Formalizing the Hamming Stream in Coq

Eelis van der Weegen
Radboud University Nijmegen, Faculty of Science

Bachelor's Thesis
Supervisor: Milad Niqui

January 2007

Contents

1 Introduction

2 The Hamming Stream
2.1 Specification e e

2.2 Implementations e e e

3 Streams as Functions
3.1 Productivity e e e
3.2 Merge-based Implementation

3.3 Queue-based Implementation e

4 Coinductive Streams
4.1 COreCurSiON v v v e e e e e e e
4.2 Convertibility e
4.3 Hamming Specification e e
4.4 Merge-based Implementation
4.5 Queue-based Implementation L e

4.6 COITeCINESS o e

5 Evolving Initial Segments: Merge Redux
5.1 Toward a New Merge-based Implementation
5.2 COITECINESS o e e
5.3 Reflection e

6 Program Extraction
7 Conclusion

Bibliography

10

12
13
14
15
16
17
17

21
21
24
26

28

30

30

Chapter 1

Introduction

Infinite sequences, also called “streams”, are studiecheitely throughout mathematics and computer
science. In this article we look at several approaches tkiwgrwith streams using Coq [11]. Coq is
a versatile proof assistant with which formal specificasioprograms, and proofs can be developed and
mechanically checked. It is founded on the Predicative @ascof (Co)Inductive Constructions [1], a
constructive and dependent type theory interpreted aloadines of the Curry-Howard correspondence,
with support for algebraic data types.

Two aspects in particular are of interest, namely:

1. How can streams be represented in Coq? What type do wendsein?

2. What obstacles (if any) arise when we try to specify, defawairsively, and reason about streams?
And how can we work around those obstacles?

The Hamming stream, described in Chapter 2, is used as atoase I$ is a stream with a straightforward
specification for which elegant, concise recursive impletatons exist—at least in other systems. To
what extent those implementations can be mimicked in Cobbeilexamined in the rest of this article,
which is mostly organized following the pursuit of certifieldmming stream implementations in Coq.

In Chapter 3 we look at a stream representation where straemsgewed as functions. Next, in Chapter
4, we look at a stream representation based on coinductteetyfzes. Finally, in Chapter 5 we look at a

stream representation based on growing lists of finite lentt all three chapters, we attempt to use the
respective stream representations for the Hamming stream.

In Chapter 6, when our Hamming formalizatiofficets have come to an end, we briefly look at the practi-
cality of program extraction applied to our results.

Basic familiarity with the Coq proof assistant—its calcsilapecification language, and standard libraries—
is assumed. The article is accompanied by a complete Cocgfmation of all definitions and proofs.
Although all our definitions and proofs primarily relate ketcalculus on which Coq is founded rather than
the Coq system itself, in our discussion we identify the twd aimply say “Coq” when either is meant.

We only consider strictly infinite streams with a beginningdano end. We do not consider finite or
potentially-finite streams, or streams that are infinitenia tirections (such @ when viewed as a stream).

Notation We use ML-style parentheses everywhere (efg(d X y) instead off (g(x), y)).

Lists and List Operations

We will often use Coq'dist data type, which is assumed to be familiar. We will use twiGedent list
indexing functions for it. The firstath, is part of the Coq standard library and has typé : N) (I :
list T)(d: T), T. The dummy argument is returned whem > length |. The second indexing func-
tion, snth (for “safen’'th”), is not part of the Coq standard library and has typ@ : N) (I : 1ist T),i <
length | — T. Instead of a dummy value it takes a proof that excludes the wderenth would have
returned its dummy value.

In our formalization we occasionally need to work with ligtat are known not to be empty. For these, we
define the typae_list of non-empty lists:

Inductive ne_list (T: Set): Set :=
| one: T -> ne_list T
| cons: T -> ne_list T -> ne_list T.

In addition to obvious operations on non-empty lists likead andtail, one operation that will pop up
in our definitions isne_1ist.from plain, of typeV T, T — 1list T — ne_list T. It constructs a
non-empty list from a (potentially empty) plain list and gaeate head element.

Also,ne_list T has been made coercibleldst T, meaning that there is a conversion function of type
¥ T, nelist T — list T that is applied implicitly whenever a term of tyme_list T occurs in a
context where a term of typeist T was expected.

Chapter 2

The Hamming Stream

2.1 Specification

The Hamming stream consists of those natural numbers whiose givisors are alk 5, listed in increas-
ing order without duplicates. Its first 20 elements are:

1,2,3,4,5,6,8,9,10,12 15,16, 18, 20, 24, 25, 27,30, 32, 36

It was popularized by Edsger Dijkstra [3], who also gave aopib] of correctness of the merge-based
implementation discussed in the next secfion

Generalizing the constant 5 leads to what are called stredkismooth numbers. A numberkssmooth
if its prime divisors are alk k. In this article and its accompanying Coq formalization,adept a slightly
broader notion of smoothness, namely that a number is snmelztive to a list of numberkif it can be
written as a product of numberslin

Parameter multipliers: ne_list nat.

Hypothesis multipliers_nontrivial:
forall m, In m multipliers -> m > 1.

Inductive smooth: nat -> Prop :=
| smooth_one: smooth 1
| smooth_more x y:
smooth x -> In y multipliers -> smooth (x * y).

We use this broader notion of smoothness because it is betbreéa work with (since it turns out that
this way the formalization does not need any theory abom@mumbers), and strengthens our results
(since normak-smoothness is reduced to a mere special case where thieristtgpliers contains the first
successive primes up to and includigg

Our entire formalization is parameterized by the list of tipliers. Plugging in the list of numbers 2, 3,

and 5 yields definitions and correctness proofs of the noktaahming stream. For illustrative purposes,
definitions shown in this article often use the numbers 2n8, &adirectly. In our discussion we will use

the term “Hamming stream” to refer to any and all of the vasaabove, generalized or not.

lunfortunately, to the extent that Dijkstra’s proof is fornthe logical framework it uses (if any) seems entirely imgmtible
with the one used by Coq, so it is of little use to us.

The precise formulation of a Coq specification of the Hamnstrgam depends on the chosen stream
representation, but we can characterize the three mairegiepas follows.

1. If anumber occurs in the stream, it is smooth.
2. If a number is smooth, it occurs in the stream.

3. The elements occur in increasing order without dupleate

We will refer to the first and second properties as “soundnasd “completeness”, respectively. For
convenience, we will say that a list or stream “increase#$i€lements occur in increasing order without
duplicates. With this, the third property can simply beestzds: the stream increases.

In Section 4.3 a precise Coq formulation is given for a cootie stream representation.

2.2 Implementations

As mentioned, in some other systems the Hamming stream cangbemented very concisely. Our goal
will be to approximate two such implementation—one exgstind one new—in Cog. The firstimplemen-
tation, here expressed in Haskell, is as follows.

merge (x:xs) (y:ys)
| x <y =2x : merge xs (y:ys)
| x >y =y : merge (X:xs) ys
| x ==y = X : merge Xs ys

hamming = 1 :
merge (map (* 2) hamming) (
merge (map (* 3) hamming) (
map (* 5) hamming))

We call this themerge-based@mplementation. It is an often-cited example demonstggiioth the expres-
sive power and potential fotfleciency of fully lazily evaluated functional programmingntpuages.

