
Bachelor’s Thesis Computing Science

Feature-based Randomness Constraints
in Control Improvisation

Stefan Boneschanscher
s1011532

August 16, 2022

First supervisor/assessor:
dr. Sebastian Junges

Second assessor:
dr. Jurriaan Rot

Abstract

We introduce a feature-based randomness constraint to the control impro-
visation problem. The goal of control improvisation is to find an improviser
that creates improvisations according to some specifications. The feature
constraint limits the chance with which a word with specific features can
occur. We give a definition for our expanded version of control improvi-
sation, show that a general solution for the expanded definition requires
exponential time, identify some cases in which a polynomial time solution
can be found, and finally, provide an algorithm that can solve certain in-
stances of the expanded problem in polynomial time.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Notation: . 4
2.2 Control improvisation . 5
2.3 Solving control improvisation 7

3 Control Improvisation with Feature Constraints 13
3.1 Expanding control improvisation 13
3.2 Solving control improvisation with a feature constraint 14
3.3 Solving general FC-CI instances 17

3.3.1 Complete table algorithm 17
3.3.2 Compressed table algorithm 19

3.4 Solving CI-FC in polynomial time 20
3.4.1 Constant FC-functions 20
3.4.2 Piecewise constant FC-functions 22
3.4.3 General polynomial-time solution for (piecewise) con-

stant FC-functions . 23
3.5 Between the polynomial and the exponential cases 30

4 Related Work 32

5 Conclusions 34

1

Chapter 1

Introduction

Can a computer improvise? For some people this is a philosophical question.
Can we call the output a computer gives after receiving a set of instructions
an improvisation? We will leave that up to the reader to decide. Instead,
this paper focuses on the computational challenge of getting a computer to
improvise.

In Control Improvisation [5], Fremont et al. tried to capture this chal-
lenge as a formal problem: given a specification language and a set of
constraints-, create an improviser that creates words in said language while
adhering to this set of constraints. Inspired by Machine Musicianship [8]
(in which Rowe researched computer generation of variations on a refer-
ence melody), Fremont et al. identified three key ideas of improvisation: an
improvisation should adhere to a set of rules (e.g. musical conventions), it
should bear resemblance to the reference it is based on (e.g. the reference
melody) while not being an exact copy, and it should be random enough to
avoid repetition when creating multiple improvisations.

It is difficult for a problem to capture the complete reality of this world,
but control improvisation is a great attempt at capturing the idea of im-
provisation as a computational problem. However, while two variations on
the same melody may both adhere to the constraints and be equally alike to
the reference melody, we may still prefer one over the other. For example,
one melody may be very difficult to play on an instrument while the other
is easier.

Creating an improviser that limits the probability of generating difficult
variations is not a possibility that is captured in the definition by Fremont
et al. In this paper, we expand the definition of CI to include a feature
constraint (FC). The constraint evaluates the features of a possible impro-
visation and may lower the probability of this improvisation to occur. This
allows us, going back to the example of music, to lower the likelihood of
improvisations with a large number of difficult notes.

One of the features offered by CI as defined by Fremont et al. is its

2

efficiency. In their 2017 paper they show that a polynomial-time general
algorithm exists to create improvisers for certain types of specifications.
This algorithm is able to run in polynomial time as only a limited number
of operations on the specifications are needed. These operations include
counting the number of words in the specification and random sampling
from the specification.

We show that we can solve CI with certain types of feature constraints
using only a limited amount of these operations. For these cases we provide a
polynomial-time algorithm. For other types of feature constraints we need to
access each word individually. In that case the previously used operations
may need to be applied an exponential number of times. We provide a
general exponential-time algorithm that finds an improviser for CI problems
with any feature constraint and show that a faster than exponential-time
algorithm cannot exist for these cases.

As an understanding of the original CI definition helps to understand
the problem presented in this paper, we will first discuss the definition by
Fremont et al. and provide some examples. Then we will incorporate FC
into that definition and provide the aforementioned algorithms. We will
conclude with a discussion of the implications of our findings and possible
options for future work.

The paper is structured as follows: First, we provide basic notation and
discuss earlier work to familiarize the reader with CI in Ch. 2. In Ch. 3 Sec.
3.1-3.3, we continue by expanding the definition of CI to include a FC, then
show CI-FC requires exponential time to guarantee a solution and suggest
two possible algorithms for solving CI-FC. Sec. 3.4 provides two examples
where CI-FC can be solved in polynomial time, lists conditions where a
polynomial-time solution can be guaranteed and provides an algorithm for
solving CI-FC instances that satisfy these conditions. Ch. 4 discusses related
work. We finally draw a conclusion and discuss possible future work in Ch.
5.

In short, the contributions of this paper are:

– An expanded definition of control improvisation including a feature-
based randomness constraint (CI-FC).

– A proof showing that finding a solution for a CI-FC instance while
treating the FC as a black-box at least requires exponential time.

– Two variations of an exponential-time algorithm for solving CI-FC.

– A list of conditions under which CI-FC can be solved in polynomial
time.

– A polynomial-time algorithm for solving CI-FC instances that satisfy
these conditions.

3

Chapter 2

Preliminaries

In this chapter we will list notation that is frequently used in the paper and
explain what the control improvisation problem is. Most of the definitions
and proofs related to the original problem are taken from Control Improvi-
sation [5] where the original problem is defined. We limit ourselves to the
parts of CI that are relevant for this paper and provide new examples as
well as a more comprehensive explanation of the proofs.

2.1 Notation:

The notation in Table 2.1 is used throughout the paper. These definitions
are taken from or based on the definitions in Discrete Mathematics and Its
Applications by Rosen [7].

A ∪B = {x|x ∈ A ∨ x ∈ B}, the union of two sets.

A ∩B = {x|x ∈ A ∧ x ∈ B}, the intersection of two sets.

A \B = {x|x ∈ A ∧ x /∈ B}, the difference of two sets.

S1 ⊆ S A set S1 is said to be a subset of S if every element of S1 is also
an element of S

|S| the size of a set S.

Z {. . . ,−2,−1, 0, 1, 2, . . . }, the set of integers.

Q = {p/q|p ∈ Z, q ∈ Z, and q ̸= 0}, the set of all rational numbers,

R the set of real numbers

Σ an alphabet.

Σ≤n ∪0≤i≤nΣ
i

|w| = the length of a word w ∈ Σ∗.

DFA Deterministic Finite Automata

Table 2.1: Frequently used notation.

4

Because languages can be represented in many different forms, with vary-
ing complexities for each form, we must limit the scope of the problem to
specific representations. Fremont et al. provide the following definition for
a language specification which we will use:

Definition 1. A specification X is a finite representation of a language
L(X) over a finite alphabet Σ. For example, X could be a finite automata
or a context-free grammar.

Example 1. Over the alphabet Σ = {a, b} we can create the specification
X shown in Fig. 2.1. Where X is a DFA that accepts the language L(X) =
(a+ b)∗a:

a

a,b

Figure 2.1: DFA: X

2.2 Control improvisation

The control improvisation problem tries to capture the challenge of creating
an improviser that can generate words that adhere to the three key concepts
of improvisation mentioned by Fremont et al.:

– A set of rules that each improvisation should adhere to, for example
musical conventions or the syntax of the input for a system. These
rules are described in the hard specification, that describes the lan-
guage that each improvisation should be in.

– A reference which a part of the improvisations should resemble. This
reference is given in the soft specification, that describes the language
that most improvisations should be in, except for an allowed margin
of error ϵ.

– Something that ensures the improvisations are random. This is guar-
anteed by two probability constraints: a minimum probability λ, and
a maximum probability ρ. The probability of any improvisation i
being generated by the improviser should be between these limits:
λ ≤ Pr[i] ≤ ρ.

5

Fremont et al. use the hard and soft specification to define two sets of
words. First, a set of words that are in the language of the hard specification,
which they call improvisations. Second, a subset of those improvisations that
are also in the language of the soft specification, which they call admissible
improvisations. A specification which is finite may still represent an infinite
number of words. To ensure the number of improvisations is finite a length
restriction is imposed on the words added to the set of improvisations. This
length bound is given by the numbers m,n ∈ R where m is the minimal
length and n the maximal length of an improvisation. The improvisations
and admissible improvisations are formally defined by Fremont et al. as:

Definition 2. Fix a hard specification H, a soft specification S, and length
bounds m,n ∈ N. An improvisation is any word w ∈ L(H) such that
m ≤ |w| ≤ n, and we write I for the finite set of all improvisations. An
improvisation w ∈ I is admissible if w ∈ L(S), and we write A for the finite
set of all admissible improvisations.

