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Abstract

Interpreting spoken audio to create captions is a time-consuming process.
Yet 1.5 million deaf and hard hearing in the Netherlands are in need of it
every day. Innovations in automatic speech recognition give rise to new re-
search opportunities related to generating captions automatically. In this
research, we aim to find out whether we can use caption data written by
NPO caption interpreters to train Wav2vec2 to automate the process of
writing captions. In addition, we will explore the capabilities of Wav2Vec2
when learning properties of captions.

In our experiments, we find that Wav2vec2 can capture caption proper-
ties such as interpunction and summarization quite well. We explored the
impact of using different Wav2vec2 model variants and how it influences
the performance. In addition, we found that the application of certain pre-
processing techniques can influence the quality of learning significantly.

The scripts we wrote and the experiment results can be found on our Github
repository: https://github.com/Thomaskolb/fine-tuning-w2v2
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Chapter 1

Introduction

There are different ways to transcribe spoken language to text. We can
choose to be very literal and interpret every word that is said directly to
text, i.e., verbatim transcription. If the goal is to understand what somebody
is trying to convey then transcribing this literally might not be the best
approach. We are not used to reading verbatim transcriptions and people
are limited by their ability to speak a language correctly, their grammatical
knowledge and vocabulary. Such limits can mislead the person who is trying
to understand something. This problem is especially apparent when the
person watching is deaf or hearing impaired and does not have the auditory
support to puzzle together the idea that is being displayed. When creating
closed captions for television the human transcriber tries to avoid this.

The human transcribers’ task is to try and understand what is being said
and transcribe it in such a way that it is easier to understand for the people
watching and reading the captions. This could mean summarizing, fixing
grammatical errors, adding interpunction or capitalization for readability.
It also happens that important information is lost when speech is translated
into text. For example question marks suggest that the sentence is a ques-
tion, this information is usually lost when speech is transcribed to verbatim
text. Below we display an example of the discrepancy of closed captions
(also meaning-for-meaning) and verbatim text, as demonstrated in an arti-
cle about speech to text services by the National Deaf Center [10]:

Verbatim:

-Darcy you deal in stocks, don’t you.

-Yes, I do.

-1 just want to give you this little thing I heard
recently, you know, that if you have stock in Continental
Bank, you know, get it out really quick because they are
about to go bankrupt. Okay. Got that. Good. Good.



Meaning-for-meaning:

-Professor: Darcy, you deal in stocks, don’t you?

-Darcy: Yes, I do.

-Professor: I wanted to give you a tip I heard recently. If
you have stock in Continental Bank, get out now. They are
about to go bankrupt. Got that?

Clearly closed captions can hold a lot of information that is usually lost when
transcribing speech, as well as removing redundant text that holds no addi-
tional meaning and would only serve to distract readers. Creating captions
is a very time-consuming process, it makes sense to consider automatizing
this process.

In this research, we will train the end to end model Wav2vec2 [6] using au-
dio .WAV data and their corresponding captions from the Dutch broadcast
establishment NPO (Nederlandse publieke omroep). We think it is impor-
tant to research the automatization of transcribing captions. The reason
we used data from NPO is that human transcribers from NPO transcribe
captions under strict and consistent guidelines (in section 3.1.4 we examine
these guidelines in more detail). This is an important property to make the
training process easier for the model. In this research we try to answer the
following question:

o How well does Wav2vec2, trained on captions, transcribe captions from
spoken audio compared to Wav2vec2 trained on verbatim text labels?

We essentially try a different approach for generating captions from using
the data that is usually used to train an ASR (Automatic speech recognition)
model. Another focus of this research is to see how the results compare, we
try to push the limits of the Wav2vec2 model to see if is capable to learn
certain properties of captions that verbatim text lacks. Another important
part of this research is to find out whether we can use the start- and endtime
which are provided with the caption text to train Wav2vec2 to properly
transcribe captions.

o What properties of NPO captions can be captured by Wav2vec2 when
using captions as labels for the training?

o How wuseful is the raw caption data provided by NPO when training
Wav2Vec2 to transcribe captions? What amount of pre-processing is
required ?



1.1 Contributions

Wav2vec? is a very promising model in NLP. It could be described as the au-
dio version of BERT [15] (BERT is a text-only NLP model which was very in-
novative due to the introduction of bidirectional representations) Wav2vec2
performs very well on low amounts of labeled data [6]. Large amounts of
labeled data are often difficult to get by, especially for less widely spoken
languages. It is therefore important that we investigate the limitations of
Wav2vec2. We build on related work on the model, which examined the
ability to perform speaker recognition [24], and performance of automatic
speech recognition on low-resource languages [26]. This study will investi-
gate the limits of Wav2vec2 when learning closed captions. More formally:

e We investigate the current state of Wav2Vec2 when transcribing cap-
tions using captions as labels.

e We explore the ability for Wav2vec2 to learn certain properties of
closed captions.

e We try to find out under what circumstances closed captions are
learned best. i.e., what kind of pre-processing is required.



Chapter 2

Preliminaries

2.1 Artificial neural network

To get an understanding of the inner workings of Wav2vec2 [6] we need
to get an intuition of the basics. Artificial neural networks (ANNs) are a
subset of machine learning, present at the core of every deep learning model.
Neural networks are built on the concept of linear regression.

2.1.1 Linear regression

The goal of regression [17] is to characterize the relation between inputs
and outputs. It is used to predict the value of a variable based on the value
of other variables. We will call the input vector x of length n containing
values for different attributes of the input, which corresponds to the output
variable y. To indicate a prediction of y we will use §. In a linear model the
assumption of linearity makes it possible to express y such that:

Y=w1 *21+ ...+ Wy *Tp +b

Or:
Jy=xw+0b

Here the vector w are the weights, which basically say for each variable of
the vector x how important the variable is to predict y. For example, when
predicting the edibility of mushrooms, the color of the mushroom might tell
us more than the number of gills. The bias b will add some value that was
needed to predict y properly when all the variables of w would take the
value of 0. This process is called linear regression. In a neural network,
the goal is to modify the weight and bias values such that our prediction ¢
would be closest to y.

If we want to increase the complexity of the network we will have to de-
viate from linear regression by introducing more hidden layers. Fach hidden



layer is essentially ’predicts’ the values of the next layer with the use of
another w vector, or the values of output. Depending on the shape of this
w vector we can control the number of output values. This is visualized in
Figure 2.1. In this example the linear relation between the input layer and
the first hidden layer looks like this:

h=xw+15b

Often an activation function ¢ is used, this can have different functions.
Softmax activation [7] for example normalizes the value to a range between
—1 and 1.

h = ¢(xw + b)

hidden layer

>0

</ output

SEAN
O

N EAC

Figure 2.1: Neural network structure

2.1.2 Loss function

To measure the fitness of our model parameters we introduce the loss func-
tion. The loss function quantifies the distance between real value y and our
prediction ¢ of a given sample. An example loss function for a given sample
1 is quadratic loss:

‘ Losi i
19 (w,b) = S~y )

For an entire dataset with £ samples we average out the loss:

k

L(w,b) = %Zz@) (w, b)

i=1



2.1.3 Training process

The goal of the training process is to change our parameters w and b such
that we minimize the loss function (the objective function). We do this
by iteratively updating the parameters in the direction that lowers the loss
function. We can calculate this direction by taking the partial derivative of
the loss function concerning the w and b parameters. In each iteration we
apply the following formula:

(W7 b) — (W7 b) —n* a(w,b)L(vvv b)

learning

step
hid

> W

minimum

Figure 2.2: Gradient descent

This process is called gradient descent [16] (GD), shown in Figure 2.2. The
learning rate 1 determines the step size at each iteration, having a large
learning rate would mean that we converge to a minimum faster, but this
also has the risk that we skip the minimum because we went too far. Finding
the right value for 7 is a difficult task that strongly depends on the specifics
of the problem. In practice passing over the entire dataset and calculating
the partial derivatives to update w and b is very expensive. One solution
that is often used is minibatch stochastic gradient descent (MSGD) with
minibatch = S:

/rl .
(Wv b) A (Wa b) - ma(w,b)l(l) (Wv b)
In stochastic gradient descent [20] (SGD) we only use a single random sample
to update the w and b. In MSGD we take a subset of the entire dataset to
update the parameters. SGD converges much faster compared to GD, one
disadvantage is that the values of w and b oscillate due to its sensitivity to



noise. MSGD does not have this disadvantage (because we take the average
change of a set of samples) and still converges a lot faster compared to GD,
even though it is slightly slower than SGD.

