
Using JML to protect Java code against SQL

injection

Johan Janssen
0213888

jjanssen@sci.ru.nl

June 26, 2007

1

Abstract

There are a lot of potential solutions against SQL injection. The prob-
lem is that not all programmers use them, for various reasons. To check
for bad code which can lead to SQL injection one could use JML speci-
fication. The specification can be added to the code, or more favorable
to the Java API. After the programmer has written a piece of code, you
can check with a tool like ESC/Java2 if the code is vulnerable to SQL
injection. Or you could use one of the other solutions I proposed to make
sure that the programmer only uses ’safe’ functions.

2

Contents

1 Introduction 4

2 Design by contract 4
2.1 Contracts . 5

3 JML 5

4 Extended Static Checking 6

5 SQL injection 7
5.1 Overview . 7
5.2 Example . 8

6 Countermeasures against SQL injection 8
6.1 Validating input . 8
6.2 Prepared statements . 9
6.3 Stored procedures . 9
6.4 Least privilege . 10

7 Countermeasures using JML 10

8 General JML rules for the Java API 11

9 Is JML an effective solution? 14

10 Conclusion 15

A Sourcecode 17

3

1 Introduction

In today’s world there are a lot of websites who depend on databases like
MySQL. The problem with these databases is that you do not want users to ac-
cess information that is not designated for them. One technique that is used to
’illegally’ access information from MySQL databases is SQL injection. If you are
unfamiliar with SQL injection, it is an attack technique used to exploit web sites
by altering backend SQL statements through manipulating application input.1

SQL injection is widely used and a real threat to privacy sensitive infor-
mation. Both for small sites from enthusiast, but also for big companies with
lots of private information. When you look at The Common Vulnerabilities and
Exposures site: http://cve.mitre.org/, and search in their database with
the keywords ”SQL injection” then you will find more than 2200 results and
that is from 2000 until 2007.

Nearly all web applications are security critical, but only a small frac-
tion of deployed web applications can afford a detailed security review. Even
when such a review is possible, it is tedious and can overlook subtle security
vulnerabilities.[1] This is the reason that you cannot depend on the programmer
to produce secure code. Some website builders don’t understand the security
concerns and others might forget to implement them correctly.

That is why it is usefull to look at methods which can prevent SQL injection.
Of course, if you use the right techniques and functions, then it should work
fine. But that is the problem, in reality we see that not only small sites, but also
the big ones have security flaws. Everyone makes mistakes and forgets things,
therefore we would like to see that the security measures are applied in such a
manner that the programmer should not bother about it.

So I wanted to see if it is possible to check if a programmer has protected
his code against SQL injection. I wanted to see if it is possible to specify a piece
of code with the help of JML to see if it is vulnerable to SQL injection.

2 Design by contract

There are different methods for designing computer software, Design by con-
tract is one of them. Design by contract is also often mentioned as DBC and
sometimes as Programming by contact. The principal idea behind DBC is that
a class and its clients have a ’contract’ with each other. The client must guar-
antee the pre-condition before calling a method defined by the class, and the
class has to guarantee the post condition. 2

Quality of software is quite important, reliability is needed, the code should
work according to the specification and should deal with abnormal situations.
Therefore a systematic method to specify and implement software would be of
quite some support. One method to do so is Design by Contract.3

1Web Application Security Consortium http://www.webappsec.org/
2For more information: Design By Contract with JML[2]
3Eiffel Software, the pioneers of DBC: http://archive.eiffel.com/doc/manuals/

technology/contract/

4

2.1 Contracts

Contracts according to DBC are precisely defined specifications of the mutual
obligations of interacting components. It is an agreement between two parties
a client and a supplier. If the client provides A, then the supplier guarantees B.

Besides preconditions and postconditions, there is a third assertion called
invariant which holds of all instances of a class. An example type of an invariant
is ’0 <= count’, where count should always be bigger then 0.

