
Bachelor thesis
Computing Science

Radboud University

Developing ELVis:
A 4G network analysis and visualisation tool

Author:
Thomas Luijkman
s1039468

First supervisor/assessor:
PhD, Katharina Kohls

kkohls@cs.ru.nl

Second assessor:
Associate professor, Erik Poll

erikpoll@cs.ru.nl

January 17, 2022



Abstract

Mobile networks are a fairly specialised field of study in computing science.
However, with billions of people using mobile networks every single day, it is
important for the network to behave securely and correct. To analyse traffic
on a mobile network is no simple task.

This report documents the building of an analysis and visualiser of
4G/LTE network traffic. The purpose of such a tool is to give individu-
als more insight into the traffic flowing in and out of their mobile phone.
The resulting product might be useful for developers interested in build-
ing on a mobile network. However, for simply interested individuals, the
product still requires too much knowledge of mobile networks and general
network security.
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Author’s note

This thesis report greatly concerns the development of a piece of soft-
ware. While the source code for this piece of software should be contained
in the same folder as this report, or packaged in the same .zip file. If
this is not the case, the source code will always be publicly available at
the following GitHub page: https://www.github.com/thomasluijkman/

4Gvisualiser1

1Note that this URL links to the latest release of the software. In case the software was
changed over time, and you want to see the state of the software as it was when this report
was completed, the following link can be used: https://github.com/thomasluijkman/

4Gvisualiser/tree/835fca65b34288b562546ff1a7ae731c166eb602
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Chapter 1

Introduction

Although the transition to the fifth generation of mobile networks (also
known as 5G) is well underway, the usage of the 4G/LTE mobile network
is far from over. Projections show that in 2026, nearly a decade after the
inception of 5G, there will still be over four billion devices using the previous
generation.[26]

However, tools that perform security analysis on this specific type of
communication are difficult to come by. There are applications like Wire-
shark, which accept PCAP files and show general data based on all of the
packets present in the file. This data includes information about which
protocols are being used, what state these protocols are in and between
which devices the packet is being sent, to name a few. Research has also
been done to use machine learning to find potential security flaws in offi-
cial specifications.[7]This thesis documents the development of a tool, which
parses, visualises and analyses the correctness and security of communica-
tion on 4G networks.2 The aim of the development of such a tool is to
advance the accessibility of 4G communicatio

This makes it difficult to perform adequate security analysis on 4G net-
works, as it would entail going over each individual packet in the file and
checking if the data complies with the exact way it was designed. The ex-
isting specifications are also not nearly accessible enough to be read by your
average developer; every protocol has multiple documents consisting of hun-
dreds of pages, all of them needing deep background knowledge of mobile
networks.

The problem with Wireshark and other tools like it, is that they do
not perform any kind of in-depth analysis concerning the security and cor-
rectness of the files that they are being fed. For example, a packet with
an incorrect sequence number will still appear as a regular packet in Wire-
shark’s interface, instead of showing that there is something wrong with this

2For convenience’s sake, this tool will be referred to as a “(4G network) visualiser” or
its name, “ELVis”, for the remainder of this report.
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packet.3

This is not to say that security analysis has not been performed on
4G/LTE networks. Rupprecht et al. used their own testing framework,
mimicking a real LTE setup to try and find flaws in the authentication and
encryption of traffic on the mobile network.[23] They found that it is still
possible to send unencrypted traffic over 4G/LTE networks, thus allowing
for attacks on the confidentiality of the network. This is not allowed accord-
ing to the official 3GPP specifications.[2] The user is also never informed
whenever traffic is sent and received unencrypted. Chlosta et al. found
that there are still commercial providers in several countries allowing com-
munication without security functions enabled – again going against official
specifications.[8]

This tells us a few things about the state of 4G/LTE security. First,
it shows that there are still flaws in the security of this mobile network.
Security analysis is therefore still very much necessary. It also shows that
the average user does not have a lot of insight into the way their mobile
device connects to a 4G network. Nowadays, most web traffic is encrypted
by HTTPS standards, but this is of course far from the only network traffic.
Since encryption settings for mobile networks happen “under the hood”,
users will not know that their traffic could be read by a smart attacker.
And if the wrong data is read, privacy leakage can occur.[14]

This thesis documents the development of a tool, which parses, visu-
alises and analyses the correctness and security of communication on 4G
networks.4 The aim of the development of such a tool is to advance the
accessibility of 4G communication analysis for developers and researchers
alike. It also provides a reflection on the finished product and possible fur-
ther amendments that can be made.

Note that analysing all aspects of 4G traffic is out of scope for a thesis
project. That is why the finished product will not be analysing all as-
pects of 4G/LTE networks. The visualisation and analysis will be limited
to connection establishment, from the moment the mobile device starts its
connection with a base station until the connection establishment is com-
plete, and the device is ready to perform actual communication over the
mobile network. It is also a practical analysis, taking a packet capture from
4G/LTE communication and checking if everything is going according to
specification, instead of theoretical analysis of the security of protocols done
by others.[12, 14, 25, 29]

Chapter 2 will go over the protocols necessary to understand what hap-
pens when a mobile device tries to connect with a 4G/LTE network. Chapter

3Note that this only holds for the 4G/LTE configuration. When viewing more well-
known attacks on regular network security, such as ARP-spoofing, does get picked up by
Wireshark and displayed differently than a normal ARP packet.

4For convenience’s sake, this tool will be referred to as a “(4G network) visualiser” or
its name, “ELVis”, for the remainder of this report.
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3 will explain the framework on which the analysis component of our tool
is built, before diving deeper into the analysis itself in chapter 4. There will
be a discussion on the limitations of the tool and in chapter 5.1 and possible
use cases of the tool in chapter 5.2.
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Chapter 2

Technical background

The 4G network has a layered network protocol stack, similar to how wired
networks operate. To understand the development process of our visualiser,
we will first give a quick overview of the different protocols on the mobile
network, before moving on to how these protocols interact with each other
in the context of connection establishment.5

2.1 Components of a 4G network

First it is important to explain some of the terminology used when work-
ing with mobile networks. In this section, we will briefly explain all these
components and how they interact with each other in a mobile network.[10]

A brief overview of the 4G network architecture can be found in figure
2.1. The grey boxes represent the major components in the 4G network
architecture: these are the UE (mobile device), eNodeB (radio tower) and
EPC (core network). The mobile device has a direct (physical) connection
to the radio tower. This radio tower forwards all communication to the core
network, and this core network handles the communication depending on
the type of communication.

There are two “planes” in which messages between a mobile device and
the core network can fall. There is the user plane, which is taken care of
by the blue components of the EPC in figure 2.1. Messages on the user
plane (also referred to as the data plane in literature) will be forwarded
by the core network to external networks, such as the internet or from the
internet to the mobile device. The other plane is the control plane, denoted
by the red components of the EPC in figure 2.1. The control plane takes
care of the connection between the mobile device and the core network.
Connection establishment, authentication and security handling are all part
of the control plane’s responsibilities.

5Note that concepts like “cells” and “channels”, while mentioned in passing in this
report, will not be thoroughly explained here, as they are too low-level to be relevant for
this project.
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Figure 2.1: The 4G network architecture[13]

This research focuses on connection establishment for a mobile device
to a mobile network. This means that, for this research, we will focus on
messages sent over the control plane. An overview for components on the
user plane will also be provided, however, to give a complete picture of how
the 4G components interact with each other.

At the bottom of the image there are two more ways to differentiate
between communication: there is the Access Stratum and the Non-Access
Stratum. The AS refers to communication between the mobile device and
the radio tower. The NAS refers to communication between the mobile de-
vice and the MME, a component in the core network on the control plane.6

This is an important distinction as AS and NAS can have different configu-
rations with regards to security, for example.

2.1.1 User Equipment

The User Equipment (commonly abbreviated as UE) refers to any mobile
device that sends or receives data via a mobile network. The handling of the
mobile network connection happens in two separate parts of the UE: there is
the application processor, on which the operating system and all applications
are run, and there is the baseband processor, which handles the connection
to the mobile network. The baseband processor receives data to send from
the application processor, brings it through the protocol stack and sends it
to the base station via radio waves. It also receives packets via radio waves
and transmits these to the application processor.