Much can be said about to what extent the implementationtustive or elegant. However, ultimately this
has proven to be very much in the eye of the beholder, arguggnding above all on theiffanity for
and experience with the functional programming paradiggeneral.

The second implementation, again in Haskell, is somewhatagi to the previous one.

enqueue x [] = [x]
enqueue x (y:ys)

| x <y=x:y:ys
| x >y =y : enqueue x ys
| x == =y : ys

ham_from (h:t) = h : ham_from (
enqueue (h * 2) (
enqueue (h * 3) (
enqueue ¢h * 5) t)))

hamming = ham_from [1]

We call this thequeue-basednplementatioA. It differs from the merge-based implementation in that
it explicitly processes one element at a time while the méx@ged implementation manipulates entire

2The term “queue” is used very informally here. It merely retiiethis author’s impression of the algorithm’s behavior.

streams at a time. Itis in this sense somewhat more imperativature. We will see later that this makes
all the diference—for the better—in our formalizatioffets. This is no accident, as it was designed
explicitly with Coq formalization in mind.

Note that in both implementations, Haskell's lazy evalmathllows its ordinary list data type to be used to
represent infinite lists. This approach and its applicghiti Coq is discussed in detail in Chapter 4.

Having familiarized ourselves with the Hamming stream, v ook at our first stream representation
candidate.

Chapter 3

Streams as Functions

A very straightforward way of representing streams is agtions fromN to some typel . For example,
the popular Fibonacci sequence can be specified as follows.

fibo = 0
fibl = 1
fib(n+2) = fibn+fib(n+1)

This representation and form of definition can be used in Coq:
Definition f_stream (T: Set) := nat -> T.

Definition fib: f_stream nat :=
fix £ (n: nat) {struct n}: nat :=
match n with
| ® =0
| 1 =>1
| S(Sn’” asn’) = fn’” + £fn”’
end.

(The ‘£_’ prefix is used to distinguish this functional approach fralternative approaches in later chap-
ters.)

3.1 Productivity

We used thefix construct to defingib recursively. In doing so, Coq required that we identify aistr
turally decreasing argument (pointed todstruct n}),to ensure that the recursion eventually terminates—
a property Coq requires for all recursive function defimitio This Coq definition then is not just a direct
translation of the set of equations that made up the origipatification, but also provides a proof that,
using this definition, the value of any element of the streamlze computed in finite time.

Definition 1. A stream definition that provides the means to compute anyetdkslement value in finite
time is calledproductive[10, 4].

Note that non-recursive stream definitions are triviallgdarctive. Informally, productivity is what sepa-
rates stream implementations from mere specificationshdrase of fib, turning the specification into an
implementation by showing its productivity was easy; alllveg to do was point at the parametewhich

happened to nicely decrease at the recursive call. In gaheragh, showing the productivity of a specifi-
cation can be very hard, or indeed impossible if the spetificanterpreted as an implementation would
simply not be productive. As a (silly) example of the latmmsider the following alternative specification
of the Fibonacci stream.

fibo = 0
firl = 1
fib n = fib'(n+2)—fib’ (n+1)

As a specification, this set of equations is equivalent todilrj denotes the same stream. However, it
cannot be used as an implementation, because when used potegrsay, fib’ 3, the computation would
never complete. In Coq fib’ simply cannot be written down asarsive function definition, because there
is no decreasing argument. \Wanformalize this specification, but only in the form of a pasgiredicate
over streams which does not provide the means to computhiagyt

Definition is_fib (s: f_stream nat): Prop :=
s 0 =0 /\
s1=1/\

forall n, sn=s (n+2) -s (n+ 1).

For the Fibonacci stream there is little point in using tHisraative specification in predicate form, as the
original specification was both more intuitive and prodeetiFor the Hamming stream, however, giving a
specification in predicate form allows us to directly sthte three properties from Section 2.1 without any
concern for productivity, so we will do this in Section 4.3.

In constructive logics such as the one used by Coq, provigimignplementation of something is equated
to proving its very existence. From this perspective oul gbaoming up with an implementation of the
Hamming stream can actually be stated in much more grantkoses: our goal is to prove the existence
of the Hamming stream (or rather of a family of streams theluides the Hamming stream).

Since Cog demands provable termination &ir computation, it follows that it will only permit prov-
ably productive stream implementations, regardless efstrrepresentation. In this functional represen-
tation, this productivity requirement manifests itselftire form of recursion being structural rather than
unbounded. In Chapters 4 and 5 we will see how the produgtieijuirement manifests itself in other
stream representations.

Proceeding with this function-based representation efstis, we can define a few convenient functions
that operate on streams:

Definition f_head T (s: f_stream T): T := s 0.
Definition f_tail T (s: f_stream T): f stream T := fun n => s (S n).

Definition f_cons (T: Set) (x: T) (s: f_stream T): f_stream T :=
fun n => match n with ® => x | S n’ => s n’ end.

Definition f map (T U: Set) (g: T -> U) (s: f_stream T): f_stream U :=
fun n => g (s n).

These are all accepted by Coq. With these fundamentals geplae now attempt to implement the
Hamming stream, starting with the implementation based ergm

3.2 Merge-based Implementation

First, we must define the merge function, which happens tebersive. Translating the Haskell version
to Coq as directly as possible, we arrive at:

Fixpoint f_merge (a b: f_stream nat) {struct ?}: f_stream nat :=
match 1t_eq_lt_dec (f_head a) (f_head b) with
| inleft (left _) => f_cons (f_head a) (f_merge (f_tail a) b)
| inleft (right _) => f_cons (f_head a) (f_merge (f_tail a) (f_tail b))
| inright _ => f_cons (f_head b) (f_merge a (f_tail b))
end.

(The type oflt_eq_lt_decis¥ (hnm: N), {n<m}+{n=m}+{m<n}).

Unfortunately, there is nothing to write at the question knavhere the decreasing argument would be
specified (as it was in the definition d@fib). A decreasing argument must be of an inductive type, which
f streamnat is not; £_tail sis not structurally smaller thag at least not in an inductive sense. For-
tunately, we can open up thestream nat abstraction to reveal the position parameter, on which we
can perform straightforward recursion. This works becaagardless of the outcome of the heads com-
parison, the result term is ficons application that trivially decomposes into head and tathponents
corresponding to the cases where the position argumentasapel non-zero, respectively.

Definition f_merge: f_stream nat -> f_stream nat -> f_stream nat :=
fix g (a b: f_stream nat) (n: nat) {struct n}: nat :=
match n with
| 0 =>
match 1t_eq_lt_dec (f_head a) (f_head b) with
| inleft _ => f_head a
| inright _ => f_head b
end

| Sn’ =
match 1t_eq_lt_dec (f_head a) (f_head b) with
| inleft (left _) => g (f_tail a) b n’
| inleft (right _) => g (f_tail a) (f_tail b) n’
| inright _ => g a (f_tail b) n’
end

end.

While not as elegant, this works.

