
Formalizing the Hamming Stream in Coq

Eelis van der Weegen

Radboud University Nijmegen, Faculty of Science

Bachelor’s Thesis
Supervisor: Milad Niqui

January 2007

Contents

1 Introduction 2

2 The Hamming Stream 4

2.1 Specification 4

2.2 Implementations 5

3 Streams as Functions 7

3.1 Productivity 7

3.2 Merge-based Implementation 9

3.3 Queue-based Implementation 10

4 Coinductive Streams 12

4.1 Corecursion 13

4.2 Convertibility 14

4.3 Hamming Specification 15

4.4 Merge-based Implementation 16

4.5 Queue-based Implementation 17

4.6 Correctness 17

5 Evolving Initial Segments: Merge Redux 21

5.1 Toward a New Merge-based Implementation 21

5.2 Correctness 24

5.3 Reflection 26

6 Program Extraction 28

7 Conclusion 30

Bibliography 30

1

Chapter 1

Introduction

Infinite sequences, also called “streams”, are studied extensively throughout mathematics and computer
science. In this article we look at several approaches to working with streams using Coq [11]. Coq is
a versatile proof assistant with which formal specifications, programs, and proofs can be developed and
mechanically checked. It is founded on the Predicative Calculus of (Co)Inductive Constructions [1], a
constructive and dependent type theory interpreted along the lines of the Curry-Howard correspondence,
with support for algebraic data types.

Two aspects in particular are of interest, namely:

1. How can streams be represented in Coq? What type do we assign them?

2. What obstacles (if any) arise when we try to specify, definerecursively, and reason about streams?
And how can we work around those obstacles?

The Hamming stream, described in Chapter 2, is used as a case study. It is a stream with a straightforward
specification for which elegant, concise recursive implementations exist—at least in other systems. To
what extent those implementations can be mimicked in Coq will be examined in the rest of this article,
which is mostly organized following the pursuit of certifiedHamming stream implementations in Coq.

In Chapter 3 we look at a stream representation where streamsare viewed as functions. Next, in Chapter
4, we look at a stream representation based on coinductive data types. Finally, in Chapter 5 we look at a
stream representation based on growing lists of finite length. In all three chapters, we attempt to use the
respective stream representations for the Hamming stream.

In Chapter 6, when our Hamming formalization efforts have come to an end, we briefly look at the practi-
cality of program extraction applied to our results.

Basic familiarity with the Coq proof assistant—its calculus, specification language, and standard libraries—
is assumed. The article is accompanied by a complete Coq formalization of all definitions and proofs.
Although all our definitions and proofs primarily relate to the calculus on which Coq is founded rather than
the Coq system itself, in our discussion we identify the two and simply say “Coq” when either is meant.

We only consider strictly infinite streams with a beginning and no end. We do not consider finite or
potentially-finite streams, or streams that are infinite in two directions (such asZwhen viewed as a stream).

Notation We use ML-style parentheses everywhere (e.g. (f (g x) y) instead off (g(x), y)).

2

Lists and List Operations

We will often use Coq’slist data type, which is assumed to be familiar. We will use two different list
indexing functions for it. The first,nth, is part of the Coq standard library and has type∀ (i : N) (l :
list T) (d : T), T. The dummy argumentd is returned wheni ≥ length l. The second indexing func-
tion, snth (for “safen’th”), is not part of the Coq standard library and has type∀ (i : N) (l : list T), i <
length l → T. Instead of a dummy value it takes a proof that excludes the case wherenth would have
returned its dummy value.

In our formalization we occasionally need to work with liststhat are known not to be empty. For these, we
define the typene list of non-empty lists:

Inductive ne_list (T: Set): Set :=

| one: T -> ne_list T

| cons: T -> ne_list T -> ne_list T.

In addition to obvious operations on non-empty lists likehead andtail, one operation that will pop up
in our definitions isne list.from plain, of type∀ T, T → list T → ne list T. It constructs a
non-empty list from a (potentially empty) plain list and a separate head element.

Also, ne list T has been made coercible tolist T, meaning that there is a conversion function of type
∀ T, ne list T → list T that is applied implicitly whenever a term of typene list T occurs in a
context where a term of typelist T was expected.

3

Chapter 2

The Hamming Stream

2.1 Specification

The Hamming stream consists of those natural numbers whose prime divisors are all≤ 5, listed in increas-
ing order without duplicates. Its first 20 elements are:

1, 2, 3, 4, 5, 6, 8,9, 10,12, 15,16, 18, 20,24, 25,27, 30, 32,36

It was popularized by Edsger Dijkstra [3], who also gave a proof [5] of correctness of the merge-based
implementation discussed in the next section1.

Generalizing the constant 5 leads to what are called streamsof k-smooth numbers. A number isk-smooth
if its prime divisors are all≤ k. In this article and its accompanying Coq formalization, weadopt a slightly
broader notion of smoothness, namely that a number is smoothrelative to a list of numbersl if it can be
written as a product of numbers inl:

Parameter multipliers: ne_list nat.

Hypothesis multipliers_nontrivial:

forall m, In m multipliers -> m > 1.

Inductive smooth: nat -> Prop :=

| smooth_one: smooth 1

| smooth_more x y:

smooth x -> In y multipliers -> smooth (x * y).

We use this broader notion of smoothness because it is both easier to work with (since it turns out that
this way the formalization does not need any theory about prime numbers), and strengthens our results
(since normalk-smoothness is reduced to a mere special case where the list of multipliers contains the first
successive primes up to and includingk).

Our entire formalization is parameterized by the list of multipliers. Plugging in the list of numbers 2, 3,
and 5 yields definitions and correctness proofs of the normalHamming stream. For illustrative purposes,
definitions shown in this article often use the numbers 2, 3, and 5 directly. In our discussion we will use
the term “Hamming stream” to refer to any and all of the variants above, generalized or not.

1Unfortunately, to the extent that Dijkstra’s proof is formal, the logical framework it uses (if any) seems entirely incompatible
with the one used by Coq, so it is of little use to us.

4

The precise formulation of a Coq specification of the Hammingstream depends on the chosen stream
representation, but we can characterize the three main properties as follows.

1. If a number occurs in the stream, it is smooth.

2. If a number is smooth, it occurs in the stream.

3. The elements occur in increasing order without duplicates.

We will refer to the first and second properties as “soundness” and “completeness”, respectively. For
convenience, we will say that a list or stream “increases” ifits elements occur in increasing order without
duplicates. With this, the third property can simply be stated as: the stream increases.

In Section 4.3 a precise Coq formulation is given for a coinductive stream representation.

2.2 Implementations

As mentioned, in some other systems the Hamming stream can beimplemented very concisely. Our goal
will be to approximate two such implementation—one existing and one new—in Coq. The first implemen-
tation, here expressed in Haskell, is as follows.

merge (x:xs) (y:ys)

| x < y = x : merge xs (y:ys)

| x > y = y : merge (x:xs) ys

| x == y = x : merge xs ys

hamming = 1 :

merge (map (* 2) hamming) (

merge (map (* 3) hamming) (

map (* 5) hamming))

We call this themerge-basedimplementation. It is an often-cited example demonstrating both the expres-
sive power and potential for efficiency of fully lazily evaluated functional programming languages.

