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Foreword

In our world the computer has rapidly become integrated in our every day life. Where would
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information and more specifically estimating the pose of a human in three dimensions using only
two dimensional video footage.

The subject was inspired by my other hobby, track and field athletics. Being a sprinter, your
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details. Seeing the flaws in an athletes technique is not that easy. It all happens very fast and
you often wish that there were means to review your performance and receive feedback on what
is going wrong. This gave me the idea to dive into the field of Human Motion Analysis and try to
design a system which can do exactly that. Unfortunately such a system is still far away, but the
road I have taken up to this point is described in this thesis.
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guide me through the process, because it took some time. Furthermore I would like to thank my
coach Michael for the advice he gave on how to approach the subject from the point of view of
an athletics coach. Finally I would like to thank my family and friends for supporting me and
pushing me forward. Without you all, I probably would not have succeeded.

I hope you enjoy reading the report on my journey into the field of Human Motion Analysis.
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Chapter 1

Introduction

1.1 Human Motion Analysis

The field of computer vision has always drawn the attention of many researchers. As shown by
Oviatt in [15] it is important to look for different ways in which computers can interact with their
surroundings and vision is certainly one of them, often a picture tells more than a thousand words.

A speciality within the field of computer vision is called “Human Motion Capture”, “Looking
at People”, or “Human Motion Analysis”. It concerns itself with the movement of humans and
the interpretation of those movements by a computer.

The applications for systems which are able to interpret human motion are numerous. Table 1.1
gives a general overview of the different areas in which such systems can be deployed.

1.2 Problem Definition

1.2.1 General Problem

Making a computer see is not that easy. Humans are able to recognize and classify different objects
within the blink of an eye, but for a computer recognizing and classifying unconstrained visual
information is nearly impossible. Among others, problems which have to be solved concern:

Changes in illumination During the process of capturing the data lighting conditions may
change. Furthermore there is the problem of shadows being cast.

Background dynamics Not only our subject moves, but in the background objects may pass
by or the wind moves the plants and trees.

Object motion Everyone moves in a different way and the direction and speed of movement
related to the camera is not guaranteed.

Different individuals Each person is unique. We all have different looks and move in different
ways.

Constraints are made in order to reduce the problem space. However these constraints result
in a less general approach. Depending on these constraints various methods have been developed,

1



1.2 Problem Definition 2

General domain Specific Area

Virtual reality - interactive virtual worlds
- games
- virtual studios
- character animation
- teleconferencing
(e.g.film, advertising, home-use)

”Smart” surveillance - access control
systems - parking lots

- supermarkets, department stores
- vending machines, ATM’s
- traffic

Advanced user interfaces - social interfaces
- sign language translation
- gesture driven control
- signaling in high noise environments
(airports, factories)

Motion analysis - content based indexing of
sports video footage
- personalized training in golf, tennis etc.
- choreography in dance and ballet
- clinical studies of orthopedic patients

Model based coding - very low bitrate compression

Table 1.1: Applications of “Looking at people”. Taken from [5].

each for a specific application. Unfortunately there is no ‘best practice’ and if one wants to develop
a system which is able to interpret human motion one needs to see whether there is a method
available.

1.2.2 Research Aim

In this thesis I will look into the field of human motion analysis and try to propose a model for
a system which is able to play the role of a digital coach, called DigiCoach1. The system will
be able to analyse video-footage shot by a single camera, translate this footage into a 3D-model
representing the motion of the athlete and be able to analyse this model and compare it to a
representation of the perfect motion in order to improve the performance of the athlete. A more
comprehensive description can be found in appendix A.

With this application I will try to see whether the research field is able to provide solutions
which could aid me solving the problem of creating the system described. It is not my aim to
develop new methods, but to adapt current methods in order to create my own model which can
be used to solve the problem.

1This system will fit within the general domain of motion analysis from table 1.1



3 Introduction

1.3 Research Questions

1.3.1 Main Question

The aim of my research is to develop a system which is able to convert a sequence of 2D images
into a 3D model representing the motion of the athlete. In general I am interested to see:

How can human motion be captured and tracked by a computer?

The answer to the main question will consist of a small literature survey of the field of human
motion analysis, a model of a system which is able to translate human motion in a sequence of
2D images to a 3D representation, and an implementation of the model.

1.3.2 Subquestions

The main question is quite broad and provides few leads how it should be answered. Given the
contents of the final answer, I came up with a number of subquestions which will provide some
lead how to conduct my research. These questions are:

1. What difficulties arise when trying to track human motion?

2. What methods have been developed in order to track human motion?

3. Which difficulties does each method try to solve?

4. What are the strong and weak points of each solution?

5. Which solution is best suited for my purpose?

6. How can this solution be modeled?

7. How can this solution be implemented?

1.4 Structure

This thesis contains the following chapters:

Introduction This chapter.

Human Motion Analysis A study of the field of human motion analysis and a comparison of
the different methods proposed. In this chapter subquestions 1 to 4 will be answered.

Probabilistic Framework The analysis of one specific solution and the description of the model
I am going to use. Subquestions 5,6 and 7 will be answered in this chapter.

Temporal Prior An elaboration on how the transition model or temporal prior should be defined.

Likelihood The definition of the likelihood or sensor model.

Discussion Some remarks on issues which are unaddressed in the previous chapters.

Conclusions Some concluding remarks.
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Chapter 2

Human Motion Analysis

Now that the research is introduced, we can look into the field of Human Motion Analysis. First a
general overview is given, defining the research field, the general structure and introducing some
common assumptions concerning HMA-systems. Next we look into the functional decomposition
of an HMA-system and the methods developed to solve the problems which arise in each different
building block. This chapter does not provide a complete survey of the research field, only methods
relevant to the intended system are discussed.

2.1 General Overview

2.1.1 Definition

Human motion analysis (HMA) is the field of research which attempts to capture and analyse
human motion within a sequence of images and tries to translate it into a (mathematical) model.
In recent years many different scientists have studied this problem and many different methods
have been proposed [1, 5, 13, 14]. Moeslund and Granum give it the following formal definition
[13]:

Definition 1

Human motion analysis is the process of capturing the large scale body movements, of a subject
at some resolution.

They added the words “at some resolution” to emphasise that the field covers everything
between the tracking of the subject as a whole to the tracking of its different limbs. It does not
cover the tracking of small scale movements such as facial expressions and hand gestures.