2.2 Deep learning concepts

To explain the inner workings of Wav2vec2 better, we need to explain some
core concepts within deep learning before we can have some understanding
of what is happening with our data in this study.

2.2.1 Sequential data

In this research, we work with short audio fragments (as input) and brief
caption texts (as labels). Both these forms of data are sequential. Sequential
data means that the points in the dataset are dependent on other points
in the dataset. It is important to make this distinction between 'normal’
data because sequential data tends to be an issue for the traditional neural
network. This makes a lot of sense because when we look at Figure 2.1 it is
clear that each input sample is analyzed in isolation from any of the other
input samples. This template is limited to data where the samples only
depend on the attributes of themselves.

2.2.2 Recurrent neural network

To solve this issue we need to make a change to the structure of the tradi-
tional neural network. We need to make sure that data points can depend
on other data points. Previously we discussed that the linear relation for a
traditional neural network between input and a hidden layer is:

h = ¢(xw +b)

In an RNN [21] (based on [12]) we need to make sure that information from
previous input x;_1 is used in the calculation of the current input z;. We
can make sure that this happens when we try to implement the following
linear relation in the structure of the network where h is a hidden unit:

hy = f(x¢, hi—1)

For the hidden unit at time ¢ we use the information of the current input x;
and the previous hidden unit h;—; (which contains information of z;_1, thus
the previous input). The linear relation between the input vector X and a
hidden layer H in an RNN is the following:

h = ¢(x;w +hy_ 1w +b)

The structure is visualized in Figure 2.3
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Figure 2.3: Recurrent neural network [17]

2.2.3 Attention mechanisms

In natural language processing, the key idea is to train a network such that it
gains the ability to understand text or spoken words. In an RNN one could
argue that the attention when learning for example a sequence of words is
on the previous words, where the last word gets more attention than the
words that came before. Let’s look at the following example:

Stephen is very happy

Let’s say the RNN is considering the word happy, then it will know that
the word that came before very is relevant to the word happy, the word
Stephen is much less important according to this model. By introducing
attention mechanisms we can solve this issue. We take the input as a vector
of n tokens t, for this example:

t = [Stephen, is,very, happy|

In self-attention [8] the goal is to give these tokens (or embeddings) more
context, this means we summarize in each token how they relate to the other
words in the sentence. An important part of attention and also transformers
[13] are keys k, values v and queries q. The following matrix multiplications
are performed to get these vectors:

v=txM,
k=t M,
q="tx*M,

The query q could be interpreted as the token we are currently considering
(where q is the set of queries ¢ for all tokens t), for example, happy. The

10



query and keys are combined using an attention scoring function one by
one, this could be for example the dot-product. The output of this could be
described as the attention weights, for the combination (Stephen, happy)
this value will likely be very high. Next, we combine each weight with the
values k, the resulting output will be the best-matched locations of where
to pay attention. Figure 2.4 Visualizes this process more clearly.

Attention oo ®—:| Output

scoring weights

function ""*_‘_
- (-0, —O= |1
s [IIOF ;@»g—-g ] veles
=0 —6=] 1
= |-0-U—6—]

Figure 2.4: Attention mechanism [17]

The matrices M,, M}, and M, will be our training parameters. Because we
multiply the tokens T" with three different matrices there is a lot of room for
expressiveness to describe the data. To add more information we can also
choose to inject positional encodings to the input. This will allow is to use
the sequence order information.

In multi-head attention, we run this exact process of self-attention several
times in parallel. Then in the end we concatenate these independent at-
tention outputs and normalize the data. This allows us to capture more
dependencies between the tokens, essentially more expressiveness.

2.2.4 Transformer layer

In a transformer network [13] we combine the previously introduced con-
cepts. The model architecture of the transformer is visualized in Figure 2.5.
In short, a transformer consists of an encoder and decoder block. When
training an ASR the encoder will take the audio as input, with the injection
of their positional encodings. Next, we apply multi-head attention to capture

11



the dependencies. It is important to note that we can learn these dependen-
cies for each embedding in parallel. Lastly, we use an FFN (feed-forward
network) to transform the attention vectors into a form that can be used by
the next layer. The labels, which will be text for an ASR will be used as
input for the decoder. Similar to the encoder, in the decoder, we will also
inject its positional encodings. Next, we apply masked multi-head attention.
Here it tries to predict the next text label, the masked part refers to the
text labels that come after which are hidden to the network. This is because
we need to predict the next label in order to learn. Next we apply another
layer of multi-head attention, this will also take the output from the encoder.
This is where the transformer tries to map the audio embeddings to text
labels and figures out what the relation between them is. The last layer is
another FFN, which makes sure that the vectors can be easily accepted by
another neural network layer.

Output
Probabilities

Add & Norm

Feed
Forward
I Add & Norm |<_-:
Add & Norm Multi-Head
Feed Attention

Forward T 7 N x
N | Add & Norm IT:
f—'i Add & Norm | Nasrad
Multi-Head Multi-Head
Attention Attention
A__ ¢t » A y
S— J v,
Positional ®_@ ¢ Pasitional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 2.5: Transformer architecture [13]
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2.2.5 Convolutional layer

We can use convolutional layers [14] to increase or decrease the size of the
input vector. The size of certain input data can grow very large quickly
considering we need weights for each input unit. Convolutional layers are
often used to decrease the size of image data. In Figure 2.6 we decreased
the size of a 3 by 3 image to 2 by 2. We do this using a kernel.

Input Kernell Output
0|1]2

0|1 19 | 25
31415 * =

2 (3 37|43
6 |7]8

Figure 2.6: Convolution [17]

We can determine the output size o, X 0, of the image in the following
way:
(on X o) = ((np, — kp + 1) X (N — ky + 1))

Where the input size is ny x n, and the kernel size is kp x k,. We can
control the output size by changing the kernel size. The output will be a
summary of the input data with a lower height and width.

2.3 Speech recognition

Automatic speech recognition (ASR) is the problem of getting a program to
automatically translate the sound of spoken language. In a traditional ASR
(see Figure 2.7) the extracted audio features are inserted in the acoustic
model, this model maps the relationship between the audio signal and a
sequence of linguistic units.

Often this linguistic unit is in the form of a phone (called phoneme in lin-
guistics), which distinguishes one word, or word element from another. The
English language contains 44 phonemes. The pronunciation model captures
the mapping between these phone sequences to words. We illustrate this
function with an example of the word apple in figure 2.8.