Example 2. We want to create improvisations based on the word abba. As
alphabet we use Σ = {a, b}. As hard specification we pick the DFA H that
accepts words containing exactly two b’s. As our soft specification we pick
the DFA S that accepts words with two consecutive b’s. We pick the length
constraints m = n = 4. Now our set of improvisations are all words w ∈
L(H), with |w| = 4. This gives the set I = {aabb, abab, baab, abba, baba, bbaa}.
Now to find the set of admissible improvisations we take A = I ∩ L(S) =
{aabb, abba, bbaa}.

We now have these sets of improvisations, but not a method for sampling
from these sets. This brings us to the second and third concept. We want at
least 1− ϵ of all samples to come from A, and we want the probabilities of
a sample occurring to be between the bounds λ and ρ. A distribution that
achieves these goals for a CI instance is called an improvising distribution.
The formal definition of this provided by Fremont et al. is:

Definition 3. Given C = (H,S,m, n, ϵ, λ, ρ) with H,S,m and n as in Def-
inition 2, ϵ ∈ [0, 1] ∩Q an error probability, and λ, ρ ∈ [0, 1] ∩Q probability
bounds, a distribution D : Σ∗ → [0, 1] is an improvising distribution if it
satisfies the following requirements:

Hard constraint: Pr [w ∈ I | w ← D] = 1

Soft constraint: Pr [w ∈ A | w ← D] ≥ 1− ϵ

Randomness: ∀w ∈ I, λ ≤ D(w) ≤ ρ
If such an improvising distribution exists, we say C is feasible. An impro-
viser for a feasible C is an expected finite-time probabilistic algorithm whose
output distribution is an improvising distribution.

Example 3. We want to create an improvising distribution for our impro-
visations from Example 2. We pick λ = 1/10, ρ = 1/5 and ϵ = 1/4. We find

6

that when we assign the maximal probability ρ = 0.2 to each word in A we
can still not satisfy the soft constraint because 3 · 1/5 ≱ 1− 1/4. To remedy
this problem, we decide to increase the maximum to ρ = 1/4. We assign
the probability 1/4 to all words in A to satisfy the soft constraint. Now a
distribution that satisfies the randomness constraint cannot exist, because
even when assigning the remaining words in I the minimal probability λ,
the sum of the probabilities is greater than one. We can lower the minimum
λ = 3/40. This allows for a distribution where the words in I \A are assigned
a probability of 1/12.

Now that we have defined what an improviser is we can finally define the
complete problem. We will use the definition provided by Fremont et al.:

Definition 4. Given C = (H,S,m, n, ϵ, λ, ρ), the control improvisation (CI)
problem is to decide whether C is feasible, and if so to generate an improviser
for C. The size |C| of a CI instance is the total size of the bit representation
of its parameters, treating m and n as being represented in unary1 and all
other numerical parameters in binary.

The definition of what a specification can be is quite broad. Solving a
CI instance where the specifications are given as a non deterministic finite
automaton (NFA) or context free grammar (CFG) may be more complex
than one where the specifications are given as a DFA. To make a clear
distinction between instances with different specifications, Fremont et al.
define different classes of CI instances:

Definition 5. If A and B are classes of specifications, CI(A,B) is the class
of CI instances C = (H,S,m, n, ϵ, λ, ρ) where H ∈ A and S ∈ B. When
discussing decision problems, we use the same notation for the feasibility
problem associated with the class (i.e. given C ∈ CI(A,B), decide whether
it is feasible).

In our research we will limit ourselves to CI instances of the class
CI(DFA,DFA). This is the class where both the hard specification H and
the soft specification S are represented as DFA.

2.3 Solving control improvisation

To solve a CI instance we must first check feasibility. If the instance is
feasible, we must construct an improviser. Fremont et al. found that the
feasibility of a CI instance depends entirely on the ratio between the number
of improvisations |I|, admissible improvisations |A|, and λ, ρ and ϵ. They
captured this idea in the following theorem:

1The unary representation of a number is a string of 1’s with length equal to the
number. For example 5 = 11111. By choosing this representation, the size of the input
will grow linearly with an increase of the length bounds.

7

Theorem 1. For any C = (H,S,m, n, ϵ, λ, ρ), the following are equivalent:

1. C is feasible.

2. The following inequalities hold 2:

(a) 1/ρ ≤ |I| ≤ 1/λ

(b) 1−ϵ/ρ ≤ |A|
(c) |I| − |A| ≤ ϵ/λ

The intuition behind each of these inequalities is a follows:

(a) ρ must be greater than 1/|I|, because when ρ is smaller, the sum of
all probabilities can never equal 1. Following the same logic, λ must
never be smaller than 1/|I|, because then the sum of all probabilities
would always exceed 1.

(b) ρ must be greater than 1−ϵ/|A|, because when ρ is smaller, the sum of
the Pr[w] for all w ∈ A could never exceed 1− ϵ and thus the allowed
error rate of the soft constraint would be exceeded.

(c) Using the same logic as in (b), λ should never be greater than ϵ/|I|−|A|,
because even if each word in I \ A would be assigned the minimal
probability, its sum would exceed ϵ and thus exceed the allowed error
rate again.

The proof of this theorem is relevant, because we will apply a similar
strategy in one of our own proofs in the next chapter. Furthermore, the
second part of the proof offers a generic procedure for solving CI. For these
reasons we will show an annotated version of the abridged proof.

Proof.
(1. → 2.) : We show that if C is feasible, the inequalities must hold. If C is
feasible there exists an improvising distribution D for C. Because D is an
improvising distribution, it satisfies the hard constraint which we can write
as:

Pr[w ∈ I|w ← D] =
∑
w∈I

D(w) = 1

Because D satisfies the randomness constraint, we know that:

∀w ∈ I, D(w) ≤ ρ, so: 1 =
∑
w∈I

D(w) ≤
∑
w∈I

ρ

2If λ = 0, we treat division by zero as yielding ∞, so that both the inequalities involving
λ are trivially satisfied. This makes sense, as λ = 0 means there is no lower bound on the
probabilities of improvisations.

8

Further, we have:∑
w∈I

ρ = ρ · |I|

So we can conclude:

1 ≤ ρ · |I| and 1/ρ ≤ |I|

Applying the same strategy for λ:

Pr[w ∈ I|w ← D] =
∑
w∈I

D(w) = 1

∀w ∈ I, D(w) ≥ λ, so: 1 =
∑
w∈I

D(w) ≥
∑
w∈I

λ

∑
w∈I

λ = λ · |I|

1 ≥ λ · |I| and 1/λ ≥ |I|

Because A ⊆ I, the randomness constraint also holds for A. Because of this,
we can apply the same strategy while now using the soft constraint:

Pr[w ∈ A|w ← D] =
∑
w∈A

D(w) ≥ 1− ϵ

∀w ∈ A, D(w) ≤ ρ, so: 1− ϵ ≤
∑
w∈A

D(w) ≤
∑
w∈A

ρ

∑
w∈A

ρ = ρ · |A|

1− ϵ ≤ ρ · |A| and |A| ≥ (1− ϵ)/ρ

For the final inequality we use both the hard constraint and the soft con-
straint:

Pr[w ∈ I|w ← D]−Pr[w ∈ A|w ← D] = Pr[w ∈ I\A|w ← D] ≤ 1−(1−ϵ) = ϵ

Pr[w ∈ I \A|w ← D] =
∑

w∈I\A

D(w)

∀w ∈ I \A, D(w) ≥ λ, so:
∑

w∈I\A

D(w) ≥
∑

w∈I\A

λ

∑
w∈I\A

λ = λ · |I \A|

ϵ ≥ λ · |I \A| and |I| − |A| ≤ ϵ/ρ

9

(2. → 1.): We show that, if the inequalities hold, we can construct an

improviser. First, we find the lowest error margin possible and call this ϵopt:

ϵopt = max(1− ρ|A|, λ|I \A|)

This is either 1− ρ|A|, the probability left after assigning all words in A
the maximum probability, or λ|I \ A|, the probability needed to assign the
minimum probability to all words not in A. Using inequality 2a we know
|I \A| ≤ |I| ≤ 1/λ which means 0 ≤ ϵopt ≤ 1.