2.1.2 General Structure

Moeslund and Granum describe an overall structure of a comprehensive HMA-system [13]. This
structure consists of four separate components, shown in figure 2.1 (on page 9). Before the
system can process the acquired data it needs to be initialized. In this component some general
features of the model are initiated, e.g. specific information about the subject’s size, kinematic
structure and appearance in order to constraint tracking and pose estimation [14]. After the

5
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Related to Movements Related to Appearance

1. The subject remains inside the workspace

2. None or constant camera motion

3. Only one person in the workspace at the
time

4. The subject faces the camera at all times

5. Movements parallel to the camera plane

6. No occlusion

7. Slow and continuous movements

8. Only move one or a few limbs

9. The motion pattern of the subject is
known

10. Subject moves on a flat ground plane

Environment

1. Constant lightning

2. Static background

3. Uniform background

4. Known camera parameters

5. Special hardware

Subject

1. Known start pose

2. Known subject

3. Markers placed on the subject

4. Special coloured clothes

5. Tight-fitting clothes

Table 2.1: Typical assumptions made by HMA-systems. They are ranked in order of frequency.
From [13].

initialisation tracking of the subject’s motion can take place. This component tries, for each
image in the sequence, to segment the subject from the background in a single image and tries to
relate the current image with previous frame(s). Pose estimation tries to estimate the positions
of the joints in the kinematic structure or skeleton of the model in such a way that they match
the segments found in the tracking process. This component may provide the output for the
system when we are only interested in the pose of the subject, e.g. controlling an avatar in
a virtual environment. However there is a fourth component, recognition. In this component
low level kinematic information is mapped onto some higher level conceptual information. For
example gesture recognition or the recognition of suspicious behaviour by a surveillance system.
In section 2.3 each separate component is described in more detail.

A system does not need to implement all four components. This holds for most systems
described in the scientific literature, because most research focuses on one specific component,
they only demonstrate the functionality of that specific component.

2.1.3 Assumptions

Creating an HMA-system means solving a great number of problems and if we do not constrain
ourselves this number of problems becomes too large. An easy way to limit ourselves is to make
basic assumptions about various variables in our environment. These will provide some basic
foundation and characterise our system. Within the area of human motion analysis there are
some assumptions which are very common. They may be divided into two classes, movement and
appearance assumptions, concerning either the movement of the subject or the environment and
the appearance of the subject. In table 2.1 the most common assumptions are listed ranked by
occurrence.
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The first three assumptions about movement are used in almost every system. The fourth
assumption concerns mainly advanced user interfaces. The fifth assumption can be used to reduce
the problem from a 3D to a 2D problem eliminating depth. The next two assumptions greatly
simplify the tracking process, since all limbs are visible at all time and there are no sudden or jerky
movements. The eighth and ninth assumption are used to reduce the problem space by focusing
on part of the subject or on a fixed trajectory and finally the tenth assumption allows calculation
between the camera and subject using basic geometry and the size of the subject.

Environmental assumptions are made to ease the process of segmentation. The first and second
assumption make sure that the image only changes as an effect of movement of the subject. The
third assumption makes it very easy to segment the subject from the background using simple
thresholding. The fourth assumption is used if it is necessary to know the exact measures of the
subject and the final assumption concerns the use of special hardware like IR-cameras.

The first assumption about the subject greatly simplifies the initialisation problem since the
system knows where and how the movement cycle starts. The second assumption is about basic
model parameters of the subject, e.g. number of limbs, degrees of freedom, width and height, etc.
The last three assumptions all concern the segmentation process, making it easier to segment the
subject from the background. The last assumption helps estimating the pose, since tight clothing
nicely follows the body contours.

Of course these are not all assumptions which can be made, but these are the most common
ones. The assumptions made depend on the specific purpose and (external) constraints of the
system.

2.2 Applied Assumptions

In order to determine which assumptions apply for the DigiCoach-system we first need to specify
some requirements. These can be found in appendix A. From these requirements the assumptions
given in table 2.2 can be deduced. The first assumption is a bit odd since it does not reduce the
problem space. The fact that footage shot in any environment should be possible only broadens
the problem. However it reduces the amount of methods available, since some require a strictly
controlled environment. The fact that only a single camera is used eliminates all multi-ocular
approaches and knowing that the camera (and as such most of the background) remains static,
makes it easier to distinguish our athlete from the background. Furthermore we assume that
the subject remains within the workspace1. That is, the subject may move in and out of the
workspace, but tracking will start when the subject enters the workspace and stops when it moves
out. There is no need to predict the movements of the subject once it has left the workspace. We
also assume that only one person is in front of the camera, also reducing the problem of separating
our subject and the background since we expect only one object to make large movements.

All remaining assumptions concern the movements or appearance of our subject. First we
assume that the subject has a humanoid shape and sticks to his activity which is running and
does not make any sudden ‘jerky’ movements. This combined with the fact that we know the
subject will be running allows us to guess what the pose in the next frame will be, allowing an
informed search. The known start pose will ease the initialisation of the tracking. In practice the

1In this case workspace equals the camera’s view
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Applied Assumptions
1. Any environment
2. Single camera
3. No camera motion
4. Subject remains within workspace
5. Only one person within the workspace
6. No jerky movements
7. Known subject (human)
8. Known activity (running)
9. Known start pose

10. Tight-fitting clothes

Table 2.2: Assumptions which apply to the DigiCoach-system, given the requirements in ap-
pendix A.

system will ask the user to estimate the pose for the first frame the subject entered the workspace.
Finally tight-fitting clothes will increase the accuracy of the pose estimation since it is important
that the position of the limbs is estimated correctly, not hampered by any excess clothing, in order
to provide good recommendations.

2.3 Functional Decomposition

In this section the four functional components, plus the preliminary step of data acquisition, are
described in more detail. For each I give the functionality, which data are processed in this
component and for what purpose. Furthermore I will try to give insight into the difficulties that
arise, when we try to process the data and discuss methods which address these problems.

2.3.1 Data Acquisition

Moeslund and Granum do not include the process of data acquisition in their functional decompo-
sition. Although not part of the actual system it has great influence on the external constraints,
since the way the data is captured largely determines which kind of and how much data is avail-
able. For example active sensing will probably produce a series of coordinates or angles while
passive sensing produces a sequence of images and if multiple cameras are used occlusion might
be eliminated. The process can also be reversed, allowing the constraints to determine how the
data acquisition takes place.

In order to capture the body movements of a subject, two approaches can be used. They are
called active and passive sensing . Active sensing allows for the placement of sensors on the subject,
tracking its motion. Passive sensing uses only natural signal sources, e.g. visual or infrared light,
and there is no need for any sensors worn by the subject. A mixture between the two approaches
is also possible, e.g. the use of visual markers.

The great benefit of passive sensing is that it is not as intrusive as active sensing. “It allows in
principle for touch-free and more discrete “pure” motion capture systems” [13]. Another benefit
is that it is far more easy to acquire the required data when using passive sensing. No need for a
strictly controlled environment and wearable devices. Some light and a camera will suffice. This
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Figure 2.1: Functional decomposition of a HMA-system.

simplicity also comes with a drawback since the acquisition of information is so simple, it will be
harder to process it.

2.3.2 Initialisation

Before we can actually process the images recorded and track our subject, we first need to initialize
our system. Within this component two problems are addressed: finding a model which fits the
subject and finding the subject’s initial pose. A correct model and start pose improve tracking
and pose estimation as they constraint the search space of these problems.

The first major problem in initialisation is finding a correct model to match the subject. This
may seem straightforward, all humans have the same skeletal structure, but since no two humans
are exactly alike there is the need to adapt for instance limb lengths, or the appearance of the body
and face. Finding the model can be broken down into different subject’s: kinematic structure, 3D
shape and appearance.

Kinematic Structure

By defining the kinematic structure we specify which parts of our model move, where the joint
locations are, how many degrees-of-freedom each joint has and we specify the limb length between
each joint. The majority of HMA-systems uses a-priori knowledge about the human body to specify
the various joints and their degrees-of-freedom, leaving only the estimation of limb lengths. These
lengths can then either be specified by the user, with regard to anthropomorphic constraints [2]
or can be detected by the system [10, 17].