Contracts are a good way of documentation. You can provide client pro-
grammers with a good description of the interface properties of a class. It is
even possible to make a so called ’short form’ which includes only headers and
assertions of exported features and invariants, the rest of the code isn’t neces-
sary to use the methods of the specified class.
An example of DBC is the following:

Listing 1: Design By Contract

1 //@ requires (* x is positive *);
2 /*@ ensures (* \result is an
3 @ approximation to
4 @ the square root of x *)
5 @ && \result >= 0;
6 @*/
7 public static double s q r t (double x) {
8 return Math . s q r t (x) ;
9 }

3 JML

The Java Modeling Language (JML) uses the ideas of Design By Contract. It is
a formal specification language for Java which uses the preconditions, postcondi-
tions and invariants. JML can be used to specify the behavior of Java modules.
It is also usefull to record decisions about the design and the implementation.
The JML specifications can be added as annotation comments to Java modules.
After that you can compile your Java program with any compiler. It is also
possible to use one of the verification tools for Java, for example ESC/Java2,
which I will using this paper, to check your code.4

Using preconditions and postconditions in JML gives us the opportunity
to establish a contract between a class and its clients. Where the client must
ensure the precondition and may assume the postcondition and the class must
ensure the postcondition and may assume the precondition. This is also called
Design by contract, which was explained earlier.

The goal of JML is that it is easy to use for every Java programmer, so that
it will be of practical use. To achieve this goal the following commands can be
used inside .java files:

• Assertions are added to the Java code in the following annotations /*@
<JML specification> @*/, or //@ <JML specification>.

4The official JML site: http://www.cs.iastate.edu/∼leavens/JML/

5

• Properties are specified as Java boolean expressions and can be extended
with a few operators (\ old, \ forall, \ result, ...)

• New ’JML’ keywords can be used, such as: requires, ensures, signals,
assignable, pure, invariant, non null,...)

For an example of JML you can see appendix A, where JML is used to
protect against SQL injection.5

4 Extended Static Checking

The Extended Static Checker for Java also called ESC/Java2 is a tool for finding
errors in Java programs. ESC/Java2 can detect programming errors at compile
time that are normally not detected before runtime and sometimes they aren’t
even found during runtime. Examples of these errors include null dereference
errors, array bounds errors, type cast errors etcetera. 6

Extended Static Checking can be positioned between type checking and pro-
gram verification:

ESC/Java2 tries to prove the correctness of specifications at compile time
and does that fully automatic. It can find lots of potential bugs quickly. It is
good at proving the absence of runtime exceptions and verifying relatively simple
properties. But it is unfortunately not sound (it can miss an error that is in the
program) and it is not complete (it can give an error that is not possible).

ESC/Java2 operates in three steps, the first is the parsing phase where the
syntax is checked. The second is the typechecking phase where type and usage
is checked. The third is the static checking phase, which runs a prover called
Simplify to find potential bugs. Parsing and typechecking can produce cautions
or errors while static checking can produce warnings.

Extended checking has some advantages on runtime checking. For example
if you specify assertions in your program but make a wrong assumption for
instance:

5For more information you could also read the JML Reference Manual[3]
6The official ESC/Java2 site: http://secure.ucd.ie/products/opensource/

ESCJava2/

6

Listing 2: Wrong Assumptions

1 if (l ength > 0 && width > 0) {
2 //@ assert length > 0 && width < 0;
3 }

Then with runtime checking the wrong assertion may be detected with a
good test suite, but ESC/Java2 will detect the error at compile-time.

ESC/Java2 checks specifications during compile-time, it proves the correct-
ness of specifications. ESC/Java2 is independent of any test suite, which elim-
inates the problem of runtime checking where testing is only as good as the
test suite. Therefore ESC/Java2 provides a higher degree of confidence. The
disadvantage is that you have to specify everything you make and use, all (API)
methods must be specified using pre- and postconditions and invariants.

5 SQL injection

SQL injection is a technique that exploits a security vulnerability occurring in
the database layer of an application. The vulnerability is present when user
input is either incorrectly filtered for string literal escape characters embedded
in SQL statements or user input is not strongly typed and thereby unexpectedly
executed. It is in fact an instance of a more general class of vulnerabilities that
can occur whenever one programming or scripting language is embedded inside
another.7

SQL injection is possible when input data is untrusted and when the data
is used to construct a SQL query dynamically.

5.1 Overview

SQL injection affects any programming language that is used as an interface
with a database. High-level languages are most vulnerable to the attack, but
sometimes even low-level languages can be compromised. Even the SQL lan-
guage itself can be sinful.

Mostly an application receives some malformed data, which the application
uses to build an SQL statement with the help of string concatenation. With
this, the attackers can change the semantics of the SQL query. ”Some people
don’t know there are better methods than string concatenation and others don’t
use them, because string concatenation is so easy.” [4]

SQL injection can have serious consequences on 4 security characteristics:

• Confidentiality: sensitive data from SQL databases can be compromised.