With the help of a language model, we know the most likely ordering of

words given the previous words (we will explain the details of a language
model and how to create one in the next section). In general the traditional

13



acoustic pronunciation language
model table model

audio input sentence output
feature
extraction

—> decoder —> hi

Y

Figure 2.7: Traditional ASR architecture

audio input phone
Acoustic , Pronunciation

word output

—> —> /ApUHI/ —> —> apple

Model Model

Figure 2.8: Acoustic & Pronunciation model

ASR tries to model:
P(audio) = P(audioltranscript) * P(transcript)

Where we take the arg max of the possible transcripts given from our lan-
guage model. One aspect of traditional ASRs is that the three models are
often trained separately using data with different input and output labels.
Traditional ASRs introduce a lot of complexity by continuously translating
data to different forms eventually leading to the transcript output. The end
to end architecture (Figure 2.11) simply takes audio input and outputs a
transcript, all components within the model are trained together trying to
achieve the same goal. Training is combined with Connectionist temporal
classification [9] loss. It is common to use a language model [25] to improve
our word sequence predictions. To compute the output sequence S we take
the arg max of the probability of the sequence according to the language
model Py, (S) multiplied with the language model weight lw.

S = argmax (P, (5) * lw)

14



audio input sentence output

end to end
e  — hi
model

Figure 2.9: End to end model architecture

2.3.1 Language models

A language model [25] tries to capture the most likely orderings of words
generated. The key concept for a language model is capturing the n-grams
where n € 1,.., N and N is the largest N we want to capture. In a language
model, we try to capture all the possible n-grams. An n-gram is a probability
for a sequence of n words to occur. We try to calculate for k& words:

k

P(ml,mg, ,l‘k) = HP(xi]ml, --~$i—1)
=1

But the latter term is too complex to be estimated, that is why we make an
approximation limited by n:
k
P(x1,m2,...;x1) = HP(xi‘xi—n-Hv 1)
i=1

For example when we try to calculate the probability of the 2-gram Good
morning, our calculation should be:

P(Good, morning) = P(Good)P(morning|Good)

When creating a language model we try to estimate these probabilities using
a corpus. We can capture the probability of Good like this:

P(Good) = n(Gkood)

Where n(word) is the number of occurrences of word. We can do something

similar to get for the probability of morning given Good:

P(morning|Good) = n(GOqS(déﬂ;lmg)

2.3.2 Word error rate

The word error rate (WER) is a metric that is commonly used to measure
the effectiveness of an ASR model by comparing the output sentence (hy-
pothesis) with the actual transcription of the audio (reference). We can

15



compute the WER as:
S+D+1

N

Where S is the number of substitutions, D the deletions, I the insertions
and N the number of words in the reference sentence. The WER is a number
between 0 and 1, the closer the WER is to 0 the larger the similarity between
the hypothesis and the reference sentence.

WER =

2.3.3 Connectionist temporal classification

The process of feature extraction in traditional ASRs is trying to chop the
audio file into small pieces for each timeframe and figuring out which phone
was said during this timeframe. This process is difficult because we do not
know exactly where the sound of a phoneme starts and ends. Let’s take the
example of the sound hi during 4 timeframes tg — t3:

h 1 1 1

th t b 3

Figure 2.10: Audio file segmentation

When extracting the features of this audio file we get duplicates for the phone
i as illustrated in Figure 2.10. Connectionist temporal classification (CTC)
is used in end to end speech recognition, it solves this issue by introducing
the blank -. The blank is a pseudo-character added during encoding and will
be removed during decoding. It is added when there is a transition between
two phones, it also helps encoding sequences with two identical subsequent
output tokens (like the sequence hello). h-ii will become hi by applying
the CTC trick:

e Remove double characters

e Remove blanks

The encoding of the label hi using CTC is illustrated in Figure 2.11.

When calculating the loss, we consider all possible paths for the word in our
label (for example hi). Some possible paths to get to this word are h-i-,

16



to 5] 5] 3

Figure 2.11: CTC: weights and paths

h-ii, h--1i, -h-i, etc. We sum the scores of these paths and the result, the
closer this number is to 1 to smaller our loss. When decoding an audio file,
we perform the same process, and for each timeframe, we take the phone
(or blank) with the largest weight and apply the CTC trick. For example,
applying the CTC trick to aaa-p-p-1-e will give us the label apple.

2.3.4 Wav2vec2

Wav2vec2 [6] training happens in two phases: pre-training and fine-tuning.
During pre-training, the model performs self-supervised learning where the
model tries to predict masked speech units from the audio, similar to BERT.
A difference with BERT is that the speech audio is not segmented into words
or other speech units, but units of 25ms (shorter than phones) which enables
high-level contextualized learning for many aspects of the audio. The fact
that the set is finite means that the model can only focus on a subset of
the aspects of audio, which encourages the model to ignore aspects like
background noise. In contrast, other self-supervised approaches encourage
the model to reconstruct the entire audio signal, where background noise is
also learned.

The architecture of Wav2vec2 is presented in Figure 2.12. First the feature
encoder consisting of multiple CNN blocks learns the speech representations:

f:X—Z

The quantization module takes these representations Z and turns them into
learning targets ) or codebooks, codebooks, in simple terms they are sum-
maries of the linguistics at certain timestamps. The transformer block uses

17
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Transformer /
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representations
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Figure 2.12: Wav2vec2 architecture [6]

CNN layers to add information to its input, part of this input Z is masked
at certain timestamps:

g : masked(Z) — C

To compute the loss the model tries to identify the true quantized represen-
tations @ from distractors for the masked positions. Where the distractors
K are other quantized representations.

During fine-tuning, we are using labeled data (much lower amounts of data
compared to the unlabeled pre-training data) where the model tries to min-
imize the CTC loss.

Fairseq (2] provides several models pre-trained on different LibriSpeech [3]

speech datasets (unlabeled). For example, the XLSR model is pre-trained
on 128 languages with approximately 436K hours of unlabeled speech data.

18



Chapter 3

Fine-tuning Wav2vec2

To compare the performance of Wav2vec2 trained on audio data with regular
text labels and closed captions we have to train a model with closed captions.
In this research we will perform different experiments on Wav2vec2:

o We will test the effectiveness of Wav2vec2 when fine-tuning with labels
in the form of captions. We will edit the design of the experiments to
find out what will improve the effectiveness.

o We will investigate the properties of captions that Wav2vec2 can cap-
ture.

e We explore the pre-processing steps that would be required to get
promising results.

e We try to find out what the effect of using different amounts of data
in terms of hours of audio data.

3.1 Dataset

In this research we will be working with audio data from NPO broadcasts.
This audio data was recorded by SpraakLab [4] and saved as WAV files with
varying lengths between 1 to 60 minutes. The audio data was recorded in
the period between 2021-05-01 to 2021-06-05. Later in the research we also
collected audio data from the period 2022-01-01 to 2022-01-03. The au-
dio files are broadcasts from channel 1 including various types of programs
such as commercials, live broadcasts, news shows and exercise programs.
The captions corresponding to these audio files are created by NPO and
recorded once again by SpraakLab [4].

When training the Wav2vec2 models for this research we will be using the

data from the period 2021-05-01 to 2021-05-31 as our training dataset. The
validation dataset, which will be used to compute intermediate test results

19



during training, is drawn from the period 2021-06-01 to 2021-06-05. After
training, we will manually compute our own test results from the model using
an evaluation dataset, which includes the data from the period 2022-01-01
to 2022-01-03. During the evaluation process of this research, it became
clear that it was essential our evaluation dataset needed to originate from
a period far away (in terms of time) from our training dataset. If the eval-
uation dataset was adjacent or too close to the training dataset it could
happen that the evaluation dataset included reruns of a program originally
broadcasted during the training dataset period (for example reruns of news
broadcasts).

3.1.1 File formats

The audio files are recorded as WAV files, compared to for example MP3 files
WAV files are uncompressed which allows the audio to be more consistent with
the recording without losing any of the noise of the recording (noise is also
important because it allows the model to learn to ignore it). To illustrate
MP3 is limited to a frequency of 44.1 kHz (44.1k audio samples per second)
compared to 96 kHz for WAV files. The captions are delivered as VTT files
which include the start- and endtime (accurate to 3 decimal seconds) of a
caption and its text, as illustrated in the example:

00:25:52.404 --> 00:25:55.878
Iedereen wil weten wat de jurk wordt, maar het wordt geen jurk.