Allowing the user to specify an initial estimation of the position of some of the subject’s joints-
locations provides a good basis for an estimation of the limb lengths and starting pose, especially
when it is combined with a database of information about the constraints and ratios of a human
body [2]. A potential problem for this approach is the fact that not every viewpoint can be
initialised. There have to be some limbs which are oriented in a plane which is almost parallel to
the viewing plane of the camera. Otherwise no accurate length estimate can be made.

Methods which allow for autonomous recognition of the subject’s kinematic structure infer the
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joints and corresponding limbs from the movement of the subject [10]. These systems allow for
autonomous operation, but it is not guaranteed that the subject is modeled correctly. Furthermore
these systems cannot handle occlusions very well.

Shape and Appearance

Some systems may require an estimation of the shape or appearance of the tracked subject. This
may be for output purposes (consider a 3D-avatar), but it may also assist the tracking process [20].
Sidenbladh for instance maps each image at time t onto the limbs of the estimated 3D-model in
order to predict the input-image at t+ 1. There are also systems which model the full appearance
of the subject [3], but this is beyond the scope of the DigiCoach-system.

2.3.3 Tracking

The function of the tracking-phase is two-fold. The first processing step taken is figure-ground
segmentation - determining which pixels in the source image describe the subject and which
describe the background. The second process is called temporal correspondences - a process which
establishes a relationship between the current and the previous image, describing in which way the
pose of the subject has altered between the two images. By combining all these relationships over
the total number of images we get a description of the subject’s motion. Another useful feature of
tracking is, once such a motion-description has been established this can be used to predict how
the next frame will look like reducing the search space for figure-ground segmentation.

Figure-Ground Segmentation

By applying figure-ground segmentation one divides each pixel in the image into one of two cate-
gories. The ones that belong to the (human) subject we are tracking and the ones that belong to
the background.

The most common technique for figure-ground segmentation uses the motion of the subject as
its main cue. Pixels which stay constant over time belong to the background and when a pixel
changes due to the movement of the subject it is classified as a foreground-pixel. Before the late
1990’s figure-ground segmentation depended mostly on non-adaptive models. Models in which,
once established, the background model never becomes updated. These models are not robust.
They cannot cope with changes due to lighting conditions or other arbitrary changes in the scene
[21]. An example of a non adaptive approach is taking the mean value for each pixel of a series
of initialisation images. If the difference between a pixel value in the current image and the mean
value exceeds a certain threshold the pixel belongs to the foreground, otherwise it is a background
pixel.

A solution to the problem of non-adaptive background models is presented by Stauffer and
Grimson [21]. They proposed the idea to represent each pixel not by its value, but by a ‘Mixture of
Gaussians’ (MoG). Each pixel in the image is represented by a number of Gaussian distributions,
representing a different color-value and these Gaussians are updated each image allowing the
background-model to adapt. The problem using a MoG-representation however is that it takes a
long time to initialise and it takes long for false positives to sink in [9].
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Figure 2.2: Left-right ambiguity. This figure illustrate one of the problems of pose estimation as
both models, which look different in a three dimensional view, map to the same silhouette in a
two dimensional image when looked at from a specific viewpoint, in this case from the side under
orthographic projection [7].

Temporal Correspondences

The next task in the tracking phase is to find the temporal correspondences. That is, finding a
function t = f(t − 1) which maps the state-change of the subject from time t − 1 to t. In other
words, finding a function which describes the temporal trajectory through the state-space.

Finding these correspondences is often closely linked to pose estimation as most generative sys-
tems use a model to keep track of the current location in the state-space, based on the information
gained from all previous locations. For example Sidenbladh [20] keeps track of a velocity-vector
describing the temporal dynamics of the tracked subject over time. Methods like the Kalman-filter
can then be deployed to estimate the state-space position of the next frame. This information is
generated during pose-estimation, hence the feedback-arrow in figure 2.1.

2.3.4 Pose Estimation

The term pose estimation refers to the process of estimating the position of the elements of the
subject’s kinematic structure for each frame. There are several challenges when addressing this
problem. First there is the fact that given a 2D image taken from a given angle there are always
two or more 3D configurations which lead to that specific 2D image. This is called left-right
ambiguity [7] (see figure 2.2). Another problem is handling occluded body-parts. Both problems
are of greater concern for systems which are monocular, since there is no other angle which can
be reviewed.

There are various classes of methods for pose estimation, but given the assumptions of our
system only the ‘direct model use’-class remains as others require a multi-ocular approach.
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Direct Model Use

Within this class of methods the model plays an active role in the recognition process [12]. The
parameters of the model are matched against the image data, and if needed adapted, in order to
find a configuration which fits the data. These methods rely on the synthesis of model parameters
and verification against data. Therefore this class is also referred to as analysis-by-synthesis.

The majority of the older approaches (prior to 2000) used some form of deterministic gradient
descent technique to iteratively estimate changes in pose [14]. A weakness of this approach is that
only one model is used during the whole tracking period. This model gets updated each frame,
however if ambiguities occur or the subject moves rapidly this updating can go horribly wrong.
In order to counter this problem researchers have turned more recently toward deterministic or
stochastic search methods or multiple hypothesis tracking. They turn, among others, to multiple
Kalman filters [4] or sampling methods [8, 20].

2.3.5 Recognition

The field of action and activity representation and recognition is relatively old, yet still immature.
This area is presently subject to intense investigation which is also reflected by the large number
of different ideas and approaches [14].

Most research in this area focuses on the classification of human movement. For example
separating ‘irregular’ activities from ordinary movement patterns. As stated before many different
methods have been developed employing various techniques and focusing on different abstraction
levels. From full scene analysis to investigating the subtle movements of an individual. However
this more ‘surveillance-like’ approach does not fit within the context of this thesis. Therefore this
subject will not be further investigated.

The final aim of the digital coach is to interpret the movements of the subject, but at a very
low abstraction level. For example we are interested to see whether the knee-angle reaches 90
degrees. Perhaps it is better to speak about constraint satisfaction instead of recognition.



Chapter 3

Probabilistic Framework

Now that we have seen a general overview of the field of Human Motion Analysis it is time to
look more specifically at the problem introduced in the first chapter, the creation of a digital coach.
First and foremost it is important to establish a foundation for our tracking algorithm by specifying
a probabilistic framework.

3.1 Various Approaches

When tracking a human model three approaches can be taken. One way of approaching this
problem is to extract local image information like edges and corners, and combine them into
higher order information like limbs. This approach is called the bottom-up approach as you start
at the lowest level of information possible (individual pixels) and work your way up towards higher
order structures. However this approach experiences problems when it encounters occlusions, the
computer does not know when a limb gets occluded and becomes invisible [19].

A second method is to evaluate a known database of poses and corresponding silhouettes
against the found image. This approach is computationally the least expensive, but it requires a
large database of poses and will fail if no match can be found.

3.2 Bayesian Inference

But what if we could generate the needed database on the fly? If we take a model of a human
which can be bent into various poses by modifying its joint parameters φt for each time step t.
Using a top-down method we could start with a high-order structure, a set of joint parameters,
and turn this into a low-order structure, a silhouette of the model from a certain viewpoint. This
method is called analysis-by-synthesis, since you synthesize your database of known poses on the
fly.