We use ϵopt to define the distribution D on I, which picks uniformly from
A with probability 1− ϵopt and otherwise picks uniformly from I \ A. This
distribution is well defined, because if A = ∅ then ϵopt = 1, and if I \A = ∅
then ρ · |A| = ρ · |I| ≥ 1 and λ · |I \ A| = 0 so ϵopt = 0. From the definition
of D it follows that D satisfies the hard constraint.

If ϵopt = 1− ρ · |A| we can rewrite this using inequality 2b:

ϵopt = 1− ρ · |A| ≤ 1− ρ((1− ϵ)/ρ) = ϵ

Otherwise ϵopt = λ|I \A|, in which case we rewrite using inequality 2c:

ϵopt = λ|I \A| ≤ λ(ϵ/λ) = ϵ

In either case ϵopt ≤ ϵ, and from our definition ofD we know Pr [w ∈ A|w ← D]
= 1− ϵopt ≥ 1− ϵ, so D satisfies the soft constraint.
For any word w ∈ A, we can conclude:

D(w) = (1− ϵopt)/|A| ≤ (1− (1− ρ · |A|))/|A| = ρ

If ϵopt = 1− ρ · |A|, then D(w) = ρ ≥ λ;
otherwise ϵopt = λ|I \A|, so:

D(w) = (1−λ·|I \A|)/|A| = (1−λ|I|+λ|A|)/|A| ≥ (1−1+λ·|A|)/|A| = λ

Thus D(w) ≥ λ.
With a similar strategy for any word w ∈ I \A we can conclude:

D(w) = ϵopt/|I \A| ≥ λ · |I \A|/|I \A| = λ

If ϵopt = 1− ρ · |A|, then:

D(w) = (1−ρ·|A|)/|I\A| = (1−ρ·|A|)/(|I|−|A|) ≤ (1−ρ·|A|)/((1/ρ)−|A|) = ρ

otherwise ϵopt = λ · |I \A|, so:

D(w) = (λ · |I \A|)/|I \A| = λ ≤ ρ

10

Therefore, for any w ∈ I we always have λ ≤ D(w) ≤ ρ, thus D satisfies
the randomness requirement.

This shows that D is an improvising distribution. Since it has finite sup-
port and rational probabilities, there is an expected finite-time probabilistic
algorithm sampling from it, and this algorithm is an improviser for C.

The proof of Theorem 1 provides us not only with inequality equations
to check feasibility, it also provides us with a set of steps that we can follow
to create an improviser. These steps can be completed using only the fol-
lowing operations on specifications as defined by Fremont et al.:

Intersection: Given two specifications X and Y, compute a speci-
fication Z such that L(Z) = L(X) ∩ L(Y).

Difference: Given two specifications X and Y, compute a speci-
fication Z such that L(Z) = L(X) \ L(Y).

Length Restriction: Given a specification X and m,n ∈ N in unary, com-
pute a specification Y such that L(Y) = {L(X)|m ≤
|w| ≤ n}.

Counting: Given a specification X and a bound n ∈ N in unary
on the length of strings in L(X) (which is therefore
finite), compute |L(X)|.

Uniform sampling: Given a specification X and a bound n ∈ N in unary
on the length of strings in L(X), sample uniformly
at random from L(X).

How can we measure the quality of this procedure or any other procedure
for solving CI? Fremont et al. identify three key aspects for this measure-
ment:

– correctness, a scheme that solves a CI instance should provide an im-
proviser for that instance if it is feasible, and if it is not feasible it
should not;

– scheme efficiency, the runtime of the scheme itself;

– improviser efficiency, the runtime of the improviser created by the
scheme.

It may be possible to create a scheme with a very low runtime that leaves the
largest part of the work to the improviser. This would result in an improviser
with a very high runtime. Because of this possibility it is important to
consider both the runtime of the scheme and the runtime of the improviser
when talking about the runtime of the scheme. Using these three aspects
Fremont et al. define the term polynomial-time improvisation scheme for a
correct scheme where the runtime of both the scheme and the improviser is
polynomial.

11

Definition 6. A polynomial-time improvisation scheme for a class P of CI
instances is an algorithm S with the following properties:

Correctness: For any C ∈ P, if C is feasible then S(C) is an impro-
viser for C, and otherwise S(C) =⊥.

Scheme efficiency: There is a polynomial p : R→ R such that the runtime
of S on any C ∈ P is at most (p|C|).

Improviser efficiency: There is a polynomial q : R → R such that for ev-
ery C ∈ P, if G = S(C) ̸=⊥ then G has an expected
runtime of at most (q|C|).

The general procedure described above uses only five operations on spec-
ifications. If these five operations can be done in polynomial time, then this
procedure is a polynomial-time improvisation scheme. These operations
when applied to either two DFA’s or a DFA and a context free grammar
can be computed in polynomial time as Fremont et al. [5] have shown. This
means that the procedure is a polynomial-time improvisation scheme for CI
instances of the type CI(DFA,DFA).

12

Chapter 3

Control Improvisation with
Feature Constraints

3.1 Expanding control improvisation

In this section we will expand the control improvisation problem that was
defined in the previous chapter. In the original problem we saw the possi-
bility to use the soft specification to describe “desired” words which should
occur at least some of the time. We could also describe required behaviour
using the hard specification. These two specifications are the only control
offered on the frequency of different words produced by the improviser. To
allow for more control over the features of the generated words we will add
the feature constraint. This constraint limits the probability with which a
specific word occurs based on its features.

For example, imagine a surveillance robot that patrols an area. This
robot can accelerate, brake, and steer left and right. Now imagine using
CI to improvise the behaviour of the robot. While we do want to allow the
robot to brake at any time, we might also want to discourage improvisations
which contain many brakes. Frequent braking and accelerating requires
more energy and would cause the robot to make progress more slowly. In
this case we may want to use a feature constraint that limits the occurrence
of improvisations that contain many brakes.

To apply the feature constraint we need a feature constraint function
that evaluates a word and returns a probability that we can then apply as
an upper bound on the likelihood of that word occurring. We define this
function as follows:

Definition 7. A feature constraint function is a function: fc : Σ∗ → Q ∩
[0, 1]. The function takes a word w ∈ L(H) and produces a probability
fc(w) ∈ [0, 1] ∩Q.

Example 4. The feature constraint function for our robot could look like

13

this: fc(w) = 1/(#b(w)+1). Here w is the word, i.e. the instructions for the
robot and #b(w) is a function that counts how frequently ‘brake’ (abbrevi-
ated to ‘b’) occurs in w. Another possible constraint function could limit
the probability for words with more than five brakes: fc(w) = if (#b(w) >
5) : 0.05, else : 0.1.

We now expand the definition of CI using our feature constraint function.
The expanded version adds a new parameter: fc, the feature constraint
function, and a new constraint: ∀w ∈ I, D(w) ≤ fc(w), the actual feature
constraint that applies fc on a probability distributionD. This results in the
following expanded definition of an improvising distribution, which includes
the feature constraint:

Definition 8. Given C = (H,S,m, n, fc, ϵ, λ, ρ) with H,S,m and n as in
Definition 2, fc as in Definition 7, ϵ ∈ [0, 1] ∩ Q an error probability, and
λ, ρ ∈ [0, 1] ∩ Q probability bounds, a distribution D : Σ∗ → [0, 1] is an
improvising distribution if it satisfies the following requirements:

Hard constraint: Pr [w ∈ I | w ← D] = 1

Soft constraint: Pr [w ∈ A | w ← D] ≥ 1− ϵ

Randomness: ∀w ∈ I, λ ≤ D(w) ≤ ρ

Feature constraint: ∀w ∈ I, D(w) ≤ fc(w)
An improviser for C is a finite-time probabilistic algorithm with an output
distribution that is such an improvising distribution. The control improvi-
sation problem with feature constraints (CI-FC) is to decide whether C is
feasible, and if so to generate an improviser for C.

3.2 Solving control improvisation with a feature
constraint

The method created for the original CI problem cannot solve CI-FC. In
Example 5 we show some of the problems that arise when attempting to
apply this method. In the rest of Sec. 3.2 we will show that we need a
new method to check feasibility and conclude that, if we treat the feature
constraint function as a black box, checking feasibility may take exponential
time.

