two.

Run 2

Dimension X Y Z

X 0.00137 0.86763

Y 0.00137 0.65672

Z 0.86763 0.65672

Table 6.10: Results of McNemar’s test on run 2.

Table 6.11 shows the results of run three.

Run 3

Dimension X Y Z

X 1.00000 0.86763

Y 1.00000 1.00000

Z 0.86763 1.00000

Table 6.11: Results of McNemar’s test on run 3.
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This study finds a significant result for the proportion of errors between
the best model for pooling dimension X and pooling dimension Y in run
2. All other combinations of pooling dimensions in all other runs show no
significant result.

6.4 Comparison of temporal pooling methods

In this section, the best performing models for each pooling method for
both data splits are compared to answer the research question ”How do
the temporal pooling methods compare in terms of performance and training
time?”. The best model for each temporal pooling method is chosen by
looking at all pooling dimensions of a method and taking the one with the
highest average auROC.

6.4.1 4:1 ratio

The best performing models of each temporal pooling method for 4:1 data
split are shown in Table 6.12.

Model ACC auROC Dim Time

Max pooling early fusion 56.14%± 1.52% 53.33%± 1.25% X 560 s ± 15 s

Max pooling late fusion 71.93%± 1.52% 72.17%± 2.33% Z 729 s ± 17 s

Segmented max pooling (T=5) 74.56%± 5.48% 73.58%± 4.72% Z 555 s ± 10 s

Dynamic pooling early fusion 70.17%± 3.04% 70.72%± 3.26% Z 1986 s ± 26 s

Dynamic pooling late fusion 69.3%± 6.62% 68.07%± 6.74% Z 1594 s ± 25 s

Table 6.12: Best performing CNN custom models with data split 4:1 ratio
for each temporal pooling method.

McNemar’s test is used to compare the proportion of errors between the
models in Table 6.12. The result is statistically significant if the p-value is
below the bonferroni corrected value of 0.005. This value is calculated by
dividing 0.05 by 10, because five models need ten comparisons. Table 6.13
shows the result of run one.
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Run 1

Model MPEF MPLF SMPLF DPEF DPLF

MPEF 0.01640 0.00004 0.39973 0.21841

MPLF 0.01640 1.00000 0.93359 0.92034

SMPLF 0.00004 1.00000 0.71613 0.65672

DPEF 0.39973 0.93359 0.71613 0.94306

DPLF 0.21841 0.92034 0.65672 0.94306

Table 6.13: Comparison of best performing CNN custom models with data
split 4:1 ratio for run 1.

Table 6.14 shows the result of run two.

Run 2

Model MPEF MPLF SMPLF DPEF DPLF

MPEF 0.01242 < 0.00001 0.00562 0.52032

MPLF 0.01242 0.65672 1.00000 0.92034

SMPLF < 0.00001 0.65672 0.92034 0.21841

DPEF 0.00562 1.00000 0.92034 0.65672

DPLF 0.52032 0.92034 0.21841 0.65672

Table 6.14: Comparison of best performing CNN custom models with data
split 4:1 ratio for run 2.

Table 6.15 shows the result of run three.

Run 3

Model MPEF MPLF SMPLF DPEF DPLF

MPEF 0.21841 0.36812 0.36812 0.65672

MPLF 0.21841 1.00000 1.00000 0.92034

SMPLF 0.36812 1.00000 0.90052 1.00000

DPEF 0.36812 1.00000 0.90052 1.00000

DPLF 0.65672 0.92034 1.00000 1.00000

Table 6.15: Comparison of best performing CNN custom models with data
split 4:1 ratio for run 3.

This study finds a significant result for the proportion of errors between
the best model for max pooling early fusion and segmented max pooling
late fusion in run 1 and run 2. All other combinations of temporal pooling
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methods in all other runs show no significant result.

In terms of accuracy and auROC, max pooling early fusion stands out by
scoring 13 to 18 percentage points less. All other temporal pooling methods
only differ 1 to 5 percentage points. In terms of training time, segmented
max pooling trained the fastest on average of all models. Dynamic pooling
early fusion and dynamic pooling late fusion train significantly slower than
all other models.

6.4.2 Cross-validation

The best performing models of each temporal pooling method for cross val-
idation data split are shown in Table 6.16.

Model ACC auROC Dim Time

Max pooling early fusion 53.69%± 4.94% 53.16%± 3.64% Y 967 s ± 140 s

Max pooling late fusion 68.77%± 2.92% 68.79%± 3.42% X 1118 s ± 135 s

Segmented max pooling (T=2) 71.40%± 4.36% 72.13%± 4.04% X 1101 s ± 57 s

Dynamic pooling early fusion 70.70%± 4.38% 71.39%± 3.75% Z 2676 s ± 277 s

Dynamic pooling late fusion 67.72%± 1.97% 68.46%± 2.23% Z 1442 s ± 201 s

Table 6.16: Best performing CNN custom models with data split cross-
validation for each temporal pooling method.