All UE devices have a SIM-card, which, in LTE standards, is referred to
as the Universal Integrated Circuit Card, or UICC. This SIM-card contains

6Note that the term “NAS” both refers to the connection between a mobile device and
the MME, and the protocol and messages that are sent over this connection.
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a International Mobile Subscriber Identity (IMSI) value, which is used by
Internet Service Providers to see if you are part of their network. There is
also an International Mobile Equipment Identifier (IMEI), which is used to
identify the device that is connecting to the mobile network.

These values are both unique to all individual users and devices, and
are crucial to keep hidden. If someone were to perform a man-in-the-middle
attack, they might be able to get accurate location data of subscribers who
use location-based services. If an IMSI were attached to each message that
was sent, the man in the middle might be able to know exactly who is exactly
where at any given time.

To protect the confidentiality of a mobile network user, each mobile
device is assigned a Global Unique Temporary Identifier (GUTI). This GUTI
is unique to each mobile device and can be used to identify a user to the
mobile network as to keep the IMSI hidden. It consists of the GUMMEI,
which identifies the core network that assigned the GUTI, and a random
temporary value to identify the device.

2.1.2 Evolved Node B

The Evolved Node B is the base station the UE connects to, and is often
abbreviated as eNodeB or eNB. Once connection from a UE to a eNB has
been established, the eNB serves as a middle-man sending packets from the
UE to the core network and vice versa.

The base stations also communicate with each other, in order to let
mobile devices change location without losing the network connection. The
network of eNodeB’s communicating with each other is referred to as E-
UTRAN. This name is also used to refer to the connection between UE and
eNB. The research will be focused on traffic on E-UTRAN. Traffic from the
mobile device to the base station is often referred to as the uplink, and traffic
from the eNodeB to the UE is called the downlink.

2.1.3 Evolved Packet Core

The Evolved Packet Core (commonly abbreviated as EPC) is the core net-
work of 4G/LTE.[9] It consists of several components:

• Mobility Management Entity (MME): The MME handles a lot of
the control of the connection between the UE and the EPC. This is the
part of the EPC the UE talks to during the initial attach procedure7.
The MME also handles the handover procedure when the UE needs
to connect to a different base station.[6]

• Home Subscriber Server (HSS): The HSS has stored data of the

7This procedure will be explained in section 2.3.3

9
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L1 PHY PHY

Figure 2.2: Protocol stack of the baseband processor

subscriber, including the IMSI and cryptographic keys when commu-
nication is encrypted.

• Serving Gateway (S-GW): The Serving Gateway routes the IP
packets from the UE to external networks and vice versa.

• Packet Gateway (P-GW or PDN GW): The Packet Gateway
(also known as the Packet Data Network gateway) provides the con-
nection to external, non-mobile networks. It routes packets received
from the S-GW to external networks and vice-versa. During the initial
attach, the P-GW allocates IP-addresses. Although in literature, the
P-GW and S-GW are often described as two separate entities, they
are sometimes combined in practice.[13]

2.2 The 4G protocol stack

4G also has a layered network protocol stack, similar to networks like Eth-
ernet. To illustrate how the network flow differs from one of these networks,
we will explain how a packet gets built and transmitted from a UE device
and what the eNB does with it.

Similar to Ethernet, the process of a UE and a eNodeB communicating
can be seen as a message travelling through five “layers”, where each layer
houses different protocols.8 The top layer consists of application protocols,
like a computer communicating with an e-mail server. The fourth layer
(also known as the transport layer) is used to provide reliable data transfer
between the endpoints of communication. An example of a fourth layer
protocol is TCP.

The third layer is the network layer and is used for the routing and
addressing of points on a network. The Internet Protocol (IP) is a well-

8Officially, the OSI-model that is most commonly used in network architecture consists
of seven layers[21], but to prevent needless complication the top three layers will all fall
under the umbrella term: ‘application layer’.
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known protocol on the third layer. The second layer provides reliable data
transfer between two points in a route. The first layer is the physical layer
and are the actual bits moving over a wire or air interface between two
points in a network.

The fifth and fourth layer are handled by the application processor and
are the exact same for LTE, compared to Ethernet networks. On the third
layer, the application processor hands over the data prepared by the upper
layers to the baseband processor, which handles the third, second and first
layer of 4G communication. This is where the network protocols used differ
from the more commonly known Ethernet variants. A visual representation
of the protocols implemented on a baseband processor can be seen in figure
2.2.The baseband processor takes the data handed over by the application
processor through all of the protocols in the bottom layers, until it arrives
at the first layer (the physical layer), where it will be transmitted to the
base station via radio waves and travel back up the protocol stack here. At
the third layer, the packet is handed over to the EPC, where it goes through
the S-GW and PDN-GW to the external networks.

Below is an explanation of the protocols that are used by the baseband
processor[19]:

• Non Acces Stratum (NAS): Provides security, authentication and
authorisation for the UE device. This is the main protocol used for
communication between the UE and MME.

• S1 Application Protocol (S1AP): Protocol on the control plane
used for communication between the eNodeB and EPC. The eNodeB
talks to the EPC via the MME on the control plane, and S1AP is used
for this purpose.9

• Radio Resource Control (RRC): Manages connection on the con-
trol plane between the UE and eNodeB. Also manages ciphering and
integrity protection. RRC also encapsulates NAS messages.

• Packet Data Convergence Protocol (PDCP): Receives the data
ready for transmitting from the IP protocol, and data for ciphering
and integrity protection from the RRC protocol. Also performs tasks
like duplicate control and in-sequence delivery.

• Radio Link Control (RLC): Sends the PDCP data in three different
modes:

1. Transparent Mode (TM): PDCP data simply passes through. Noth-
ing is done to check correctness of the data.

9This protocol is not part of the E-UTRAN protocol stack as it does not concern the
UE at all. It is still included in this explanation for completeness’ sake, however.
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2. Unacknowledged Mode (UM): PDCP data can be altered and re-
ordered when necessary. There is also duplicate detection. How-
ever, no acknowledgement is sent back.

3. Acknowledged Mode (AM): The addition of acknowledged data
allows for retransmission of data, so that missing segments can
get sent again, leading to better integrity of the data.

• Medium Access Control (MAC): Responsible for multiplexing the
data to and from the PHY layer. Also responsible for scheduling within
UE devices (at the UE’s end) or between UE devices (at the eNB’s
end).

• Physical layer (PHY): Transmits data received from the MAC pro-
tocol over the air through radio waves.

Note that these are very general explanations of the protocols. All of these
protocols are part of the connection establishment process which will be
analysed, thus it is good to have an overview of the structure of a 4G net-
work and its protocol stack before moving on to the topic of connection
establishment of a UE device.

2.3 Connection establishment

This section will dive deeper into how these protocols interact with each
other when the UE is connecting to an LTE network how the messages
passed between UE and eNB are structured. Since this thesis focuses on
an analysis of the correctness and security of the connection establishment
on a 4G/LTE network, it will be important to understand the process of
establishing a connection. There are three major phases taking place here:
eNodeB selection, the connection establishment with RRC and the initial
attach.

The eNB selection happens using broadcast messages containing infor-
mation about the base station. The UE uses these messages to then select a
base station to connect to. The RRC protocol is used to establish a connec-
tion between the UE and a base station. If and only if the RRC connection
establishment procedure has succeeded, the UE will go through the attach
procedure, where it authenticates itself to the EPC via the NAS protocol.
After the attach has been accepted, the UE is officially connected to the
LTE network. In this chapter we will provide a detailed explanation of the
different exchanges that happen between all components of a 4G network
for connection establishment to happen.
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2.3.1 MIB and SIB messages

There is often more than one base station to connect to for a given UE
device. To inform the mobile device about a possible connection point, the
eNodeB periodically sends out messages informing the UE.[12] There are
two types of these messages: the Master Information Block message (MIB)
and System Information Block messages (SIB).

The MIB contains important information about the bandwidth possible
on that eNodeB, and the System Frame Number.[24] This is a clock value
which resets approximately every 10 seconds which the UE needs to syn-
chronise to for communication.10 This message is generated with up-to-date
information every 40 milliseconds, and retransmitted every 10 milliseconds.

There are 11 SIB messages, but for connection establishment only the
first two are relevant. SIB1 contains information about the identity of the
network, such as the Mobile Network Code and Mobile Country Code and
the specific cell a UE can connect to. It also contains scheduling info for
other SIB messages the UE should want.