Example 5. Just like we might not want our robot to brake too many times
we may want to avoid the frequent use of expensive or difficult actions in
other improvisations. Let’s say we create melodies for a jazz trumpeter based
on a reference melody with a particularly high and difficult note. Frequent
usage of this note may make the melodies difficult and tiring to play. We
will use the example of the jazz trumpeter to apply our new expanded CI
definition. As a reference melody we have the melody “a, b, c, a”. A DFA

14

that creates variations on this melody is given in Fig. 3.1.

c

cba

c

aa

b

Figure 3.1: DFA H

We will use the DFA from Fig. 3.1 ‘H’ as our hard specification. If we use
the length bounds: m = n = 4 we get a total of twenty improvisations, such
as: abca, abac, cabc, bcaa. To increase similarity to the reference melody we
will use the DFA S in Fig. 3.2. that accepts all words in L(H) containing
the sequence: “abc”, or “bca”. This results in six admissible improvisations:
abca, babc, cabc, bcaa, bcab, bcac.

cba

b

a

c a

b,c

Figure 3.2: DFA S

For our jazz improvisations we don’t really mind if some variations ap-
pear more frequently and others do not appear at all. We pick our λ = 0
and ρ = 0.15 to reflect this idea. We want at least half of our improvisations
to follow the reference melody closely, so we pick ϵ = 0.5. Lastly we need
to define our feature constraint function: fcc(w) = 1/(2#c(w)+2). This gives
us the problem: CJ = (H,S, 4, 4, fcc, 0.5, 0, 0.15).

To solve CJ we must first check feasibility. We know that three in-
equalities existed for the original problem that when satisfied guaranteed
feasibility. Applying these yields:

1. 1/ρ ≤ |I| ≤ 1/λ⇒ 5 ≤ 20 ≤ ∞

2. (1− ϵ)/ρ ≤ |A| ⇒ 0.5/0.1 ≤ 6

3. |I| − |A| ≤ ϵ/λ⇒ 14 ≤ ∞

15

The fact that these equations are satisfied does however not provide a guar-
antee that the feature constraint can be satisfied at the same time. For
example, when we apply the FC-function to a word w ∈ I we may find that
fc(w) < λ. In which case either the randomness or the feature constraint
cannot be satisfied.

In the example above we see that we need to do more than simply check-
ing the inequalities found by Fremont et al. to check feasibility. One reason
for this is the need to inspect each w ∈ I to guarantee that ∀w ∈ I, fc(w) ≥
λ. This is however not the only limitation. Even for a CI instance with
λ = 0 we must consider the hard constraint Pr [w ∈ I|w ← D] = 1. To
check whether a CI instance can satisfy the hard constraint and the feature
constraint at the same time we must find:

∑
w∈I fc(w). When fc is treated

as a black box we cannot predict the outcome of fc(w). So we must ap-
ply the function to all w ∈ I until

∑
w∈I fc(w) ≥ 1. This leads us to the

following lemma.

Lemma 1. Checking feasibility of a CI-FC instance while treating FC as a
black box requires inspecting all w ∈ I.

The size of I depends on H and the length bounds m,n. While the
length bounds guarantee that |I| is finite, it may still be exponential with
regards to the size of H, m and n. An example of such a case is shown in
Example 6.

Example 6. Consider H, the DFA in Fig. 3.3 which produces all words in
the language (a+ b)∗, and length restrictions m = 0 and n = x. Construct
I by applying the length restrictions to H. Looking at the size of I, we now
see it is exponential: |I| = 2x+1 − 1.

a,b

Figure 3.3: DFA H

Lemma 2. For a CI-FC instance C the count of all improvisations I may
be exponential with regards to the size of C.

From Lemma 1 and Lemma 2 we conclude that:

Lemma 3. In general checking feasibility of a CI-FC instance C requires
exponential time with regards to |C|.

16

If checking feasibility takes exponential time, then finding an improvising
distribution must also take at least exponential time. Assuming a faster
than exponential-time algorithm to find such a distribution exists, we could
apply this algorithm to a CI problem to check its feasibility. If the algorithm
succeeds, we can conclude it is feasible, and if it fails to terminate within the
expected runtime, we can conclude the problem is not feasible. This would
give us a faster than exponential-time algorithm for checking feasibility. As
we have shown, this cannot be the case, so a faster than exponential-time
algorithm for finding an improvising distribution cannot exist.

In conclusion: when we treat the FC-function as a black box we must
inspect each word in I to apply the function. The number of words in I may
be exponential with respect to the size of the CI-FC instance. This means
CI-FC instances exist which require at least exponential time to solve. This
leads us to formulate the following theorem:

Theorem 2. Given a general algorithm for CI-FC, there is an exponential
function e : R → R such that the runtime of this algorithm for any CI-FC
instance C is at least (e|C|).

3.3 Solving general FC-CI instances

While we have proven that a faster than exponential-time scheme does not
exist, a general algorithm with an exponential runtime does exist. The
complexity of this algorithm is linear in the number of words in the language
of the hard constraint |I|. This number can be exponential in the size of
representation of the language which means worst case the general algorithm
is exponential.

Lemma 4. An exponential-time algorithm solving CI-FC exists.

We present two variants of an exponential-time algorithm for FC-CI.
The first algorithm creates an improviser by storing the improvising distri-
bution in a large table from which it can sample efficiently. The second
algorithm stores a compressed version of the improvising distribution from
which sampling requires a long time.

3.3.1 Complete table algorithm

The idea behind this algorithm is: if we need to compute fc(w) for each
word to check feasibility, then we can simply store these values in a large
table to create an improvising distribution. The improviser then uses this
table to generate each word with its assigned probability. This allows the
improviser to quickly generate words, but requires storing a possibly very
large table.

17

The algorithm consists of the following steps. First, complete all of the
steps of the old algorithm needed to check for feasibility. Find |I| and |A|,
check whether the three inequalities hold, if they hold continue, else return
not feasible. To continue, compute ϵmax = 1− (|I| · λ) this is the remaining
probability (rem) if we would assign the λ to all words in the improvising
distribution.

Continue by building a table of size |I|. Generate each word in w ∈ A,
check if fc(w) < λ if so terminate and return not feasible, else assign it a
probability and store the pair w, p in the table. While the rem is not zero
assign p = min(fc(w), ρ, λ + rem) and set rem = rem − p + λ to account
for the extra probability assigned. When rem = 0 always assign p = λ.

If there is a remainder after each word in A has been generated perform
an additional feasibility check. If |A| · λ + (ϵmax − rem) < ϵ the problem
is not feasible. If the problem may still be feasible continue by generating
each word w ∈ (I \A) and applying the same steps to build the table.

If there is a remainder after each word in I has been generated the
problem is not feasible. If the remaining probability is 0 the constructed
table is an improvising distribution. An improviser is any algorithm that
samples randomly from this distribution.

0,1 0,1

0

Figure 3.4: left: H, right: S

Example 7. Take the CI-FS problem C = (H,S, 1, 3, fc#1, 0.55, 1/25, 1/8).
With H and S given in Figure 3.4. L(H) contains all binary strings of all
lengths and L(S) contains all binary strings ending with a 0.
We apply length restriction and counting to find |I| and |A|. Now we check
and see all inequalities hold:

1. 1/ρ ≤ |I| ≤ 1/λ⇒ 10 ≤ 14 ≤ 25

2. (1− ϵ)/ρ ≤ |A| ⇒ 3.6 ≤ 7

3. |I| − |A| ≤ ϵ/λ⇒ 7 ≤ 11.25

We compute ϵmax = 1 − 14 · λ = 11/25. Now we construct the table, first
generating the words in A:
All words in A are assigned the maximal probability without the remainder

18

w ∈ A p remainder

0 1/8 213/600

00 1/8 162/600

10 1/15 146/600

000 1/8 95/600

010 1/15 79/600

100 1/15 63/600

110 1/20 57/600

w ∈ (I \A) p remainder

1 1/15 41/600

01 1/15 25/600

11 1/20 19/600

001 1/15 3/600

011 1/25 + 3/600 0

101 1/25 0

111 1/25 0

Table 3.1: An exponential algorithm exemplified.

dropping to 0. We check for feasibility: 7 · 24/600+(264/600− 57/600) = 5/8 ≮ ϵ
so the problem may still be feasible. We continue building the table by
generating all words in I \A. Note that the word 011 is assigned λ+ 3/600 as
the remainder is too small to assign fc(011) = 1/20. Because the remainder
has reached 0 while creating the table and ∄w ∈ I, fc#1(w) < λ we can
conclude this is an improvising distribution for C.