Next up is the Hamming stream itself. An initial attempt$adnalogously to the initiaf_merge attempt,
albeit in an even more dramatic way:

Fixpoint f_hamming {struct ?}: f_stream nat :=
f cons 1 (f_merge (f_map (mult 2) f_hamming)
(f_merge (f_map (mult 3) f_hamming)
(f_map (mult 5) f_hamming))).

There is simply no argument to recurse on. Unlike before dvern opening ugf_stream cannot save us:

Fixpoint f_hamming (n: nat) {struct n}: nat :=
match n with

| @ =1
| Sn’ =
(f_merge (f_map (mult 2) f_hamming)

(f_merge (f_map (mult 3) f_hamming) (f_map (mult 5) f_hamming))) n’
end.

Coq rejects this definition because it only allows recursaiés that are passed a structurally smaller argu-
ment directly, while in the above definition any actual respue calls are delegated to other functions. The
recursion is not simple enough for Coq to recognize the petivty of the definition.

This time no obvious fix comes to mind. There appears to be ear-dut way to convince Coq of the
productivity of this definition, so for now we turn our attent to the implementation based on queues. We
will revisit the merge-based implementation in Chapterad %.

3.3 Queue-based Implementation

We begin with theenqueue function, for which the Haskell code from Chapter 2 can bagtated almost

directly. The only real change is that we change some datastyp non-empty lists and point at the
structurally decreasing argument.

Fixpoint enqueue (n: nat) (l: list nat) {struct 1}: ne_list nat :=
match 1 with

| nil => one n

| cons h t =>
match 1t_eq_lt_dec n h with
| inleft (left _) => ne_list.from_plainn 1
| inleft (right _) => ne_list.from_plain h t
| inright _ => cons h (enqueue n t)
end

end.

Next, we attempt thaam_from function.

Fixpoint ham_from (1: ne_list nat) {struct ?}: f_stream nat :=
f_cons (head 1) (ham_from (
enqueue (head 1 * 2) (
enqueue (head 1 * 3) (
enqueue (head 1 * 5) (tail 1))))).

This attempt fails because there is no suitable argumemiciarse onl(most certainly does not get struc-
turally smaller). Fortunately, the trick of opening fipstream nat can help us out again, thanks to the

10

fact that the result term isfi.cons application:

Fixpoint ham_from (1: ne_list nat) (n: nat) {struct n}: nat :=

match n with

| ® => head 1

| S n’ => ham_from (

enqueue (head 1 * 2) (
enqueue (head 1 * 3) (
enqueue (head 1 * 5) (tail 1)))) n’
end.

Finally, hamming is just an application ofiam_from:
Definition hamming: f_stream nat := ham_from (one 1).

We will not prove the correctness of this implementatiorehén Section 4.5 we will find that the queue-
based definition can also be expressed using a coinducteanstrepresentation, and we will prove cor-
rectness of a coinductive queue-based Hamming streamrimepition there.

This queue-based implementation was basically accepigsianiginal form, while Coq would not accept
the merge-based implementation. The reason for this isttiegproductivity of the former was obvious
enough for Coq to be able to recognize it in the form of struadttecursion, while the productivity of the
latter was too complex for Coq to recognize—at least in tliiefional stream representation. To gain more
insight into whether this is just an artifact of this partaustream representation or a problem inherent in
the merge-based implementation, we now leave the fundtitream representation for what it is and look
at another stream representation.

11

Chapter 4

Coinductive Streams

In the previous chapter we viewed streams as functions #bto some element type. A completely
different way of looking at streams is to view them as instancesoofe kind of algebraic data type.
Looking at the canonical inductive definition of list,

Inductive list (T: Set): Set :=
nil | cons: T -> 1list T -> list T.

it might occur to us that a hypothetical term consisting ofrdimite sequence of applications of thens
constructor,
cons Xg (cons x; (cons X (cons Xz ...))),

would bear the hallmarks of a stream.

In some systems, such as Haskell, this is a valid represemtaft streams (Haskell examples using this
representation were given in Chapter 2). Coq however is netsoich system, as terms of inductive types
can only be finite.

Definition 2. We call a ternfiniteif it always reduces to a term in canonical form (of finite 3izefinitely
many steps.

In Coq, the guaranteed finiteness of terms of inductive typawextricably tied to guaranteed termination
of recursive computation. Through structural recursianttto both guarantee and depend on one another:
constructing an infinite term of inductive type would re@un infinite recursive computation, but because
that recursion would be structural it would require an inéirterm of inductive type, thus completing the
cyclic dependency that simultaneously precludes bothiiafterms and non-terminating computations.
Consequently, we cannot represent streams using indugges.

In practical terms, while we could simply write:

Inductive i_stream (A: Set): Set :=
i_cons: A -> i_stream A -> i_stream A.

there simply would be no way to ever construct a term of thiety

Proposition 1. No term of typei_stream T exists (for anyT).

Proof. To say that such a term does not exist is to say that its existanplies inconsistency, so we
provei_stream T — L. The lack of a terminal constructor farstream has caused Coq to generate a
somewhat curious induction principle:

YV P, i_stream T — Prop, (VX sP s— P(i_cons x s)) — Vs P s

12

We can apply this directly, takingl6.L) for P, leaving a trivial recursive step af — L. O

Coq provides a variant of inductive types callsminductivetypes [2, 7] [1, Ch.13], the goal of which is
to facilitate (potentially) infinite terms without introding the potential for non-terminating computation.
Coinductive definitions look very similar to inductive oneshe type of potentially infinite lists can be
written coinductively as:

CoInductive c_list (T: Set): Set :=
cl_nil | cl_cons: T -> c_list T -> c_list T.

Since our streams are always infinite, we simply drop theamktructor:

CoInductive Stream (T: Set): Set :=
Cons: T -> Stream -> Stream.

This definition is part of the Coq standard library (in the Qasts.Streams module).

Coinductive types diier from inductive types in two important ways, both of whiefiect their potential for
infinity. First, the decreasing argument in a structuralirsion may not be of a coinductive type, because
those are not well-founded. Similarly, no induction or neton principles are generated for coinductive

types.
Second, terms of coinductive types can be constructed asigely.

4.1 Corecursion

Corecursionallows one to construct infinite terms of coinductive typesl{nary recursion can be used
to construct finite terms of coinductive types). Coq suppadrecursion in the form ofoFixpoint
constructs:

CoFixpoint enumerate (T: Set) (g: nat -> T) (n: nat): Stream T :=
Cons (g n) (enumerate g (S n)).

Naive addition of corecursion to a strongly normalizingteys would introduce infinite reduction paths for
terms involving corecursion (since corecursion is seetyingbounded), resulting in the loss of the strong
normalization property. The solution is to employ a lazyugttbn strategy for (sub)terms of coinductive
types. That is, to only reduce them if they are the subject pattern matching construct that is being
evaluated, and then to reduce only as much as is needed th ore©f the patterns.

Lazy reduction of terms of coinductive types is nofiglient to regain strong normalization, however.
Consider,

CoFixpoint silly: Stream nat := silly.
Were Coq to accept this, no amount of reductiosdily in

match silly with Cons h t => h end

would ever result in a term matching the pattern. What is edesl a guarantee that continued reduction
of corecursive terms steadily reveals ever more constragiplications, so that when they are reduced as
the subject of match constructs, eventually one of the petteill match. This property coincides with
the notion of productivity as defined in Section 3.1. Thus, echanism is needed to ensure that only
productive corecursive definitions are permitted, so thedindions like that ofsilly are rejected. The
mechanism used by Coq is a syntactic requiremerguard conditior[2], on corecursive definitions.