It can then be projected onto the image plane and compared to the image data. We should
try to find the best fit. Finding the best fit can be seen as a search or optimisation task. Trying
out every possible configuration for each frame would be an impossible task. Therefore we should
seek means to incorporate information from previous frames. We can approach this problem using

13
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Figure 3.1: Bayesian network structure describing our state space. The transition model is ex-
pressed as p(φt|φt−1) and the sensor model as p(It|φt).

Bayesian inference. It provides methods for incorporating prior information on size, shape and
possible configurations. It is impossible to learn this information [19].

A drawback of choosing Bayesian inference is the high computational load. A complex human
model has to be compared directly with the image data, which leads to a higher amount of
computations then a bottom-up approach, where the image data is segmented first and then used
in higher level operations. However since the intended system is not used with online data or in
real time, computational complexity is less of an issue.

3.3 Mathematical formulation

The general problem we are trying to solve in this thesis is: Given a series of images, what is the
corresponding pose for each image? We can rephrase this as: For each image, given a series of
previous images and the corresponding poses, what is the pose corresponding to the last image?
It should be noted that this description does not include the initialisation step of finding the pose
corresponding to the first image, without any previous information. This is because initialisation
is a challenge requiring a different approach.

If we formulate the problem using Bayesian inference we would need to find a formula which
yields the following posterior distribution: p(φt|~It), where φt equals the pose of the human model
and~It is a vector containing all previous and the current image [I0 . . . It], expressing the probability
that a configuration φt matches image It. We seek the configuration with the highest probability.

We may assume a first-order Markov process - the configuration φt depends only on φt−1

and not on any earlier states [20]. We now can model the problem as shown in figure 3.1. The
transition model, propagating the states in time can be expressed as p(φt|φt−1) and the sensor
model, linking the internal state space to observable images can be expressed as p(It|φt). The
posterior distribution p(φt|~It) can now be expressed in terms of the transition and sensor model.

posterior distribution at t = sensor model at t × transition model between t-1 and
t × posterior distribution at t-1

Because the posterior distribution at t−1 is not a discrete value but a probability distribution
we have to take the integrand over all possible configurations φt−1.

Using all of the above we can express the posterior distribution p(φt|~It) at time t as:

p(φt|~It) = κp(It|φt)
∫
p(φt|φt−1)p(φt−1|~It−1)dφt−1 (3.1)
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Figure 3.2: The human model used in this system. It consists of 31 joints, each able to rotate in
3 dimensions.

where It is the image data at time t and κ an independent normalizing constant [19].
The posterior distribution p(φt|~It) represents all knowledge extracted about the model con-

figuration and can be used for further processing, like recognition or motion reconstruction. The
sensor model p(It|φt) is also called the likelihood of observing image It given a model configuration
φt. The transition model p(φt|φt−1) is also referred to as the temporal prior or temporal corre-
spondence. The integral as a whole can be regarded as a prediction, since it is a multiplication of
the posterior distribution at t− 1 and an estimation how the model will change between t− 1 and
t.

Now that we have a found a formal definition of our problem, we should seek for formulas
which yield the likelihood (sensor model) and the temporal prior (transition model).

3.4 Human model

Before we can start looking for the likelihood and temporal prior, we first need to define a human
model and its corresponding parameters φ.

The human model used in this system consists of a stick figure with 31 joints, each able to
rotate around all 3 angles. This model is derived from the data obtained from Carnegie Mellon’s
motion capture library1 and is encoded using the BioVision bvh-file format2. A more detailed
description is given in appendix B. Together with the global position of the model, our parameter
vector φ would contain 96 dimensions (the translation in 3 dimensions plus 93 joint angles).

1http://mocap.cs.cmu.edu/
2http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

http://mocap.cs.cmu.edu/
http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
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Chapter 4

Temporal Prior

Now that we have obtained a formal definition of the problem, we need to find a formal definition
for the transition model or temporal prior. This is done by extracting information from known
examples.

4.1 Parameterized Model

Finding a model configuration φt that fits the image data It using the human model described
in the previous chapter and taking all 96 dimensions into account, would lead to an intractable
search space. However in most of this search space no data points will ever reside, since they lead
to physically impossible configurations. In order to reduce our search space we can use the fact
that human motion is often repetitive, symmetrical and highly constrained. If we focus ourselves
on running these facts certainly apply.

4.2 Learning the Motion Model

In order to reduce the search space we could use the fact that we obtained a plausible configuration
in the previous frame φt−1. If we could propagate this configuration in a sensible way we could
guide our search process, since we already have a clue what the current configuration φt might
look like. If we look at the integrand in equation 3.1 we see that the new posterior distribution
depends on the old distribution multiplied by the temporal prior p(φt|φt−1). If we could specify
a function which returns the temporal prior, the job is done. Unfortunately due to the fact that
human motion is quite complex, it is hard to specify this function analytically [19]. It might,
however, be possible to “learn” this function from data obtained by motion capturing systems.

Data is taken from n = 11 trials using data found in Carnegie Mellon’s motion capture library.
Each trial is manually segmented so that it contains one motion cycle and is scaled to the same
size of tmax frames. Now we have obtained M = {M1 · · ·Mn} containing the motion data of all
trials. Each matrix Mi contains a series of column vectors ~θi,j (jε[1, dmax]) each containing the
relative angles of a single joint (dimension) during the whole cycle and θi,t,j (tε[1, tmax]) is defined
as the joint angle of the j’th joint at time t of the i’th trial. A mean Mmean is derived by taking
the mean of each separate joint for each t of each trial:

17
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(a) All 93 dimensions. (b) Relative angles of the left knee.

Figure 4.1: Relative joint angles of the full body (a) or just the left knee (b).

θ̃t,j =
(
∑n
i=1 θi,j,t)
n

(4.1)

Mmean =


θ̃1,1 . . . θ̃1,dmax

...
. . .

...
θ̃tmax,1 . . . θ̃tmax,dmax

 (4.2)

This mean, however, has the same dimensionality as our previous search space. In order to
reduce this space we use the fact that we might expect some correlation between the data points.
In order to find these similarities we apply Principal Component Analysis. First for each of
the dimensions a mean value θ̄j is calculated by taking the average across each dimension. By
subtracting the mean from each data point we obtain αt,j = θ̃t,j− θ̄j and A, the matrix containing
all values of α. Then we calculate the covariance matrix Acov from A. Once we obtained the
covariance matrix we can calculate its eigenvectors uj and eigenvalues λj . The eigenvector tell
us in which direction our data variates for each dimension and the corresponding eigenvalue tells
us how large this variation is. By joining the top-N eigenvectors with the highest eigenvalues we
obtain a feature vector ~F . Finally a transformed dataset is calculated by multiplying ~FT with
AT , MTT = ~FT ×AT . MT now only contains b = N dimensions, but is still representing some
part of the original dataset. As the feature vector becomes bigger, more of the original dataset is
represented by our new, transformed, dataset, but leads to less dimensionality reduction. In this
case the dataset containing the joint angles consists of 93 dimensions and 100 frames. After PCA
has been applied, taking only the top-3 eigenvectors will suffice, since they represent already 95%
of the original dataset, so in our case b = 3 (also see figure 4.2).