3.3.2 Compressed table algorithm

This algorithm is similar to the algorithm in Sect. 3.3.1. It runs through the
same procedure, but does not build the complete table. Instead, it creates a
compressed version of the table. This is possible because the table created
by the first algorithm always follow the following structure: a set of words
assigned the maximal probability min(fc(w), ρ,), followed by one word that
is assigned the probability λ+ rem, the remaining words which are assigned
the probability λ.

By storing the input of the problem and the (word, probability) pair that
is assigned λ+rem we can find the probability of all words in the compressed
table by simply generating all words up to that point and seeing whether
the word comes before or after the word that is assigned λ+ rem.

Sampling from this compressed improvising distribution can simply be
done by generating a random number in [0, 1], generating all words in
the original order, summing their probabilities until the random number
is reached or exceeded, the last word generated at that point is the sample.

This method for sampling is very inefficient and may take exponential
time. It is likely sampling can be done more efficiently by storing more
information such as the number of words assigned λ. However, no matter
how efficiently the sampling is done or how little information is stored the
algorithm will always require exponential time to check for all w ∈ I that
fc(w) ≥ λ.

19

Example 8. If we look back at Table 3.1 in Example 7. We can see the
words 0 up to 001 are all assigned min(fc(w), ρ,), then 001 is assigned
λ + rem and finally 101 and 111 are both assigned λ. So the compressed
table could look like:

w ∈ (I \A) p

0, . . . min(fc(w), ρ,)

011 λ+ 1/200

101, . . . λ

3.4 Solving CI-FC in polynomial time

In Sec. 3.2 we have shown that a general algorithm for CI-FC has an expo-
nential runtime. If we no longer treat the FC-function as a black box we may
find groups of functions for which we can solve CI-FC in polynomial time.
We will look at a few examples where a solution can be found in polynomial
time. We will then go over the properties needed for a polynomial-time so-
lution to exist and describe a polynomial-time improvisation scheme for CI
instances that adhere to these properties.

3.4.1 Constant FC-functions

The first group of functions we will discuss is the constant FC-functions.
These are functions that only have two constant values as results. For ex-
ample, if the word contains at least five a’s it returns 0.1, otherwise it returns
ρ.

We will begin by showing an example solution for a CI-FC instance with
a constant FC-function and then discuss the implications of the applied
solution.

Example 9. Consider a simplified model of our surveillance robot that
should not brake too many times. As alphabet we use Σ = {a, b}. As hard
specification we pick a DFA H such that L(H) = Σ∗ and as soft specification
we pick the DFA S such that L(S) = {a+ ba}∗. Using n = m = 3, λ = 0.1,
ρ = 0.2, ϵ = 0.5 and fc(w) = [#b(w) ≥ 2]0.1, [#b(w) < 2]1.

We construct FC a DFA that describes the ‘if-condition’ in our FC-
function by accepting all words containing two or more b’s.

Then we create the specification of all improvisations by applying length
restriction to H which gives us I.

By computing I ∩ FC = I0.1 we find the specification of all words in I
that are restricted by the feature constraint.
I \ FC = Iρ gives us all words in I that are not limited by the feature

constraint.

20

q0 q1
b b

a, b

q2

a a

Figure 3.5: FC

s0 s1
a, b

s2
a, b a, b

s3

Figure 3.6: I

s2 q2

a

b

s3 q2s0 q0

s1 q1

b

s2 q1
b

s1 q0a

b
a,b

Figure 3.7: I0.1

s2 q1

b

a,b

s3 q0,1s0 q0

s1 q1

b

s2 q0
a

s1 q0a

a
a

Figure 3.8: Iρ

Now we can construct the following specifications: I0.1 ∩ S = A0.1,
Iρ ∩ S = Aρ, I0.1 \ S = (I \ A)0.1, Iρ \ S = (I \ A)ρ.

To each of these specifications we can apply counting to check feasibil-
ity. If the problem is feasible we can apply uniform sampling to create an
improvising distribution. Applying counting gives: |Aρ| = 3, |A0.1| = 0,
|(I \ A)ρ| = 1 and |(I \ A)0.1| = 4.

Because |(I \ A)0.1| is not zero we must first check λ ≤ 0.1 to see if
the upper limit imposed by the feature constraint is not smaller than the
minimum probability. To check the soft constraint we can compute ϵ ≤
|Aρ| · ρ + |A0.1| · 0.1 = 0.6 and |I| − (|Aρ| + |A0.1|) ≤ ϵ/λ, 8 − 3 ≤ 0.5/0.1.

21

Note that for the second function we use the original inequality as it only
depends on the lower bound. To check the hard constraint we can still
use this part of the inequality |I| ≤ 1/λ which holds: 8 ≤ 1/0.1 = 10.
The other part involves ρ so we must include the feature constraint: 1 ≤
|I0.1| · 0.1 + |Iρ| · ρ = 4 · 0.1 + 4 · 0.2 = 1.2. This means we can conclude the
problem is feasible.

Because the problem is feasible we can create an improvising distribu-
tion. We do this by rolling a weighted four sided die that chooses from the
specifications and applying uniform sampling on the chosen specification. In
this case the die chooses (I \ A)ρ with a probability of λ · 1 = 0.1, I \ A)0.1
with p = λ · 4 = 0.4, A0.1 with p = 0 and Aρ with p = ϵ = 0.5. This
distribution is a solution for this CI problem.

In Example 9 we can see that we do not need to apply the feature con-
straint function to individual words. The steps taken in this solution actually
closely resemble the polynomial-time improvisation scheme by Fremont et
al. The major difference is the addition of three new specifications and the
adaptation of the feasibility functions to accommodate for the extra spec-
ifications. The operations used in this example still only take polynomial
time on DFA’s. Because of this, the solution itself also only uses polynomial
time.

3.4.2 Piecewise constant FC-functions

There is a second group of functions that is similar to the constant FC-
functions. These are the functions with multiple constant outputs, but where
the number of different outputs is still limited. For example, functions that
can be written as algebraic expressions over one or more letter counting
function such as: fc(w) = 1/#a(w) or fc(w) = 1/1+#a(w)·1/1+#b(w). This type
of function allows for a larger number of possible outcomes. In Example 10
we will show what happens to the number of specifications needed when we
increase the number of possible outcomes of our feature constraint function.

Example 10. Recall the jazz trumpeter problem from Sec. 3.2: CJ =
(H,S, 4, 4, fcc, 0.5, 0, 0.15) with fcc(w) = 1/(2#c(w)+2). We will solve it
using the same strategy as in Example 9. We construct a series of DFA’s:
FC0, FC1, FC2, FC3 and FC4, where each DFA accepts all words in Σ∗

with exactly 0, 1, 2, 3, 4 c’s. We apply length restriction to H which gives us
I and use I to compute A = I ∩ S. We create the set SI containing five
specifications: I0, I1, I2, I3, I4, where each specification Ii = I ∩ FCi.
We use these specifications to create the set SA = {A0, A1, A2, A3, A4},
whereAi = Ii∩A, and the set SIA = {(I \ A)0, (I \ A)1, (I \ A)2, (I \ A)3,
(I \ A)4}, where (I \ A)i = Ii \ A.
To check feasibility we must check if the following things are true:

22

1. For all Ii ∈ SI if 1/(2i+2) < λ, then L(I⟩) = ∅. Because λ = 0 we
know this holds.

2. |I| ≤ 1/λ and
∑

Ii∈SI |Ii| · min(ρ, 1/(2i+2)) ≥ 1. Which both hold:
20 ≤ ∞ and 4 · ρ+ 11 · 1/8 + 5 · 1/16 + 0 + 0 = 223/80 ≥ 1.

3.
∑

Ai∈SA |Ai|·min(ρ, 1/(2i+2)) ≥ 1−ϵ which is satisfied: 4·1/8+2·1/16 =
5/8 ≥ 1− 0.5.

4. |I| − |A| ≤ ϵ/λ which is also satisfied: 20− 6 = 14 ≤ ∞.