SIB2 contains configuration for RRC and the random access procedure
that follows when the UE has selected a base station to connect to. It also
contains configuration values for specific channels over which communication
can occur. After this message the UE can select a base station to connect to
and perform the random access procedure, used to synchronise the UE and
eNodeB, after which the rest of connection establishment can take place.

2.3.2 RRC connection establishment

The RRC connection establishment procedure is defined in the official 3GPP11

specifications.[4] It starts with the sending of a RRC Connection Request

message. This message is sent on the uplink, and contains the reason for
establishing a connection and the identity of the UE. The identity value can
either be a large random value or a SAE-Temporary Mobile Station Identi-
fier (S-TMSI). This identifier is sometimes used to protect the confidentiality
of the IMSI.

The UE then waits for the reception of a RRC Connection Setup mes-
sage. With this message, it receives some configuration variables from the
eNB for RRC and other lower-layer protocols. It will perform configuration
based on these values, after which the protocol will enter a connected state,
which means the connection is complete. The UE will set up one more
message called RRC Connection Setup Complete with some more values
received from upper layers. If there is already a registered MME the ap-
plication processor wishes to connect to, this value is also included in the

10LTE has also introduced the HFN or Hyper Frame Number, which increases every
time the SFN resets. This is not relevant to connection establishment, however.

11Third Generation Partnership Project, the organisation behind all the 3G, 4G and
5G specifications.
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Figure 2.3: Successful RRC connection establishment procedure[4]

message. The protocol now enters the RRC CONNECTED state, and the
initial attach can begin.

If no RRC Connection Setup message has been received after a certain
time, protocol configurations will be reset and upper layers will be informed
of the fact that connection could not be established.

If the connection is rejected by the base station for whatever reason, the
mobile device will receive a RRC Connection Reject message instead of a
RRC Connection Setup message. If this occurs, the UE will reset configu-
ration and let upper layers know that connection could not be established.
Connection is barred for a while, until a timer has expired, after which upper
layers can try to connect again.

2.3.3 Initial attach

Although the RRC connection setup and initial attach procedure are sep-
arated in this thesis, they do have some overlap in the RRC Connection

Setup Complete message. This message sends the “attach request”, which
sets the attach procedure in motion. The attach procedure is handled by
the NAS protocol, as described in the 3GPP specifications.[1] With the at-
tach request, the UE sends along information about itself, security functions
it can use (cyphering and integrity functions, for example) locational data
such as the mobile country code, and other, more specific values that are
not important at this point.

There are a few different message exchanges happening during the initial
attach, as can be seen in figure 2.4. This figure shows the most important
exchanges, but not all of them. Other important exchanges that are not
shown here are the identity request and the UE capability information. In
the following subsections, each of these exchanges will be explained in more
detail.
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Figure 2.4: Successful connection establishment[12]

Identity request

The identity request is the first exchange to happen after the attach request
is sent. This message is sent from the MME to the UE to find if the UE is
“subscribed” to this mobile network. It requests the IMSI of the UE, which
the UE delivers in the identity response message. This is the only time the
IMSI is sent over the mobile network.

It is important to note that the identity request does not happen all the
time. The core network will only ever send the identity request if the GUTI
or S-TMSI sent to the network are not known to the network.

Authentication

After the identity of the connecting UE has been established, the authenti-
cation procedure happens. This happens by an authentication request and
response message. The EPC uses the IMSI provided by the UE to generate
an authentication value (AUTN) and a random nonce value (RAND) to be
used as input for a cryptographic function, together with a secret key K
which both the EPC and UE should have knowledge of. With the EPC, the
key is stored in the HSS and with the UE, it is stored in the SIM card. Both
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parties use the same cryptographic function to calculate a specific value.12

This cryptographic function also calculates other keys used for ciphering
and integrity protection later. The UE sends its results (RES) to the EPC,
and if the result matches the expected result (XRES), the authentication is
complete.[17]

Authentication does not always succeed, of course. If RES is not equal
to XRES, there will not be a successful authentication, and the EPC will
send an authentication reject message. Upon the reception of this message,
the authentication will fail and the SIM will be considered invalid until the
UE is switched off. The next time the UE is switched on, it can attempt
another authentication. If the MAC provided in the request is not accepted,
the UE will send an authentication failure message.

Security options

After authentication comes the security mode command. This is done by
the EPC sending a message to the UE via the NAS protocol, replaying the
security options the UE provided in the attach request, and providing the
EPC’s choice of cyphering and integrity functions. The UE sends a message
back confirming the NAS choice of functions. The same is then done with
the RRC protocol for the security of the E-UTRAN connection.

Capability information

The final phase of the attach procedure is the UE capability information.
The EPC first asks the UE for its capabilities, which the UE provides. This
is the largest message sent in the connection establishment procedure, being
over 1600 bytes of data.

After this message, there is one final RRCConnectionReconfiguration
which contains similar data as the RRCConnectionSetup message but with
some parameters changed to reflect the parameters provided by the UE
capability information. If this procedure goes well, the connection reconfig-
uration also contains the NAS message saying that the attach is accepted.
The UE confirms this by sending a message that the attach is complete, and
from this point on, data can be transferred over the mobile network.

12For those interested, a summary of the LTE Authentication and Key Agreement
functions is provided in appendix A.
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Chapter 3

ELVis concept and
framework

Now that all the background knowledge is provided, it is time to start dis-
cussion on the 4G network visualiser and analyser as described in chapter
1. This chapter describes the functionality of the tool and the framework
on which the analysis component is built.

The 4G visualiser will be named ELVis, an acronym which stands for
E-UTRAN LTE Visualiser. The name was chosen since the security analy-
sis is mainly focused on E-UTRAN. Currently, analysis visualisation is only
focused on E-UTRAN communication. Protocols like S1AP are not com-
patible with the visualiser in its current state, since it relies on the presence
of a MAC layer in every packet present in the capture. For reference, ELVis
was constantly tested using the enb.pcap and ue mac.pcap files generated
by srsRAN, and works using these packet captures.

ELVis can be seen as three distinct components working together to
make a full application. There is the control segment, which parses the
command line arguments before parsing the packet capture by taking data
from a packet capture and stores it in a custom-defined Packet class. The
visualiser takes parsed data and displays it, also taking analysis results into
account. The analyser is the most involved component of the three, which
is why the discussion on this piece of code has been placed into its own
chapter.

Figure 3.1 shows the general program structure of ELVis. Everything in
the grey box is included in the source code, everything outside should be
installed prior to running the program. As is visible in the diagram, the
program starts off by parsing the command line arguments before starting
to parse the packet capture file. After this has succeeded, the program will
analyse and visualise the data.

By default it does both – first analysing the data and then visualising it,
using the analysis results to add more details and colours to the visualisation.
However, the user can choose to do only one of the two options via the
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Figure 3.1: Program structure of ELVis

command line. If it only visualises, it will skip all analysis and provide the
UI. If it only analyses, the results of analysis will be shown in the terminal
from which ELVis is run.

While this report will contain the most important bits of the source
code, which can be found in appendix B, it might be nice to take a look
at the source code as a whole, to see how different parts of the program
might interact. As explained in the author’s note, the source code should
be provided in the same .zip file as this report. However, if the source
code is absent, for whatever reason, it can always be found at the following
GitHub page: https://www.github.com/thomasluijkman/4Gvisualiser.
The readme.md file contains instructions on how to correctly install depen-
dencies for the program.

As is visible in both the repository and listings, ELVis was developed
entirely in Python on Ubuntu 20.04. The program should also work on
older versions of Ubuntu and might also work on Windows, but testing has
only been performed on Ubuntu 20.04, so no guarantees can be given on
correct workings on other platforms.
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3.1 The Packet class

Our Packet class mostly consists of a bunch of variables bundled together, to
keep all the data stored neatly and make sure that everything that is needed
for visualisation and analysis is easily accessible. Important attributes are
Packet.data, which is the parsed data, Packet.summary, which is the one-
line summary used in the visualiser, and Packet.category, a list of all
phases of connection establishment that a packet is involved in. There
is also Packet.analysis, which is a string showing all errors and warn-
ings gathered by the analysis, and Packet.eval, a numerical score of the
“wrongness” of a packet that is used to generate the colour coding in the
visualiser.