Much can be said about to what extent the implementation is intuitive or elegant. However, ultimately this
has proven to be very much in the eye of the beholder, arguablydepending above all on their affinity for
and experience with the functional programming paradigm ingeneral.

The second implementation, again in Haskell, is somewhat similar to the previous one.

enqueue x [] = [x]

enqueue x (y:ys)

| x < y = x : y : ys

| x > y = y : enqueue x ys

| x == y = y : ys

ham_from (h:t) = h : ham_from (

enqueue (h * 2) (

enqueue (h * 3) (

enqueue (h * 5) t)))

hamming = ham_from [1]

We call this thequeue-basedimplementation2. It differs from the merge-based implementation in that
it explicitly processes one element at a time while the merge-based implementation manipulates entire

2The term “queue” is used very informally here. It merely reflects this author’s impression of the algorithm’s behavior.

5

streams at a time. It is in this sense somewhat more imperative in nature. We will see later that this makes
all the difference—for the better—in our formalization efforts. This is no accident, as it was designed
explicitly with Coq formalization in mind.

Note that in both implementations, Haskell’s lazy evaluation allows its ordinary list data type to be used to
represent infinite lists. This approach and its applicability in Coq is discussed in detail in Chapter 4.

Having familiarized ourselves with the Hamming stream, we now look at our first stream representation
candidate.

6

Chapter 3

Streams as Functions

A very straightforward way of representing streams is as functions fromN to some typeT. For example,
the popular Fibonacci sequence can be specified as follows.

fib 0 = 0

fib 1 = 1

fib (n+ 2) = fib n+ fib (n+ 1)

This representation and form of definition can be used in Coq:

Definition f_stream (T: Set) := nat -> T.

Definition fib: f_stream nat :=

fix f (n: nat) {struct n}: nat :=

match n with

| 0 => 0

| 1 => 1

| S (S n’’ as n’) => f n’ + f n’’

end.

(The ‘f_’ prefix is used to distinguish this functional approach fromalternative approaches in later chap-
ters.)

3.1 Productivity

We used thefix construct to definefib recursively. In doing so, Coq required that we identify a struc-
turally decreasing argument (pointed to by{struct n}), to ensure that the recursion eventually terminates—
a property Coq requires for all recursive function definitions. This Coq definition then is not just a direct
translation of the set of equations that made up the originalspecification, but also provides a proof that,
using this definition, the value of any element of the stream can be computed in finite time.

Definition 1. A stream definition that provides the means to compute any desired element value in finite
time is calledproductive[10, 4].

Note that non-recursive stream definitions are trivially productive. Informally, productivity is what sepa-
rates stream implementations from mere specifications. In the case of fib, turning the specification into an
implementation by showing its productivity was easy; all wehad to do was point at the parametern, which

7

happened to nicely decrease at the recursive call. In general though, showing the productivity of a specifi-
cation can be very hard, or indeed impossible if the specification interpreted as an implementation would
simply not be productive. As a (silly) example of the latter,consider the following alternative specification
of the Fibonacci stream.

fib’ 0 = 0

fib’ 1 = 1

fib’ n = fib’ (n+ 2)− fib’ (n+ 1)

As a specification, this set of equations is equivalent to fib,and denotes the same stream. However, it
cannot be used as an implementation, because when used to compute, say, fib’ 3, the computation would
never complete. In Coq fib’ simply cannot be written down as a recursive function definition, because there
is no decreasing argument. Wecanformalize this specification, but only in the form of a passive predicate
over streams which does not provide the means to compute anything:

Definition is_fib (s: f_stream nat): Prop :=

s 0 = 0 /\

s 1 = 1 /\

forall n, s n = s (n + 2) - s (n + 1).

For the Fibonacci stream there is little point in using this alternative specification in predicate form, as the
original specification was both more intuitive and productive. For the Hamming stream, however, giving a
specification in predicate form allows us to directly state the three properties from Section 2.1 without any
concern for productivity, so we will do this in Section 4.3.

In constructive logics such as the one used by Coq, providingan implementation of something is equated
to proving its very existence. From this perspective our goal of coming up with an implementation of the
Hamming stream can actually be stated in much more grandioseterms: our goal is to prove the existence
of the Hamming stream (or rather of a family of streams that includes the Hamming stream).

Since Coq demands provable termination forall computation, it follows that it will only permit prov-
ably productive stream implementations, regardless of stream representation. In this functional represen-
tation, this productivity requirement manifests itself inthe form of recursion being structural rather than
unbounded. In Chapters 4 and 5 we will see how the productivity requirement manifests itself in other
stream representations.

Proceeding with this function-based representation of streams, we can define a few convenient functions
that operate on streams:

Definition f_head T (s: f_stream T): T := s 0.

Definition f_tail T (s: f_stream T): f_stream T := fun n => s (S n).

Definition f_cons (T: Set) (x: T) (s: f_stream T): f_stream T :=

fun n => match n with 0 => x | S n’ => s n’ end.

Definition f_map (T U: Set) (g: T -> U) (s: f_stream T): f_stream U :=

fun n => g (s n).

These are all accepted by Coq. With these fundamentals in place, we now attempt to implement the
Hamming stream, starting with the implementation based on merge.

8

3.2 Merge-based Implementation

First, we must define the merge function, which happens to be recursive. Translating the Haskell version
to Coq as directly as possible, we arrive at:

Fixpoint f_merge (a b: f_stream nat) {struct ?}: f_stream nat :=

match lt_eq_lt_dec (f_head a) (f_head b) with

| inleft (left _) => f_cons (f_head a) (f_merge (f_tail a) b)

| inleft (right _) => f_cons (f_head a) (f_merge (f_tail a) (f_tail b))

| inright _ => f_cons (f_head b) (f_merge a (f_tail b))

end.

(The type oflt eq lt dec is ∀ (n m : N), {n < m} + {n = m} + {m< n}).

Unfortunately, there is nothing to write at the question mark, where the decreasing argument would be
specified (as it was in the definition offib). A decreasing argument must be of an inductive type, which
f stream nat is not;f tail s is not structurally smaller thans, at least not in an inductive sense. For-
tunately, we can open up thef stream nat abstraction to reveal the position parameter, on which we
can perform straightforward recursion. This works becauseregardless of the outcome of the heads com-
parison, the result term is af cons application that trivially decomposes into head and tail components
corresponding to the cases where the position argument is zero and non-zero, respectively.

Definition f_merge: f_stream nat -> f_stream nat -> f_stream nat :=

fix g (a b: f_stream nat) (n: nat) {struct n}: nat :=

match n with

| 0 =>

match lt_eq_lt_dec (f_head a) (f_head b) with

| inleft _ => f_head a

| inright _ => f_head b

end

| S n’ =>

match lt_eq_lt_dec (f_head a) (f_head b) with

| inleft (left _) => g (f_tail a) b n’

| inleft (right _) => g (f_tail a) (f_tail b) n’

| inright _ => g a (f_tail b) n’

end

end.

While not as elegant, this works.