McNemar’s test is used to compare the proportion of errors between the
models in Table 6.16. The result is statistically significant if the p-value is
below the bonferroni corrected value of 0.005. This value is calculated by
dividing 0.05 by 10, because five models need ten comparisons. Table 6.17
shows the result of run one.

Run 1

Model MPEF MPLF SMPLF DPEF DPLF

MPEF 0.44612 0.00648 0.21130 0.07415

MPLF 0.44612 0.42371 1.00000 1.00000

SMPLF 0.00648 0.42371 0.80259 0.86763

DPEF 0.21130 1.00000 0.80259 0.90052

DPLF 0.07415 1.00000 0.86763 0.90052

Table 6.17: Comparison of best performing CNN custom models with cross
validation for run 1.

Table 6.18 shows the result of run two.
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Run 2

Model MPEF MPLF SMPLF DPEF DPLF

MPEF 0.81398 0.01640 0.14580 0.52032

MPLF 0.81398 0.13361 0.92034 1.00000

SMPLF 0.01640 0.13361 0.86763 0.56771

DPEF 0.14580 0.92034 0.86763 1.00000

DPLF 0.52032 1.00000 0.56771 1.00000

Table 6.18: Comparison of best performing CNN custom models with cross
validation for run 2.

Table 6.19 shows the result of run three.

Run 3

Model MPEF MPLF SMPLF DPEF DPLF

MPEF 0.03722 0.11817 0.00047 0.78973

MPLF 0.03722 0.92034 0.93359 0.56771

SMPLF 0.11817 0.92034 0.86763 0.42371

DPEF 0.00047 0.93359 0.86763 0.14580

DPLF 0.78973 0.56771 0.42371 0.14580

Table 6.19: Comparison of best performing CNN custom models with cross
validation for run 3.

This study finds a significant result for the proportion of errors between the
best model for max pooling early fusion and dynamic pooling early fusion
in run 3. All other combinations of temporal pooling methods in all other
runs show no significant result.

In terms of accuracy and auROC, max pooling early fusion stands out by
scoring 15 to 20 percentage points less. All other temporal pooling methods
only differ 1 to 4 percentage points. In terms of training time, max pooling
early fusion trained the fastest on average of all models. Dynamic pooling
early fusion and dynamic pooling late fusion train significantly slower than
all other models.
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Chapter 7

Discussion

First, this study takes a look at the reproducibility of the research by Gongbo
Liang et al. [22] For this purpose, the best performing CNN model of that
research is recreated as close as possible. It uses AlexNet feature extrac-
tor, late fusion strategy, max-pooling and pooling dimension Z. The results
of the evaluation of this reproduced model (accuracy: 66% ± 3%, auROC:
64% ± 1%) shows worse results than results obtained by Gongbo Liang et
al. (accuracy: 91%, auROC: 91%) [22]. This indicates that it is essential to
provide all details of implementation and evaluation.

Secondly, this study compares the 4:1 data split used in CNN models to
a cross validation technique. For this purpose, the best performing models
of each splitting techniques are compared: AlexNet feature extractor, late
fusion strategy, segmented max pooling, in case of 4:1, dimension Z, T=5, in
case of cross-validation, dimension X, T=2. The results of the comparison
show that both models have similar performance.

Thirdly, this study takes a look at the effect of the used pooling dimension
in a model. For this purpose, this study performs McNemar’s test between
the best performing models for each pooling dimension with 4:1 data split.
The results shows a statistically significant difference for pooling dimensions
X and Z in run 1. McNemar’s test between the best performing models for
each pooling dimension with cross validation shows one statistically signif-
icant difference. Based on these results, it seems that overall the pooling
dimension has a negligible influence for the classification of Alzheimer’s dis-
ease. However, when using dynamic pooling early fusion it does seem to
be critical to use the Z dimension. In this study, the X and Y dimension
models for dynamic pooling early fusion score between 12 to 24 percentage
points less in accuracy and auROC for both data splitting techniques (see
Table A.9).
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Finally, this study compares the performance of different temporal pooling
methods. For this purpose, this study performs McNemar’s test between
the best performing models for each temporal pooling method with both
4:1 data split and cross validation. The former found two statistically sig-
nificant differences. These differences are between the results of max pooling
early fusion and segmented max pooling late fusion for run 1 and run 2. The
latter found one statistically significant difference, comparison of max pool-
ing early fusion and dynamic pooling and early fusion for run 3. Based on
these results, it seems that there is a negligible difference in the proportion
of errors of Alzheimer’s disease classification between the different tempo-
ral pooling methods. However, there is some statistical evidence that max
pooling early fusion can be expected to have a different proportion of errors.