• Integrity: information can be changed or deleted.

• Authentication: it is possible to login as another user without knowing
the password.

• Authorization: authorization information can be changed.
7Wikipdia http://en.wikipedia.org/wiki/SQL injection

7

5.2 Example

A simple example of Java servlet code which is vulnerable to SQL injection:

Listing 3: Vulnerable Java code
1 St r ing query = ” s e l e c t ∗ from user where username=’” +

username +” ’ and password=’” + password + ” ’ ” ;
2 Statement statement = connect ion . createStatement () ;
3 Resu l tSet r e s u l t S e t = statement . executeQuery (query) ;
4 if (r e s u l t S e t . next ()) {
5 out . p r i n t l n (”You ’ re logged in ”) ;
6 } else {
7 out . p r i n t l n (”Wrong username or password”) ;
8 }

This piece of code accepts user input without performing input validation
or escaping meta-characters. With this code it is possible for a user/attacker
to provide a username which contains SQL meta-characters that change the
intended function of the SQL statement. One example to to this is to provide
the following username:

1 admin’ OR ’1’-’1

This together with a blank password generates the following SQL statement:

1 select * from user where username=’admin’ OR ’1’=’1’
2 and password=’ ’

Which allows the attacker to login to the site without a password, because the
’OR’ expressions is always true. With this technique attackers can inject SQL
commands that are powerful enough to extract, modify of delete data within
the database.

6 Countermeasures against SQL injection

There are a lot of ways to prevent SQL injection. The most common are the
mentioned in the next subsections.

6.1 Validating input

The ’deny by default’ principle should be applied in this case. All data should
be rejected unless it matches the criteria for ’good’ data. With this method you
can define a strict range for valid data ’white list’ and reject all other data. The
valid data should be constrained by:

• Type: String, integer, unsigned integer etc.

• Length.

• Character set: for instance only alphabetic characters [a-zA-Z]*.

• Format: you could constrain the data by specifying some format for ex-
ample ’dd-mm-jjjj’ where you can enter the day with 2 digits, the month
with two digits and the year with four digits.

8

• Reasonableness: compare values to expected ranges, to filter ’strange’
values.

For protection against SQL injection it is best to only allow letters and numbers.
Other items should be converted by HTML encoding, so ¿ becomes ”¿” and so
on. For some user input, like email-addresses you have to allow items such
as @,.,-, these should be allowed, but only if they are converted using HTML
encoding.

6.2 Prepared statements

If you use prepared statements, then the variables that are passed as argu-
ments to the statements will automatically be escaped for meta-characters by
the JDBC driver. They should be used when stored procedures cannot be used
and the SQL commands are dynamic. Prepared statements are not only usefull
for security but also for performance. Because the contents of the variable or
not interpreted, the database will just use the value of the bind variable. That
makes prepared statements immune to SQL injection attacks.

An example of the use of prepared statements:

Listing 4: Prepared statements

1 String selectStatement = "SELECT * FROM Catalog WHERE
userID = ? ";

2 Connection connection = DriverManager.getConnection(url,
username, password);

3 PreparedStatement preparedStatement = connection.
prepareStatement(selectStatement);

4 preparedStatement.setString(1,userID);
5 Resultset resultSet = preparedStatement.executeQuery();

But be carefull not to pass input variables directly to the prepared statement,
because then SQL injection attacks are still possible. The following example
shows such a mistake:

Listing 5: Wrong use of prepared statements

1 Connection connection = DriverManager.getConnection(url,
username, password);

2 String userName = request.getParameter("UserName");
3 PreparedStatement preparedStatement = connection.

prepareStatement("SELECT * FROM catalog WHERE userID =
’+userName+’");

6.3 Stored procedures

Developers should not allow user input to change the syntax of SQL statements.
The best solution is to separate the web application and SQL completely. The
solution is to use stored procedures on the database server for every SQL state-
ment. Then the application has to execute the stored procedures by using a safe
interface such as callable statements of JDBC or CommandObject of ADO.