13

Definition 3. A corecursive definition iguardedif, regardless of which branches are selected in pattern
match constructs (if any), corecursive occurrences inékalt term are nested, and nested only, in appli-
cations of constructors of the coinductive type. In the sabjerms of pattern match constructs there may
be corecursive occurrences, but only if the patterns andtriesm obviously do not depend on values of
the stream being definéd.

It is easy to see that guarded stream definitions are indemtliptive. It is even easier to see that the
merge-based Hamming implementation is not guarded, widletieue-based implementation is. More on
that in a moment.

4.2 Convertibility

Interestingly, this representation of streams is triviadi- and from-convertible with the functional repre-
sentation from the previous chapter:

Definition c_to_f T (s: Stream T): f_stream T := fun i => Str_nth i s.
Definition f_to_c T (s: f_stream T): Stream T := enumerate s 0.

To show that these are really eachother’s inverse, idealywauld like to prove

(V f,c_to_f (f_to_c f) = f) A (\/ c,f_to_c (c_to_f ¢) = C).

Unfortunately, Coq’s usual Leibniz equality is too stromggither side, for reasons we will not go into here.
We will instead prove extensional equality on both sides.Saeam, extensional equality is expressed as
a coinductive predicate:

CoInductive EqSt T (sl s2: Stream T): Prop :=
eqst: hd sl = hd s2 -> EgqSt (tl s1) (tl s2) -> EqSt sl s2.

Proposition 2. c_to_f andf_to_c are eachother’s inverse. That is,

(V fn ctof (fitoc f) n=1f n) A (V C, EgSt (f_-toc (c_to_f c)) C).

Proof. We begin with the left side of the conjunction. Unfoldiagtco_f andf_to_c, we get
V¥ fn, Strnth n (enumerate f 0)=f n.

Rewriting the right side of this equation &sr.nth 0 (enumerate f n)we get a specific instance of the
more general statement that

¥ f xumStrnth (U+ X) (enumerate f m) = Strnth u(enumerate f (M+ X))

with u = m = 0 andx = n. This more general statement is easily proved by inductiorn o

Next, the right side of the conjunction. Unfoldifgto_c on the left side of the equation and replacing
with Str_nth_t1 O con the right side, we get

Y ¢,EqSt (enumerate (c_to_f ¢) 0) (Strnth_tl O c).

We now generalize 0 and apply coinduction. The heads are dhatedy equal (after reduction). For the
tails we apply the coinduction hypothesis after minor réwgi. O

1The use of the word “obvious” here doesn’t sound very syidalty verifiable. Unfortunately, we cannot accurately wterize
the syntactical nature of this obviousness without disogs§oq internals. This is because Coq does not actuallykdiecguarded-
ness condition until it has internally performed severaltagtical rewritings on the definition, which may s$fe around or optimize
away pattern match constructs.

14

4.3 Hamming Specification

We now take a moment to revisit the Hamming specificationrgimeChapter 2 and state it in terms of the
coinductive stream typ8tream nat. Recall that our specification was comprised of the follayinree
properties:

1. Ifanumber occurs in the stream, it is smooth. (“soundiess
2. Ifanumber is smooth, it occurs in the stream. (“complesst)

3. The elements occur in increasing order without dupleate

We define the following record type to represent coinductiveams having these properties.

Record hamming_stream: Set :=
{ s: Stream nat
; s_sound: everywhere smooth s
; s_complete: forall n, smooth n -> in_stream (eq n) s
; S_increases: increases s

}.
Here,everywhere, in_stream andincreases are defined as follows.

CoInductive ForAll (A: Set) (P: Stream A ->Prop) (x: Stream A): Prop :=
HereAndFurther: P x -> ForAll P (tl x) ->ForAll P x

Definition everywhere (A: Set) (p: A -> Prop):
Stream A -> Prop := ForAll (fun s => p (hd s)).

Inductive Exists (A: Set) (P: Stream A -> Prop) (x: Stream A): Prop :=
Here: P x -> Exists P x | Further: Exists P (tl x) -> Exists P x

Definition in_stream (A: Set) (p: A -> Prop): Stream A -> Prop :=
Exists (fun s => p (hd s)).

CoInductive increases: Stream nat -> Prop :=
| increases_ctor X y r: X < y -> increases (Cons y r) ->
increases (Cons x (Cons y r)).

Of theseForAll andExists are part of the Coq standard library.

We intend that our Hamming specification identify a uniqueat, and we can prove that it does.

Proposition 3. For any two objects of typhamming_stream, their stream subobjects are extensionally
equal. Thatis,
¥ (ab: hamming_stream), EqSt (s a) (s b).

Proof. The proof is by coinduction, meaning that we prove the heagdsileand invoke the coinduction
hypothesis for the tails. We do not apply coinduction on tfappsition as stated though, because it would
make a useless coinduction hypothesis. It would be usebkxsaulse we would not be able to apply it to
the stream tails, because those tails are not themskhnesing stream’s (after all, they lack the first
Hamming number, 1).

15

We therefore first generalize the statement into a form bstiieed for coinduction. Since the completeness
requirement inhamming_stream is what prevents us from using coinduction, it should not ecam a
surprise that it is this property that we generalize:

¥ (ab: Stream nat),
everywhere smooth a — increases a —
everywhere smooth b — increases b —
(Y n,min (hd @) (hd b) < n — smooth Nn— in_stream (eq n) a) —
(VY n,min (hd b) (hd a) < n — smooth h— in_stream (eq n) b) —
EqSt a b.

As a coinduction hypothesis this new statement can be apialitne tails ofa andb without any problems.
What remains is to prove that the headsi@indb are equal. We prove this by showing that their inequality
would lead to contradiction. If they are unequal, then oridger than the other. (These last two steps are
constructively permissible because equality and orderadural numbers are decideable.) Call the stream
with the bigger heagh. Sincep increases, this means that the value of the smaller tead nobccur in

p. But since that value is both smooth (by the soundness propkits stream) and greater than or equal
to the lower bound of the generalized completeness prapiketyatter states thatdoesoccur inp. Hence
contradiction, so the heads must be equal. O

4.4 Merge-based Implementation

Using corecursion, we can defimerge exactly the way we would like to:

CoFixpoint merge (a b: Stream nat): Stream nat :=
match a, b with Cons ha ta, Cons hb tb =>
match 1t_eq_lt_dec ha hb with
| inleft (left _) => Cons ha (merge ta b)
| inleft (right _) => Cons ha (merge ta tb)
| inright _ => Cons hb (merge a tb)
end
end.

Unfortunately, as we observed earlier the merge-basedititgfimf the Hamming stream itself does not
satisfy Coq's guardedness condition described in SectibnPhehamming occurrences in the following
definition are not guarded because they are encloseérige andmap applications.

CoFixpoint hamming: Stream nat :=
Cons 1 (merge (map (mult 2) hamming)
(merge (map (mult 3) hamming)
(map (mult 5) hamming))).