Next up is the Hamming stream itself. An initial attempt fails analogously to the initialf merge attempt,
albeit in an even more dramatic way:

Fixpoint f_hamming {struct ?}: f_stream nat :=

f_cons 1 (f_merge (f_map (mult 2) f_hamming)

(f_merge (f_map (mult 3) f_hamming)

(f_map (mult 5) f_hamming))).

9

There is simply no argument to recurse on. Unlike before, however, opening upf stream cannot save us:

Fixpoint f_hamming (n: nat) {struct n}: nat :=

match n with

| 0 => 1

| S n’ =>

(f_merge (f_map (mult 2) f_hamming)

(f_merge (f_map (mult 3) f_hamming) (f_map (mult 5) f_hamming))) n’

end.

Coq rejects this definition because it only allows recursivecalls that are passed a structurally smaller argu-
ment directly, while in the above definition any actual recursive calls are delegated to other functions. The
recursion is not simple enough for Coq to recognize the productivity of the definition.

This time no obvious fix comes to mind. There appears to be no clear-cut way to convince Coq of the
productivity of this definition, so for now we turn our attention to the implementation based on queues. We
will revisit the merge-based implementation in Chapters 4 and 5.

3.3 Queue-based Implementation

We begin with theenqueue function, for which the Haskell code from Chapter 2 can be translated almost
directly. The only real change is that we change some data types to non-empty lists and point at the
structurally decreasing argument.

Fixpoint enqueue (n: nat) (l: list nat) {struct l}: ne_list nat :=

match l with

| nil => one n

| cons h t =>

match lt_eq_lt_dec n h with

| inleft (left _) => ne_list.from_plain n l

| inleft (right _) => ne_list.from_plain h t

| inright _ => cons h (enqueue n t)

end

end.

Next, we attempt theham from function.

Fixpoint ham_from (l: ne_list nat) {struct ?}: f_stream nat :=

f_cons (head l) (ham_from (

enqueue (head l * 2) (

enqueue (head l * 3) (

enqueue (head l * 5) (tail l))))).

This attempt fails because there is no suitable argument to recurse on (l most certainly does not get struc-
turally smaller). Fortunately, the trick of opening upf stream nat can help us out again, thanks to the

10

fact that the result term is af cons application:

Fixpoint ham_from (l: ne_list nat) (n: nat) {struct n}: nat :=

match n with

| 0 => head l

| S n’ => ham_from (

enqueue (head l * 2) (

enqueue (head l * 3) (

enqueue (head l * 5) (tail l)))) n’

end.

Finally,hamming is just an application ofham from:

Definition hamming: f_stream nat := ham_from (one 1).

We will not prove the correctness of this implementation here. In Section 4.5 we will find that the queue-
based definition can also be expressed using a coinductive stream representation, and we will prove cor-
rectness of a coinductive queue-based Hamming stream implementation there.

This queue-based implementation was basically accepted inits original form, while Coq would not accept
the merge-based implementation. The reason for this is thatthe productivity of the former was obvious
enough for Coq to be able to recognize it in the form of structural recursion, while the productivity of the
latter was too complex for Coq to recognize—at least in this functional stream representation. To gain more
insight into whether this is just an artifact of this particular stream representation or a problem inherent in
the merge-based implementation, we now leave the functional stream representation for what it is and look
at another stream representation.

11

Chapter 4

Coinductive Streams

In the previous chapter we viewed streams as functions fromN to some element type. A completely
different way of looking at streams is to view them as instances ofsome kind of algebraic data type.
Looking at the canonical inductive definition of list,

Inductive list (T: Set): Set :=

nil | cons: T -> list T -> list T.

it might occur to us that a hypothetical term consisting of aninfinite sequence of applications of thecons
constructor,

cons x0 (cons x1 (cons x2 (cons x3 . . .))),

would bear the hallmarks of a stream.

In some systems, such as Haskell, this is a valid representation of streams (Haskell examples using this
representation were given in Chapter 2). Coq however is not one such system, as terms of inductive types
can only be finite.

Definition 2. We call a termfinite if it always reduces to a term in canonical form (of finite size) in finitely
many steps.

In Coq, the guaranteed finiteness of terms of inductive typesis inextricably tied to guaranteed termination
of recursive computation. Through structural recursion the two both guarantee and depend on one another:
constructing an infinite term of inductive type would require an infinite recursive computation, but because
that recursion would be structural it would require an infinite term of inductive type, thus completing the
cyclic dependency that simultaneously precludes both infinite terms and non-terminating computations.
Consequently, we cannot represent streams using inductivetypes.

In practical terms, while we could simply write:

Inductive i_stream (A: Set): Set :=

i_cons: A -> i_stream A -> i_stream A.

there simply would be no way to ever construct a term of this type.

Proposition 1. No term of typei stream T exists (for anyT).

Proof. To say that such a term does not exist is to say that its existence implies inconsistency, so we
provei stream T → ⊥. The lack of a terminal constructor fori stream has caused Coq to generate a
somewhat curious induction principle:

∀ P, i stream T → Prop,
(

∀x s,P s→ P (i cons x s)
)

→ ∀s,P s

12

We can apply this directly, taking (λs.⊥) for P, leaving a trivial recursive step of⊥ → ⊥. �

Coq provides a variant of inductive types calledcoinductivetypes [2, 7] [1, Ch.13], the goal of which is
to facilitate (potentially) infinite terms without introducing the potential for non-terminating computation.
Coinductive definitions look very similar to inductive ones. The type of potentially infinite lists can be
written coinductively as:

CoInductive c_list (T: Set): Set :=

cl_nil | cl_cons: T -> c_list T -> c_list T.

Since our streams are always infinite, we simply drop the nil constructor:

CoInductive Stream (T: Set): Set :=

Cons: T -> Stream -> Stream.

This definition is part of the Coq standard library (in the Coq.Lists.Streams module).

Coinductive types differ from inductive types in two important ways, both of which reflect their potential for
infinity. First, the decreasing argument in a structural recursion may not be of a coinductive type, because
those are not well-founded. Similarly, no induction or recursion principles are generated for coinductive
types.

Second, terms of coinductive types can be constructed corecursively.

4.1 Corecursion

Corecursionallows one to construct infinite terms of coinductive types (ordinary recursion can be used
to construct finite terms of coinductive types). Coq supports corecursion in the form ofCoFixpoint
constructs:

CoFixpoint enumerate (T: Set) (g: nat -> T) (n: nat): Stream T :=

Cons (g n) (enumerate g (S n)).

Naive addition of corecursion to a strongly normalizing system would introduce infinite reduction paths for
terms involving corecursion (since corecursion is seemingly unbounded), resulting in the loss of the strong
normalization property. The solution is to employ a lazy reduction strategy for (sub)terms of coinductive
types. That is, to only reduce them if they are the subject of apattern matching construct that is being
evaluated, and then to reduce only as much as is needed to match one of the patterns.

Lazy reduction of terms of coinductive types is not sufficient to regain strong normalization, however.
Consider,

CoFixpoint silly: Stream nat := silly.