9

6.4 Least privilege

Another way to protect (partly) against SQL injection attacks is mentioned in
’How to Break Web Software’[5]. They suggest that you should give users the
rights they need (and nothing more). This security principal is known as ’least
privilege’. You should restrict the amount of data that a user can access, create
different categories of users and give them their own databases and rights. If
SQL injection occurs then it is at least restricted to the data that the user has
privileges for.

7 Countermeasures using JML

One way is to use an extra ’ghost’ field that tells you if the input is trusted.
That ghost field should be added to the String class of the Java API in the
following way:

1 //@ ghost public boolean trusted;

Then you have to create a function which checks if the user input is trusted.
The best way is to use white listing and allow only a minimum of different
characters as input. The function I used only accepts digits and characters
from the alphabet which may be uppercase or lowercase. For practical use, you
may want to add more characters to the white list. If the userinput is trusted
then the boolean will be set to true, else an exception is thrown.

1 //@ ensures userinput.trusted;
2 //@ signals (Exception) !userinput.trusted;
3 //**** Check if the user input is trusted, else throw an

exception ****//
4 public static void checkUserInput(/*@ non_null @*/ String

userinput) throws Exception
5 {
6 if(userinput.matches("[a-zA-Z0-9]*"))
7 {
8 //@ set userinput.trusted = true;
9 }

10 else
11 {
12 //@ set userinput.trusted = false;
13 throw new Exception("Userinput not trusted");
14 }
15 }

So when calling this function with userinput containing ” ”, ”—”, ”-” or other
characters, the checkUserinput function will produce an exception and the pro-
gram will be terminated. The problem with this solution is that for instance
email-addresses containing special characters are rejected. To build a whitelist-
ing function that is absolutely secure against SQL injection and is usable seems
to be an impossible task. That is because of the fact that you would like to
accept user input containing special characters, although they pose a threat of
SQL injection.

10

The last step contains the part of the program that shows how checkUser-
Input in combination with JML is used to make sure that user input is checked
before executing the query with the given user input.

1 //**** Input which is normally given by the user ****//
2 String usernameInput = "$usernameInput";
3 String passwordInput = "$passwordInput";
4 checkUserInput(usernameInput);
5 checkUserInput(passwordInput);
6

7 //**** The query including user input ****//
8 String queryWithUserInput = "select * from loginData

where user=’" + usernameInput + "’ AND password=’" +
passwordInput + "’";

9

10 Connection connection = DriverManager.getConnection(url,
username, password);

11 //@ assume connection != null;
12 Statement st = connection.createStatement();
13 //@ assume queryWithUserInput != null && st != null;
14 //@ assume usernameInput.trusted && passwordInput.trusted

==> queryWithUserInput.trusted;
15 // **** If both the usernameInput and the passwordInput

are trusted then the resulting queryWithUserInput
should be trusted ****/

16 executeQuery(queryWithUserInput,st);

Checking if there are any problems can be done dynamically which is called
input tainting and can be checked using runtime assertion checking, or statically
using ESC/Java2.

8 General JML rules for the Java API

The same JML that I used in the previous example can be used in the Java
API. It is a matter of adding the JML to the executeQuery functions in the
API. That can be done in the same way as used in the example in Appendix A.

1 //@ requires query.trusted;
2 //**** If the query is trusted then execute the query

****//
3 public static void executeQuery(/*@ non_null @*/ String

query, /*@ non_null @*/ Statement st)
4 {
5 try{
6 ResultSet rs;
7 rs = st.executeQuery(query);
8

9 //@ assume rs != null;
10 while(rs.next())
11 {

11

12 System.out.println("User " + rs.getString(1));
13 System.out.println("Password " + rs.getString(2));
14 }
15 }
16 catch(Exception e)
17 {
18 System.out.println(e.getMessage());
19 }
20 }

Then you need to change the string concatenation function(s) in the API,
as shown below. I assume that if 2 trusted strings are added that the resulting
string is also trusted. So I added some JML to the concat function to ensure
that when two trusted strings are concatenated then the resulting string is also
trusted.

1 //@ ensures s1.trusted && s2.trusted ==> \result.trusted;
2 public static String concat(String s1, String s2)
3 {
4 String s = s1+s2;
5 //@ assume s1.trusted && s2.trusted ==> s.trusted;
6 return s;
7 }

Then it is necessary that literals (”text”) are trusted by default, that should
be added to the Java language itself. That is necessary because you want that
the pieces of the query that you enter in the source code are trusted by default.
Because that is not so easy to modify, I just set the literals to trusted manually.
Normally you would want to implement this in the checker. Before executeQuery
is executed you should check whether all user input is trusted, with the help
of some function like checkUserInput and the ghost field which I added to the
JAVA API already.