The situation is very similar to the one we faced when we trieduild a merge-based Hamming imple-
mentation using the functional stream representationoth bases Coq’s syntactic requirements designed
to enforce terminatigiproductivity are not sophisticated enough to recognizeghoperty for this form of
Hamming implementation.

Seeing no solution, we again temporarily give up on the méaged implementation and focus on the
implementation based on queues. We will revisit the megget implementation one final time in Chapter
5.

16

4.5 Queue-based Implementation

We re-use thenqueue definition from Section 3.3 and proceed immediately viidim_from:

CoFixpoint ham_from (1: ne_list nat): Stream nat :=
Cons (head 1) Cham_from (
enqueue (head 1 * 2) (
enqueue (head 1 * 3) (
enqueue (head 1 * 5) (tail 1))))).

This definition satisfies the guardedness condition, anddsgted. Again, we get the Hamming stream by
applyingham_from:

Definition hamming: Stream nat := ham_from (one 1).

Apart from a little overhead caused by the issue of poteligiadmptiness, this is a very succinct definition
indeed, quite closely resembling the Haskell version.

Before we proceed to prove the correctness of this impleatient we note that again the queue-based
implementation was basically accepted in its original fowhile Coq again would not accept the merge-
based implementation. We conclude that the latter is sinmbigrently less obviously productive, making
it less suitable for Coq formalization. Nevertheless, wk rgturn to the merge-based implementation in
Chapter 5, where we present an alternative indirect defmicheme that externalizes the productivity
property as an (optional) proof obligation, allowing us teega merge-based implementation after all.

But first, we prove the correctness of this queue-based mmgaiéation.

4.6 Correctness

Before we start, we writham_from as:

CoFixpoint ham_from (1: ne_list nat): Stream nat :=
Cons (head 1) (ham_from (process 1)).

whereprocess is defined as:

Definition process (1: ne_list nat): ne_list nat :
enqueue (head 1 * 2) (
enqueue (head 1 * 3) (
enqueue (head 1 * 5) (
tail 1))).

Recall from Section 2.1 that the actual Coq formalizatiogaseralized over the list of multipliers. For
process, this means that the actual definition used in our proofs [gémented as a fold over the list of
multipliers:

Definition process (1: ne_list nat): ne_list nat :=
enqueue (head 1 * head multipliers)

(fold_right (fun h => enqueue (head 1 * h)) (tail 1) (tail multipliers)).

For a list of multipliers consisting of the numbers 2, 3, anthis definition is equivalent to the first one.
Oneenqueue operation was taken outside the fold to ensure that thetieglikt is non-empty.

17

The three properties that make up correctness—soundmespleteness, and increase—are all “layered”
in the sense that proofs of these properties for composeadipes generally depend on lemmas that state
properties similar in spirit for the operation’s primarybsyeration. For example, we will see that the
soundness proof fatamming depends on a soundness lemmagoocess, the proof of which in turn
depends on a soundness lemmaeimueue.

4.6.1 Soundness
Following the layered approach described above, we stéitavsoundness lemma abeumigueue.

Lemma 1. enqueue is sound with regard to its purpose. That s,
Ve x Xe€ enqueue e I—>(x:evxel).
Proof. The proof is by induction oh O
Next, we use this lemma to establish soundnegsrotess.
Lemma 2. process is sound with regard to its purpose. That s,

V¥ 1X, X € process | — (x € tail |vaImemultipliers, X = (head) = m).

Proof. Sinceprocess is just repeated application ehqueue, the lemma follows from repeated applica-
tion of Lemma 1. O

With this lemma, we prove soundnesshaiuming.

Theorem 1. hamming is sound. That is,

everywhere smooth hamming.

Proof. Unfoldinghamming and generalizingone 1) to any (non-empty) list whose elements are smooth,
we get
Y1, (¥n,nel - smooth n) — everywhere smooth (ham_from I).

We proceed by coinduction. Unfoldirgum_from once, the goal becomes
everywhere smooth (Cons (head |) (ham_from (process I))).

The head is smooth because it id,inf which all elements are known to be smooth. The tail is smbgy
coinduction hypothesis, provided that all elementgincess | are smooth. By Lemma 2 we know that
such elements either occur in the taillpbr are the result of multiplying the headlafwhich is a smooth
number) by a number from the list of multipliers. In both cagieeir smoothness follows immediatelya

4.6.2 Increase

We start with an increase lemma abentjueue.

Lemma 3. enqueue preserves increase. That is,

¥ |, increases | — V €, increases (enqueue e).

Proof. The proof is by induction oh O

18

Next, we need two lemmas abqttocess’ increase.
Lemma 4. process preserves increase. That is,
¥ |, increases | — increases (process I).

Proof. Again, sinceprocess is just repeated application ehqueue, the lemma follows from repeated
application of Lemma 3. O

Lemma 5.
V1, increases | —» 0 <head | — head | < head (process).

Proof. By Lemma 2head (process) is known to be either in the tail df or to be the result of mul-
tiplying the head of by a number from the list of multipliers. In the first case sithigger tharhead |
becausd increases. In the second case, it is bigger thead | because multiplying any number with
another number greater than 1 yields a bigger number, amthbyipliersnontrivial we know the
multipliers to be greater than 1. O

With these, we prove increase lodmming.

Theorem 2. The elements ihamming occur in increasing order. That is,

increases hamming.

Proof. Unfolding hamming and generalizingane 1) to any (non-empty) increasing list with a positive
head, we get
¥ |, increases | —» 0 <head | — increases (ham_from I).

Unfoldingham_from once, the goal becomes
increases (Cons (headl) (ham_from (process))).
We proceed by coinduction, yielding the coinduction hyesth
¥ 1, increases | —» 0 <head | — increases (Cons (head |) (ham_from (process l))).
Unfoldingham_from in our goal a second time, it now looks like:

increases (Cons (head I) (Cons (head (processl))
(ham_from (process (process))))).

This stream does indeed increase, because it increasestéréinst to its second element per Lemma 5,
and increases beyond the first element per coinduction hgpi®, provided thairocess | is increasing
and has a positive head, which by Lemmas 4 and 5 is the case. O

4.6.3 Completeness

Completeness is the most involved of the three properties. siaft with a completeness lemma about
enqueue.

Lemma 6. enqueue is complete with regard to its purpose. That s,

i. YXxI, xel - Vy, x € enqueue y | ,and

ii. Vel ee enqueue e |
Proof. Both proofs are by induction dn O

Next, we use this lemma to establish completenegs-otess.

19

Lemma 7. process is itself complete with regard to its purpose. That is,

i. VIp, pemultipliers — (head | * p) € process| ,and
ii. Vtl, tetail | — t e process |I.

Proof. Sinceprocess is just repeated application ehqueue, the two statements follow from repeated
application of Lemma 6. O

We need two more lemmas before we can tackle completenéssining.

Lemma 8. Any tail of ham_from | with | an increasing list with positive head is itself of the form
ham_from I’ with I an increasing list with positive head. That is,

¥ (n:ne_list nat), increases NA 0O <head n—
ForAll (fun s= 3|, s=ham_from | A increases | A0 <head I) (ham_from n).