4.3 Propagating Parameters in Time

In order to adapt the model to changes during tracking we need to adapt the parameters in time.
A tracked walking cycle does not need to be of the same size as our learned cycle. Therefore

the parameter µt is introduced, indicating the current position in the model’s walking cycle. The
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(a) Contribution of each eigenvector ordered by de-
creasing eigenvalue. The amount of variance lost is
plotted against the size of the feature vector ~F

(b) The obtained principal components. This graph
shows the values of the components MT plotted
against parameter µ.

Figure 4.2: Graphs showing the results of PCA application.

parameter Tt denotes the global translation of the model in the workspace in x,y and z-direction,
Tt = [xt, yt, zt]. The global rotation of the model is already included in the learned model.

We can now express our model configuration as {~c, µt, Tt}, where ~c is a vector containing row
µt of MT. A lookup function f(µt) : MT → c is defined as a function which returns row µt of
the matrix MT. f(µt) = [MTµt,1, . . . ,MTµt,b].

We also introduce one additional function and one constant. The parameter v(t) describes the
velocity function which returns the speed of the subject at time t. Furthermore we introduce a
constant δ which describes the amount by which parameter µt should be increased.

p(µt|µt−1) = G(µt, (µt−1 + δ), σµ) (4.3)

p(~ct|~ct−1) = G(f(µt),~ct−1, I3σ~c) (4.4)

p(Tt|Tt−1, vt−1) = G(Tt, Tt−1 + vt−1, σT ) (4.5)

where
G(x, z, σ) = αe

−(x−z)2

2σ2

and I3 is a 3× 3 identity matrix.
The values of σµ and σT are empirically determined. The value of σcj = ελj , where j ∈ [1, b]

and ε is a small normalizing constant.

4.4 Obtaining the Joint Angles

From {~c, µt, Tt} the original parameter configuration φt representing the various joint angles can
be reconstructed.

φt = [Tt, (~F ∗ ~cT )T + [θ̄1, . . . , θ̄dmax ]] (4.6)

The transformed joint angles are concatenated with the translation Tt. The Gaussian distribution
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over all parameters implies a Gaussian distribution over φt so the temporal prior p(φt|φt−1) of
equation 3.1 is obtained.



Chapter 5

Likelihood

The likelihood or sensor-model is a function which returns the probability that a configuration
matches the current frame. Before we can specify the function we first need to pre-process our
image data, subtracting the background from the subject.

5.1 Background Subtraction

Before we can address the issue of matching a given 3D-configuration to a subject in the 2D-image
plane we first need to determine where the subject resides within the image plane. We need to
apply figure-ground segmentation, also referred to as background subtraction.

The term background subtraction is a bit old fashioned and refers back to the early days of
Human Motion Analysis. The current image was pixel-wise subtracted from a static (empty)
background image. This subtraction will yield greater distances between pixels where a new
subject or non-stationary object resides. Classification between foreground and background was
based on a fixed threshold value. This method has been used in many systems and yields quite
fair results (see figure 5.1).

The biggest drawback of using background subtraction is the fact that it is a static method,
it cannot adapt to any changes in the environment. It only works if the background remains
static, that means there should be no camera movement and all objects in the background should
also remain still. Furthermore it is unable to cope with illumination changes. To address these
problems various other methods have been developed using a background-model which is adaptive
[11, 16].

A drawback using adaptive methods is the fact that these methods use a background model
which needs to be initialised. In the beginning such a model will yield a high number of false
positives and as time goes on it adapts itself to the current situation and the performance increases.
Using video-footage of only several seconds you want good performance from the first frame
onward, because there is no time for initialising the model. Therefore basic background subtraction
is applied using a non-adaptive model. We may expect this model to perform reasonably well,
since we assume a static background and only a single subject in the scene. Furthermore dramatic
illumination changes are not expected in a sequence which only lasts several seconds.

As a preprocessing step, each image is smoothed using a Gaussian convolution filter. This

21
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Figure 5.1: A result of background subtraction. Each image in the sequence was smoothed using
a Gaussian convolution filter. The reference image was created by taking the mean over the full
sequence. The top-left image is the result of subtracting each of the RGB-channels from the mean
and calculating the Euclidean distance between the reference and current image. A brighter pixel
indicates a larger distance.

eliminates a great deal of noise in the input data. The background model is constructed by taking
the mean of every image in the sequence. For each pixel of the reference image, the difference in
the color space between the reference image and the background is calculated and if the distance
exceeds a threshold it is classified as a foreground pixel. A more sophisticated method [6] can be
applied eliminating the classification of shadows as foreground pixels.

5.2 Defining the Likelihood

The likelihood or sensor model is defined as the probability of a specific sensor response given a
hidden internal state of the system. In the system proposed it indicates the probability that the
pose of a subject extracted from a frame of the input video sequence at time t matches the pose
of our human model φt, p(It|φt). To define this probability distribution we seek a function which
yields a measure how well a subject’s pose in image It and a configuration φt match. A perfect
match should yield a result of 1, and the more the two drift apart the lower the result.
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(a) Generated sil-
houette

(b) Reference image (c) Subtracted silhouette with generated
silhouette as an overlay

Figure 5.2: Silhouette comparison. Although manually generated, these images should provide
a visual explanation of silhouette comparison. The silhouette of the model (a) is placed on the
subtracted image-silhouette (c) and the amount of match is determined.

5.2.1 Comparison

At the moment our human model is defined as a set of 96-parameters φ indicating the global
position of the model within the environment and the different angles of each joint. To compare
a configuration φ with image data I various approaches can be taken. One can try to seek the
edges of the subject with the image and match a model to these edges [19]. Drawback of using this
method is that the system has to learn an appearance model using a large database of manually
segmented images in order to see whether an edge may belong to a human or not. Once learned
however one has obtained a very robust method to segment and compare images. A more simple
approach can be taken by comparing silhouettes [7]. Once extracted we can take the outline of
our human subject and turn it into a silhouette. If we overlay this silhouette with a silhouette
generated from φ we can determine the amount of correspondence between the two. A possible
problem using this model is left-right ambiguity, because depth information is eliminated from the
model before it is compared with the image data. This is, once successfully initialised, not longer
a problem because of the temporal prior. It is highly unlikely that it will propose a transition
between two states nearly opposite from each other.

Up until now the human model was visualised by means of a stick figure. This, however, is
unsuited if we try to generate a silhouette. Therefore we represent each limb, except for the torso
and head, as a cylinder. A cylinder is the geometric figure closest to the actual appearance of our
limbs. If we would use a cylinder for the torso, we would obtain a human which is as thick as
he is wide, unless we want to model a human with a serious amount of overweight this is not a
good approximation. Therefore the torso is modeled as a box. The head is modelled like a sphere.
Assuming that the lengths and widths of each limb are specified in such a way that we obtain a
model that matches our subject in terms of length and limb-ratios, we now have the means to
specify the likelihood-function.
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5.2.2 Likelihood-function

Using silhouette-matching we can define function l(Sφ,S) - the probability p(It|φt) as the amount
of correspondence between the silhouette extracted from image It, St and the silhouette generated
from the model configuration φt, Sφt . We define the matrices S and Sφ as a matrix of the same
dimensions as I and with each element either 1 or 0, representing the subject or the background.
Thus, Si,j ,S

φ
i,j ∈ [0, 1].