Mostly it is used in the same way you might use a struct in C++,
however there are a few auxiliary functions present, such as the function
get colour, which returns an RGB colour to use for visualisation, where a
red packet means there are severe errors, and a yellow packet means there
are only small errors or warnings. There is also add analysis() which
appends a sentence to Packet.analysis and updates the evaluation score.
The process summary packet is used to make sure a packet’s summary does
not exceed a maximal character limit for visualisation.

3.2 Parsing the data

The first piece of code that was written concerned the parsing of a .pcap file
into Python. The files used for this purpose in the source code are main.py
and packet.py. The library responsible for parsing packet captures into
Python is called Pyshark, and describes itself as a “Python wrapper for
tshark, allowing python packet parsing using wireshark dissectors.”[15]

So, while this does require the user to have installed Wireshark and
tshark, a terminal-based implementation of Wireshark, it is probably the
simplest library that does exactly what we need. Alternatives that were
considered were dpkt13 and Scapy14. However, while both of these libraries
had a lot of recommendations online concerning packet parsing in Python,
they both did not allow the parsing of LTE packets, which made it useless
for us.

Wireshark, however, also does not parse LTE packets by default. For
that, a specific user profile must be created.15 After the creation of this
configuration profile, the packet capture can be loaded into Python quite
easily.

13See: https://github.com/kbandla/dpkt
14See: https://scapy.net
15For details on parsing LTE packets in Wireshark, refer to page 16 of the srsRAN

documentation.[28]
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It is not this easy in our program, however. We also want to store the
one-line summary you see in the user interface of Wireshark. There is also a
field called mac-lte, which we can not access, since Python does not parse
expressions like ’packet.mac-lte.direction’ correctly.16 We also want to store
our data in our defined Packet class. All these restrictions make the parsing
a bit more involved, which can be shown by comparing listing B.1, which
is the standard way of reading a file into Python using Pyshark, and listing
B.2, which is the current implementation of our parsing function.

3.3 Control flow

The user has a few options to choose from. The specifics of all the options
can be found in the readme.md file, in the same place as the source code.
The command line arguments are all handled by main.py. Since ELVis is a
terminal-based application, the user can provide command line arguments to
change the behaviour of the program. Arguments are read into the program
via the sys.argv list. The function to parse command line arguments is
fairly long, but listing B.3 can be looked at for the general idea.

Command line arguments are put into one of two Python dictionaries:
options and parse options. The first one concerns general options, such
as the analyse-only and visualise-only options. The second one contains
parse-specific options. These options are translated to Tshark arguments
and are fed directly into the FileCapture command in listing B.2.

3.4 Visualising packet flow

The next step in the development process was visualising data. We first
looked into using the image processing features of OpenCV,17 but ultimately
we chose for Tkinter18, a module for creating images and a graphical user
interface in the Python standard library. This module is the foundation of
the visualisation of the packets parsed using the script described in section
3.2. The visualisation is all handled by the ltevisualiser module.

The visualiser starts by creating a window and adding two vertical lines.
These lines represent the UE and eNodeB endpoints. After this, it processes
the packets to be shown on screen. There can be five packets shown on the
screen at any point in time – at this point there is no variable screen size.
These five packets have their summary shown above an arrow. The arrow
is directed to the destination of the message. The user interface can be seen
in figure 3.2.

16The IDE immediately raises a red flag: “Unresolved reference: lte”
17See: https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
18See: https://docs.python.org/3/library/tkinter.html
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Figure 3.2: The user interface of ELVis

At the bottom of the vertical lines are buttons to traverse the packets
loaded into the script. To the right of the graph are buttons to show packets
in more detail. If the user clicks this button, a new window pops up, showing
a summary of the packet, all the categories it belongs to, and the analysis
result of the packet. Below that is the packet in its entirety as parsed by
pyshark. An example of ELVis showing the details of a packet can be seen
in figure 3.3.
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Figure 3.3: Showing a packet in ELVis
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Chapter 4

Capture analysis

Arguably the most important part of ELVis is the packet analysis. The
idea is to go over every packet at least once to find errors compared to the
correctness of the protocol. The files in the source code performing the
analysis are all located in the analyser module of the program. To perform
analysis, the packets have been split into different categories. The categories
relevant for analysis are:

• SecurityModeCommand

• Identity request

• Authentication request

• NAS (those used in the initial attach procedure, see section 2.3.3)

Note that not all RRC and NAS messages are being analysed in the thesis
report. Only those relevant to the connection establishment will be taken
into account here.

In the following subsections, we will discuss how the analysis is per-
formed and what mistakes are being looked for. They will come in the order
mentioned above, as that is also the chronological order of when the analysis
scripts for these packets were created.

The script also uses the packets to gather information about the UE
and other configuration parameters. These are stored in a dictionary called
ue info. Of course, it does require the assumption that at least some infor-
mation sent between the UE and eNodeB is accurate. As such, we assume
the attach request to contain complete and accurate information about the
UE, as this is a message on which all other messages in the attach procedure
rely. If this information appears to be inaccurate, however, the analysis for
specific phases in the initial attach will probably catch it.

Every time an abnormality is detected in a packet, a (usually) one-
sentence description of the error will be added to a string that is stored
in the Packet class, together with the severity of the abnormality. We have
defined two kinds of abnormalities: warnings and errors. Warnings occur
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Figure 4.1: Using srsRAN with ZeroMQ on Ubuntu 20.04

when the packet is not necessarily erroneous according to the specification,
but the abnormality still should be looked at. An example could be the fact
that ciphering algorithm “eea0”19 is chosen in the security mode command.
Errors occur when the packet contains faulty data or has an error in the
configuration according to specifications. An example of this could be if RLC
is not performing in acknowledged mode during the initial attach procedure.
In 3GPP specification 36.331 it is stated that this should be the case.[4]

4.1 Experimental setup

During the development of ELVis, we have consistently used the “open
source 4G and 5G software radio suite” srsRAN.[27] We first attempted
to use a USRP B205mini, as this would allow us to connect our own mo-
bile devices to srsRAN. However, due to unresolved technical difficulties,
we instead used ZeroMQ, a networking library which can also act as a vir-
tual radio interface. Using srsRAN in combination with ZeroMQ exactly as
described in the srsRAN documentation,[28] we can use three terminals to
simulate a mobile device connecting to a mobile network, as seen in figure
4.1.

While diverting from the original setup felt like a rough change at first, it
turned out that ZeroMQ was a better solution all along. Using ZeroMQ and

19A “null-ciphering” algorithm, meaning that data will not be encrypted.
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the UE protocol stack implemented by SRS we could change the workings
of existing protocols in ways we could not if we were using our own phones.
Details on the changes made to the srsRAN source code are described in
appendix C.

Apart from the patches made here, there were changes to the configu-
ration files srsRAN uses. These files are ue.conf, enb.conf and epc.conf.
If there were changes made, the changes will be explained in their relevant
sections. All the packet captures generated can be found in the input/

folder of the ELVis source code, and the relevant captures will be referred
in their own sections.

4.2 Analysing the SecurityModeCommand

The SecurityModeCommand exchange, during the initial attach, seemed like
a good place to start, as the packets are relatively small. This allows for very
easy analysis and seemed a good way to experiment with different methods
of analysis. This analysis is performed in the smc.py file, and analyses all
six messages of the SecurityModeCommand process – three for the NAS
protocol and three for the RRC protocol. Both are checked for the same
errors.

The main error in the SecurityModeCommand would be that the security
capabilities do not match the command given by the core network. During
analysis there will be a check if the replayed security capabilities in the
NAS SecurityModeCommand message are similar to what was present in
the attach request. There will also be a check if ciphering and integrity
protection algorithms are used. Integrity protection algorithms must be
used according to 3GPP specifications, while ciphering algorithms should
be used.[2] By default ciphering is disabled in srsRAN, otherwise the packet
captures would just contain encrypted data. However, we will still warn the
user if ciphering is disabled.

We have tried to work with different security options, in all the configura-
tion files. In ue.conf, we have set the UE’s capabilities to not allow “eea0”,
the null ciphering algorithm, and results of those configurations can be seen
in enb nas security mismatch.pcap and enb rrc security mismatch.pcap.
Forcing the network to use ciphering resulted in enb nas ciphering.pcap

and enb all ciphered.pcap.
To show how one of these messages is analysed, we take the NAS Securi-

tyModeCommand message as an example. The code for the analysis of this
message is found in listing B.4. This message both replays the security ca-
pabilities of the UE, provided in the attach request, and sends the command
to use a certain ciphering algorithm and integrity protection algorithm.