This means an improvising distribution exists. To define an improvising
distribution for CJ we attach a probability to each specification. Because
we know that λ = 0, we can simply assign the maximal probability to
each specification in SA: p[Ai] = min(ρ, 1/(2i+2)) · |Ai|. Then we com-
pute 1 −

∑
Ai∈SA p[Ai] = 3/8 To satisfy the hard constraint we must dis-

tribute this ‘remaining’ probability over the specifications in SIA. We assign
p[(I \ A)2] = 3 · 1/16, p[(I \ A)1] = 3 · 1/16 and all other specification in SIA
a probability of 0. We then pick one of these specifications at random using
these probabilities and apply random sampling to the chosen specification.
This is an improviser for CJ .

In this example we we needed to create a total of fifteen extra spec-
ifications, three for each output of the FC-function. This is in line with
Example 9, where we had a FC-function with two outputs and needed to
create six additional specifications. We formalize this observation in the
following lemma:

Lemma 5. Given a CI-FC instance C with a FC-function fc, we can solve
C by constructing 3 · |fc| additional specifications, where |fc| is the num-
ber of elements in the codomain of fc. As this allows the construction of
specifications intersecting with I, A and I \ A for each output of fc.

3.4.3 General polynomial-time solution for (piecewise) con-
stant FC-functions

In our previous two examples we have observed that solutions for a CI-
FC instance can be found in polynomial time in some instances. In this
section we formalize the conditions under which we know a polynomial-time
solution can be found and provide a polynomial-time improvisation scheme
for CI-FC instances that meet these conditions. From our examples we can
identify three key elements:

1. The number of possible solutions of the FC-function |fc|. We know
that the number of extra specification created is equal to twice the
number of outputs of the FC-function. If we imagine a CI-FC instance

23

C with an injective FC-function we know that we must construct more
specification than words in I. As we know that |I| may be exponential
with regards to |C| we must conclude that this solution strategy may
exponential time for C. This problem may persist for any fc where
|fc| is linear with regard to I.

When |fc| is bound by a constant a polynomial-time solution exists.
An example of this is the set of (piecewise) constant FC-functions as
they have a limited number of outputs. As we saw in Example 9 where
|fc| was limited to a constant and Example 10 where |fc| was limited
by the length bound which is constant.

2. A polynomial-time method for finding the specifications that group
words with the same fc value. In our examples it was easy to find
DFA’s that allowed us to create specifications where each word in the
specification would have an identical output from fc. It is important
that this can be done in polynomial time. An injective fc might again
require exponential time to find the specifications.

3. The size of the specifications that group words with the same fc value
must not be to large. This condition is important because operations
such as the union between two specifications and sampling from the
final specifications are dependent on the size of the specifications. To
guarantee a polynomial-time solution for a CI-FC instance C the size
of the created specifications must be polynomial with regards to |C|.

Theorem 3. Given a CI-FC instance C with a FC-function fc. If there
exist a set SFC of DFA’s with |SFC| = |fc| that satisfies the properties
(1)-(4), then a polynomial-time improvisation scheme for C exists.

1. For each DFA FC ∈ SFC, ∀v, w ∈ L(FC), fc(v) = fc(w).

2. There is a polynomial p : R→ R such that |SFC| ≤ p(|C|).

3. Given C, each FC ∈ SFC can be constructed in polynomial time with
regard to |C|.

4. For each FC ∈ SFC, there is a polynomial q : R → R such that
|FC| ≤ q(|C|).

Before we prove this theorem we will first construct the following lemma’s
to support our final proof.

Lemma 6. Given a CI-FC instance C that satisfies the conditions in The-
orem 3, if C is feasible then the following functions, with w an arbitrary
element from Ii, are satisfied:

1. ∀Ii ∈ SI, fc(w) < λ→ L(I⟩) = ∅.

24

2. |I| ≤ 1/λ and
∑

Ii∈SI |Ii| ·min(ρ, fc(w)) ≥ 1.

3.
∑

Ai∈SA |Ai| ·min(ρ, fc(w)) ≥ 1− ϵ.

4. |I| − |A| ≤ ϵ/λ.

Proof. Given a CI-FC instance C = (H,S,m, n, fc, ϵ, λ, ρ), with the set SFC
as defined in Theorem 3. We begin by constructing some specifications that
we will use in this proof:
Apply length restriction toH which gives I and use it to compute A = I∩S.
Create the set SI = {Ii ← I ∩ FC,FC ∈ SFC, i ∈ N},
the set SA = {Ai ← Ii ∩ A, Ii ∈ SI}
and the set SIA = {(I \ A)i ← Ii \ A, Ii ∈ SI}

1. If C is feasible then the feature constraint holds: ∀w ∈ I,D(w) ≤
fc(w). We know that ∀Ii ∈ SI, Ii ⊂ I. So ∀Ii ∈ SI, fc(w) < λ →
L(I⟩) = ∅.

2. If C is feasible there exists an improvising distribution D for C.

Pr[w ∈ L(I)|w ← D] =
∑

w∈L(I)

D(w) = 1

∀w ∈ L(I), D(w) ≤ fc(w) ∧ ∀w ∈ L(I), D(w) ≤ λ↔

∀w ∈ L(I), D(w) ≤ min(fc(w), λ)∑
w∈L(I)

min(fc(w), λ) ≥
∑

w∈L(I)

D(w) = 1

∑
w∈L(I)

min(fc(w), λ) =
∑
Ii∈SI

∑
w∈L(I)i

min(fc(w), λ)

∑
Ii∈SI

∑
w∈L(I)i

min(fc(w), λ) =
∑
Ii∈SI

|Ii| ·min(ρ, fc(w))

This shows the first half of the equation:∑
Ii∈SI

|Ii| ·min(ρ, fc(w)) ≥ 1

Pr[w ∈ L(I)|w ← D] =
∑

w∈L(I)

D(w) = 1

∀w ∈ L(I), D(w) ≥ λ, so: 1 =
∑

w∈L(I)

D(w) ≥
∑

w∈L(I)

λ

25

∑
w∈L(I)

λ = λ · |I|

This shows the second half of the equation.

1 ≥ λ · |I| and 1/λ ≥ |I|

3. We know the soft constraint is satisfied:

Pr[w ∈ A|w ← D] =
∑

w∈L(A)

D(w) ≥ 1− ϵ

L(A) ⊂ L(I) from this we know the following as we have shown it for
w ∈ L(I):∑

w∈L(I)

min(fc(w), λ) ≥
∑

w∈L(A)

D(w)

So we can conclude:
∑

Ai∈SA |Ai| ·min(ρ, fc(w)) ≥ 1− ϵ

4. For this inequality we use both the hard and soft constraint:

Pr[w ∈ L(I)|w ← D]− Pr[w ∈ L(A)|w ← D] =

Pr[w ∈ L(I \ A)|w ← D] ≤ 1− (1− ϵ) = ϵ

Pr[w ∈ L(I \ A)|w ← D] =
∑

w∈L(I\A)

D(w)

∀w ∈ L(I \ A), D(w) ≥ λ, so:
∑

w∈L(I\A)

D(w) ≥
∑

w∈L(I\A)

λ

∑
w∈L(I\A)

λ = λ · |I \ A|

ϵ ≥ λ · |I \ A| and |I| − |A| ≤ ϵ/ρ

Lemma 7. Given a CI-FC instance C if the following inequalities, with w
an arbitrary element from Ii, are satisfied we can construct an improviser
for C:

1. ∀Ii ∈ SI, fc(w) < λ→ L(Ii) = ∅.

2. |I| ≤ 1/λ and
∑

Ii∈SI |Ii| ·min(ρ, fc(w)) ≥ 1.

3.
∑

Ai∈SA |Ai| ·min(ρ, fc(w)) ≥ 1− ϵ.

26

4. |I| − |A| ≤ ϵ/λ.