00:25:55.878 ——> 00:25:57.997
Mogen we hem zien? Wil je hem zien?

00:25:57.997 --> 00:26:00.041
Ik ben sowieso fan van Diana Ross.

The input to Wav2vec2 will be a series of audio-label pairs. Each caption
label will be a single caption accomponied with the corresponding audio, in
other words the audio starting at starttime and ending at endtime.

3.1.2 ASR data

In addition to the audio files and caption data, we will also be using ASR
transcriptions corresponding to the audio files. We fine-tuned an XLSR
Wav2vec2 model on 300 hours of labeled Dutch audio, originating from the
Dutch Speech Corpus [19]. An important note here is that the labels of this
data are no captions, the speech corpus was transcribed in verbatim text.
Next, using this trained model we generated labels for our audio files. The
labels are lists of elements containing information of what word was said at
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what timestamp in a .hyp file. We give an example of one of these elements:
{"WordID” : "Dit", "beginTime": 4.36, "endTime": 4.5, "confidence": O. 99}

The function of this ASR data is that it helps us to get an idea of what was
actually said by the speaker during a time window, this is different than
the caption during this same time window. This data will not be used for
training Wav2Vec2. By knowing the difference between the caption and
what was said we can measure the quality of the caption to a certain degree.
Another function of this data is that it will serve as a baseline model to
compare the models with that we train on caption labels.

We summarized the data that we will be using for this research in Fig-
ure 3.1.
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Figure 3.1: Research data

3.1.3 Data quality

The most important aspect of the data used in this research is the quality
of the captions. The process of creating captions is done by TT888 [5] inter-
preters, who follow guidelines when creating the caption text and deciding
the begin- and endtime when a caption is shown on screen. As explained
earlier we are using data from different types of captions. A valid ques-
tion to ask is whether the process of creating these captions is different for
different broadcasts. However, the interpreters are following the same guide-
lines when interpreting captions for different programs. Therefore we can
consider the quality of the data mostly homogeneous concerning different
types of broadcasts. Interpreters are not limited by time restrictions when
creating captions for these programs. This means that they have time to
go back and fix certain captions when they noticed they made a mistake.
This does not apply for live broadcasts, interpreters receive live broadcasts 1
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minute earlier to create captions that will be broadcast. This is of course not
enough to create flawless captions because interpreters are also under a lot
of pressure. Interpreting broadcasts is done by one person at a time. They
work for 30 minutes at a time when creating captions for live broadcasts to
reduce errors.

3.1.4 Caption guidelines

Interpreting captions is a difficult task, it is important that all interpreters
follow the same guidelines to make the captions as homogeneous as possi-
ble. The main goal of interpreting is to create captions where the essence
is put forward. People who watch with captions need to get a good idea
of the essence but also get an idea of how the speaker presents the infor-
mation. Interpreters try to improve the readability, while not omitting too
many words, all while also not exceeding the word-per-minute (wpm) rate
of 180. Interpreters at NPO use software to check the wpm rate during the
interpreting process. We list the most important aspects of the guidelines
that are relevant in this research:

e Direction instructions: The captions can include phrases that are writ-
ten in all caps to give instructions about the audio. Examples of this

are MET LIMBURGS ACCENT, MUZIEK, LIVE-UITZENDING,

MENSEN PRATEN DOOR ELKAAR.
o Capital letters: All sentences should start with a capital letter

e [nterpunction: Usage of interpunction (: , . ? ! ...) should
be done if it improves the readability of a sentence. ...is used when
the sentence does not fit on the screen, the next subtitle will start
without a capital letter to indicate the continuation of the sentence.

o Fillers: Usage of fillers such as eh, ehm, m~hm, hahaha is allowed if it is
important to understand what is happening on the screen. But they
are mostly omited, often because they can be distractive to readers
but also to comply with the 180 wpm rule.

e Language mistakes: Always fix language mistakes, unless it is relevant
for the watcher. An example where a language mistake could be rele-
vant would be at a comedy show. Numbers: Numbers from 0 to 10 are
written in full. Numbers larger than 10 are written in their numeral
form.

3.2 Filtering data

To fine-tune wav2vec2 properly we need high-quality data, meaning data
that will help Wav2vec2 best to learn how to recognize captions. We need
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to apply a filter to our data to omit low-quality or irrelevant data. First,
we filter on entire broadcasts and then we filter on individual utterances
within broadcasts. Some of the entire broadcasts are not useful, we apply
broadcast-filters to make sure we never use this data during training. We
apply caption-filters to filter out individual utterances within a broadcast,
we filter on individual captions since some of the captions within a broadcast
might still be useful for training. Since the amount of data we have is limited
we will enable/disable some of these filters for training in chapter 4. Another
reason that we do this is to see the effect of these filters on the quality of
the data.

3.2.1 Broadcast-filters

We use the following filters to omit entire broadcasts from training:

e Duplicate data: After analyzing the data, a big part of it (£40%)
turned out to be duplicate. Even though it matters little for the quality
of the fine-tuning if duplicate data exists, the training process does go
a lot faster with less duplicated data. We also want to avoid having
the same data in the training and test set.

e Live broadcasts: This data is omitted completely from the training
data. As mentioned earlier the quality of the captions for live broad-
casts is lower. Omitting this data will make our data more homoge-
neous.

o Commercials: We also completely omit this data. Mostly because they
contain a lot of web links, which can be difficult to learn in speech
recognition. They also contain a lot of music and other sounds, which
is not the focus of this research.

3.2.2 Caption-filters

We use the following filters on individual captions:

o Unsynchronized captions: After analyzing the data closely we found
out that some of the caption texts accompanied start- and endtimes
that were not synchronized with the corresponding audio. Obviously,
this data should not be used for training. To find out which captions
were unsynchronized we compared the baseline ASR labels with the
reference caption labels during the same time window. We quantified
the similarity of these labels by computing the WER by taking the
baseline ASR labels as the hypothesis and the VTT captions as refer-
ence. If the WER was above the threshold of 50% we consider the
caption unsynchronized and omit it for training.

23



o Regular expressions: Some words that occur in the caption are difficult
to learn. For example words that contain numbers like 1e, 2e, 10.000
or web links, etc. The following regular expression formats are omitted:

— {1,3-.{1,}
— [A-Z1{1,}
— [0-91{1,}.[0-91{1,}
— [0-91{1,}e

3.3 Pre-processing data

Before training, we will perform some pre-processing on the data. A big part
of the pre-processing already took place during filtering, where we omitted
parts of the data. In this section, we will discuss methods that we used to
edit the usable data. Editing the data is done for the following reasons:

o Comparing learned properties: To find out what Wav2Vec2 can learn
and what it can not learn. By comparing the quality of models that
were trained on datasets with different configurations (each configu-
ration allows for the use of certain characters in the captions labels)
we can speculate about the properties of the captions that the model
learned.

e To improve training: We do not expect our model to perfectly learn
all properties of the captions. By removing or editing parts of the
caption labels we make sure that Wav2Vec2 will not have to focus on
learning these properties.