Were Coq to accept this, no amount of reduction ofsilly in

match silly with Cons h t => h end

would ever result in a term matching the pattern. What is needed is a guarantee that continued reduction
of corecursive terms steadily reveals ever more constructor applications, so that when they are reduced as
the subject of match constructs, eventually one of the patterns will match. This property coincides with
the notion of productivity as defined in Section 3.1. Thus, a mechanism is needed to ensure that only
productive corecursive definitions are permitted, so that definitions like that ofsilly are rejected. The
mechanism used by Coq is a syntactic requirement, orguard condition[2], on corecursive definitions.

13

Definition 3. A corecursive definition isguardedif, regardless of which branches are selected in pattern
match constructs (if any), corecursive occurrences in the result term are nested, and nested only, in appli-
cations of constructors of the coinductive type. In the subject terms of pattern match constructs there may
be corecursive occurrences, but only if the patterns and result term obviously do not depend on values of
the stream being defined.1

It is easy to see that guarded stream definitions are indeed productive. It is even easier to see that the
merge-based Hamming implementation is not guarded, while the queue-based implementation is. More on
that in a moment.

4.2 Convertibility

Interestingly, this representation of streams is trivially to- and from-convertible with the functional repre-
sentation from the previous chapter:

Definition c_to_f T (s: Stream T): f_stream T := fun i => Str_nth i s.

Definition f_to_c T (s: f_stream T): Stream T := enumerate s 0.

To show that these are really eachother’s inverse, ideally we would like to prove
(

∀ f , c_to_f (f_to_c f) = f
)

∧
(

∀ c, f_to_c (c_to_f c) = c
)

.

Unfortunately, Coq’s usual Leibniz equality is too strong on either side, for reasons we will not go into here.
We will instead prove extensional equality on both sides. For Stream, extensional equality is expressed as
a coinductive predicate:

CoInductive EqSt T (s1 s2: Stream T): Prop :=

eqst: hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.

Proposition 2. c to f andf to c are eachother’s inverse. That is,
(

∀ f n, c to f (f to c f) n = f n
)

∧
(

∀ c, EqSt (f to c (c to f c)) c
)

.

Proof. We begin with the left side of the conjunction. Unfoldingc to f andf to c, we get

∀ f n, Str nth n (enumerate f 0) = f n.

Rewriting the right side of this equation asStr nth 0 (enumerate f n) we get a specific instance of the
more general statement that

∀ f x u m, Str nth (u+ x) (enumerate f m) = Str nth u (enumerate f (m+ x))

with u = m= 0 andx = n. This more general statement is easily proved by induction on x.

Next, the right side of the conjunction. Unfoldingf_to_c on the left side of the equation and replacingc
with Str_nth_tl 0 c on the right side, we get

∀ c, EqSt (enumerate (c to f c) 0) (Str nth tl 0 c).

We now generalize 0 and apply coinduction. The heads are immediately equal (after reduction). For the
tails we apply the coinduction hypothesis after minor rewriting. �

1The use of the word “obvious” here doesn’t sound very syntactically verifiable. Unfortunately, we cannot accurately characterize
the syntactical nature of this obviousness without discussing Coq internals. This is because Coq does not actually check the guarded-
ness condition until it has internally performed several syntactical rewritings on the definition, which may shuffle around or optimize
away pattern match constructs.

14

4.3 Hamming Specification

We now take a moment to revisit the Hamming specification given in Chapter 2 and state it in terms of the
coinductive stream typeStream nat. Recall that our specification was comprised of the following three
properties:

1. If a number occurs in the stream, it is smooth. (“soundness”)

2. If a number is smooth, it occurs in the stream. (“completeness”)

3. The elements occur in increasing order without duplicates.

We define the following record type to represent coinductivestreams having these properties.

Record hamming_stream: Set :=

{ s: Stream nat

; s_sound: everywhere smooth s

; s_complete: forall n, smooth n -> in_stream (eq n) s

; s_increases: increases s

}.

Here,everywhere, in stream andincreases are defined as follows.

CoInductive ForAll (A: Set) (P: Stream A ->Prop) (x: Stream A): Prop :=

HereAndFurther: P x -> ForAll P (tl x) ->ForAll P x

Definition everywhere (A: Set) (p: A -> Prop):

Stream A -> Prop := ForAll (fun s => p (hd s)).

Inductive Exists (A: Set) (P: Stream A -> Prop) (x: Stream A): Prop :=

Here: P x -> Exists P x | Further: Exists P (tl x) -> Exists P x

Definition in_stream (A: Set) (p: A -> Prop): Stream A -> Prop :=

Exists (fun s => p (hd s)).

CoInductive increases: Stream nat -> Prop :=

| increases_ctor x y r: x < y -> increases (Cons y r) ->

increases (Cons x (Cons y r)).

Of these,ForAll andExists are part of the Coq standard library.

We intend that our Hamming specification identify a unique stream, and we can prove that it does.

Proposition 3. For any two objects of typehamming stream, their stream subobjects are extensionally
equal. That is,

∀ (a b : hamming stream), EqSt (s a) (s b).

Proof. The proof is by coinduction, meaning that we prove the heads equal and invoke the coinduction
hypothesis for the tails. We do not apply coinduction on the proposition as stated though, because it would
make a useless coinduction hypothesis. It would be useless because we would not be able to apply it to
the stream tails, because those tails are not themselveshamming stream’s (after all, they lack the first
Hamming number, 1).

15

We therefore first generalize the statement into a form better suited for coinduction. Since the completeness
requirement inhamming stream is what prevents us from using coinduction, it should not come as a
surprise that it is this property that we generalize:

∀ (a b : Stream nat),
everywhere smooth a→ increases a→
everywhere smooth b→ increases b→

(∀ n, min (hd a) (hd b) ≤ n→ smooth n→ in stream (eq n) a)→
(∀ n, min (hd b) (hd a) ≤ n→ smooth n→ in stream (eq n) b)→

EqSt a b.

As a coinduction hypothesis this new statement can be applied to the tails ofa andb without any problems.
What remains is to prove that the heads ofa andb are equal. We prove this by showing that their inequality
would lead to contradiction. If they are unequal, then one isbigger than the other. (These last two steps are
constructively permissible because equality and order on natural numbers are decideable.) Call the stream
with the bigger headp. Sincep increases, this means that the value of the smaller headdoes notoccur in
p. But since that value is both smooth (by the soundness property of its stream) and greater than or equal
to the lower bound of the generalized completeness property, the latter states that itdoesoccur inp. Hence
contradiction, so the heads must be equal. �

4.4 Merge-based Implementation

Using corecursion, we can definemerge exactly the way we would like to:

CoFixpoint merge (a b: Stream nat): Stream nat :=

match a, b with Cons ha ta, Cons hb tb =>

match lt_eq_lt_dec ha hb with

| inleft (left _) => Cons ha (merge ta b)

| inleft (right _) => Cons ha (merge ta tb)

| inright _ => Cons hb (merge a tb)

end

end.

Unfortunately, as we observed earlier the merge-based definition of the Hamming stream itself does not
satisfy Coq’s guardedness condition described in Section 4.1. Thehamming occurrences in the following
definition are not guarded because they are enclosed inmerge andmap applications.

CoFixpoint hamming: Stream nat :=

Cons 1 (merge (map (mult 2) hamming)

(merge (map (mult 3) hamming)

(map (mult 5) hamming))).