Proof. This follows immediately from the definition dfam_from combined with Lemmas 4 and5. o

Lemma 9. ham from’s list parameter behaves like a “queue” in that all eleméntseventually show up
in the generated stream. That is,

V1, increases | - O<head | » ¥ xel, in_stream (eq X) (ham_from I).

Proof. The proof is by induction on the filerence betweer and the head df If the difference is zero,
thenx is the head of and shows up as the first elemenhim_from I. If the difference is nonzero, then
occurs in the tail of. We unfoldham_from | once, showing

Cons (head |) (ham_from (process I)).

We now invoke the induction hypothesis to prove thatcurs in the tail. We are allowed to do this because
x occurs inprocess | by Lemma 7ii, and the dlierence betweexand the head has decreased by Lemma
5. O

Theorem 3. hamming is complete. That is,

¥ n,smooth N — in_stream (eq N) hamming.

Proof. The proofis by induction on being smooth (recall thaimooth is an inductively defined predicate).
In the base case whends smooth because itis 1, the goal holds because 1 occurs hedld ohamming.

In the recursive case wherneis smooth because it is of the forr y with x a smooth number anglin
the list of multipliers, the induction hypothesis statestthoccurs inhamming. From this it now has to be
proved thatx = y occurs in it, too. Unfoldindhamming and generalizingdne 1) to any increasing list with
positive head, we get

V1, 0 <head | — increases | —
in_stream X (ham_from |) - in_stream (X * y) (ham_from I).

If xoccurs inham_from |, then it must be so that= (head s) wheres= (tail™ (ham_from I)) for some
m. We prove thak + y occurs ins. From Lemma 8 we know thatmust be of the fornham_from |’ with
I’ an increasing list with positive head. Unfoldisg@nce, it becomes

Cons (head I’) (ham_from (process I’)).

Next, by Lemma 7i we know that = y € process |I’, which by Lemma 9 means that it occurs in the
stream. m]

With soundness, completeness, and increase prawening has been proven correct.

20

Chapter 5

Evolving Initial Segments: Merge
Redux

5.1 Toward a New Merge-based Implementation

As we concluded earlier, our problems trying to use the méaged implementation were caused by it
being inherently less obviously productive. A logical réac is to try and force its productive behavior
out into the open by explicitly examining the recursion gtgpstep rather than all at once. To make this
easier, it helps to recognize that the merge-based strefinitide is incrementally productive.

Definition 4. A recursive stream definition iscrementally productivé the computation of the element
value at a positiononly depends on the element values at positions below

Non-incrementally productive recursive stream defingiexist, but are uncommon. The following is an
example of one such stream definition in Haskell.

s = (s!!l'1 :1:s

The “I'” is Haskell'snth-like operator. The computation of the first elemensafepends on the value of
the second element, bats nevertheless productive. This can be easily seen whenstefpand the first
occurance o§, and then evaluate the outer indexing operation:

(s!t'1) :1:s
(s!''1)y :1:8) 1M1 :1:s
1:1:s

S

For incrementally productive stream definitions, the dtggstep recursion approach mentioned above can
be realized quite straightforwardly by viewing the body o€ definition as a unary function taking a list
of the firstn elements and producing a list of the firatelements, wheren is always> n and at least
occasionally> n.

Writing this down for the merge-based Hamming stream défimjthis looks like:
Definition ham_body (1: list nat): list nat :=
cons 1 (merge (map (mult 2) 1)
(merge (map (mult 3) 1) (map (mult 5) 1))).

The cons used here is the ordinarons for finite lists. Also, in this definition we needmerge that
operates on finite lists. Writing one is not hard, but we dostmw ours here because the definition is

21

rather cluttered. The clutter is caused by the fact thaigstteorward recursion on one of its two arguments
alone cannot work, since neither steadily decreases at@aalhn the recursion (this can be seen from the
corecursivanerge definition in Section 4.4). Instead, the recursion is boaHoethe sum of the lengths
of the two list parameters, which requires a bit of rathebwese Coq juggling.

This ham_body is a huge step in the direction of a Coq merge-based Hammiagrstimplementation,
because it manages to capture the essence of the definitita atlthe same time completely avoiding
issues of recursion or stream representation. If we marageme up with some mechanism that takes a
function of this form and turns it into a stream, we are set.

Before we get ahead of ourselves, though, let us take a loakat repeated application @bm body to
the empty list actually produces. We can automate the repegaplication usingepeat_apply.

Fixpoint repeat_apply T (£: T -> T) (x: T) (n: nat) {struct n}: T :=
match n with
| @ => f x
| Sn’ = f (repeat_apply £f x n’)
end.

The lists thus obtained are as follows.

n | repeat_apply hambody nil n

0|1

111,235

211,2,3,4,5,6,9,10, 15,25

311,23,4,5,6,8,9,10,12, 15, 18, 20, 25, 27, 30, 45,50, 75, 12

While at a first glance we might be tempted to think that theseimnply increasingly long initial segments
of the Hamming stream, the mismatch at the fourth positidwéen the second and third iterations (among
others) reveal that what we have here is somewhat more siibticcurately describe the contents of these
lists, we introduce the notion of bounded smoothness.

Definition 5. A number isbounded smoothvith boundb if it can be written as a product df or less
numbers from the list of multipliers:

Inductive bounded_smooth: forall (bound: nat), nat -> Prop :=
| bounded_smooth_1: bounded_smooth 0 1
| bounded_smooth_S b n: bounded_smooth b n ->
bounded_smooth (S b) n
| bounded_smooth_mult b n: bounded_smooth b n ->
forall m, In m multipliers -> bounded_smooth (S b) (n * m).

Lemma 10. Bounded smoothness and unbounded smoothness imply eachidtit is,

i. Ybn bounded_smooth b n— smooth n , and

ii. ¥ n,smooth n— 3b, bounded_smooth b n.

Proof. In both cases the proof is by induction on the premise. O

22

Lemma 11. Thei'th iteration contains precisely those numbers that arended smooth with bound
That is,
Y i X, bounded_smooth i X < X € repeat_apply ham_body nil i.

Proof. The proofs in either direction are by inductionion O

Lemma 12. Every iteration increases. That is,

Vi, increases (repeat_apply ham_body nil i).

Proof. The proofis by induction onand relies on lemmas about soundness and increasergt, map,
along with some other minor lemmas. Discussing it in anyitlieéxe would only cause us to lose track of
the big picture, however, so we will not do so. O

With this better understanding of the contents of thess, lisé can now reason about to what extent initial
segments of them correspond to initial segment of equathesithe Hamming stream.

If an initial segment of an iteration fliers from a finite initial segment of equal length of the Hamgnin
stream, it must be because a future iteration adds a numdefiatts inside the range of the segment (as
we saw at the mismatch at the fourth position between thenskbaod third iterations). It is not hard to see
that the lowest new number introduced in thle iteration must be at least.2This means that from thgh
iteration onwards, at least the initial segment contaitirgnumbers below! 2s stable and corresponds to
an initial segment of equal length of the Hamming stream.téNleat this is dierent from saying that the
first 2 elements are stable from tiith iteration onwards.)

Definition 6. An initial segment of the list at iterationis stableif it remains the initial segment in all
future iterations.