When considering the accuracy and auROC scores, this study finds that
all models have comparable performance, except for max pooling early fu-
sion, which performs worse. The tables in the appendix also show that for
segmented max pooling, larger T values (10,11,22,55) lead to reduced perfor-
mance. Differences in efficiency can also be compared, because the training
time is measured. This research finds that the dynamic pooling models take
a lot longer to train than all other models. However, this does not lead to
any significant improvements, so the reduced efficiency could be a reason to
use a different temporal pooling method.
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Chapter 8

Conclusions and future work

The main contribution of this study is the comparison and evaluation of dif-
ferent temporal pooling methods, fusion strategies, data splitting techniques
and pooling dimensions for the classification of Alzheimer’s disease.

The main limitation was not having the code that was used in the research
of Gongbo Liang et al. [22] and also limited implementation details. This
likely played a large role in the reproduced model scoring almost 30 percent-
age points less for both accuracy and auROC. In that context, this study
shows that medical image analysis can be complex and difficult to reproduce,
which means that it is crucial to comprehensively provide implementation
details of the used machine learning models.

Furthermore, this study finds that it does not matter which pooling dimen-
sion is used when considering the best performing temporal pooling methods
for each dimension. Only for dynamic pooling early fusion specifically, this
research would recommend to use the Z dimension.

Moreover, this study shows that segmented max pooling (T=2, T=5) and
all late fusion models have similar performance in terms of accuracy and
auROC. Only one early fusion model reaches similar performance, which
is dynamic pooling early fusion of the Z dimension, but all other dynamic
pooling early fusion models and all max pooling early fusion models perform
worse. Based on these results, it seems to be the case that it is better to
use a late fusion strategy.

When considering efficiency, the dynamic image pooling models take a sig-
nificantly longer time to train. For example, in the case of a 4:1 data split,
dynamic image pooling early fusion takes almost four times longer to train
than segmented max pooling (T=5). Based on these findings, it might be
better to use either a max pooling late fusion model or segmented max
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pooling with a small value for T.

8.1 Limitations and future work

Since this study showed good performance for segmented max pooling, it
might be interesting to further look into this temporal pooling technique for
Alzheimer’s disease classification. For both data splitting approaches seg-
mented max pooling shows the best performance in terms of accuracy and
auROC. In the case of 4:1 ratio, it also shows the best efficiency in terms of
training time. However, a limitation of our investigation is the very small
number of repetitions (3) of the experiments. This was due to the lack of
computational resources and time constraints. More runs are necessary in
order to provide stronger evidence of the above mentioned results.

Future work could also investigate the use of batch normalization. It is
not used in this research, because the research of Gongbo Liang et al. [22]
does not mention it. However, it is a recommended approach for reducing
overfitting [41].

Furthermore, this study only used AlexNet as feature extractor. It could be
interesting to try and compare newer pre-trained models for transfer learn-
ing, of which examples are briefly mentioned in section 2.3. Additionally,
the classification performance might also benefit from a larger data set. We
did not analyze the effect of data augmentation due to time constraints.
An in-depth investigation of this technique could have provided insights, in
particular, about the need of more data.

Finally, this study used the same values for the hyper-parameters of all
models such as dropout, weight decay and learning rate. It could be inter-
esting to investigate if the different temporal pooling methods benefit from
more targeted tuning.
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Appendix A

Appendix

A.1 ADNI

Data collection and sharing for this project was funded by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant
U01 AG024904) and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). ADNI is funded by the National Institute on Ag-
ing, the National Institute of Biomedical Imaging and Bioengineering, and
through generous contributions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; Bio-
Clinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate;
Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun;
F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fu-
jirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research Development, LLC.; Johnson Johnson Pharmaceutical Research
Development LLC.; Lumosity; Lundbeck; Merck Co., Inc.; Meso Scale
Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda
Pharmaceutical Company; and Transition Therapeutics. The Canadian In-
stitutes of Health Research is providing funds to support ADNI clinical sites
in Canada. Private sector contributions are facilitated by the Foundation
for the National Institutes of Health (www.fnih.org). The grantee organiza-
tion is the Northern California Institute for Research and Education, and
the study is coordinated by the Alzheimer’s Therapeutic Research Institute
at the University of Southern California. ADNI data are disseminated by
the Laboratory for Neuro Imaging at the University of Southern California.

A.2 CNN models evaluation
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