The situation is very similar to the one we faced when we triedto build a merge-based Hamming imple-
mentation using the functional stream representation: in both cases Coq’s syntactic requirements designed
to enforce termination/productivity are not sophisticated enough to recognize this property for this form of
Hamming implementation.

Seeing no solution, we again temporarily give up on the merge-based implementation and focus on the
implementation based on queues. We will revisit the merge-based implementation one final time in Chapter
5.

16

4.5 Queue-based Implementation

We re-use theenqueue definition from Section 3.3 and proceed immediately withham from:

CoFixpoint ham_from (l: ne_list nat): Stream nat :=

Cons (head l) (ham_from (

enqueue (head l * 2) (

enqueue (head l * 3) (

enqueue (head l * 5) (tail l))))).

This definition satisfies the guardedness condition, and is accepted. Again, we get the Hamming stream by
applyingham from:

Definition hamming: Stream nat := ham_from (one 1).

Apart from a little overhead caused by the issue of potentiallist emptiness, this is a very succinct definition
indeed, quite closely resembling the Haskell version.

Before we proceed to prove the correctness of this implementation, we note that again the queue-based
implementation was basically accepted in its original form, while Coq again would not accept the merge-
based implementation. We conclude that the latter is simplyinherently less obviously productive, making
it less suitable for Coq formalization. Nevertheless, we will return to the merge-based implementation in
Chapter 5, where we present an alternative indirect definition scheme that externalizes the productivity
property as an (optional) proof obligation, allowing us to give a merge-based implementation after all.

But first, we prove the correctness of this queue-based implementation.

4.6 Correctness

Before we start, we writeham from as:

CoFixpoint ham_from (l: ne_list nat): Stream nat :=

Cons (head l) (ham_from (process l)).

whereprocess is defined as:

Definition process (l: ne_list nat): ne_list nat :=

enqueue (head l * 2) (

enqueue (head l * 3) (

enqueue (head l * 5) (

tail l))).

Recall from Section 2.1 that the actual Coq formalization isgeneralized over the list of multipliers. For
process, this means that the actual definition used in our proofs is implemented as a fold over the list of
multipliers:

Definition process (l: ne_list nat): ne_list nat :=

enqueue (head l * head multipliers)

(fold_right (fun h => enqueue (head l * h)) (tail l) (tail multipliers)).

For a list of multipliers consisting of the numbers 2, 3, and 5, this definition is equivalent to the first one.
Oneenqueue operation was taken outside the fold to ensure that the resulting list is non-empty.

17

The three properties that make up correctness—soundness, completeness, and increase—are all “layered”
in the sense that proofs of these properties for composed operations generally depend on lemmas that state
properties similar in spirit for the operation’s primary suboperation. For example, we will see that the
soundness proof forhamming depends on a soundness lemma forprocess, the proof of which in turn
depends on a soundness lemma forenqueue.

4.6.1 Soundness

Following the layered approach described above, we start with a soundness lemma aboutenqueue.

Lemma 1. enqueue is sound with regard to its purpose. That is,

∀ l e x, x ∈ enqueue e l→
(

x = e∨ x ∈ l
)

.

Proof. The proof is by induction onl. �

Next, we use this lemma to establish soundness ofprocess.

Lemma 2. process is sound with regard to its purpose. That is,

∀ l x, x ∈ process l →
(

x ∈ tail l ∨ ∃m ∈ multipliers, x = (head l) ∗m
)

.

Proof. Sinceprocess is just repeated application ofenqueue, the lemma follows from repeated applica-
tion of Lemma 1. �

With this lemma, we prove soundness ofhamming.

Theorem 1. hamming is sound. That is,

everywhere smooth hamming.

Proof. Unfoldinghamming and generalizing (one 1) to any (non-empty) list whose elements are smooth,
we get

∀ l, (∀ n, n ∈ l → smooth n)→ everywhere smooth (ham from l).

We proceed by coinduction. Unfoldingham from once, the goal becomes

everywhere smooth (Cons (head l) (ham from (process l))).

The head is smooth because it is inl, of which all elements are known to be smooth. The tail is smooth by
coinduction hypothesis, provided that all elements inprocess l are smooth. By Lemma 2 we know that
such elements either occur in the tail ofl, or are the result of multiplying the head ofl (which is a smooth
number) by a number from the list of multipliers. In both cases their smoothness follows immediately.�

4.6.2 Increase

We start with an increase lemma aboutenqueue.

Lemma 3. enqueue preserves increase. That is,

∀ l, increases l → ∀ e, increases (enqueue e l).

Proof. The proof is by induction onl. �

18

Next, we need two lemmas aboutprocess’ increase.

Lemma 4. process preserves increase. That is,

∀ l, increases l → increases (process l).

Proof. Again, sinceprocess is just repeated application ofenqueue, the lemma follows from repeated
application of Lemma 3. �

Lemma 5.
∀ l, increases l → 0 < head l → head l < head (process l).

Proof. By Lemma 2,head (process l) is known to be either in the tail ofl, or to be the result of mul-
tiplying the head ofl by a number from the list of multipliers. In the first case, it is bigger thanhead l
becausel increases. In the second case, it is bigger thanhead l because multiplying any number with
another number greater than 1 yields a bigger number, and bymultipliers nontrivial we know the
multipliers to be greater than 1. �

With these, we prove increase ofhamming.

Theorem 2. The elements inhamming occur in increasing order. That is,

increases hamming.

Proof. Unfolding hamming and generalizing (one 1) to any (non-empty) increasing list with a positive
head, we get

∀ l, increases l → 0 < head l → increases (ham from l).

Unfoldingham from once, the goal becomes

increases (Cons (head l) (ham from (process l))).

We proceed by coinduction, yielding the coinduction hypothesis

∀ l, increases l → 0 < head l → increases (Cons (head l) (ham from (process l))).

Unfoldingham from in our goal a second time, it now looks like:

increases (Cons (head l) (Cons (head (process l))
(ham from (process (process l))))).

This stream does indeed increase, because it increases fromits first to its second element per Lemma 5,
and increases beyond the first element per coinduction hypothesis, provided thatprocess l is increasing
and has a positive head, which by Lemmas 4 and 5 is the case. �

4.6.3 Completeness

Completeness is the most involved of the three properties. We start with a completeness lemma about
enqueue.

Lemma 6. enqueue is complete with regard to its purpose. That is,

i. ∀ x l, x ∈ l → ∀y, x ∈ enqueue y l , and

ii. ∀ e l, e ∈ enqueue e l.

Proof. Both proofs are by induction onl. �

Next, we use this lemma to establish completeness ofprocess.

19

Lemma 7. process is itself complete with regard to its purpose. That is,

i. ∀ l p, p ∈ multipliers→ (head l ∗ p) ∈ process l , and

ii. ∀ t l, t ∈ tail l → t ∈ process l.

Proof. Sinceprocess is just repeated application ofenqueue, the two statements follow from repeated
application of Lemma 6. �

We need two more lemmas before we can tackle completeness ofhamming.