1 String driverName = "com.mysql.jdbc.Driver";
2 Class.forName(driverName).newInstance();
3

4 String serverName = "$serverName";
5 String mydatabase = "$mydatabase";
6 String url = "jdbc:mysql://" + serverName + "/" +

mydatabase;
7 String username = "$username";
8 String password = "$password";
9

10 //**** Input which is normally given by the user ****//
11 String usernameInput = "$usernameInput";
12 String passwordInput = "$usernameInput";
13 checkUserInput(usernameInput);
14 checkUserInput(passwordInput);
15

16 //**** Literals should be trusted ****//

12

17 String queryPart1 = "select * from loginData where user=’
";

18 String queryPart2 = "’ AND password=’";
19 String queryPart3 = "’";
20 //@ set queryPart1.trusted = true;
21 //@ set queryPart2.trusted = true;
22 //@ set queryPart3.trusted = true;
23

24 //**** The query including user input ****//
25 String queryWithUserInput = concat(concat(concat(concat(

queryPart1, usernameInput),queryPart2),passwordInput),
queryPart3);

26

27 Connection connection = DriverManager.getConnection(url,
username, password);

28 //@ assume connection != null;
29 Statement st = connection.createStatement();
30 //@ assume queryWithUserInput != null && st != null;
31 executeQuery(queryWithUserInput,st);

The above is working well, but it has one disadvantage: the whitelist func-
tion. That function is hard to build, because of the problem that to make it
secure you have to give up to much on usability. Therefore I looked at another
example to stop SQL injection with the help of JML. This one uses the prepared
statements which are safe against SQL injection. So we could combine prepared
statements and JML to force programmers to use prepared statements. To force
the use of prepared statements, you have to disallow the use of executeQuery for
statements and other unsafe objects. Every executeQuery method in the Java
API should be modified by adding some JML code to it. The executeQuery
function of preparedStatement is save and may be used by the programmer.
The following JML code should be added above the executeQuery function in
the prepared statement part of the JAVA API. This piece of JML code always
allows the use of executeQuery for prepared statements.

1 //@ requires true;

Above all other executeQuery functions in the JAVA API, such as the one in
Statement the following JML code should be added. This JML code ensures a
JML warning when the specific executeQuery is called.

1 //@ requires false;

The only thing you have to be carefull of with prepared statements in Java
is not to pass input variables directly to the Prepared Statement. The possible
solution for this might be to add an extra check that disallows the use of ”’”
in the strings which are given as an argument for the preparedStatement. This
can be done with a function like checkUserInput which was mentioned before.
Unfortunately I could not test this easily, because the ESC/Java2 specifications
do not cover the PreparedStatement, but the ideas are the same as the ideas
behind the code that I wrote, so I assume that it will work. Then with the help of
ESC/Java2 you can check very fast if a programmer has used the executeQuery

13

function with statements or other unsafe objects, and correct the sourcecode
with the use of prepared statements.

9 Is JML an effective solution?

Partially, it can be of great help, but it introduces some new problems. The
programmer for instance can easily break security and add something like the
following. Then the JML code to detect SQL injection is quite useless.

1 //@ assume queryWithUserInput.trusted;

This can be detected by ESC/Java2, but takes some extra effort. ESC/Java2
should check the programmers code for the assume keyword. If that is detected
then ESC/Java2 should give a warning. What follows are the three alternatives
that I looked at to counter possible SQL injection.

1. Using a whitelisting function proves difficult. It is hard to build a function
using whitelisting that is safe and usable. To make it safe you would
want to disallow symbols like @,.,-, because allowing them would allow an
attacker to use SQL injection. If you only allow characters and numbers
then SQL injection is not possible any more. But for some input you
want to allow special symbols; for instance email-addresses use them. To
disallow all special symbols makes the whitelist very restrictive. So it is
safe versus usable, a secure whitelisting function is hard to use in practice.
You would propably need to restrict to many symbols to make it usable
any more. Another problem is that you want the programmer to call a
function to check the user input. He might not want that and just add
some JML that indicates that the given user input is trusted.