The analyser first checks if the replayed UE security capabilities are the
same compared to the ones sent in the attach request. If this is not the case,
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the analyser will add this to the packet as a warning.
Afterwards, the script checks if the UE is actually capable of using the

chosen security algorithms. If it is not, the error is reported in the analysis.
It will also check if a failure message has been sent back. This is also a
security mode message, and these failure messages are thus also analysed by
the script. If no failure message has been sent back, this is also added to
the analysis.

Finally, the script checks if the ciphering and integrity protection algo-
rithms are actually used. If the MME chooses “eea0” or “eia0” as security
algorithms, this means that the security algorithms are not actually used,
which could lead to potential attacks on the confidentiality or integrity of
the communication.

4.3 Analysing the identity request

The identity request happens before the security mode command, and is also
a very simple part of the attach procedure. It asks the UE for either the
IMSI or a IMEI value, however, we have only implemented the analysis when
the UE asks for the IMSI, as this was the only implementation provided by
srsRAN. Due to this sparse implementation of what is already a very small
part of the connection establishment process, no packet captures have been
generated for this part of the analysis. The analysis for the identity request
happens in identity.py.

The identity request is only checked for the value it asks. If the query
value is not the IMSI, the analysis will provide a warning that this deviates
from the srsRAN implementation. Since this program was designed and
tested using packet captures from srsRAN, there is no guarantee the format
will be the same for other LTE implementations.

The identity response is checked if the value it returns matches the value
that was queried. It would be an error if a IMEI was returned while the
MME asked for the IMSI. If the user has provided the IMSI of the SIM-card,
and the MME queried the IMSI, the analyser checks if the IMSI provided
matches the IMSI sent to the MME. If this is not the case, a warning is
provided and the IMSI gets updated to always be the value sent to the
MME. The code used for this analysis can be found in listing B.5.

4.4 Analysing the authentication process

The authentication process, similar to the processes mentioned in earlier
subsections, only consists of a few messages between the MME and UE. How-
ever, the analysis is a bit more involved, as we also want to check if the calcu-
lation of authentication values, such as RES and MAC-A, is calculated cor-
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rectly.20 The authentication procedure is analysed in authentication.py.
An attack on the attach procedure was described by Hussain et al. When

analysing the authentication process we also look for signs of attack A-3 as
described in [16]. This disruption of service attack, dubbed the numb attack
in the paper, causes the attach procedure to abort instantly, by sending a
authentication reject message to the UE without any cause. Analysis will
also find signs of this attack.

The effect of the numb attack can be found in enb auth reject.pcap.
Other irregularities, such as a miscalculated MAC-A or RES value, can
be found in enb auth failure.pcap, enb auth failure rand.pcap and
enb auth reject correct.pcap. They were all generated using the au-
thentication patch described in appendix C.2.

Calculating the RES value was easier than expected, as an open-source
Python module called CryptoMobile[22] already existed to calculate the dif-
ferent MILENAGE output using the inputs received.21 The XOR algorithm
was not implemented in this module, but using the srsRAN source code and
the 3GPP specifications, we were able to easily translate the algorithm to
Python. The code used for analysing the RES value in case the MILENAGE
algorithm is used can be seen in listing B.6.

The analysis checks for signs of the numb attack by checking if an au-
thentication reject happens before an authentication response message was
sent. If the authentication reject was sent after an authentication response,
it will check if the rejection was justified – if the sent RES value truly did
not match the expected RES value.

4.5 PDCP MAC invalidation

Another disruption of service attack is found in the PDCP integrity pro-
tection. The integrity protection algorithm is chosen in the RRC security
mode command. Integrity protection is done via a Message Authentication
Code (MAC), which is usually a hash or cipher of a certain key and input
variables. Before the algorithm calculating this MAC is chosen, PDCP still
fills the MAC field in its messages, however this always equals 0x00000000
and is never looked at by the receiving end of the message. After an in-
tegrity protection algorithm is chosen, this MAC is verified. This is done by
calculating the MAC again and checking if it matches the value contained
in the message. If the two MACs are not the same, the MAC is considered
invalid.

20Elaboration on how authentication happens in LTE can be found in appendix A.
21Note that CryptoMobile is part of the ELVis source code. This is the only external

module included in the source code as a large part of the module was unnecessary for our
purposes, and it was the only Python module that could not be installed via pip or apt.
Each file is copied directly from its repository, and every attempt has been made to clarify
that we did not make this module.
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It was found that, if the MAC is invalid during the attach procedure,
the attach will simply halt. Because RLC is still in Acknowledged Mode
during this procedure, there will be an acknowledgement packet sent back,
making the sender believe that the packet was accepted by the receiving
end. However, the attach procedure is not continued, and both parties will
sit idly waiting for another message to arrive.

An example of what happens when the MAC is invalidated in the right
message can be found in enb mac invalid.pcap. This file was generated
using the patch described in appendix C.1. The analysis itself happens in
attach.py, along some other minor analyses.

To analyse the capture file for this behaviour, we first checked if the
attach procedure is complete. This is marked by the RRC Connection

Reconfiguration message. If this message is not present in the capture
file, we check if the capture might be incomplete. If the last message is a
part of the attach procedure, then we provide a warning which says that, if
the capture file is a complete capture, there might be an invalid MAC in the
last attach message. If the last message is not a part of the attach procedure
(for instance an ACK packet or an RRC Connection Release packet), we
assume that this is because of an invalid MAC in the last packet.22 For
reference, the code used to detect this behaviour can be found in listing
B.7.

22Another approach would be to calculate the MAC for each packet we analyse, however
this turned out to be impossible. The reason for this is discussed in section 5.1.3.
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Chapter 5

Discussion

Since 4G research and development is a fairly specialised field of study, there
were some limitations that we needed to adhere to during the development
of ELVis. In this chapter we will describe these limitations, the impact
they had on the product in its current state and what future research and
development could be done to improve the tool. Afterwards we will describe
what we envision the tool could be used for and who would benefit the most
from it.

5.1 Limitations

First, we will discuss the limitations of ELVis. We tried to make the list
as comprehensive as possible, however the possibility that a bug or problem
with the code has been missed can not be overlooked. After discussing all
the limitations, there will be a discussion on other vulnerabilities that we
could not make an analysis for, but are mentioned in other research papers.

5.1.1 Limitations on parsing

The parsing module used for loading the packet capture into the program
makes use of Tshark, which itself is a terminal-based version of Wireshark.
This means that, to parse the data correctly, the user needs to have both
Wireshark and Tshark installed on their machine. While this is not the only
dependency that ELVis has, and while most people interested in 4G packet
analysis probably already have this network analysis tool installed, it still
feels a bit disappointing to have to install a wholly different application just
to run this parser.

Even with Wireshark and Tshark already in place, there still needs to
be some configuration to be able to use the 4G/LTE dissectors. ELVis
can do this for the user, but this does require that the user specifies where
the Wireshark configuration files are located, unless the default path for
Ubuntu is used. This does require that Wireshark is launched at least once
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before starting ELVis. This might be confusing for someone who simply
downloaded Wireshark to use ELVis, and reinforces the idea that it would
be better if there simply was a module or library doing all this for us.

There simply exists no module or library in any language that supports
4G/LTE packet dissecting. Possible alternative Python modules were al-
ready discussed in section 3.2, but these only support Ethernet and WiFi
dissecting. To develop a parser for 4G/LTE traffic would mean either ex-
tending modules or libraries already in place or building a wholly new one
from the ground up. No matter what, it would be quite a bit of work, but
would greatly increase the ease with which people can view and analyse their
4G network traffic.

Pyshark is also very inefficient. With ELVis in its current state, every
packet in a capture file is checked three times before parsing is complete –
one for the packet itself, one for the one-line summary, and one for the raw
bytes data. This is a lot of redundancy, and leads to a very slow parsing if
large files are analysed.

5.1.2 Limitations on visualising

The visualisation of the packet flow turned out alright, but there are defi-
nitely still things that could be improved.