Lemma 8. Any tail of ham from l with l an increasing list with positive head is itself of the form
ham from l′ with l′ an increasing list with positive head. That is,

∀ (n : ne list nat), increases n∧ 0 < head n→
ForAll (fun s⇒ ∃ l, s= ham from l ∧ increases l ∧ 0 < head l) (ham from n).

Proof. This follows immediately from the definition ofham from combined with Lemmas 4 and 5. �

Lemma 9. ham from’s list parameter behaves like a “queue” in that all elementsin it eventually show up
in the generated stream. That is,

∀ l, increases l → 0 < head l → ∀ x ∈ l, in stream (eq x) (ham from l).

Proof. The proof is by induction on the difference betweenx and the head ofl. If the difference is zero,
thenx is the head ofl and shows up as the first element inham from l. If the difference is nonzero, thenx
occurs in the tail ofl. We unfoldham from l once, showing

Cons (head l) (ham from (process l)).

We now invoke the induction hypothesis to prove thatx occurs in the tail. We are allowed to do this because
x occurs inprocess l by Lemma 7ii, and the difference betweenx and the head has decreased by Lemma
5. �

Theorem 3. hamming is complete. That is,

∀ n, smooth n→ in stream (eq n) hamming.

Proof. The proof is by induction onn being smooth (recall thatsmooth is an inductively defined predicate).
In the base case wheren is smooth because it is 1, the goal holds because 1 occurs as the head ofhamming.
In the recursive case wheren is smooth because it is of the formx ∗ y with x a smooth number andy in
the list of multipliers, the induction hypothesis states that x occurs inhamming. From this it now has to be
proved thatx ∗ y occurs in it, too. Unfoldinghamming and generalizing (one 1) to any increasing list with
positive head, we get

∀ l, 0 < head l → increases l →
in stream x (ham from l)→ in stream (x ∗ y) (ham from l).

If x occurs inham from l, then it must be so thatx = (head s) wheres= (tailm (ham from l)) for some
m. We prove thatx ∗ y occurs ins. From Lemma 8 we know thats must be of the formham from l′ with
l′ an increasing list with positive head. Unfoldingsonce, it becomes

Cons (head l′) (ham from (process l′)).

Next, by Lemma 7i we know thatx ∗ y ∈ process l′, which by Lemma 9 means that it occurs in the
stream. �

With soundness, completeness, and increase proven,hamming has been proven correct.

20

Chapter 5

Evolving Initial Segments: Merge
Redux

5.1 Toward a New Merge-based Implementation

As we concluded earlier, our problems trying to use the merge-based implementation were caused by it
being inherently less obviously productive. A logical reaction is to try and force its productive behavior
out into the open by explicitly examining the recursion stepby step rather than all at once. To make this
easier, it helps to recognize that the merge-based stream definition is incrementally productive.

Definition 4. A recursive stream definition isincrementally productiveif the computation of the element
value at a positioni only depends on the element values at positions belowi.

Non-incrementally productive recursive stream definitions exist, but are uncommon. The following is an
example of one such stream definition in Haskell.

s = (s !! 1) : 1 : s

The “!!” is Haskell’s nth-like operator. The computation of the first element ofs depends on the value of
the second element, buts is nevertheless productive. This can be easily seen when we first expand the first
occurance ofs, and then evaluate the outer indexing operation:

s = (s !! 1) : 1 : s

= ((s !! 1) : 1 : s) !! 1 : 1 : s

= 1 : 1 : s

For incrementally productive stream definitions, the step-by-step recursion approach mentioned above can
be realized quite straightforwardly by viewing the body of the definition as a unary function taking a list
of the firstn elements and producing a list of the firstm elements, wherem is always≥ n and at least
occasionally> n.

Writing this down for the merge-based Hamming stream definition, this looks like:

Definition ham_body (l: list nat): list nat :=

cons 1 (merge (map (mult 2) l)

(merge (map (mult 3) l) (map (mult 5) l))).

The cons used here is the ordinarycons for finite lists. Also, in this definition we need amerge that
operates on finite lists. Writing one is not hard, but we do notshow ours here because the definition is

21

rather cluttered. The clutter is caused by the fact that straightforward recursion on one of its two arguments
alone cannot work, since neither steadily decreases at eachlevel in the recursion (this can be seen from the
corecursivemerge definition in Section 4.4). Instead, the recursion is bounded by the sum of the lengths
of the two list parameters, which requires a bit of rather verbose Coq juggling.

This ham body is a huge step in the direction of a Coq merge-based Hamming stream implementation,
because it manages to capture the essence of the definition while at the same time completely avoiding
issues of recursion or stream representation. If we manage to come up with some mechanism that takes a
function of this form and turns it into a stream, we are set.

Before we get ahead of ourselves, though, let us take a look atwhat repeated application ofham body to
the empty list actually produces. We can automate the repeated application usingrepeat apply.

Fixpoint repeat_apply T (f: T -> T) (x: T) (n: nat) {struct n}: T :=

match n with

| 0 => f x

| S n’ => f (repeat_apply f x n’)

end.

The lists thus obtained are as follows.

n repeat apply ham body nil n
0 1
1 1, 2, 3, 5
2 1, 2, 3, 4, 5, 6, 9, 10, 15, 25
3 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 25, 27, 30, 45, 50, 75, 125

While at a first glance we might be tempted to think that these are simply increasingly long initial segments
of the Hamming stream, the mismatch at the fourth position between the second and third iterations (among
others) reveal that what we have here is somewhat more subtle. To accurately describe the contents of these
lists, we introduce the notion of bounded smoothness.

Definition 5. A number isbounded smoothwith boundb if it can be written as a product ofb or less
numbers from the list of multipliers:

Inductive bounded_smooth: forall (bound: nat), nat -> Prop :=

| bounded_smooth_1: bounded_smooth 0 1

| bounded_smooth_S b n: bounded_smooth b n ->

bounded_smooth (S b) n

| bounded_smooth_mult b n: bounded_smooth b n ->

forall m, In m multipliers -> bounded_smooth (S b) (n * m).

Lemma 10. Bounded smoothness and unbounded smoothness imply eachother. That is,

i. ∀ b n, bounded smooth b n→ smooth n , and

ii. ∀ n, smooth n→ ∃ b, bounded smooth b n.

Proof. In both cases the proof is by induction on the premise. �

22

Lemma 11. The i’th iteration contains precisely those numbers that are bounded smooth with boundi.
That is,

∀ i x, bounded smooth i x ↔ x ∈ repeat apply ham body nil i.

Proof. The proofs in either direction are by induction oni. �

Lemma 12. Every iteration increases. That is,

∀ i, increases (repeat apply ham body nil i).

Proof. The proof is by induction oni and relies on lemmas about soundness and increase ofmerge, map,
along with some other minor lemmas. Discussing it in any detail here would only cause us to lose track of
the big picture, however, so we will not do so. �

With this better understanding of the contents of these lists, we can now reason about to what extent initial
segments of them correspond to initial segment of equal length of the Hamming stream.

If an initial segment of an iteration differs from a finite initial segment of equal length of the Hamming
stream, it must be because a future iteration adds a number that falls inside the range of the segment (as
we saw at the mismatch at the fourth position between the second and third iterations). It is not hard to see
that the lowest new number introduced in thei’th iteration must be at least 2i . This means that from thei’th
iteration onwards, at least the initial segment containingthe numbers below 2i is stable and corresponds to
an initial segment of equal length of the Hamming stream. (Note that this is different from saying that the
first 2i elements are stable from thei’th iteration onwards.)