3.3.1 Editing captions

We perform the following edits on the caption labels that are used for train-
ing:

e Numbers to words: We translate all numbers to words that do not con-
tain numeral values. For example, 51 will be translated to eenenvijftig.
Teaching Wav2vec2 how to recognize numbers is something we decided
not to focus on within the scope of this research.

e FEditing individual characters: We perform the following edits on cer-
tain characters within the caption labels:

—é—e
— e —e

— ¢ e
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—eé—e
—0—o0
—6—=o0
—1—1

—1u—u

3.3.2 Character configurations

We will produce different datasets, all the datasets will contain the same
audio data and caption labels. The difference between the datasets is the
characters that occur within the caption labels. Each configuration will be
produced by omitting a subset of characters from the caption labels and
allowing other characters to remain:

o Configuration 1: 28 characters including {[a-z] > |}. (| is the word-
separator, which Wav2Vec2 uses to indicate a space between words.)
This configuration is very minimal and only allows for lowercase al-
phabet characters, it also includes the ’> symbol.

e Configuration 2: 34 characters including {[a-z] > | . , ? ! -
: }. This configuration adds interpunction to the captions, and aspect
which we hope Wav2Vec2 can learn.

e Configuration 3: 63 characters including {[a-z] [A-Z] > | . , 7
' - : % & ¢}. This configuration mainly adds capital letters. It
also adds several rare characters..

When creating a dictionary as explained in section 3.4.1 each configuration
will have a different dictionary.

3.3.3 Shifting start- & endtimes

In figure 3.1 we can see that the caption label is not always synchronized
exactly with the corresponding audio fragment. The start- and endtimes
are not in the same timeframe where the speaker starts and stops talking.
In the figure we can see that the baseline ASR data shows us that words are
being said outside of the time window where the caption is shown. The are
several reasons for this:

e Guidelines: Interpreters have to conform to guidelines, for example
staying within a wpm rate of 180, which sometimes forces them to use
different start- and endtimes than the spoken audio fragment.

o Human errors: When interpreting spoken audio the interpreters could
make errors causing imperfect start- and endtimes.
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o Recording limitations: When recording the captions merely the start-
times were recorded. The starttime of the caption of index 7 + 1 was
used as the endtime of the caption with index i. Except when the
difference between the starttime of the caption ¢+ 1 and the starttime
of the caption ¢ was more than 3 seconds, in this case, the endtime of
the caption ¢ would be the starttime plus 3 seconds.

Within this research, we will investigate whether we can use these imperfect
start- and endtimes in our training data to still get a good performance. To
research this properly we will also train a model with 'improved’ start- and
endtimes, in other words, start and end- times that do correspond to the
spoken audio more accurately.

i < i Een hele goede zaterdagavond. i > E «— Improved caption data (. VIT)
i : P ; . e : «— Audio data (.TVAV)
‘Een i hele : ch igoede! ézaterdagi avond | «— Regularly trained ASR data ((HYP)

Figure 3.2: Improved caption data

The technique we use to generate these improved caption labels is shown in
Figure 3.2. We take the starttime T and subtract a value a from it and then
calculate the WER with the baseline ASR data:

Thew =T —a

Now calculating the WER, with this Ty, will give us a different WER
value. We will repeat this process for different values of a, within the range
[—1.0,2.0]. We will use the T}, value where the WER compared to the
baseline ASR data was lowest.

We will repeat this process for the endtime where we try different values of
add_time within the range [—1.0,2.0].

3.4 Training

To train the model we will only focus on fine-tuning with labeled captions.
We will not be doing any pre-training on the model since this process requires
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a lot of unlabeled audio data, often months of it, which takes a lot of time to
obtain in high-quality. In addition, the pre-training process itself takes weeks
on efficient and fast systems. Because of time constraints, this is simply not
feasible. But more importantly, it is not necessary, Fairseq already provides
many pre-trained models trained on high-quality audio data. The goal of
pre-training is to let the model learn how speech and language are structured
regardless of how this is translated to text. Therefore providing different
audio data to improve the learning process of captions was not necessary,
the aspect of learning where it tries to translate audio to text happens only
during fine-tuning of the model.

We will fine-tune Wav2vec2 using Fuairseq. Fairseq [2] is a sequence modeling
toolkit that allows researchers and developers to train custom models for
translation, summarization, language modeling and other text generation
tasks. For this research we will be using two pre-trained models:

e BASE10: This pre-trained model is trained on 960 hours of the Lib-
rispeech dataset [3]. The configurations we use in addition to this
model, which was optimized for approximately 10 hours of labeled
audio data, can be found in Appendix 7.1.

e XLSR: This model is pre-trained on 436K hours of MLS, Common-
Voice and BABEL [1] data. This data originates from 53 languages,
including Dutch. The configurations we use in addition to this model
can be found in Appendix 7.2.

3.4.1 Dictionary file

To fine-tune a model using Fairseq, the software requires a dictionary file.
This dictionary file is generated using all caption labels used for training.
The dictionary is a list of all characters occurring in the caption labels and
their frequencies. Fairseq uses this information to create new caption labels
using the characters in the dictionary.

3.5 Model evaluation

To evaluate our model manually we will define an evaluation dataset. As
explained earlier the audio data was recorded in the period between 2021-
05-01 to 2021-05-31. Additional files of the period 2021-06-02 to 2021-06-05
are also included. These additional files for the month of June is what we
will be using as our evaluation dataset.

We can use Fuirseq to get the hypothesis of the label of an audio file that
a Wav2vec2 model resulted from finetuning came up with. To help fairseq
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with this process, we have the option to use language models which helps
to create sentences given a finite set of word combinations and probability
distribution. The language models used to evaluate our fine-tuned models
are trained with all the caption labels that were available to us, except for
the validation and evaluation set labels (including the captions we omitted
during filtering) using KenLM. KenLM [11] is a language model inference
program we can use for training a language model. The caption labels used
for our language models will be pre-processed the same way our training
data is pre-processed as described in section 3.3.

Apart from language models we also have the option to change certain pa-
rameters used by Fairseq when creating hypothesis sentences, these param-
eters include:

o LM weight: This parameter will influence the use of our language
model. A very large LM weight or lw will practically disable our ASR
model and predict words merely based on the language model. The
default value we use for our experiments is LMweight = 2.

e Word score: Apart from the LM _weight, the wordscore or ws will also
influence the final hypothesis output sentence S. In short when the
wordscore is very negative our model will lean towards using a small
number of words w, and when it is very positive it will lean towards
using a lot of words. The default value for this is wordscore = —1.

The model tries to predict an output sentence S using the following formula,
where P, is the Wav2vec2 acoustic model:

S = argmax(P,(S) + lw * P, (S) + w(S) * ws)

To evaluate the effectiveness of a fine-tuned Wav2vec2 model we will com-
pute the WER between the hypotheses of the model on the audio data
W2V2,,yp in the validation dataset and the caption labels in the validation
dataset caption labels ¢l (our reference):

WERwava = WER(W2V2y,,, cl)

As a baseline to compare this WER to we will also compute the WER be-
tween the hypotheses of the baseline ASR model on the audio data AS Ry, in
the same wvalidation dataset and the caption labels in the validation dataset
cl:

WERAsr = WER(ASRyyp, cl)
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Chapter 4

Experiments and results

In this chapter, we will present the different designs of our experiments and
their results. The motivation behind the experiments was often based on
results and analyses of their former experiments. Thus we will present most
of the experiments in chronological order.

For each experiment, we will train three Wav2Vec2 models, each training
will contain different amounts of data. To collect more data we alleviated
some of the filters:

Dataset Live-broadcast Commercial
filter filter

8 hours v v

16 hours X X

32 hours X X

When using both the Live-broadcast filter and Commercial filter on our
training data we were able to collect no more than 8 hours of audio data.
When disabling the Commercial filter we would only end up with approx-
imately 8.5 hours of audio data. Which would not make for a very inter-
esting dataset, since it was so similar to the 8-hour dataset. So we decided
to disable the Live-broadcast filter, which gave us about 32 hours of audio
data. the 8-hour dataset is 0% live broadcasts and commercials, the 16-hour
dataset 50% and the 32-hour dataset 25%.