Proof. Given a CI-FC instance C = (H,S,m, n, fc, ϵ, λ, ρ). Find the series
of DFA’s SFC. Apply length restriction to H which gives I and use it to
compute A = I ∩S. Create the set SI = {Ii ← I ∩FC,FC ∈ SFC, i ∈ N},
the set SA = {Ai ← Ii ∩ A, Ii ∈ SI}
and the set SIA = {(I \ A)i ← Ii \ A, Ii ∈ SI}
Find ϵopt = max(λ · (|I| − |A|), 1 −

∑
Ai∈SA |Ai| ·min(ρ, fc(w)) where w is

an arbitrary element in Ai.
If ϵopt = 1 −

∑
Ai∈SA |Ai| · min(ρ, fc(w), then assign ∀Ai ∈ SA,Pr[Ai] =

|Ai| ·min(ρ, fc(w).
Let rem = ϵopt − λ · (|I| − |A|).
Now iterate over all (I \ A)i ∈ SAI and set Pr[(I \ A)i] = min(|I \ Ai| ·λ+
rem, |I \ Ai| · fc(w)), where w is an arbitrary element in (I \ A)i, and let
rem = rem− (Pr[(I \ A)i]− |I \ Ai| · λ).
If ϵopt = λ·(|I|−|A|), then assign ∀(I \ A)i ∈ SAI, p[(I \ A)i] = λ·|(I \ A)i|.
Let rem = ϵopt − λ · |A|.
Now iterate over allAi ∈ SA and set Pr[Ai] = min(|Ai|·λ+rem, |Ai|·fc(w)),
where w is an arbitrary element in (A)i, and let rem = rem − (Pr[Ai] −
|Ai| · λ).
Note that in either case if rem = 0 then Pr[X] = |X | · λ as we know that
either |X | = 0, or fc(w) ≥ λ for any w ∈ L(X).
Now use the assigned probabilities to create a weighted die that randomly
selects one of the specifications from SA ∪ SIA. Rolling this die and then
applying random sampling to the selected specification is an improviser for
C.

By combining the feasibility check in Lemma 6 and the construction
of the improviser in Lemma 7 we get a complete improvisation scheme for
CI-FC. A version of this improvisation scheme is described in Algorithm 1
which is used to proof Theorem 3.

Algorithm 1. Given a CI-FC instance C = (H,S,m, n, fc, ϵ, λ, ρ).
Find the series of DFA’s SFC. Apply length restriction to H which gives I
and use it to compute A = I ∩ S.
Create the set SI = {Ii ← I ∩ FC,FC ∈ SFC, i ∈ N},
the set SA = {Ai ← Ii ∩ A, Ii ∈ SI}
and the set SIA = {(I \ A)i ← Ii \ A, Ii ∈ SI}
Check whether all conditions are satisfied:

1. ∀Ii ∈ SI, fc(w) < λ→ L(I⟩) = ∅. With w a random sample from Ii.

2. |I| ≤ 1/λ and
∑

Ii∈SI |Ii| · min(ρ, fc(w)) ≥ 1. With w a random
sample from Ii.

3.
∑

Ai∈SA |Ai| · min(ρ, fc(w)) ≥ 1 − ϵ. With w a random sample from
Ii.

27

4. |I| − |A| ≤ ϵ/λ.

If any function is not satisfied the problem is not feasible, otherwise continue.
Find ϵopt = max(λ · (|I| − |A|), 1 −

∑
Ai∈SA |Ai| ·min(ρ, fc(w)) where w is

a random sample from Ai.
If ϵopt = 1 −

∑
Ai∈SA |Ai| · min(ρ, fc(w), then assign ∀Ai ∈ SA,Pr[Ai] =

|Ai| ·min(ρ, fc(w).
Let rem = ϵopt − λ · (|I| − |A|).
Now iterate over all (I \ A)i ∈ SAI and set Pr[(I \ A)i] = min(|I \ Ai| ·λ+
rem, |I \ Ai| · fc(w)), where w is a random sample from (I \ A)i, and let
rem = rem− (Pr[(I \ A)i]− |I \ Ai| · λ).
If ϵopt = λ·(|I|−|A|), then assign ∀(I \ A)i ∈ SAI, p[(I \ A)i] = λ·|(I \ A)i|.
Let rem = ϵopt − λ · |A|.
Now iterate over allAi ∈ SA and set Pr[Ai] = min(|Ai|·λ+rem, |Ai|·fc(w)),
where w is a random sample from (A)i, and let rem = rem−(Pr[Ai]−|Ai|·λ).
Use the assigned probabilities to create a weighted die that randomly selects
one of the specifications from SA∪SIA. Rolling this die and then applying
random sampling to the selected specification is an improviser for C.

While Algorithm 1 is intended for cases where the size of SFC is small,
this scheme can be applied regardless of the size of SFC. In this case
the performance of this scheme may be worse than that of the exponential
schemes mentioned in Sec 3.3.

To prove our claim in Theorem 3 we will show that Algorithm 1 is
a polynomial-time improvisation scheme. Recall Definition 6, we need to
guarantee correctness, scheme efficiency and improviser efficiency. Further
it is important to recall the operations introduced in Chapter 2: intersec-
tion, difference, length restriction, counting and uniform sampling. These
operations when applied to DFA’s can be done in polynomial time [5].

Proof. (Theorem 3) We break the proof into the following three parts:

– Correctness, Lemma 6 shows that if the problem is feasible, the func-
tions are satisfied and Lemma 7 shows that when the functions are
satisfied an improviser exists.

– Scheme efficiency, we can break down the improvisation scheme into
multiple parts to analyse it’s efficiency:

1. The construction of SFC: From the assumptions in Theorem 3
we know that given C, SFC can be found in polynomial time.

2. Finding SI, SA, SAI: From the assumptions in Theorem 3 we
know there is a polynomial p : R → R such that |SFC| ≤ p(|C|)
and ∀FC ∈ SFC, there is a polynomial p : R → R such that
FC ≤ p(|C|).

28

We apply length restriction to H to construct I and construct
A = S ∩ I.
We create SI where |SI| = |SFC| because of its definition. For
the creation of this set we must compute the intersection of I
and all FC ∈ SFC. This is a total of |SFC| intersections.
We create SA where |SA| = |SI| because of its definition. For
the creation of this set we must compute the intersection of A
and all Ii ∈ SI. This is a total of |SI| = |SFC| intersections.
We create SIA where |SIA| = |SI| because of its definition. For
the creation of this set we must compute the intersection of A
and all Ii ∈ SI. This is a total of |SI| = |SFC| intersections.
We know the intersection operation and length restriction oper-
ation can both be done in polynomial time. We know that the
number of operations in each instance is polynomial with regards
to C. We know that the FC ∈ SFC are not exponentially larger
than |C|. So this step can be completed in polynomial time.

3. Checking feasibility: the functions for checking feasibility apply
counting on all specifications in SI and SA. From the previous
step we know that |SI| and |SA| are both at most polynomial in
size with regards to C, and we know that counting can be done
in polynomial time. Lastly the functions use uniform sampling
which can also be done in polynomial time.

4. Finding ϵopt: again we apply counting and uniform sampling to
all specifications in SA, as wel as counting on I and A.

5. Assigning probabilities: we to assign probabilities we iterate over
both the specifications in SA and SAI, applying counting and
uniform sampling to each specification in SA and SAI.

We can see that each part can be completed in polynomial time, as
there is a fixed number of parts the complete scheme can also be
completed in polynomial time.

– Improviser efficiency, the improviser has two components, making a
weighted random choice between the specifications in SA ∪ SIA and
sampling from the chosen specification. We know that |SA ∪ SIA| ≤
2 · |SFC| and that |SFC| is polynomial with respect to C. We also
know that applying uniform sampling to an element of SA∪ SIA can
be done in polynomial time. So we can conclude the improviser can
sample in polynomial time.

The key takeaway from this proof is that the number of additional spec-
ifications is completely dependent on the size of |SFC|. This observation is

29

in line with Lemma 5. This means that the performance of the improvisation
scheme we introduce in Sec. 3.4.3 is also dependent on |SFC|.

3.5 Between the polynomial and the exponential
cases

In Sec. 3.3 we have shown that the general CI-FC problem can only be
solved in exponential time, we discussed cases in which we can guarantee a
polynomial-time solution in Sec. 3.4. This does however leave the question
whether there are more instances for which a faster then exponential-time
solution exists. This may be the case and in Sec 3.5 we will go over a possible
approach for solving some of these instances.

The assumption under which we were able to find polynomial solutions in
Sec. 3.4 was that the FC-function was a piecewise constant function. Using
this assumption we were able to group different words with an identical
output of the FC-function in specifications. If the FC-function is no longer
(piecewise) constant grouping words with identical output may result in an
exponential number of groups. In some cases it may be possible to group
words with a similar rather than identical output by turning the continuos
function into a piecewise constant function.

Example 11. Imagine a FC-function fc over the alphabet Σ = {a, b, c}
which for some ordering of the words in (a+b+c)∗ along the x-axis produces
the linear graph in Fig. 3.9. We can approximate fc with a function that
maps the first half of the words to their shared minimum 0, and the second
half of the words to their shared minimum 0.5. We can then check whether
the problem with the simplified function is feasible, if so then the problem
with the original fc is feasible, if not then we can continue refining using
the same method.