Definition 6. An initial segment of the list at iterationi is stableif it remains the initial segment in all
future iterations.

There is a relation between the index of an iteration and the length of its initial stable segment. This relation
could be consideredham body’s productive behavior. The exact length of these initial stable segments in
a given iteration is hard to accurately describe. Fortunately we may not need complete accuracy; if we
can prove that the firsti elements of iterationi are stable, then the diagonal obtained by taking everyi’th
iteration’si’th element would correspond to the Hamming stream.

Of course, for this to make sense, that diagonal needs to exist. There are two ways to deal with this issue:
either we can prove that it exists and then take it, or we can choose to fill any holes in it with some dummy
value.1 For sufficiently productive stream definition, such holes will not occur anyway. The two options
translate to Coq as follows.

Definition take_diagonal_or_dummy (T: Set)

(g: nat -> list T) (dummy: T): f_stream T :=

fun n => nth n (g n) dummy.

Definition take_diagonal (T: Set) (g: nat -> list T)

(p: forall n, n < length (g n)): f_stream T :=

fun n => snth (g n) n (p n).

For now we choose to use the second, but will return to the matter later. To use the second, we first need to
prove growth.

1It is tempting to think that this use of a dummy value can be eliminated by using something like Coq’sOption type (sim-
ilar to Haskell’s Maybe type). However, with this approach the stream one gets when taking the diagonal would be of type
Stream (Option nat), which is not what we want.

23

Lemma 13. grow: ∀ i, i < length (repeat apply ham body nil i).

Proof. The proof is by induction oni. The base case reduces to 0< length (cons 1 nil). The recursive
step amounts to showing that the list resulting from applying ham body to a list l has a length greater than
l. This follows naturally from a lemma aboutmerge (that we will not prove here) which states that

∀ a b, max (length a) (length b) ≤ length (merge a b). �

With this, we can usetake diagonal:

Definition f_hamming: f_stream nat :=

take_diagonal (repeat_apply ham_body nil) grow.

Note that Lemma 13 does not prove productivity, because it doesn’t take into consideration that only initial
segments actually correspond to the Hamming stream. A property much closer to what we would call
productivity is the one mentioned earlier, namely that the first i elements of iterationi are stable.

Lemma 14. Repeated application ofham body produces a sequence of lists that is stable below its diago-
nal. That is,

∀ i, equal upto (repeat apply ham body nil i) (repeat apply ham body nil (S i)) (S i),

whereequal upto is defined as follows.

Definition equal_upto T (a a’: list T) n: Prop :=

forall i (ip: i < n) (v: i < length a) (v’: i < length a’),

snth a i v = snth a’ i v’.

Proof. The proof is by induction oni. It relies on similar stability properties ofmerge andmap, and is hard
to summarize in a few key steps. The interested reader can findthe proof along with all sublemmas in all
their glory in the accompanying Coq formalization. �

This lemma will be important in our correctness proof.

5.2 Correctness

We want to keep using the specification of the Hamming stream given in Section 4.3, so we use the coin-
ductive stream representation:

Definition c_hamming: Stream nat := enumerate f_hamming 0.

Overall, correctness proofs of this merge-based Hamming stream implementation are quite a bit trickier
than those of the queue-based Hamming stream implementation. In terms of Coq code, the combined
proofs are about twice as long. The reason for this is simply that the trick of taking the diagonal adds a
thick layer of indirection that must be worked through to getto the essence of things. Whereas the proofs
for the queue-based implementation dealt directly with theissues at hand, the proofs for the merge-based
implementation are dominated by intricate arguments aboutstability and diagonals. This was particularly
so in Lemma 14 which we more or less skipped for this very reason. The rest of the proof outlines will also
be much more sketchy than those in the previous chapter.

24

5.2.1 Soundness

Theorem 4. c hamming is sound. That is,

everywhere smooth c hamming.

Proof. Unfoldinghamming and generalizing 0, we get:

∀ n, everywhere smooth (enumerate f hamming n).

We prove this by coinduction. The coinduction hypothesis applies directly to the tail, leaving only the
head. The head is justf hamming n, which is bounded smooth (with some boundb) by Lemma 11, and
therefore smooth by Lemma 10i. �

5.2.2 Completeness

Theorem 5. c hamming is complete. That is,

∀ n, smooth n→ in stream (eq n) c hamming.

Proof. From Lemma 10ii we know thatn is bounded smooth with some boundb. From Lemma 11 we
know that this means it occurs in some iteration. We distinguish between three cases:

• If n occurson the diagonal, then it immediately follows that it occurs inc hamming.

• If n occursbelowthe diagonal, then by Lemma 14 it must have occurredon the diagonal in some
previous iteration (and therefore occurs inc hamming).

• If n occursabovethe diagonal, then we can perform induction on the difference betweenn and the
value on the diagonal. If the difference is zero, then it has to beon the diagonal, contradicting the
premise. If the difference is nonzero, then the difference will decrease in the next iteration where
n is still present but the value on the diagonal has increased,allowing us to invoke the induction
hypothesis. �

5.2.3 Increase

Lemma 15. If a list increases, elements occurring after other elements are greater than those elements.
That is,

∀ l a b (p : a < length l) (q : b < length l), increases l → a < b→ snth l a p < snth l b q.

Proof. The proof is by induction onl. �

Theorem 6. c hamming increases. That is,

increases c hamming

Proof. Unfoldingc hamming, thenf hamming, and then generalizing 0, we get

∀ n, increases (enumerate (take diagonal (repeat apply ham body nil) grow) n).

We prove this by coinduction. Unfolding theenumerate application twice, we get

increases

(Cons (take diagonal (repeat apply ham body nil) grow n)
(Cons (take diagonal (repeat apply ham body nil) grow (S n))

(enumerate (take diagonal (repeat apply ham body nil) grow) (S (S n)))))

25

We invoke the coinduction hypothesis to prove increase beyond the first element, leaving increase from the
first to the second element for us to prove. That is,

take diagonal (repeat apply ham body nil) grow n <
take diagonal (repeat apply ham body nil) grow (S n).

Unfoldingtake diagonal, we get

snth (repeat apply ham body nil n) (grow n) <
snth (repeat apply ham body nil (S n)) (grow (S n)).

Using Lemma 14 we can rewrite this into

snth (repeat apply ham body nil (S n)) P <
snth (repeat apply ham body nil (S n)) (grow (S n)).

with P a proof of
n < length (repeat apply ham body nil (S n))

obtained from Lemma 13. Applying Lemma 15, the goal becomes

increases (repeat apply ham body nil (S n)),

which follows from Lemma 12. �

With soundness, completeness, and increase proven,c hamming has been proven correct.

5.3 Reflection

It is important to note that our gentle redressing of the merge-based implementation did not magically make
Coq “see” its productivity the way it was able to see the productivity of the queue-based implementations.
Instead, we placed an upper bound ofn recursive calls in the computation of then’th element, and then
separately proved that this was sufficient for this merge-based implementation.