The first one is the overall look of the program. Referring back to figure
3.2, it is clear that the visual style of the program is very basic. This is
not necessarily a bad thing, however if the program is going to be used by a
larger audience, some visual touch-ups might make the program a bit easier
on the eye.

Another limitation is the window itself. Right now, only five packets
can be viewed at once on the screen. The idea was to make the window
resizable, however due to limitations in time and knowledge of Tkinter, this
was not yet implemented. For now it is not an issue, as the connection
establishment process should only concern the first two dozen packets in a
capture file, however if other parts of 4G/LTE traffic will be analysed in a
future version of ELVis, such as a handover procedure or connection release,
a solution for this problem will have to be created.

5.1.3 Analysis limitations

The main limitation for analysis is the availability of data. Currently, the
user has the option of providing SIM data to the analyser, however this is
not mandatory for analysis to be performed. The catch is that, without this
data, analysis is fairly limited, as it is required to check the correctness of
some parts of the information transfer. Without the SIM data, there can be
no calculation of keys and thus no correctness analysis of the authentication
protocol. ELVis also can not check if the identity request provides the correct
IMSI value without this.
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In case traffic on an eNodeB device is analysed, the analyser only sup-
ports analysis of communication with one UE device. This is because data
used for analysis is gathered from an attach request, and distinguishing be-
tween different mobile devices felt out of scope for this project. The analyser
thus also assumes the attach request to contain correct information, other-
wise the analyser barely has any reference points to compare the rest of the
capture to.

The setup is also something that limits the usability of this application.
This tool was developed on an Ubuntu system, and was developed with
that in mind. Although this program might work with Windows or OSx
as well, there was no testing performed on those operating systems. A
similar note holds for the packet captures used in testing the software. Each
packet capture was generated using srsRAN, and thus that implementation
is assumed. While srsRAN adheres to the 3GPP specifications, they do not
implement everything entirely.23

5.1.4 Future analysis opportunities

There has been a lot of research into attacks on the LTE network, and all the
research combined leaves an extensive list of vulnerabilities existing in the
fourth generation of mobile networks. While the ultimate scenario would
have us incorporating all these vulnerabilities into ELVis, the reality is less
optimistic. This section will document attacks that were found that either
were slightly outside the scope we set for ourselves in this project, or attacks
that were not possible to detect with the data that was given.

The most immediate example is the MAC invalidation DoS attack that is
discussed in section 4.5. This attack can sadly not be completely analysed
as the computation of the MAC requires a certain key which can not be
obtained by ELVis.24 While it is still possible to detect behaviour in the
packet capture that might be caused by an invalid MAC, this behaviour
could also have other causes (such as simply an incomplete attach procedure
being captured).

Fei et al. described an attack which could leak the IMSI to an attacker.[12]
It involves setting up a rogue eNodeB and tampering the MIB and SIB mes-
sages to nudge the UE into connecting to the rogue eNodeB. They can then
perform an identity request during the attach procedure to get the IMSI.
This requires an extra SIB message (SIB5) which has a field called ”cellRes-
electionPriority” which, when at its highest value, urges the UE to switch to
a different cell to connect to. However, there might be other reasons to have

23An example of this is the identity request, where srsRAN will only ever ask the IMSI
of a connecting UE, whereas the IMEI may also be asked according to 3GPP specification
24.301.[1]

24The key required is KeNB , which is periodically regenerated using K∗
eNB . This key

requires the physical cell ID and target physical cell downlink frequency, two variables
which are neither fixed or transmitted through messages.
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such a high priority, so it would not do to add a warning in analysis every
time a maximal priority is found in an SIB5 message. This attack could not
be analysed, however, as srsRAN only implements SIB1, SIB2 and SIB3.

Kumar and Lakshmy described paging attacks which, while not exactly
part of the connection establishment process, can still find the location of a
UE in a 2km2 area and thus might be an interesting and important attack
to try and analyse in the future.[29]

Shaik et al. have written about vulnerabilities related to the UE capa-
bility information exchange.[25] UE capability information can be accessed
without authentication having taken place. This means that a rogue base
station can get access to capabilities from a UE, leading to privacy risks,
and being able to know exactly what devices are present in a specific area. If
these UE capabilities are sent before the security setup is complete for both
RRC and NAS protocols, a man in the middle could tamper with the ca-
pabilities sent by the UE, leading to downgrade attacks25 and even possible
accelerated battery draining for certain devices. We have added a warning if
UE capabilities are enquired before security is setup, but there is no seeing
if these capabilities have been tampered with.

5.2 Use cases

The introduction already discussed some motivation behind the development
of this tool; namely that current analysis tools of mobile network traffic is
fairly limited. Tools that do allow an insight in 4G network traffic, such as
Wireshark, are limited in their capabilities and require great understanding
of 4G to understand and look through.

ELVis attempts to improve on the accessibility and readability of 4G
network traffic, by presenting an analysis which already shows where flaws in
the traffic reside. This chapter will summarise the possible use cases for both
developers interacting with mobile networks on a low level and individuals
interested in 4G traffic analysis. This chapter assumes that ELVis is in a
complete state, with every aspect of 4G communication analysed perfectly.
This is not yet the case as of the completion of this thesis project.

5.2.1 Developers and Mobile Network Operators

The E-UTRAN LTE Visualiser would be most interesting for people who
are already familiar with the architecture of mobile networks. This holds for
both individual developers, creating their own operating system of baseband
processor, who require to develop the workings of the low-level protocols
present on the 4G/LTE stack. ELVis would allow developers to quickly see
where their implementation fails according to official specifications.

25Attacks leading to the UE being downgraded to an older, slower generation of mobile
networks, such as 3G or GSM.
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For Mobile Network Operators (MNOs) this same principle holds. How-
ever, these companies might be interested in other types of analysis as well;
namely analysis of the data travelling over their network. While research
into the kind of traffic flowing over the network has been performed[20],
together with performance analysis of 4G[18], there exists no (public) tool
which analyses what traffic is generated by a specific UE device. While this
is an interesting field of study, ELVis is not nor will ever be a tool suited for
this purpose.

To further exemplify how ELVis could be useful for developers, let us
explain how we found a flaw in the srsRAN implementation of an eNodeB
using our own developed application. During the generation of the packet
captures used for the analysis of the SecurityModeCommand, as described
in section 4.2, we found that the RRC protocol did not adhere to the ca-
pabilities sent by the UE. The packet capture in which this is visible is
enb rrc security mismatch.pcap in the ELVis source code.

In the UE configuration of srsRAN we set the nas.eea field, which lists
the supported encryption algorithms, to "1,2". This means that the null
ciphering algorithm “eea0” is not supported by the UE.26 This fact is also
reflected in the attach request.

The problem lies in the RRC SecurityModeCommand message. This
message contains the encryption algorithm the UE must use, and in this
packet capture it is visible that the AS encryption algorithm should be
“eea0”, even though the UE does not support it. The UE still accepts the
command, however, and “eea0” will still be used. This could lead to issues
if “eea0” truly did not appear in the source code, and is something the
developers might need to fix. Without ELVis it would have been harder to
notice that this mismatch occurred, and there are probably a lot of other
errors or issues we could not think of that would be very useful to have
analysed.

5.2.2 Interested individuals

While this tool, on surface level, might be interesting to individuals wishing
a better understanding of the communication happening on their own mobile
device. While ELVis is meant for this exact purpose, these individuals might
be disappointed when attempting to use this tool in its current state.

While it is a Python application anyone with a basic understanding
of a command line interface should be able to use, the workings of the
application itself are slightly more convoluted. Users are expected to provide
packet captures themselves, which could be generated using applications
like srsRAN. But while developers are more experienced in the field and
probably know how to generate packet captures of traffic themselves, the

26Note that the 3GPP specifications do not explicitly say that “eea0” must be supported,
however it is advised.
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average individual probably is not. Even if they manage to get srsRAN
installed, they will have trouble actually connecting to the service, since
this might mean reprogramming a SIM card.27

Even if an interested individual managed to get a packet capture loaded
into the program, together with supplemental data like the key and IMSI of
a SIM card, the usefulness of the information might be limited. While
a line in analysis like ”Data is not encrypted over air interface.”
might be very easy to understand and useful to know, a line like ”RES
(0048124f2c50c327) does not match expected value (dd48124f2c50c327)”
does not convey any information the individual really needs to know.