We can now define the match between both silhouettes as:

l(Sφ,S) = 1−
∑w
i=0

∑h
j=0 Sφi,j × (1− Si,j)∑w
i=0

∑h
j=0 Sφi,j

(5.1)

We compare both silhouettes on a pixel, or element, basis and subtract - if we encounter a
pixel which belongs to the generated silhouette Sφ - the value of the corresponding pixel in the
image-silhouette S. The sum over the full image yields the amount of pixels within the generated
silhouette that do not have a counterpart in the image-silhouette, this is then normalized by the
total amount of pixels in the generated silhouette. Now we have the percentage of mismatch
between the two. Subtracting this from 1 returns the percentage of match between the two
silhouettes. This value is between 0 and 1, so we also obtain our probability p(It|φt).



Chapter 6

Discussion

6.1 A full HMA-system

A comprehensive HMA-system consists of all the different building blocks described in the second
chapter. In this thesis only the blocks ‘tracking’ and ‘pose-estimation’ are described in detail. The
others are addressed briefly in this section.

6.1.1 Initialisation

In the previous chapters the tracking and pose estimation of a human subject throughout a video
sequence was described. The temporal prior and likelihood combined provide means to model the
state-change of the system from time t to time t + 1. This description, however, does not cover
the initialisation of the process - what should be done at time t = 0, when there is no previous
state to update? How can the initial pose of our human model φ0 be retrieved?

The initialisation of the model, defining the limb ratios, the initial position and the scale of
the model, is a whole different subject. It requires different techniques, since there is no temporal
context. You have only a single frame and all information should be extracted from that frame.
Barron and Kakadiaris [2] have designed a method which is able to, after the user supplied some
initial points as input, estimate the pose of a subject in a single frame. The method is able to both
recover the pose of the subject and estimate all limb lengths using anthropomorphic constraints.
This method might be a good starting point for tracking to commence. However, this method
only works if some limbs are situated in a plane which is parallel to the image plane of the camera.
This constraint violates the assumption made that the subject may be captured under any angle.
Other methods investigated assume that the system is initialised using either model parameters
which are manually set [20] or that the subject assumes a couple of initial poses isolating different
joint locations [10]. These methods are more robust, but cannot be used in an automated system.

A first thought on how initialisation would be implemented in the DigiCoach system is to
combine all three methods. The system keeps track of a user model containing the athlete’s
history (see appendix A). This user model can be used to store kinematic information of the
subject - including limb lengths, but also information like physical disabilities. This information
can either be obtained by manual input or some form of visual input, e.g. a photograph of the

25
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subject taken from the front or behind with no occlusion. The method of Barron and Kakadiaris
can then be used to estimate the initial pose of the subject, with the difference that the need for
a limb in a plane parallel to the image plane of camera is not needed anymore, because the limb
ratios are already known.

6.1.2 Estimating the prediction

In the description of the probabilistic framework introduced in the third chapter, the implementa-
tion of the integrand or ‘estimation’ has not been addressed. If one would implement the system,
one should seek means to estimate the multi-dimensional, non-Gaussian, non-linear, probability
distribution which is described by the integrand.

An estimation could be made using a particle filter. A set of particles is generated from
the original probability distribution. Then each sample is propagated forward in time using the
temporal prior given its current value for φt. Each sample is weighed by the likelihood it assigns
to the new evidence and as a final step the population is resampled to generate a new population
of samples. The old population is discarded and from the old population N samples are drawn
with a probability equal to their weight, so there is a high chance that samples are drawn with
the highest likelihoods (the best fit). The new set of particles then provides a good estimation
of the posterior distribution at time t + 1. A particle filter aimed at visual recognition is the
CONDENSATION algorithm [8].

6.1.3 Recommendation

After the pose is estimated the DigiCoach system will provide recommendations on how the subject
can improve his or her technique. As an indication of what it takes to improve an athlete, track and
field coach Michael Snijders was consulted. For each of his pupils he keeps track of three mental
pictures: The most recent performance, a global picture of the current performance level of the
athlete and a goal picture, the best performance an athlete may reach given his or her physique.
Recommendations are given based on the current level and aim to bring this level closer towards
the goal. The current performance of the athlete provides feedback whether an instruction had
the desired effect, e.g. in order to reach maximum speed an athlete is required to hold his torso
upright. Many people however tend to lean forward while running, so the coach tells the athlete
to focus on leaning backward. Most people are capable of running upright, so the goal picture
will contain an athlete who is running perfectly upright. Currently he or she is leaning forward
so the mental picture of the current level will include the athlete running forward. The current
performance depends on whether the instruction yields a positive result. If so the athlete is told
to try and keep his torso this way, otherwise another instruction is given. As the athlete performs
better in this area the mental picture of the current level gets updated and the coach turns his
attention to other flaws.

If we would implement the story above, we should keep track of two models. A model of a
perfect athlete. The computer will be unable to differentiate between different individuals, but a
general example will do, since we may expect that an athlete will never reach perfection. There
is always room for improvement. The current level can be tracked by updating the second model
after each trial. We start off with an initial estimation, e.g. the average of N-trials, and thereafter
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each time the model is updated with the current performance. Perhaps it would be recommended
that a user may give some feedback on the update process, since a person focusing on a single
instruction (for example running upright) may get sloppy in other parts of the motion. Once
the current level-model is updated, new instructions can be given by comparing both models and
consult a database with instructions in order to correct differences between the two.

The above gives a general notion of a concept which could be used to solve the problem of how
to recommend improvements. It may not be expected to be flawless as it is a research by itself to
develop such a system.

6.2 Robustness

When designing AI-systems, robustness is always an issue. Is your system able to cope with unseen
situations? How much does it depend on correct sensor inputs and is it able to recover from errors?

The methods described in this thesis certainly have robustness issues. The acquired data must
be of high quality in order to perform good figure-ground segmentation. Noisy or low-contrast
images will prove difficult to segment, decreasing the overall performance of the system.

Furthermore the system does not provide a general model of motion, but an example based
one. So it can only be used to track a running person, not a tennis player or even a walking
person. This makes it very limited, although other models of motion can be learned and deployed
in exactly the same way as described in chapter 4. For now we have to stick to these methods as
a general model of motion is computationally not feasible [19].

Finally, we still depend on lots of assumptions specified in the second chapter1. If one of these
assumptions is violated, the system is likely to fail.

6.3 Precision

A final point of concern is the precision of the estimated poses. If we want to draw conclusions
based on the found poses we must be sure that they correspond with reality. This largely depends
on the result of the background subtraction as this determines the shape of the silhouette which
the poses are matched against. If a lot of detail is preserved and the edges are crisp it is much
easier to make a good estimation. But the precision also depends on the used motion model. If the
model describes a motion pattern which differs too much from the motion pattern of our subject
it is very likely that a pose estimation is made which differs from the data as the motion pattern
constraints the search space. So poses corresponding to input data lying outside this search space
will not be found.