As we noted earlier, this last proof was actually optional atthe time. In our implementation we could
have chosen to ignore the productivity issue altogether andhave potential holes in the diagonal filled with
dummy values. However, in subsequent correctness proofs the issue would most certainly have come back
to haunt us, most likely in a more vicious form. Still, the option is nice to have, as not all Coq stream
implementations need necessarily be certified.

This then brings up the question of to what extent this approach is generic. As far as this author can see,
the approach should work for any stream definition that meetsthe following requirements.

1. The stream definition must be incrementally productive.

2. Anyn’th element must take at mostn recursive calls to compute. (Perhapslinearly productivewould
make a good term for this.)

3. Any operations the stream definition would perform on infinite lists must be expressible for finite
lists (likemap andmerge were in our Hamming case).

In retrospect, the first requirement can probably be eliminated by usingf stream’s directly, starting with
anf stream that yields dummy values for all positions, and slowly “filling” it by repeatedly applying the
body function. However, the presence of dummy values would likely make correctness proofs much harder.

We briefly show how the approach can be directly applied to twoother stream definitions that would not be
accepted by Coq in direct recursive or corecursive form due to their productivity not being obvious enough.
Since at this point we only wish to show definitions and do not want to have to do full correctness proofs,
we refrain from proving linear productivity and instead letpotential holes be filled with a dummy value.

26

First up is the Fibonacci stream, which can be written in Haskell as follows. (A simpler definition of this
happens to be available and was given in Chapter 3, but that isbeside the point.)

fib = 0 : 1 : zip_with (+) fib (tail fib)

In Coq, using our approach this translates to:

Definition fib_body l := 0 :: 1 :: zip_with plus l (tail l).

Definition fib: Stream nat := take_diagonal_or_dummy (repeat_apply fib_body nil) 0.

(The definitions of Haskell’s and Coq’szip with are not very interesting.)

The second example is the Thue-Morse sequence, which can be written in Haskell as follows.

morse = False : True : zip (tail morse) (map not (tail morse))

In Coq, using our approach this translates to:

Definition morse_body l := false :: true :: zip (tail l) (map negb (tail l)).

Definition morse: Stream nat :=

take_diagonal_or_dummy (repeat_apply morse_body nil) false.

(The definitions of Haskell’s and Coq’szip are not very interesting.)

Looking at the definition of theham body function, and at the stability requirement needed to prove that
the result is indeed the Hamming stream, there appear to be a strong parallels to how the Knaster-Tarski
Fixpoint Theorem yields fixpoints of monotonic functions over complete lattices. It would be interesting
to put the finite-initial-segments trick discussed in this chapter into a more theoretical context and explore
this relation, similar to how Lawrence Paulson applies the Knaster-Tarski Fixpoint Theorem to justify
coinductive definitions in [9]. However, doing so is beyond the scope of this article.

Finally, Dimitri Hendriks used a similar trick based on taking the diagonal of a stream of streams in his
formalization [8] of the Thue-Morse sequence.

27

Chapter 6

Program Extraction

Efficiency and suitability for program extraction were not partof our initial stated goals, nor was an analysis
of space/time complexity of the different implementations. That said, once we have a working Hamming
stream definition in Coq, its fully automated program extraction makes it very hard to resist taking what it
produces for a quick spin.

Both queue-based and merge-based implementations were extracted to Haskell and OCaml. The extracted
OCaml version of the merge-based implementation was useless, as it crashed from a stack overflow after
computing the first 8 stream elements. The extracted OCaml version of the queue-based implementation,
as well as the extracted Haskell versions of both the merge-based and queue-based implementations, all
worked properly.

Figure 6.1 shows the time efficiency of the three working extracted programs with the listof multipliers set
to produce the ordinary Hamming stream. The merge-based implementation is about as slow in Haskell as
it is in OCaml. The Haskell version of the queue-based implementation progresses a little further before
exploding.

All three versions are extremely inefficient compared to the direct, non-extracted merge-based Haskell
implementation from Chapter 2, which can compute the millionth element in less than seven seconds on
the same machine. While it would be interesting to analyze the reason our extracted implementations are
so inefficient, and to see if mild tweaking can make a difference, this falls outside the scope of this article.

28

0

5

10

15

20

0 50 100 150 200 250 300 350
n

queue - Haskell
merge - Haskell
merge - OCaml

Figure 6.1: Time required to compute the value of the n-th element, in seconds. (Hardware: AMD Athlon
64 3200+ CPU, 1 GiB RAM.)

29

Chapter 7

Conclusion

More than anything else, our efforts to formalize the Hamming stream provide a demonstration that the
extent to which a recursive stream definition’s productivity is obvious can make or break its suitability for
formalization in Coq. Stream definitions that are obviouslyproductive, such as our queue-based imple-
mentation, can be used and certified in Coq straightforwardly using either the functional or the coinductive
stream representation.

The approach using evolving initial segments can in some cases be used for stream definitions that are
not obviously productive, but the resulting implementations are relatively hard to certify. It really is a
hack, and a highly intrusive one at that. A more proper solution would address the problem at its root,
in the mechanism used by the system to ensure productivity ofcorecursive definitions. Fortunately, a
lot of research has been and is being done to find more sophisticated mechanisms (see for example [6]).
Hopefully the fruits of this research can make tricks like this one obsolete in some future version of Coq.

30

Bibliography

[1] Yves Bertot and Pierre Castéran.Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer-Verlag,
2004.

[2] Thierry Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow, editors,Selected
Papers 1st Int. Workshop on Types for Proofs and Programs, TYPES’93, Nijmegen, The Netherlands,
24–28 May 1993, volume 806, pages 62–78. Springer-Verlag, Berlin, 1994.

[3] Edsger W. Dijkstra. An exercise attributed to R.W.Hamming. In A Discipline of Programming,
chapter 17. Prentice-Hall, 1976.

[4] Edsger W. Dijkstra. On the productivity of recursive definitions. Personal note EWD 749, September
1980.

[5] Edsger W. Dijkstra. Hamming’s exercise in SASL. Personal note EWD 792, June 1981.

[6] P. Di Gianantonio and M. Miculan. A unifying approach to recursive and corecursive definitions. In
H. Geuvers and F. Wiedijk, editors,Proceedings of TYPES’02, LNCS 2646. Springer-Verlag, 2003.

[7] Eduardo Giménez. Codifying guarded definitions with recursive schemes. InTYPES ’94: Selected
papers from the International Workshop on Types for Proofs and Programs, pages 39–59, London,
UK, 1995. Springer-Verlag.

[8] Dimitri Hendriks. The Thue-Morse sequence in Coq (or: how to bypass guardedness). September
2005.

[9] Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive definitions. InCADE-12:
Proceedings of the 12th International Conference on Automated Deduction, pages 148–161, London,
UK, 1994. Springer-Verlag.

[10] Ben A. Sijtsma. On the productivity of recursive list definitions. ACM Trans. Program. Lang. Syst.
(TOPLAS), 11(4):633–649, October 1989.

[11] The Coq Development Team.The Coq Proof Assistant Reference Manual – Version V8.1 gamma,
November 2006. http://coq.inria.fr.

31