If we want ELVis to be more accessible and useful for individuals, it
would be better to run it as a service on the UE they want to analyse.
The service could provide notifications to the user if there is something they
ought to know (such as missing integrity/ciphering options) while the more
technical details could be spared unless the user desires to be notified of
them. As it is right now, though, an individual with only basic knowledge
of network structure and cryptography will not have much use of this tool.

27Not to mention the fact that the radio devices needed to connect to srsRAN are often
very expensive.
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Chapter 6

Conclusions

The E-UTRAN LTE Visualiser, or ELVis for short, is a tool that parses,
visualises and analyses 4G network traffic. This tool is necessary because,
according to prior research, 4G communication does not always happen
according to the official specifications, without the user being aware of this
fact. With ELVis, the aim is to provide more accessibility to gain insight
into where communication might not happen as specified.

As of the finalisation of this thesis project, ELVis only analyses the
connection establishment between a UE device and a mobile network, from
the sending of the RRC Connection Request by the UE to the reception
of the RRC Connection Setup Complete by the UE. The most important
parts that were analysed are the security mode command, authentication
request and some general attach procedures. Signs for a few disruption of
service attacks are also analysed and correctly pointed out.

During development, it was found that the analysis capabilities were
fairly limited, as finding the cause of some problems, such as an abrupt end
of the attach procedure caused by an invalid MAC on the PDCP protocol,
were hard to detect as the analyser only has limited information to work
with. Other important limitations that arose during development were the
testing capabilities. As we worked with srsRAN to provide capture data, we
relied on this implementation of an LTE network for testing our analysis.
This resulted in not being able to test some edge cases that were mentioned
in the official specifications, like the EPC asking for the IMEI in the identity
request, whereas srsRAN only ever asks for the IMSI.

While ELVis is meant for gaining insight into where 4G/LTE commu-
nication goes wrong according to the specifications, for now it is mostly
useful for developers aiming to implement protocols on the second and third
layer of the 4G/LTE protocol stack. For interested individuals attempting
to gain a better understanding of how their mobile device interacts with a
mobile network, the software has too many requirements and the analysis is
probably too complicated to understand.
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Appendix A

LTE authentication

LTE uses an Authentication and Key Agreement protocol, which happens
during the attach procedure. Most of the values are either stored on the
SIM-card or provided by the MME, which takes values like the expected
result (XRES) from the HSS, which has the key of every IMSI.

The AKA used to authenticate the UE and generate ciphering and in-
tegrity keys is called MILENAGE. This protocol is specified in 3GPP spec-
ification 35.206.[5] Since this thesis is following the SRS implementation of
LTE, and this implementation uses version 10 of TS35.206, we will follow
this version of the document as well.

There also exists a test algorithm for authentication. This algorithm
is specified in 3GPP specification 34.108,[3] but should never be used in
practice, due to very low confidentiality in the key derivation, which is easily
visible following the definition in section A.2.

A.1 The MILENAGE protocol

While the specifications of MILENAGE do not require a certain block cipher,
it does provide examples with Rijndael.[11] These examples were followed
in SRS as well, and thus will also be followed in our explanation of the
algorithm. We define the notation AESK(x) as encrypting x with Rijndael
using key K.

The algorithm starts with providing some definitions. Values OPc and
TEMP is defined, using the Operator Code stored on the SIM and the
random value RAND:

OPc = OP⊕AESK(OP)

TEMP = AESK(RAND⊕OPc)

An input field IN1 is defined as SQN ||AMF ||SQN ||AMF . AMF is
defined later and can be used in combination with input parameter AUTN
to find the SQN .
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Figure A.1: The MILENAGE algorithm[5]

Five constants cn are defined as the following 128-bit numbers:

c1[i] = 0 for 0 ≤ i ≤ 127

c2[i] = 0 for 0 ≤ i ≤ 127, except for c2[127] = 1

c3[i] = 0 for 0 ≤ i ≤ 127, except for c3[126] = 1

c4[i] = 0 for 0 ≤ i ≤ 127, except for c4[125] = 1

c5[i] = 0 for 0 ≤ i ≤ 127, except for c5[124] = 1

There are also five constants rn which are defined as r1 = 64, r2 = 0, r3 =
32, r4 = 64, r5 = 96, which will later be used for rotation. Rotation is defined
as ”The result of cyclically rotating the 128-bit value x by r bit positions
towards the most significant bit.”[5] So if x = x[0]||x[1]||...||x[127] and y is
x rotated by r bits, then

y = x[r]||x[r + 1]||...||x[0]||x[1]||...||x[r − 2]||x[r − 1]

All these defined values are used to compute seven different outputs, as
can be seen in figure A.1. In figure A.1, EK represents AESK .

Here is all the output computed by the MILENAGE algorithm:

• f1: MAC-A, an authentication code.

• f∗
1 : MAC-S, a resyncronisation authentication code.

• f2: RES, the resulting value that gets sent in an authentication re-
sponse.
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• f3: CK, a confidentiality key used for the ciphering algorithm chosen
in the security mode command.

• f4: IK, an integrity key used for the integrity algorithm chosen in the
security mode command.

• f5, f
∗
5 : AK, an anonimity key used in computing the AUTN value.

A.2 The XOR protocol

The XOR protocol is a lot simpler in implementation. The input is the
same, however it simply performs a series of XOR operations to arrive at a
RES, CK, IK and AK value. This is still secure when RAND and AUTN
remain fresh, but it can be broken on repeat values. The CK and IK are
also derived very easily from RES.

First an array called ‘xdout’ is created, with its contents being calculated
as follows:

xdout[i] = key[i]⊕ RAND[i]

This array is used as output for the RES value, the CK, the IK and the
AK, which are calculated as follows:

XRES[i] = xdout[i]

CK[i] = xdout[(i+ 1) mod 16]

IK[i] = xdout[(i+ 2) mod 16]

AK[i] = xdout[i+ 3]for 0 ≤ i ≤ 6

It is very easily visible that the CK, IK and AK are easily derived from
the RES value, meaning that anyone intercepting the authentication re-
sponse can derive the CK and IK themselves. This is dangerous, as anyone
can then access the proceeding packets as if the ciphering and integrity
algorithm were not there.
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Appendix B

Code snippets

This appendix shows bits of code discussed in chapter 3 and 4, as to not
clutter the discussion presented in those chapters.

Listing B.1: Reading a packet capture

1 import pyshark

2 capture = pyshark.FileCapture(’enb.pcap’, custom_parameters ={’-

C’:’<4Gprofile >’})

Listing B.2: The parse pcap function

1 pyshark.FileCapture.SUMMARIES_BATCH_SIZE = 4

2 raw_capture = pyshark.FileCapture(path , custom_parameters=

options)

3 summaries = pyshark.FileCapture(path , custom_parameters=options

, only_summaries=True)

4 assert len(raw_capture) == len(summaries)

5 capture = []

6 for packet , summary in zip(raw_capture , summaries):

7 if len(packet.layers) > 2 and vars(packet.layers [2])[’

_layer_name ’] == ’mac -lte’:

8 vars(packet.layers [2])[’_layer_name ’] = ’mac_lte ’

9 sentence = summary.summary_line

10 capture.append(Packet(packet , sentence , 0))

Listing B.3: Parsing arguments

1 options = {’analyse ’: True , ’visualise ’: True}

2 parse_options = {’-C’: ’4GLTE’}

3 i = 1

4 while i < len(sys.argv):

5 if sys.argv[i][0] != ’-’:

6 i += 1

7 continue

8 if sys.argv[i] == ’-analyse ’ or sys.argv[i] == ’-a’:

9 options[’visualise ’] = False

10 # ...

11 if (sys.argv[i] == ’-filter ’ or sys.argv[i] == ’-f’) and i

+ 1 < len(sys.argv):
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12 if sys.argv[i + 1][0] != ’-’ and not sys.argv[i+1].

endswith(’.pcap’):

13 parse_options[’-f’] = sys.argv[i+1]

14 else:

15 print(’WARNING: Filter option is set , but no filter

string is provided.’)

16 print(’Program will be run without filter.’)