4.1 Fine-tuning BASE10 with different character
configurations

In section 3.3.2 we discussed the use of different character configurations.
We will investigate the differences in effectiveness for these configurations
using the BASE10 model variant of Wav2vec2. We discussed that for each
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configuration our caption labels ¢l will contain different characters. In this
experiment we train three BASE10 models on configurations c:

c € configy,configs,configs
We compute the WERs for the systems s BASE10 and our baseline ASR:
WER(hypBasEio,c); cle)
WER (hyp(asr); clc)

Configurations

0.5 HEE Configuration 1
[ Configuration 2
I Configuration 3

0.4 1

0.3 1

:

0.2 1

0.1 4

0.0 -

8 hours 16 hours 32 hours ASR

Figure 4.1: Experiment 1

These results tell us that BASE10 performs worse on captions than our base-
line ASR when transcribing captions regardless of the character configura-
tion. Our models trained on different amounts of audio data show no clear
difference in performance. So clearly using more audio data will not have any
effect for this model. Configuration 2 shows the best results. In addition,
the baseline ASR model performs best on configi;, worse on configs and
worst on con figs. This difference exists because the ASR model, in contrast
to BASE10, was only trained on labels including characters of con figi. So
the model performs worse as we introduce more characters in the character
labels cl

4.1.1 Training details

When fine-tuning BASE10 using Fairseq we used the configuration shown
in Appendix 7.1. For each configuration, we trained for 20k iterations. On
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average this process took roughly 8 hours and 30 minutes, we found no
notable differences between the configurations or amount of labeled audio
data in terms of training time. All of the configurations converged to a
minimum WER after roughly 18k iterations, after this there was little to no
improvement. In other words, the loss did not decrease much further.

4.2 Fine-tuning XLSR

In this experiment, we will be training the XLSR variant of Wav2vec2 as
explained in section 3.4. In our last experiment, we found that configuration
2 yields the best results. In the remaining experiments, we will only be
training this configuration. We compare the following WERs:

WER(hyp(BASElo,conﬁgg) ) Clconﬁgg )

WER(hyp(XLSR,conﬁgg) ’ Clconﬁgg )
WER(hyp(ASR) y Clconﬁgz)

XLSR Configuration 2

8 hours
16 hours
32 hours
ASR

BASE10 XLSR ASR

Figure 4.2: Experiment 2

In figure 4.2 we can see that the XLSR variant performs much better than
BASE10. In addition, the XLSR variant performs better than our baseline
ASR on all 3 datasets (8, 16 and 32 hours). Our XLSR model also seems
to improve its performance when more hours of audio data are used, this
shows that we could use more than 32 hours of audio data to improve the
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performance further. BASE10 is pre-trained exclusively on English audio,
but XLSR is pre-trained in many languages including Dutch. This factor
clearly contributes significantly to the performance of the model.

4.2.1 Training details

When fine-tuning XLSR using Fairseq we used the configuration shown in
Appendix 7.2. We trained for 60k iterations. On average this process took
roughly 2 days and 17 hours. We found no notable differences between the
amount of labeled audio data in terms of training time. Interestingly, after
roughly 15k iteration the training loss increases while our wvalidation loss
decreases. There seems to be taking place some overfitting during training.
When we train with more audio data there is less overfitting. After roughly
15k iterations our 8 and 16-hour models do not improve anymore, while our
32-hour model does improve slightly throughout roughly 40k iterations.

4.3 Tuning evaluation parameters

As discussed in section 3.5, there are default values for the LM weight and
word score parameters when inferring hypotheses for a Wav2vec2 model. The
default values (also our baseline) for these parameters are LMweight = 2
and wordscore = —1. In this experiment, we investigate the effect of small
changes to these parameters. Note that we did not train any additional
Wav2Vec2 models for this experiment. We only tuned parameters when
inferring hypotheses labels. We performed this experiment on our three
variants of (BASE10, configs) and (XLSR, configs) with different lengths of
audio data.

4.3.1 Tuning LM weight

First, we tune the L Mweight parameter on the range [0, 4] with the step size
= 0.1, where we use the default value wordscore = —1. For our BASE10
variant in figure 4.3 if we look at the point where our LMweights are 0 (no
usage of the language model) our BASE10 model seems to perform better
when we fine-tune with more labeled audio data. We collected the best
LMwetight for each model variant:

e 8 hours: LMweight = 2.0
e 16 hours: LMweight = 1.2
o 32 hours: LMweight = 1.2

Clearly when our model is trained on fewer hours of labeled audio data we
require a larger dependence on the language model to perform optimally.
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BASEI10 - LM weights

0.75 - —— 8 hours

—— 16 hours
0.70 —— 32 hours

0.65 1

0.60

WER

0.55 1

0.50 1

0.45 4

0.40 4

T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
LM weight

Figure 4.3: Experiment 3

XLSR - LM weights
0.65 4 —— 8 hours

——— 16 hours
0.60 1 —— 32 hours

0.55 4
0.50 1

0.45 1

WER

0.40 1

0.35 1

0.30 1

0.25 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
LM weight

Figure 4.4: Experiment 4

Interestingly, as the results of the XLSR variant, shown in Figure 4.4, XLLSR
relies much more on the language model than BASE10. Here the best per-
forming values for LMweight are:
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o 8 hours: LMweight = 1.5
e 16 hours: LMweight = 2.4
o 32 hours: LMweight = 2.8

In contrast to BASE10 the XLSR model relies more on the language model
when the amount of labeled audio data increases.

In the subsequent experiments, we will be using these L Mweight values for
the evaluation of our models.

4.3.2 Tuning word score

Next, we tune the wordscore on the range [—2, 2] with step size = 0.1, where
we use the default value LMweight of 2:

BASE10 - Word scores

——— 8 hours
16 hours
—— 32 hours

0.44

0.43 7

0.42 1

0.41 4

WER

0.40 4

0.39 4

0.38 4

T T T

0 1
word score

'
o -
—
o o

Figure 4.5: Experiment 5

The best WER, for BASE10 in figure 4.5 are the following:
e 8 hours: wordscore = 0.0
e 16 hours: wordscore = 0.7

e 32 hours: wordscore = 0.2
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The results in Figure 4.5 contain a lot of noise, but roughly the best per-
forming wordscore seems to be around 0.0. In other words, our models
perform best on captions when there is no additional penalty or reward at
all on the length of the output sentence. It seems that Wav2vec2 already
learned by itself how many words are needed for the best performance when
transcribing captions.

XLSR - Word scores
0.34 4 —— 8 hours
16 hours
0.33 1 —— 32 hours

0.32 1

0.31 7

0.30 4

WER

0.29 4

0.28

0.27 1

0.26 1

T T T T
2 -1 0 1
word score

[SS]

Figure 4.6: Experiment 6

For the XLSR variant in Figure 4.6 the results are similar to BASE10:
e 8 hours: wordscore = 0.0
e 16 hours: wordscore = —0.1
e 32 hours: wordscore = —0.7

Once again the optimally performing wordscore seems to be around 0.0.
Additionally, when comparing Figure 4.5 and Figure 4.5 we see that the
performance of BASE10 is more dependent on the choice of the wordscore
than our XLSR model is.

In the subsequent experiments, we will use the parameter value 0.0 for
wordscore.
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4.4 Shifting caption start- & endtimes

For our next experiment, we will be experimenting with shifting the start-
and endtimes of captions, as described in section 3.3.3. We will take our
caption labels with characters from configuration 2 (cleonfig2) and edit the
start- and endtimes to get shifted labels (clconﬁgg,shifted). These labels will be
used to train our models. We compare this to a model trained on cleonfiga-
To get a good idea of how well this works we will perform this experiment
on both the BASE10 and XLSR variants of the model. We compare these
results with the evaluation of the baseline ASR on cleonfig2 shifted-

4.4.1 BASE10

For the first experiment on BASE10, we will compare the following WERs,
where BASE10-S is BASE10 trained on shifted captions.