2. Building a function with the help of whitelisting to prevent SQL injection
is hard. But it is possible to use one of the older techniques which were
mentioned before. In this paper I tried to combine prepared statements
and JML. This is intended to force the programmer to use prepared state-
ments and thus create code which is safe against SQL injection. This
seems to be the better solution, as it is still very usable, all symbols can
be used as user input. The JML that is needed to accomplish this is even
easier then the JML that is needed to build functions that use whitelist-
ing. The disadvantage is that you force a programmer to use some kind
of function, in this case prepared statements, although his code is possi-
bly completely safe against SQL injection. However, the small amount of
extra work for using prepared statements and the greater usability above
whitelisting make this the better solution. Another positive point is that
all SQL queries can be constructed using prepared statements.

3. Another solution would be to remove all the executeQuery’s from the Java
API, except from PreparedStatement. This can be done by Sun, who
maintain Java. Or the company or another group of people who want to
remove them can adjust the API that they use themself. After removing
programmers are immediately forced to use prepared statements and you
do not have to check it with a tool like ESC/Java2. The disadvantage
is that some code will be unusable, since parts of the JAVA API are

14

deprecated. So all the code containing deprecated functions will need
adjustments in order to work properly. But that is also the case when we
use prepared statements in combination with JML. Deprecating functions
is a possible solution very similar to the one using prepared statements.
Before one of the solutions is used in practice it is important that further
research is done, to find out which solution is the best one.

10 Conclusion

With the help of JML one can quite easily detect if a given piece of code has
possible SQL injection. Using whitelisting one could check whether user input
contains possible SQL injection. The disadvantage is that checking user input
is a difficult task, you want to deny all input that contains possible SQL injec-
tion. This results in the problem that various input, like email-addresses, which
contain special characters are rejected. This makes it hard to use the solution
in practice. Another disadvantage is that you would need to add quite some
JML to the JAVA API in order to work with this solution. And the help of the
programmer is needed to call the function which checks the user input.

To combine JML with prepared statements, who are safe against SQL in-
jection was the next step. This solves the whitelisting problem, so you can use
every user input you want. Using this solutions requires less JML code for the
JAVA API then the whitelisting solution. Further the programmer does not
need to call a function which checks the user input. The disadvantage is that
you cannot execute queries which are not build using prepared statements. So
for instance Java statements cannot be executed as a query. But since it
is a secure solution against SQL injection and you can use every user input it
provides a better solution then whitelisting. The programmer only faces the
task of making sure that every query uses a prepared statement. Since that
is not so hard and should be done anyway, if you want to build secure code, I
think it is a good solution.

The last possible solution I looked at was to deprecate functions from the
JAVA API. This can be done by Sun, or just someone else who wants to change
them. All functions that execute queries and do not use prepared statements
should be deprecated. In that case it is impossible to execute queries that are
not build with the help of prepared statements. This solution and the solution
which uses prepared statements with JML seem very similar. But removing the
functions seems to be better since you don’t need the extra JML code. Extra
JML code could introduce possible bugs and you do not want that. In the future
it would be a good idea to find out what the advantages and disadvantages
exactly are.

So the research question can be answered positively: it is possible to specify a
piece of code with the help of JML to see if it is vulnerable to SQL injection. The
only disadvantage is that sometimes user input is detected as SQL injection when
that is not the case. To solve this and build a white list that is both completely
secure and offers you ’complete usability’ is difficult, if not impossible. Maybe
with more research one could build a ’good’ white list, or find another solution to
detect input that contains SQL injection. But in the mean time using prepared
statements with JML or deprecating specific functions in the JAVA API seems
to be the better solutions.

15

The possible solutions are based on some Java code which I have written
using whitelisting and which can detect SQL injection. This was done after
reading and processing literature about SQL injection and JML. After that I
looked at the use of prepared statements. The code I provided for the prepared
statements solution will work, since it is quite straightforward. So I assume that
this solution would also work when implemented completely. Unfortunately that
was not so easy to check, since ESC/Java2 does not have the specifications for
prepared statements. Maybe in the future these specification are build and
then it is easy to check whether my solution really works correct. Building
these specifications is not so hard. It would require some JML for the functions
in the prepared statement class of the Java API.