The exact amount of precision required depends on the user of the system and the recom-
mendations the system will give. If they depend on subleties, the estimations made must be very
precise. If the recommendations depend on constraints which are more coarse, precision is less of
an issue.

1See table 2.2.
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Chapter 7

Conclusions

7.1 Conclusions

Creating a system which is able to track human motion is a difficult task. When I started off I
thought that within the six months available, it should be possible to design and build a system
which should at least be able to estimate the pose of a subject, implementing the first four blocks
of figure 2.1.

Unfortunately the field of HMA is very broad. Many different methods are proposed and they
all have their different strenghts and weaknesses. They are often targeted at a specific application
or only demonstrate very specific functionality. I was unable to find a paper which described a
comprehensive system. This made it difficult to select suitable methods for various parts of the
system and I was forced during the process to lower the bar. I decided to concentrate myself on the
core of the system: tracking and pose-estimation. Creating a framework on which a comprehensive
system can be build.

7.1.1 Questions

The main question was: How can human motion be captured and tracked by a computer? Using
a number of sub-questions I have tried to give an overview of what it takes to develop a system
which is able to recover the 3D pose of a human subject using 2D video footage.

What difficulties arise when trying to track human motion?

Moeslund and Granum have defined a functional decomposition of a comprehensive Human Motion
Analysis-system which contains five different building blocks (figure 2.1). Each of those blocks
comes with their own set of challenges.

What methods have been developed in order to track human motion, which difficulties

do they address and what are their strenghts and weaknesses?

In the second chapter an overview is given of various methods proposed in the scientific literature
for each of the different building blocks of an HMA-system. This overview is based on a number
of assumptions, which in turn are based on the requirements of the DigiCoach-system.
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How the data is acquired largely depends on the available hardware. The only suitable method
remaining is passive sensing, because of the assumption that the system can be used in an every
day environment using only natural sources.

Initialisation concerns itself with initialising the human model and finding the correct starting
pose. The human model is initialised either through estimation within an image of the input data,
aided by the user, or through a series of images in which the subject takes poses which isolate
different joints. The latter is more robust, but cannot be used unless one operates in a situation
in which the user can be requested to take the required poses.

In order to track the human through the scene one first needs to classify each pixel as either
belonging to the subject or the background. This can be done using background subtraction
techniques which learn a non-adaptive background model. A pixel is classified as a background
pixel if its values are near the ones of the background model. These methods are simple and do not
need any initialisation time. However they may fail when confronted with illumination changes,
noisy sensors and dynamic backgrounds. In order to counter these problems, methods using an
adaptive background-model were developed. They are able, although some are better than others,
to cope with the problems of a non-adaptive model. However, these systems often need a long
initialisation time and can only be used in surveillance-like situations.

Once the subject is recognised its pose needs to be recovered. The only suited class of methods
using only a single camera is the ‘direct model use’-class, as all other classes badly cope with
occlusions. Finding the correct pose of the model is done either through a gradient descent
technique or through stochastic search methods. The latter has the ability to recover when it gets
off track, in return for increased computational complexity.

Most research in the field of recognition focusses on the classfication of human movement.
Most methods proposed are aimed towards the surveillance systems and do not suit the aim of
this thesis. Therefore this subject is not explored.

Which solution is best suited for my purpose and how can it be modeled?

In this thesis the work has focussed on finding a solution for tracking and estimating the pose of
the subject. A probabilistic framework is defined which is described in the third chapter. In the
fourth and fifth chapter two different parts of the framework are highlighted, the ‘temporal prior’
and the ‘likelihood’. An example based method is used which allows to estimate the pose at the
current time, using a parameterized model of our subject, and predict the pose for the next frame
reducing the search space.

Initialisation and recognition are only briefly discussed in the sixth chapter.

How can this solution be implemented?

For now bits of code have been implemented in Matlab, but any language can be used to implement
the final system. A first proposal for the architecture of the system is done in appendix A.

7.1.2 The field of Human Motion Analysis

Although good progress has been made, many issues are still unaddressed. At the moment it is
not possible to robustly initialise a model using only the footage shot during the activity. One
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either needs to specify it by hand or have the subject taking various poses. This is a problem
because if we want to draw conclusions based on the poses found we need to achieve a high degree
of precision. It even remains to be seen whether the required amount of precision can be achieved
using only the current methods and hardware. A final point of concern is the fact that the proposed
method is still example based. It highly depends on the learned motion model and therefore also
might influence the outcome of the pose estimation.

At the moment the field of Human Motion Analysis is unable to provide solutions for a robust
and general applicable HMA-system. A lot of effort is still needed in order to create more robust
methods. Next to that technological advances are needed to provide extra computational power
allowing for more general approaches.

7.2 Future work

The framework described in this thesis provides a good basis in order to complete the DigiCoach
system. Future research will be done on the initialisation of the model and the propagation of the
model through time using a particle filtering. Another research will address the issues of providing
recommendations to the user. Once the system is completed research may be directed towards
increasing robustness and precision.
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Appendix A

Requirements and Architecture

A.1 Requirements

This appendix provides a short summary of the requirements for the DigiCoach system, although
it would be recommended to make a full requirements analysis of the system. This, however, is
beyond the scope of this thesis.

A.1.1 System description

The purpose of the DigiCoach system is to analyse the running of a track-athlete and to give
an advise on how his style can be improved in order to reach better performance. The system
uses video-footage of the athlete as its main input and produces both a 3D-representation of the
athlete’s pose at each timeframe as well as a list of recommendations how the motion can be
improved.

The system uses only a single camera and there is no need for a strictly controlled environment.
Data can be acquired in an outdoor environment using various lighting conditions and a plain
camera will suffice. There is no need for markers or other special equipment. The system assumes
the camera is in a stationary position and there is only one subject within the range of the camera.
See figure A.1. It is not necessary for the subject to move in a plane which is tangential to the
camera as is shown in the figure.

The system should also be able to keep track of an individual model for each athlete so
that previous sessions can be compared with the current footage and a mean can be produced,
highlighting recurring errors and surpassing accidental mistakes.

A.1.2 System functionality

In order to fulfill its purpose, the system needs to be able to do the following:

Input The system should be able to read the video of the subject and uncompress this to a series
of separate images.

Extraction It should be able to extract the subject from the various images, eliminating all
background information.
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Figure A.1: Schematic representation of data acquisition.

Translation The system must be able to translate a series of 2D images into a sequence of 3D
poses.

Recommendation The system can recommend improvements in order to reach better perfor-
mance. This is achieved by comparing the athlete’s personal history with a model of the
‘perfect’ athlete.

User Interface The system does not have to operate unsupervised. It should be possible for the
user to correct false recognitions and the user is required to estimate the starting pose of
the subject.

A.1.3 Intended users

The system is intended for users who have basic knowledge about track and field athletics and
have basic knowledge about operating a computer system.

A.2 System architecture

The final system will consist of four main blocks each shown in figure A.2. The user controls
the system through the interface. The interface presents the user with information regarding the
processing of the data and results. Furthermore it allows the user to specify which data should be
used, specify various parameters and assist the system when it fails to recognise the subject.

The data reader is able to translate the video file compressed with the AVI-codec into a series
of images suited for processing by the model generator, which is able to turn each separate image
into a 3D-representation of the subject for that specific timeframe. When put together these
3D-representations show the movement of the subject.