There is a relation between the index of an iteration andethgth of its initial stable segment. This relation
could be considerehlam_body’s productive behavior. The exact length of these initiab# segments in
a given iteration is hard to accurately describe. Fortupate may not need complete accuracy; if we
can prove that the firstelements of iteration are stable, then the diagonal obtained by taking evtry
iteration’si’th element would correspond to the Hamming stream.

Of course, for this to make sense, that diagonal needs tb &kisre are two ways to deal with this issue:
either we can prove that it exists and then take it, or we caoshto fill any holes in it with some dummy
value! For suficiently productive stream definition, such holes will notecanyway. The two options
translate to Coq as follows.

Definition take_diagonal_or_dummy (T: Set)
(g: nat -> list T) (dummy: T): f stream T :=
fun n => nth n (g n) dummy.

Definition take_diagonal (T: Set) (g: nat -> list T)
(p: forall n, n < length (g n)): f_stream T :=
fun n => snth (g n) n (p n).

For now we choose to use the second, but will return to theamlatter. To use the second, we first need to
prove growth.

1t is tempting to think that this use of a dummy value can beiglated by using something like Cooption type (sim-
ilar to Haskell's Maybe type). However, with this approach the stream one gets whkimg the diagonal would be of type
Stream (Option nat), which is not what we want.

23

Lemma 13. grow: ¥V i, i < length (repeat_apply ham body nil i).

Proof. The proofis by induction on The base case reduces taQength (cons 1 nil). The recursive
step amounts to showing that the list resulting from apgjiam body to a listl has a length greater than
[. This follows naturally from a lemma abomérge (that we will not prove here) which states that

¥ ab, max (length a) (length b) < length (merge a b). O
With this, we can useake_diagonal:

Definition f _hamming: f_stream nat :=
take_diagonal (repeat_apply ham_body nil) grow.

Note that Lemma 13 does not prove productivity, becausesisddtake into consideration that only initial
segments actually correspond to the Hamming stream. A proprich closer to what we would call
productivity is the one mentioned earlier, namely that thet ifielements of iterationare stable.

Lemma 14. Repeated application éfam body produces a sequence of lists that is stable below its diago-
nal. Thatis,

Vi, equal upto (repeat_apply ham body nil i) (repeat_apply ham body nil (S i)) (S i),

whereequal _upto is defined as follows.

Definition equal_upto T (a a’: list T) n: Prop :=
forall i (ip: i < n) (v: i < length a) (v’: i < length a’),
snth a i v=sntha’ iv’.

Proof. The proofis by induction on It relies on similar stability properties akrge andmap, and is hard
to summarize in a few key steps. The interested reader cathinproof along with all sublemmas in all
their glory in the accompanying Coq formalization. O

This lemma will be important in our correctness proof.

5.2 Correctness

We want to keep using the specification of the Hamming streiaangn Section 4.3, so we use the coin-
ductive stream representation:

Definition c_hamming: Stream nat := enumerate f_hamming 0.

Overall, correctness proofs of this merge-based Hammiegust implementation are quite a bit trickier
than those of the queue-based Hamming stream implememtaliterms of Coq code, the combined
proofs are about twice as long. The reason for this is sintpdy the trick of taking the diagonal adds a
thick layer of indirection that must be worked through to tgethe essence of things. Whereas the proofs
for the queue-based implementation dealt directly withissaes at hand, the proofs for the merge-based
implementation are dominated by intricate arguments ast@aiility and diagonals. This was particularly
so in Lemma 14 which we more or less skipped for this very neabe rest of the proof outlines will also
be much more sketchy than those in the previous chapter.

24

5.2.1 Soundness

Theorem 4. c_hamming is sound. That is,

everywhere smooth c_hamming.

Proof. Unfoldinghamming and generalizing 0, we get:
¥ n, everywhere smooth (enumerate f hamming n).

We prove this by coinduction. The coinduction hypothesigliag directly to the tail, leaving only the
head. The head is justhamming n, which is bounded smooth (with some boundoy Lemma 11, and
therefore smooth by Lemma 10i. O

5.2.2 Completeness

Theorem 5. c_hamming is complete. That s,

¥ n, smooth N — in_stream (eq n) c_hamming.

Proof. From Lemma 10ii we know that is bounded smooth with some bouhd From Lemma 11 we
know that this means it occurs in some iteration. We dististgbetween three cases:

¢ If noccursonthe diagonal, then it immediately follows that it occurscihamming.

¢ If n occursbelowthe diagonal, then by Lemma 14 it must have occumethe diagonal in some
previous iteration (and therefore occursithamming).

e If noccursabovethe diagonal, then we can perform induction on thifedénce between and the
value on the diagonal. If the fligrence is zero, then it has to bathe diagonal, contradicting the
premise. If the dference is nonzero, then theffdrence will decrease in the next iteration where
n is still present but the value on the diagonal has increaaiémlying us to invoke the induction
hypothesis. O

5.2.3 Increase

Lemma 15. If a list increases, elements occurring after other elemarg greater than those elements.
That is,

Vlab(p:a<length I)(q:b<1length I), increases | -a<b—snthla p<snthlb q.

Proof. The proof is by induction oh O
Theorem 6. c_hamming increases. That s,

increases c_hamming

Proof. Unfolding c_hamming, thenf_hamming, and then generalizing 0, we get
¥ n, increases (enumerate (take diagonal (repeat_apply ham body nil) grow) n).
We prove this by coinduction. Unfolding tlewumerate application twice, we get

increases
(Cons (take_diagonal (repeat_apply ham_body nil) grow n)
(Cons (take_diagonal (repeat_apply ham_body nil) grow (S n))
(enumerate (take_diagonal (repeat_apply ham body nil) grow) (S (S n)))))

25

We invoke the coinduction hypothesis to prove increase heyioe first element, leaving increase from the
first to the second element for us to prove. That is,

take_diagonal (repeat_apply ham_body nil) grow n<
take_diagonal (repeat_apply ham_body nil) grow (S n).

Unfolding take_diagonal, we get

snth (repeat_apply ham body nil n) (grow n) <
snth (repeat_apply ham_body nil (S n)) (grow (S n)).

Using Lemma 14 we can rewrite this into

snth (repeat_apply ham body nil (S n)) P<
snth (repeat_apply ham body nil (S n)) (grow (S n)).

with P a proof of
n < length (repeat_apply ham_body nil (S n))

obtained from Lemma 13. Applying Lemma 15, the goal becomes
increases (repeat_apply ham_body nil (S n)),

which follows from Lemma 12. O

With soundness, completeness, and increase pravieamyming has been proven correct.

5.3 Reflection

Itis important to note that our gentle redressing of the rédrgsed implementation did not magically make
Coq “see” its productivity the way it was able to see the patigity of the queue-based implementations.
Instead, we placed an upper boundnafecursive calls in the computation of th&h element, and then
separately proved that this wadiscient for this merge-based implementation.

As we noted earlier, this last proof was actually optionath&t time. In our implementation we could
have chosen to ignore the productivity issue altogethehae potential holes in the diagonal filled with
dummy values. However, in subsequent correctness promfsshe would most certainly have come back
to haunt us, most likely in a more vicious form. Still, the ioptis nice to have, as not all Coq stream
implementations need necessarily be certified.