In the end the solution is not completely what I wanted. Detecting SQL
injection without rejecting false positives proves difficult. The solution is not to
detect SQL injection in the input, but by making sure that secure Java functions
are used. So I did not find a good solution to detect possible SQL injection in
the input. However, I did find another way to secure code against SQL injection.
Securing code against SQL injection can be done by using prepared statements.
So forcing a programmer in some way to only use prepared statements for his
queries will make his code secure against SQL injection.

16

A Sourcecode

1 import java.sql.Connection;
2 import java.sql.DriverManager;
3 import java.sql.ResultSet;
4 import java.sql.SQLException;
5 import java.sql.Statement;
6

7 public class SQLInjection {
8 //@ ensures userinput.trusted;
9 //@ signals (Exception) !userinput.trusted;

10 //**** Check if the user input is trusted, else throw
an exception ****//

11 public static void checkUserInput(/*@ non_null @*/
String userinput) throws Exception

12 {
13 if(userinput.matches("[a-zA-Z0-9]*"))
14 {
15 //@ set userinput.trusted = true;
16 }
17 else
18 {
19 //@ set userinput.trusted = false;
20 throw new Exception("Userinput not trusted");
21 }
22 }
23

24 //@ requires query.trusted;
25 //**** If the query is trusted then execute the query

****//
26 public static void executeQuery(/*@ non_null @*/ String

query, /*@ non_null @*/ Statement st)
27 {
28 try{
29 ResultSet rs;
30 rs = st.executeQuery(query);
31

32 //@ assume rs != null;
33 while(rs.next())
34 {
35 System.out.println("User " + rs.getString(1));
36 System.out.println("Password " + rs.getString(2))

;
37 }
38 }
39 catch(Exception e)
40 {
41 System.out.println(e.getMessage());
42 }

17

43 }
44

45 //@ ensures s1.trusted && s2.trusted ==> \result.
trusted;

46 public static String concat(String s1, String s2)
47 {
48 String s = s1+s2;
49 //@ assume s1.trusted && s2.trusted ==> s.trusted;
50 return s;
51 }
52

53

54 public static void main(String args[])
55 {
56 try{
57 String driverName = "com.mysql.jdbc.Driver";
58 Class.forName(driverName).newInstance();
59

60 String serverName = "$serverName";
61 String mydatabase = "$mydatabase";
62 String url = "jdbc:mysql://" + serverName + "/" +

mydatabase;
63 String username = "$username";
64 String password = "$password";
65

66 //**** Input which is normally given by the user

****//
67 String usernameInput = "$usernameInput";
68 String passwordInput = "$passwordInput";
69 checkUserInput(usernameInput);
70 checkUserInput(passwordInput);
71

72 //**** Literals should be trusted ****//
73 String queryPart1 = "select * from loginData where

user=’";
74 String queryPart2 = "’ AND password=’";
75 String queryPart3 = "’";
76 //@ set queryPart1.trusted = true;
77 //@ set queryPart2.trusted = true;
78 //@ set queryPart3.trusted = true;
79

80 //**** The query including user input ****//
81 String queryWithUserInput = concat(concat(concat(

concat(queryPart1, usernameInput),queryPart2),
passwordInput),queryPart3);

82

83 Connection connection = DriverManager.getConnection
(url, username, password);

84 //@ assume connection != null;
85 Statement st = connection.createStatement();

18

86 //@ assume queryWithUserInput != null && st != null
;

87 executeQuery(queryWithUserInput,st);
88 }
89 catch (ClassNotFoundException e)
90 {
91 System.out.println(e.getMessage());
92 }
93 catch (SQLException e)
94 {
95 System.out.println(e.getMessage());
96 }
97 catch (InstantiationException e)
98 {
99 System.out.println(e.getMessage());

100 }
101 catch (IllegalAccessException e)
102 {
103 System.out.println(e.getMessage());
104 }
105 catch(Exception e)
106 {
107 System.out.println(e.getMessage());
108 }
109 }
110 }

19

References

[1] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and
David Evans. Automatically hardening web applications using precise taint-
ing. 2006.

[2] Gary T. Leavens and Yoonsik Cheon. Design By Contract with JML. 2006.

[3] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David Cok, Peter Mller, Joseph Kiniry, and Patrice Chalin. JML Reference
Manual draft.

[4] Michael Howard, David LeBlanc, and John Viega. 19 Deadly Sins of Soft-
ware Security. McGraw-Hill, 2005.

[5] Mike Andrews and James A. Whittaker. How to Break Web Software.
Addison-Wesley, 2006.

20