WER(hyp(BASEIO,conﬁgz) ) ClconﬁgQ,shifted)

WER(hypBASE10—8,configs) s Cleonfig2,shifted)

WER(hyp(asr)» Cleonfig2 shifted)

BASEI1O - shifted caption labels

8 hours

0.30 - 16 hours

ASR
0.25

0.20

WER

0.15

0.10

0.05

0.00 -
BASE10 BASE10-S ASR

Figure 4.7: Experiment 7

If we compare Figure 4.2 and Figure 4.7 we can see that both our BASE10
model and the baseline ASR get much better performance on the cleonfig2 shifted
captions. The cleonfig2 shifted are synchronized much better with the corre-
sponding audio. This makes speech recognition easier because the audio
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corresponds better to what was actually said by the speaker. We discuss
this phenomenon in more detail in section 4.7. In addition, we get slightly
better performance than BASE10 with our BASE10-S model because it was
also trained on the higher quality (more synchronization and less noise)
cleonfig2,shifted 1abels. Clearly shifting the captions using our baseline ASR
model makes it easier for the BASE10 to recognize captions.

4.4.2 Training details

When fine-tuning BASE10-S using Fuairseq we used the configuration shown
in Appendix 7.1. We trained for 20k iterations. On average this process
took roughly 8 hours and 30 minutes, once again we found no notable differ-
ences between the amount of labeled audio data in terms of training time.
All of the configurations converged to a minimum WER after roughly 18k
iterations, after this there was little to no improvement.

4.4.3 XLSR

Next, we will compare the following models, where XLSR-S is XLSR trained
on shifted caption labels.

WER(hyp(x1sR,configz) > Cleonfig2 shifted)

WER (hyp(x1.SR—8,configs)» Cleonfig2 shifted)

WER(hyp(asr) Cleonfig2,shifted)

The results, shown in Figure 4.8, are similar to BASE10, we get a small
improvement when training our XLSR model on shifted caption labels. In-
terestingly, for both our BASE10-S and XLSR-S model we get worse results
on our models trained on 16 hours of audio data. Yet both the 8 and 32-hour
models perform better than BASE10 and XLSR.

4.4.4 Training details

When fine-tuning XLSR-S using Fairseq we used the configuration shown
in Appendix 7.2. We trained for 60k iterations. On average this process
took roughly 2 days and 17 hours. We found no notable differences between
the amount of labeled audio data in terms of training time. Similar to our
evaluation of XLSR in section 4.2.1 we find some overfitting, for XLSR-S the
difference between training loss and validation loss does seem to be smaller.
There seems to be taking place slightly less overfitting. Similar to XLSR
we notice that our 8 and 16-hour models do not improve after roughly 17k
iterations, where our 32-hour model slowly improves over 40k iterations.
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XLSR - shifted caption labels

B 8 hours
[ 16 hours
I 32 hours
N ASR

WER

XLSR XLSR-S ASR

Figure 4.8: Experiment 8

4.5 Same language models

In our last experiments, we used different language models to create hy-
pothesis labels when evaluating our models. As explained in section 3.5 for
the models that we trained ourselves we used the caption labels from our
dataset to train the language models. For our baseline ASR model, we used
a 3-gram language model trained on 5 paper Dutch annuals. These gener-
ated labels have an error rate of £10% and the characters of the words are
limited to 53 characters. These include the alphabet [a-z], the alphabet in
uppercase [A-Z] and a space character.

In this experiment, we evaluate our best model XLSR-S trained on 32
hours of labeled audio data with shifted caption labels of configuration 2
(Clconﬁgzshifted> using the same language model that was used to evaluate
the baseline ASR model. However, this language model does not contain
interpunction, which was characteristic for configuration 2. For this experi-
ment, we consider two language models:

e No interpunction: This will be exactly the language model explained
above. (What we used for our baseline ASR model)

e Punctuation: The no interpunction language model does not contain
probabilities for interpunction, but configuration 2 does have inter-
punction. We trained a unigram model using the dictionary file (sec-
tion 3.4.1) corresponding to configuration 2. This unigram model that
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includes interpunction was mixed together with our no interpunction
language model using SRILM [23] where our unigram model has a
weight of 10%.

XLSR - language models

I 8 hours
[ 16 hours
I 32 hours
Il ASR

0.25

0.20 1

0.15 1

WER

0.10 A

0.05 1

0.00 -

Baseline No interpunction Interpunction ASR

Figure 4.9: Experiment 9

When we look at the results in Figure 4.9 the first observation we make is
that our No interpunction language performs the worst. This makes sense
since the language model does not contain interpunction, while the cap-
tions in configuration 2 do. Furthermore, the model trained on 8 hours per-
forms better on the Interpunction language model than our baseline. Lastly,
both our Interpunction and No interpunction model perform increasingly
worse on our models trained with more audio data (16 and 32). We suspect
that this might have to do with the evaluation parameters: wordscore and
LMweight. These parameter values are optimized for our baseline language
model. Optimizing these values for the different language models might re-
sult in even better performance

4.6 Capturing properties of captions

In this section, we will explore details of the output caption labels given
by XLSR-S trained on 32 hours of labeled audio data. Which is the model
we fine-tuned in section 4.4.3, our best performing model. The evaluation
dataset on which we evaluated this model contains 310 caption labels. We
try to get a better understanding of the properties of captions that the model
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Symbol Evaluation Hypotheses | Correct
set occ. occ. usage
4 0 0%
, 19 14 42.9%
393 278 93.5%
? 22 3 100.0%
! 4 1 100.0%
49 20 63.6%
Table 4.1: Interpunction XLSR
Symbol Evaluation Hypotheses | Correct
set occ. occ. usage
4 0 0%
R 19 11 45.5%
393 284 93.3%
? 22 3 66.7%
! 4 1 100.0%
49 19 72.7%

Table 4.2: Interpunction XLSR-S

was able to capture, and how it compares to our the output of our baseline
ASR.

4.6.1 Interpunction

In this section we explore the use of interpunction symbols (: , . 7 ! ...).
For each symbol we count the number of occurrences of the symbol in our
evaluation set, the number of occurrences in our output hypotheses caption
labels and what percentage of these occurrences were correct plus in the right
position of the sentence (correct usage). We performed this experiment on
both our XLSR and XLSR-S models. The results are presented in table 4.1
and 4.2

The results are very different for all of the interpunction symbols. The .
symbol seems to be easiest to learn for Wav2vec2, this makes sense because
the majority of the caption labels end with a . which makes it easy to
learn both the position and the usage. For the , we get a correct usage
of around 45% which is surprisingly high. The ? symbol was also learned
quite well, but was a lot less common in our hypothesis labels. The ! symbol
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was not very common in our dataset, but Wav2vec2 still picked up on its
existence. Wav2vec2 was not able to learn the : symbols. : is very rare in
our dataset which makes it a lot more difficult for Wav2vec2 to learn. The
depends on the subsequent caption sentence (as explained in section
3.1.4). Yet Wav2vec2 still learned the symbol quite well, it is possible that
Wav2Vec2 learned that when sentences are very long and the audio fragment
is cut off mid-sentence a ... symbol would be appropriate. The ... is also
the only symbol where we have a significant difference between the correct
usage of our XLSR and XLSR-S models. XLSR-S performs much better on
this symbol, possibly because the mid-sentence cut-off is more apparent.