This then brings up the question of to what extent this apgrasigeneric. As far as this author can see,
the approach should work for any stream definition that miget$ollowing requirements.

1. The stream definition must be incrementally productive.

2. Anyn'th element must take at mostrecursive calls to compute. (Perhdipgarly productivevould
make a good term for this.)

3. Any operations the stream definition would perform on itditists must be expressible for finite
lists (likemap andmerge were in our Hamming case).

In retrospect, the first requirement can probably be elitethédy usingf_stream’s directly, starting with
anf_stream that yields dummy values for all positions, and slowly “fillj”’ it by repeatedly applying the
body function. However, the presence of dummy values wakiddyl make correctness proofs much harder.

We briefly show how the approach can be directly applied todther stream definitions that would not be
accepted by Coqin direct recursive or corecursive form duledir productivity not being obvious enough.
Since at this point we only wish to show definitions and do nahtito have to do full correctness proofs,
we refrain from proving linear productivity and insteadpettential holes be filled with a dummy value.

26

First up is the Fibonacci stream, which can be written in lefiss follows. (A simpler definition of this
happens to be available and was given in Chapter 3, but thasige the point.)

fib =0 : 1 : zip_with (+) fib (tail fib)
In Coq, using our approach this translates to:

Definition fib_body 1 :=0 :: 1 :: zip_with plus 1 (tail 1).

Definition fib: Stream nat := take_diagonal_or_dummy (repeat_apply fib_body nil) 0.

(The definitions of Haskell's and Coggaip_with are not very interesting.)

The second example is the Thue-Morse sequence, which carittenvin Haskell as follows.
morse = False : True : zip (tail morse) (map not (tail morse))
In Coq, using our approach this translates to:

Definition morse_body 1 := false :: true :: zip (tail 1) (map negb (tail 1)).

Definition morse: Stream nat :=
take_diagonal_or_dummy (repeat_apply morse_body nil) false.

(The definitions of Haskell's and Coggalp are not very interesting.)

Looking at the definition of th&am_body function, and at the stability requirement needed to prboee t
the result is indeed the Hamming stream, there appear to lergparallels to how the Knaster-Tarski
Fixpoint Theorem yields fixpoints of monotonic functionseoxomplete lattices. It would be interesting
to put the finite-initial-segments trick discussed in tHigpter into a more theoretical context and explore
this relation, similar to how Lawrence Paulson applies tmad€er-Tarski Fixpoint Theorem to justify
coinductive definitions in [9]. However, doing so is beyohd scope of this article.

Finally, Dimitri Hendriks used a similar trick based on tadjithe diagonal of a stream of streams in his
formalization [8] of the Thue-Morse sequence.

27

Chapter 6

Program Extraction

Efficiency and suitability for program extraction were not pdidur initial stated goals, nor was an analysis
of spacg@ime complexity of the dferent implementations. That said, once we have a workingraiam
stream definition in Cogq, its fully automated program exicatmakes it very hard to resist taking what it
produces for a quick spin.

Both queue-based and merge-based implementations weaetextto Haskell and OCaml. The extracted
OCaml version of the merge-based implementation was ssededt crashed from a stack overflow after
computing the first 8 stream elements. The extracted OCarsioreof the queue-based implementation,
as well as the extracted Haskell versions of both the meagedand queue-based implementations, all
worked properly.

Figure 6.1 shows the timdfiiency of the three working extracted programs with thedfshultipliers set

to produce the ordinary Hamming stream. The merge-basdeéingmtation is about as slow in Haskell as
it is in OCaml. The Haskell version of the queue-based impletation progresses a little further before
exploding.

All three versions are extremely iffeient compared to the direct, non-extracted merge-basséiata

implementation from Chapter 2, which can compute the nmtlioelement in less than seven seconds on
the same machine. While it would be interesting to analyeedason our extracted implementations are
so indficient, and to see if mild tweaking can make fetience, this falls outside the scope of this article.

28

20

gqueue] Haskelll—
merge - Haskell - - - -
merge - OCamb——
15 .
10 - .
5 - —
0 1
0 50 100 150 200 250 300 350

n

Figure 6.1: Time required to compute the value of the n-tmelat, in seconds. (Hardware: AMD Athlon
64 3206+ CPU, 1 GiB RAM.)

29

Chapter 7

Conclusion

More than anything else, oufferts to formalize the Hamming stream provide a demonstratiat the
extent to which a recursive stream definition’s produgtiistobvious can make or break its suitability for
formalization in Cog. Stream definitions that are obvioyslgductive, such as our queue-based imple-
mentation, can be used and certified in Coq straightforwarsihg either the functional or the coinductive
stream representation.

The approach using evolving initial segments can in somesche used for stream definitions that are
not obviously productive, but the resulting implementasiare relatively hard to certify. It really is a
hack, and a highly intrusive one at that. A more proper sofutivould address the problem at its root,
in the mechanism used by the system to ensure productivisocursive definitions. Fortunately, a
lot of research has been and is being done to find more sapieti mechanisms (see for example [6]).
Hopefully the fruits of this research can make tricks likis tthe obsolete in some future version of Coq.

30

Bibliography

[1] Yves Bertot and Pierre Castéramteractive Theorem Proving and Program Development. Baq’
The Calculus of Inductive Construction¥exts in Theoretical Computer Science. Springer-Verlag,
2004.

[2] Thierry Coquand. Infinite objects in type theory. In H.rBadregt and T. Nipkow, editorSelected
Papers 1st Int. Workshop on Types for Proofs and ProgramBEBY93, Nijmegen, The Netherlands,
24-28 May 1993volume 806, pages 62—78. Springer-Verlag, Berlin, 1994,

[3] Edsger W. Dijkstra. An exercise attributed to R.W.Hammi In A Discipline of Programming
chapter 17. Prentice-Hall, 1976.

[4] Edsger W. Dijkstra. On the productivity of recursive ations. Personal note EWD 749, September
1980.

[5] Edsger W. Dijkstra. Hamming'’s exercise in SASL. Perdorie EWD 792, June 1981.

[6] P. Di Gianantonio and M. Miculan. A unifying approach tcursive and corecursive definitions. In
H. Geuvers and F. Wiedijk, editorBroceedings of TYPES'02, LNCS 26&pringer-Verlag, 2003.

[7] Eduardo Giménez. Codifying guarded definitions witbhuesive schemes. IYPES '94: Selected
papers from the International Workshop on Types for Proofd Brograms pages 39-59, London,
UK, 1995. Springer-Verlag.

[8] Dimitri Hendriks. The Thue-Morse sequence in Coq (orwho bypass guardedness). September
2005.

[9] Lawrence C. Paulson. A fixedpoint approach to implenmran(co)inductive definitions. ICADE-12:
Proceedings of the 12th International Conference on AutethBeductionpages 148-161, London,
UK, 1994. Springer-Verlag.

[10] Ben A. Sijtsma. On the productivity of recursive listfuitions. ACM Trans. Program. Lang. Syst.
(TOPLAS)11(4):633-649, October 1989.

[11] The Coq Development TeaniThe Coq Proof Assistant Reference Manual — Version V8.1 gamm
November 2006. httpcog.inria.fr.

31