All 3D-representations together will serve as input for the recommender who adds the new
information gained from the model generator to an already known model of the athlete. This
model is then compared to a model of the perfect movement and differences are fed back to the
user.
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Figure A.2: System architecture.



A.2 System architecture 36



Appendix B

Human Model

B.1 Joints

The human model used in this thesis is derived from motion data downloaded from Carnegie
Mellon’s online motion capture library. It has 31 joints, although some of them do not actually
rotate, these are not used when expressing a running motion, but may be needed when extending
to other types of motion. They are indicated with a * in table B.1. Each joint is able to rotate in
all three dimensions. This is not consistent with a real human being, but it proposes no problems
since the learning data is obtained from real humans. Thus the model will be 96-dimensional,
31× 3 joint angles, although some dimensions will remain 0, and three dimensions specifying the
global translation of the model.

The joints are organised in a hierarchy with each joint having an offset in X,Y and Z-direction
compared to its ancestor. Each joint has a local coordinate system which depends on the direction
its ancestor is facing. For a graphical example, see figure B.1. A joint with all angles equal to
0 will be directed in the offset direction towards the next joint. The global coordinate system is
defined as a right-handed system with the X-coordinate facing horizontal, the Y-coordinate facing
vertical and the Z-coordinate facing outward.
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(a) Global coordi-
nates

(b) Local coordinates (c) Human Model

Figure B.1: Graphic representation of the used model. Both (a) and (b) show the coordinate
system, either global or local. The last figure shows the model with all joint angles set to 0.

Dim. Name Description

1-3 - Translation
4-6 hip Main hip joint
7-9 lhipjoint* Left hip center

10-12 lfemur Left hip outside
13-15 ltibia Left knee
16-18 lfoot Left ankle
19-21 ltoes Left toes
22-24 rhipjoint* Right hip center
25-27 rfemur Right hip outside
28-30 rtibia Right knee
31-33 rfoot Right ankle
34-36 rtoes Right toes
37-39 lowerback* Lower back
40-42 upperback Center back
43-45 thorax Center shoulders
46-48 lowerneck* Lower neck
49-51 upperneck Upper neck
52-54 head Center head
55-57 lclavicle* Left shoulder cent.
58-60 lhumerus Left shoulder out.
61-63 lradius Left elbow
64-66 lwrist Left wrist
67-69 lhand Left hand
70-72 lfingers Left fingers
73-75 lthumb Left thumb
76-78 rclavicle* Right shoulder cent.
79-81 rhumerus Right shoulder out.
82-84 rradius Right elbow
85-87 rwrist Right wrist
88-90 rhand Right hand
91-93 rfingers Right fingers
94-96 rthumb Right thumb

hip

lowerback

upperback

thorax

rclavicle

rhumerus

rradius

rwrist

rthumbrhand

rfingers

lclavicle

lhumerus

lradius

lwrist

lthumblhand

lfingers

lowerneck

upperneck

head

rhipjoint

rfemur

rtibia

rfoot

rtoes

lhipjoint

lfemur

ltibia

lfoot

ltoes

Table B.1: The various dimensions (joints) used in the model and their hierarchical structure.
Joints which angles remain 0 are indicated by *.
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B.2 BVH File Format

A BVH-file consists of two parts. The first part starting with the keyword HIERARCHY gives a
definition of the model used. Each model consists of one ROOT joint and several other joints
specified by JOINT. Each joint can contain one or several sub joints creating a tree-like hierarchy.
This hierarchy is parsed using depth-first recursion. For each separate joint it is specified how
it is located compared to its parent using the keyword OFFSET and then specifying the offset in
X,Y and Z direction. Furthermore it is specified how many degrees of freedom, or CHANNELS each
model has. The offset and rotation of the root-joint indicate the global offset and rotation.

The second part of the file starts with the keyword MOTION and contains all motion infor-
mation. First is specified how many frames there are and how long each frame takes (in sec-
onds), using Frames and Frame Time. This is followed by a large matrix of numbers, sized
frames × dimensions. Each number represents a rotation of a specific joint in a specific di-
rection for a certain frame. This is expressed in degrees and ranges from 0 to 359, except the first
three numbers of each row which represent the global translation 1.

Below is the corresponding BVH-structure of the model described in the previous section. The
motion data itself is discarded, because this would not fit the paper.

HIERARCHY

ROOT hip

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation

JOINT lhipjoint

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT lfemur

{

OFFSET 1.656740 -1.802820 0.624770

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT ltibia

{

OFFSET 2.597200 -7.135760 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT lfoot

{

OFFSET 2.492360 -6.847700 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT ltoes

{

OFFSET 0.197040 -0.541360 2.145810

1For a more elaborate description see: http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.

html

http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
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CHANNELS 3 Zrotation Yrotation Xrotation

End Site

{

OFFSET 0.000000 -0.000000 1.112490

}

}

}

}

}

}

JOINT rhipjoint

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT rfemur

{

OFFSET -1.610700 -1.802820 0.624760

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT rtibia

{

OFFSET -2.595020 -7.129770 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT rfoot

{

OFFSET -2.467800 -6.780240 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT rtoes

{

OFFSET -0.230240 -0.632580 2.133680

CHANNELS 3 Zrotation Yrotation Xrotation

End Site

{

OFFSET -0.000000 -0.000000 1.115690

}

}

}

}

}

}

JOINT lowerback

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation
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JOINT upperback

{

OFFSET 0.019610 2.054500 -0.141120

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT thorax

{

OFFSET 0.010210 2.064360 -0.059210

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT lowerneck

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT upperneck

{

OFFSET 0.007130 1.567110 0.149680

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT head

{

OFFSET 0.034290 1.560410 -0.100060

CHANNELS 3 Zrotation Yrotation Xrotation

End Site

{

OFFSET 0.013050 1.625600 -0.052650

}

}

}

}

JOINT lclavicle

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT lhumerus

{

OFFSET 3.542050 0.904360 -0.173640

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT lradius

{

OFFSET 4.865130 -0.000000 -0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT lwrist

{

OFFSET 3.355540 -0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation
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JOINT lhand

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT lfingers

{

OFFSET 0.661170 -0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

End Site

{

OFFSET 0.533060 -0.000000 0.000000

}

}

}

JOINT lthumb

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

End Site

{

OFFSET 0.541200 -0.000000 0.541200

}

}

}

}

}

}

JOINT rclavicle

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT rhumerus

{

OFFSET -3.498020 0.759940 -0.326160

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT rradius

{

OFFSET -5.026490 -0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT rwrist

{

OFFSET -3.364310 -0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation



43 Human Model

JOINT rhand

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT rfingers

{

OFFSET -0.730410 -0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

End Site

{

OFFSET -0.588870 -0.000000 0.000000

}

}

}

JOINT rthumb

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

End Site

{

OFFSET -0.597860 -0.000000 0.597860

}

}

}

}

}

}

}

}

}

}

MOTION

Frames: 100

Frame Time: 0.033333

trans11 trans12 trans13 angle11 angle12 ... angle1n

trans21 trans22 trans23 angle21 angle22 ... angle2n

. . .

. . .

. . .

transm1 transm2 trans m3 anglem1 anglem2 ... anglemn
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