4.6.2 Fillers

Now we investigate the use of fillers including eh, uh and euh As explained
in section 3.1.4 these words are omitted from the captions in most cases. We
looked for occurrences of these fillers in the output labels of the baseline ASR
and compared them with our model output labels. From the 49 occurrences
of fillers in the output labels of the baseline ASR 44 of the output labels
from the XLSR-S model contained NO fillers (90%). This clearly indicates
that Wav2Vec2 almost perfectly learned to omit fillers. Below we illustrate
this with an example we found in our results about polish supermarkets:

e Original caption:

u weet vast dat eind vorig en begin dit jaar er een reeks van
aanslagen was op poolse supermarkten.

o XLSR-S hypothesis:
die weet vast dat eind vorig jaar begint dit jaar er een
hele reeks van aanslagen was op polsen supermarkt.

e Baseline ASR hypothesis:

u weet vast dat uh eind vorig jaar begin dit jaar haar een
hele reeks van aanslagen was op Poolse supermarkten onder

4.6.3 Summarizing

Next, we explore the output sentence lengths to investigate how well our
model summarizes the information in the audiofile. The sentences in our
evaluation set have an average length of 13012/310 = 42.0 characters. In
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contrast the hypotheses sentences of our XLSR-S model have an average
length of 12516/310 = 40.4 characters. And the labels of our baseline ASR
model have an average length of 13219/310 = 42.6 characters.

Our XLSR-S model seems to be the most conservative with words and sum-
marizing too much. This is influenced by the wordscore parameter, which
we experimented with in section 4.3.2. Increasing the wordscore would
make our average sentence length closer to the true caption labels from our
evaluation set. But this would be at the cost of increasing the WERs of our
model.

The difference of average sentence lengths between our baseline ASR output
and the true evaluation set caption labels shows us that the captions are
indeed summarized slightly.

4.7 Caption quality & Limitations of baseline ASR

We discovered in section 4.4 that speech recognition became easier for Wav2Vec2
when we shifted the start- and endtimes of the caption labels to become more
synchronized with the corresponding audio. We explained that we used the
baseline ASR output labels to determine how synchronized the labels were.
Secondly, in section 3.2 we explained how we used our baseline ASR to filter
our unsynchronized labels. The reason we did this was that a large part of
the training data was simply not usable for training. The audio fragments
did not correspond in any way to the caption labels.

These two factors make the comparisons we made with our baseline ASR
model a less meaningful because we used the hypothesis labels to pick out
the labels for our ewvaluation set. In addition, we also edited the start-
and endtimes of our caption labels in our evaluation set to be closer to the
baseline ASR labels, which was followed by a comparison of our evaluation
labels and our baseline ASR labels. This is why the results we collected be-
tween the models we trained ourselves and the baseline ASR model should
be taken with a grain of salt. We showed that a baseline ASR is very useful
to increase the performance of a Wav2Vec2 model trained on caption la-
bels, but making a fair comparison to the same baseline ASR model became
impossible.
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Chapter 5

Related Work

In this chapter, we will explore work related to this research. The methods
used in these studies did not have any impact on this study. The problem
definitions in these studies are related to our research but not similar enough
for the methods to be of any use.

5.1 Generating subtitles using automatic speech
recognition

The focus of our research is investigating the use of caption data to train
an ASR to generate captions. In [18] they train end to end ASR models
on normal text labels (rather than caption labels). In this research they
investigate different methods to create readable subtitles, where the only
property of the subtitles is that they are summarized variants of the text
that was spoken:

e Utilizing an unsupervised compression model to post-edit the tran-
scribed speech and create readable subtitles.

e Modeling the length constraints within the end-to-end ASR system.

The second method turned out to achieve the best performance.

In [22] the focus is on creating software that takes a video and creates
SRT files (subtitles) as output. The speech recognition module used the
research does not take caption properties such as ’'summarizing’ or adding
interpunction into account.

5.2 Case studies on limits of Wav2vec2

In [26] it was stated that little research was done on Wav2vec2 in other
languages besides English. They investigate the performance of Wav2vec2
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in languages where little labeled audio data was available. It was found that
Wav2vec2 learns basic acoustic units that can compose diverse languages.
Also, Wav2vec2.0 can dynamically merge the fine-grained presentation into
coarser-grained presentation to fit the target task.
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Chapter 6

Conclusions

We have seen how Wav2vec2 performs using captions as labels rather than
verbatim text. We learned that the data that we feed Wav2vec2 needs to
be pre-processed carefully to create useful data for training. With the use
of different filters and pre-processing techniques we learned what type of
caption data is needed and how we need to edit it to improve the learn-
ing process. We also learned that the use of different types of models that
Wav2vec2 provides, such as BASE10 and XLSR, can influence the learning
process. We learned about several properties that Wav2vec2 can learn quite
well about the captions.

We learned that working with caption labels is very difficult. From col-
lecting the data to evaluating trained model results there are a lot of hassles
that are being introduced which are not always visible early on.
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Chapter 7

Appendix

common :
fpl6: true
log_format: json
log_interval: 200
tensorboard_logdir: ./tensorboard

checkpoint:
save_interval: 50
save_interval_updates: 10000
keep_interval_updates: 1
no_epoch_checkpoints: true
best_checkpoint_metric: wer

task :
_name: audio_finetuning
data: 777
normalize: false
labels: ltr

dataset:

num_workers: 6
max_tokens: 1600000

skip_invalid_size_inputs_valid_test:

validate_after_updates: 10000
validate_interval: 50
valid_subset: wvalid

distributed_training:
ddp_backend: legacy_ddp
distributed_-world_size: 1

criterion:
_name: ctc
zero_infinity: true
optimization :

max_update: 20000
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Ir: [0.00005]
sentence_avg: true
update_freq: [16]

optimizer:
_name: adam
adam_betas: (0.9,0.98)
adam_eps: 1le—08

Ir_scheduler:
_name: tri_stage
phase_ratio: [0.1, 0.4, 0.5]
final_lr_scale: 0.05

model:
_name: wav2vec_ctc
w2v_path: 777
apply-mask: true
mask_prob: 0.65
mask_channel_prob: 0.5
mask_channel_length: 64
layerdrop: 0.05
activation_dropout: 0.1
feature_grad_mult: 0.0
freeze_finetune_updates: 777

Listing 7.1: base_10h.yaml
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common :
fpl6: true
log_format: json
log_interval: 200
tensorboard_logdir: ./tensorboard

checkpoint:
save_interval: 1000
save_interval_updates: 1000
keep_interval_updates: 1
no_epoch_checkpoints: true
best_checkpoint_metric: wer

task :
_name: audio_finetuning
data: 777
normalize: false
labels: ltr

dataset:

num_workers: 6
max_tokens: 320000

skip_invalid_size_inputs_valid_test:

validate_after_updates: 10000
validate_interval_updates: 5000
valid_subset: test

distributed_training:
ddp_backend: legacy_ddp
distributed_world_size: 1

criterion:
_name: ctc
zero_infinity: true

optimization :
max_update: 60000
Ir: [0.0003]
sentence_avg: true
# 40
update_freq: [40]

optimizer:
_name: adam
adam_betas: (0.9,0.98)
adam_eps: 1le—08

Ir_scheduler:
_name: tri_stage
phase_ratio: [0.1, 0.4, 0.5]
final_lr_scale: 0.05

model :
_name: wav2vec_ctc

o1
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w2v_path: 777

apply_mask: true

mask_prob: 0.75
mask_channel_prob: 0.25
mask_channel_length: 64
layerdrop: 0.1
activation_dropout: 0.1
feature_grad_mult: 0.0
freeze_finetune_updates: 777
checkpoint_activations: false
# to fix errors:
encoder_layers: 12
encoder_embed_dim: 768
encoder_ffn_embed_dim: 3072
encoder_attention_heads: 12

Listing 7.2: xlIsr.yaml
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