Splitting the FC-function may find that a problem is feasible in poly-
nomial time. To show that the problem is not feasible may require the
simplified function to be refined to the point that it is the original function
again. There are two ways the refinement scheme can terminate early with
an accurate not feasible result. For this it is important to remember the
highest value of each function section that was made constant.

1. The first is by tracking the possible ‘gain’ from refining a section of
the function. After we check feasibility for a simplified function we
know how many words each ‘section’ of the function has. We can use
this to compute how much more probability we could possibly assign
after refining the function.
For example we may notice that ten words are in the [0, 0.5] section
and another 2 words in the [0.5, 1] section. By refining the [0, 0.5]

30

1

0.8

0.6

0.4

0.2

0

fc
(w

)

w

1

0.8

0.6

0.4

0.2

0

fc
(w

)

w

1

0.8

0.6

0.4

0.2

0

fc
(w

)

w

1

0.8

0.6

0.4

0.2

0

fc
(w

)

w

Figure 3.9: approximating a linear FC-function

section we can ‘gain’ at most a 10 · 0.5 = 5 increase to the sum of
our maximum allowed probability as we currently assume that all ten
words may only be assigned a probability of zero.
When the current maximal probability plus the maximal gain is not
enough to satisfy the hard or soft constraint we can say the problem
is not feasible.

2. The second is by finding a section of the function [x, y] where y < λ. If
after checking feasibility we find that this section contains a word we
know the problem is not feasible, because the maximum probability a
word in this section could ever be assigned is y.
For example we have a CI-FC instance with λ = 0.2, after approximat-
ing the function we find the section [0.1, 0.15] which contains a word
that is also in H. No matter how much more we refine our approx-
imate function this word can never be assigned a probability greater
than 0.15 because of the feature constraint, thus not satisfying the
randomness constraint.

This notion of possible ‘gain’ from a section may also be used to optimise the
refinement strategy. By first refining sections with the most gain a solution
may be found more quickly.

This method of solving CI-FC by approximating the FC-function is only
one possible approach to solving the group of CI-FC instances for which we
have not given a polynomial-time solution. This group of CI-FC instances
may be an interesting direction for future research.

31

Chapter 4

Related Work

The concept of control improvisation was first introduced in Control Im-
provisation with Application to Music [3] by Donze et al. in 2013. In 2017
Fremont et al. provided a more generalised version of control improvisa-
tion in Control Improvisation [5], of which an earlier version was released in
2014 [4].

Donze et al. (and later Fremont et al.) drew their inspiration for a general
control improvisation problem from earlier works such as: Machine Musi-
cianship [8] which discusses the algorithmic generation of music, black-box
fuzz testing [9] and randomised variants of the supervisory control prob-
lem [2].

Based on the 2014 version of Control Improvisation, Valle et al. looked
at a practical application of CI in Specification Mining for Machine impro-
visation [10]. In this paper, Valle et al. combine the concept of CI with
specification mining to apply it to the improvisation of blues songs. At the
same time Akkaya et al. considered the possible practical implementation of
CI for the purpose of mimicking the use of lighting appliances in a residen-
tial unit in Control Improvisation with Probabilistic Temporal Specifications
[1]. This paper also introduces multi-constraint control improvisation (MCI)
where multiple soft constraints are allowed. An exponential-time improvisa-
tion scheme for MCI was created by Fremont et al. [5] as well as proof that
checking feasibility with multiple soft constraints is #P-hard.

It may seem that a feature-based randomness constraint is similar to
adding another soft constraint. While CI-FC may be used for some ap-
plications where MCI could also be used, MCI focusses on adding more
constraints to the entire distribution, while CI-FC focusses on the features
of individual elements in the distribution. This means that, while an MCI
instance with many soft constraints may result in the same distribution as
a CI-FC instance with a feature constraint, it may be necessary to have one
soft constraint per improvisation as MCI can only provide guarantees on
groups of words, not individual words. MCI can however also be applied in

32

cases where CI-FC is not powerful enough, for example Fremont et al. have
shown that MCI can handle slightly more complex soft constraints than CI,
and by extension CI-FC, allows [5].

After the 2017 Control Improvisation paper an extended version of CI
was created in Reactive Control Improvisation [6]. In this paper Fremont
and Seshia created a version of CI named Reactive Control Improvisation
(RCI) that can function in an uncertain environment. Instead of an impro-
viser that creates whole words, the improviser in RCI will create a word
by picking symbols alternating with an adversarial environment. In 2021
an alternative to RCI was offered by Vazquez-Chanlatte et al. in Entropy
Guided Control Improvisation[11], namely Entropic Reactive Control Im-
provisation (ERCI). Instead of an adversarial environment, ERCI admits an
arbitrary combination of nondeterministic and probabilistic uncertainty in
the environment. These less strict assumptions about the environment allow
a broader application of reactive control improvisation using ERCI.

33

Chapter 5

Conclusions

After an introduction to the topic of CI, we have expanded the definition of
CI to include a feature constraint. The newly defined CI-FC can be used to
assign different maximal likelihoods to individual improvisations based on
their features.

After analysing CI-FC we found that in general a polynomial-time im-
provisation scheme for CI-FC cannot exist. When the feature constraint
function is treated as black box it is necessary to inspect all possible impro-
visations. As the number of possible improvisations may be exponential, this
can require exponential time. We present two versions of an exponential-
time improvisation scheme. The first version provides a very large but fast
improviser which stores the entire improvising distribution as a table. The
second version gives an improviser that stores minimal information, but re-
quires exponential time to find improvisations. It may be the case that a
more efficient method for (partial) compression of the table exists, but that
is left open for future research.

Furthermore, we identify two groups of FC-functions for which polynomial-
time solutions can be found. After identifying the conditions that allow a
faster solution we formalize them and formulate a polynomial-time impro-
visation scheme for CI-FC instances that satisfy these conditions. The key
factor in deciding the tractability of a CI-FC instance appears to be the
number of possible outputs of the FC-function. We propose an optimization
strategy that may be applied to find solutions in cases where the FC-function
has a large number of possible outputs.

A direction for future work that may be interesting is the expansion to
multiple feature constraints, or a feature constraint limiting the minimal
probability of a word occurring. Another possible direction is to look at
different classes of specifications for CI-FC, or considering the possibility of
FC-functions that can be described by a group of context free grammars.
Finally, it may be interesting to implement the feature constraint in both
reactive control improvisation and entropy guided control improvisation.

34

Bibliography

[1] Ilge Akkaya, Daniel J Fremont, Rafael Valle, Alexandre Donzé, Ed-
ward A Lee, and Sanjit A Seshia. Control improvisation with probabilis-
tic temporal specifications. In 2016 IEEE First International Confer-
ence on Internet-of-Things Design and Implementation (IoTDI), pages
187–198. IEEE, 2016.

[2] Christos G Cassandras and Stéphane Lafortune. Introduction to dis-
crete event systems. Springer, 2008.

[3] Alexandre Donzé, Sophie Libkind, Sanjit A Seshia, and David Wes-
sel. Control improvisation with application to music. Technical report,
CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGI-
NEERING AND COMPUTER SCIENCES, 2013.

[4] Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wes-
sel. Control improvisation. ArXiv e-prints, November 2014.

[5] Daniel J. Fremont, Alexandre Donzé, and Sanjit A. Seshia. Control
improvisation, 2017.

[6] Daniel J Fremont and Sanjit A Seshia. Reactive control improvisation.
In International conference on computer aided verification, pages 307–
326. Springer, 2018.

[7] Kenneth H Rosen and Kamala Krithivasan. Discrete mathematics and
its applications: with combinatorics and graph theory. Tata McGraw-
Hill Education, 2012.

[8] Robert Rowe. Machine musicianship. MIT press, 2004.

[9] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute
force vulnerability discovery. Pearson Education, 2007.

[10] Rafael Valle, Alexandre Donzé, Daniel J Fremont, Ilge Akkaya, San-
jit A Seshia, Adrian Freed, and David Wessel. Specification mining
for machine improvisation with formal specifications. Computers in
Entertainment (CIE), 14(3):1–20, 2016.

35

[11] Marcell Vazquez-Chanlatte, Sebastian Junges, Daniel J Fremont, and
Sanjit Seshia. Entropy-guided control improvisation. arXiv preprint
arXiv:2103.05672, 2021.

36