Listing B.4: Analysing NAS EMM message #93: Security Mode Command

1 # check for accurate security capabilities (matching from

attach request)

2 if not packet_info == ue_info[’security_capabilities ’]:

3 packet.add_analysis(

4 ’Security capabilities in NAS security mode command do

not match capabilities in attach request.’, 1)

5

6 # check if UE capable of ciphering algorithm

7 if ue_info[’security_capabilities ’][ca] == ’0’:

8 packet.add_analysis(’UE not capable of using NAS chosen

ciphering algorithm.’, 3)

9 nas_smc_fail_sent(packet , packets)

10

11 # check if UE capable of integrity algorithm

12 if ue_info[’security_capabilities ’][ia] == ’0’:

13 packet.add_analysis(’UE not capable of using NAS chosen

integrity algorithm.’, 3)

14 nas_smc_fail_sent(packet , packets)

15

16 # check if ciphering and integrity protection are used

17 smc_algo_used(packet , ca , ia)

Listing B.5: Analysing NAS EMM message #86: Identity response

1 # check if requested type is response type

2 response_type = packet.data.layers [2]. get(’gsm_a.ie.

mobileid_type ’)

3 if not ue_info[’identity_request_type ’] == response_type:

4 packet.add_analysis(’Identity response does not contain

queried value by MME.’, 3)

5

6 # check if response matches known value

7 imsi = safe_dict_get(ue_info , ’imsi’)

8 if imsi and not imsi == packet.data.layers [2]. get(’e212.imsi’):

9 packet.add_analysis(’IMSI in response does not match value

from SIM configuration.’, 1)

10 packet.add_analysis(’Changing stored value to value read

from identity response.’, 0)

11 ue_info[’imsi’] = packet.data.layers [2]. get(’e212.imsi’)

Listing B.6: Analysing the RES value in a NAS authentication response.

1 # create cipher

2 if op := safe_dict_get(ue_info[’sim_info ’], ’op’):

3 cipher = Milenage(op)
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4 else:

5 opc = bytes.fromhex(safe_dict_get(ue_info[’sim_info ’], ’opc

’))

6 cipher = Milenage(op)

7 cipher.set_opc(opc)

8

9 # get RES , CK , IK and AK values

10 xres , ck, ik, ak = cipher.f2345(key , rand)

11

12 # check if authentication should be successful by comparing RES

and XRES

13 res = ’’.join(packet.data.layers [2]. get(’nas_eps.emm.res’).

split(’:’))

14 xres = bytes.hex(xres)

15 if res != xres:

16 packet.add_analysis(f’RES ({res}) does not match expected

value ({xres})’, 4)

17 if not get_attach_message(packets , ’92’):

18 packet.add_analysis(’No authentication failure message

sent after mismatch in expected value.’, 3)

19

20 # update keys

21 # ...

Listing B.7: Searching for behaviour caused by an invalid PDCP MAC.

1 # find if RRCConnectionReconfiguration occurred , if not , attach

procedure is incomplete

2 complete = False

3 for packet in packets:

4 if ’RRCConnectionReconfiguration ’ in packet.summary:

5 complete = True

6 if complete or safe_dict_get(ue_info ,

7 ’rrc_ca ’) != ’eea0’: # if AS

ciphering is enabled , we will not be able to know if attach

finished

8 return

9

10 # find if attach packet is last packet of capture

11 last_attach = attach_packets [-1]

12 if last_attach == packets [-1]:

13 # send warning for possible incomplete file or invalid PDCP

MAC

14 last_attach.add_analysis(

15 ’Attach procedure incomplete .\nIf there are no possible

causes listed in this packet , it might be because of an

invalid MAC.’,

16 1)

17 else:

18 # send error for probable invalid PDCP MAC

19 last_attach.add_analysis(’Attach procedure incomplete .\

nThis might be because of an invalid PDCP MAC.’, 3)
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Appendix C

Patching srsRAN

Several changes in the srsRAN source code were made to generate packet
captures containing errors. This involved a patch which changes the MAC
for AS integrity protection, used for an attack described in section 4.5, or a
patch tampering with RES values during the authentication procedure. The
structure for most of these patches are the same, and will all be described
in detail in the following sections.

C.1 Invalidating the PDCP MAC

This first patch involves the file lib/src/pdcp/pdcp entity lte.cc of the
srsRAN source code. Specifically, the write sdu() function is being changed
here. The patch starts by opening a configuration file which holds variables
stating if we want to invalidate the MAC of a certain packet, and if so, which
packet that should be.

After the file has been read, it tests if we are currently writing a packet
that needs the MAC to be changed. If it is, the program changes the MAC to
be 0x01010101 so it is easily recognisable in a packet capture. The patched
code can be found in listing C.1.28 The results of using this patch are seen
in the enb mac invalid.pcap file in the ELVis source code.

1 bool invalidate_mac = false;

2 uint32_t tx_count_comparison = 0;

3

4 FILE *fptr;

5 if ((fptr = fopen("/home/thomas /. config/srs -test/mac_invalidate

.txt", "r")) != NULL) {

6 char buff [1024];

7 char *pch;

8 int line_cnt = 0;

9 while (fgets(buff , 1024, fptr) != NULL) {

10 int word_cnt = 0;

11 pch = strtok (buff , " ");

28In this and all following listings, the logging functions have been removed for a clearer
overview of what was changed.
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12 while (pch != NULL) {

13 if (word_cnt == 2 && line_cnt == 0)

14 invalidate_mac = static_cast <uint32_t >(std::stoul(pch))

;

15 else if (word_cnt == 2 && line_cnt == 1)

16 tx_count_comparison = static_cast <uint32_t >(std:: stoul(

pch));

17 pch = strtok (NULL , " ");

18 word_cnt = word_cnt + 1;

19 }

20 line_cnt = line_cnt + 1;

21 }

22 fclose(fptr);

23 }

24

25 if (invalidate_mac == 1 && tx_count == tx_count_comparison){

26 // invalidating mac

27 uint8_t invalid_mac [4] = {0x01 , 0x01 , 0x01 , 0x01};

28 append_mac(sdu , invalid_mac);

29 }

30 else {

31 // standard procedure

32 append_mac(sdu , mac);

33 }

Listing C.1: MAC invalidation patch

C.2 Patching authentication

srsRAN was patched in multiple ways to break authentication, both on the
MME’s side and on the UE’s side. On the network side, in the source file
srsepc/src/mme/nas.cc, in the pack authentication request() func-
tion, three patches were made. The first two involve the variables that
are sent to the UE. Both the MAC and the RAND value can be manipu-
lated so that authentication should fail. The third involves the numb attack
explained in [16]. If a variable in the configuration file is set to any value
other than 0, it will send a authentication reject instead of an authentication
request.

On the mobile device’s side, in the source file srsue/src/upper/nas.cc,
in the send authentication response(), one patch is made which alters
the RES value from its normally calculated value, to see if the network would
pick up on it and send a rejection back. The patch for the authentication
request is visible in listing C.2. The packet captures generated using these
patches can all be found in the input/ folder of the ELVis source code.

1 // file reading , similar to MAC invalidation patch

2

3 if (auth_failure_mac != 0){

4 m_sec_ctx.autn [15] = 0;

5 }
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6

7 if (auth_failure_rand != 0){

8 m_sec_ctx.rand [0] = 0;

9 }

10

11 if (auth_reject == 0) {

12 // standard procedure

13 LIBLTE_MME_AUTHENTICATION_REQUEST_MSG_STRUCT auth_req;

14 memcpy(auth_req.autn , m_sec_ctx.autn , 16);

15 memcpy(auth_req.rand , m_sec_ctx.rand , 16);

16 auth_req.nas_ksi.tsc_flag =

LIBLTE_MME_TYPE_OF_SECURITY_CONTEXT_FLAG_NATIVE;

17 auth_req.nas_ksi.nas_ksi = m_sec_ctx.eksi;

18

19 LIBLTE_ERROR_ENUM err =

liblte_mme_pack_authentication_request_msg (&auth_req , (

LIBLTE_BYTE_MSG_STRUCT *) nas_buffer);

20 if (err != LIBLTE_SUCCESS) {

21 m_logger.error("Error packing Authentication Request");

22 srsran :: console("Error packing Authentication Request\n")

;

23 return false;

24 }

25 return true;

26 }

27 else{

28 // send authentication reject

29 return pack_authentication_reject(nas_buffer);

30 }

Listing C.2: Authentication patch (MME)
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