
    
Bachelor Thesis

Fabian van den Broek

Supervisor: dr.ir. Erik Poll

Radboud University, Nijmegen

Abstract. Software contains bugs and bugs cost money. A good way to find
some bugs quickly is the use of static code analysis. There are no exact numbers
on the use of static code analyzers in the industry, but in our experience tofew
software developers actually make use of them. This thesis describes a survey that
was conducted to find out why only so few developers in the Java community use
static code analysis. Furthermore, a case study is performed to investigate the
advantage of using a static code analyzer for Java, namely FindBugs, on a real
world application.

1 Introduction

Software inevitably contains bugs and bugs can cause software freezing and malfunc-
tioning and decreased security. The consequences of bugs range from waste of capital
to patients’ deaths. Many techniques to deal with bugs have been developed, such as
testing, debugging and expert code reviews. A lot of bugs arethe result of common
coding mistakes. For example, the eponymous buffer overflow problem in C is a com-
mon mistake and in Java many mistakes are made with Object comparison using ‘==’.

It is commonly known that the earlier bugs are found, the lessit costs to fix them.
Static code analyzers are tools designed to find many types ofcommon made mistakes.
Using static code analysis throughout development resultsin finding certain bugs at an
early stage. Other uses of static code analysis are guiding expert code reviews [1] and in
programming education [2]. Static code analyzers have existed for a couple of decades
and have steadily improved. Nowadays, they excel at spotting common problems and
tracing variables throughout source code. The use of staticcode analysis generally re-
duces the number of bugs [3], improves the security of an application [4], and improves
overall code quality [5].

However, little information is known about how often staticcode analyzers are used
during software development. In my experience, software developers judge static code
analysis useful, yet they do not use them. An explanation forthis may be found in
a commonly heard complaint of developers about static code analysis. Namely, static
code analysis produce many false positives. However, it remains unclear whether this
conception is true.

This thesis investigates the use of static code analyzers among Java developers and
the number of usefull warnings produced by the static code analyzer FindBugs. More
specifically, the following research questions were addressed concerning the use of



2

static code analyzers: what percentage of the developers isaware of the existence of
static code analysis, why do developers choose not to use static code analysis, how of-
ten are static code analyzers used during software development, and how do developers
experience static code analysis.

In section 2, a short introduction to static code analysis isgiven. Section 3 describes
the survey that was conducted in the Java community to discover the attitudes of Java
developers towards static code analysis. Next, section 4 describes a case study of the
number of false positives produced by the SCA tool FindBugs.Finally, conclusions are
provided in section 5 and some recommendations for future work in section 6.

1.1 Related work

There has already been some research into static code analysis lately. In [3], Rutar et
al. compared five static code analyzers by running them over several Java projects and
comparing the output and the run times. They conclude that there is quite a bit of dif-
ference between the bugs these tools find and suggest the use of a meta tool combining
multiple static code analyzers.

FindBugs is an open-source static code analyzer created by the University of Mary-
land. On their website they are now performing a survey of their own, to find out how
FindBugs is used [6].

In [7,8] Kim and Ernst have tried to improve the priorizationthat static code ana-
lyzers use to present their reported bugs. They measured thetime certain bug categories
remain within a software project in order to find out which type of bugs are more im-
portant for developers.

2 Static code analysis

Static code analysis is the analysis of computer software without actually running the
software. Usually this is done automated by another program. This article is about using
this analysis technique to automatically search for bugs and improve source code. There
are numerous tools around, both commercially and free, which do this.

In the late seventies the Lint tool became popular. It was a static code analyzer
for the C programming language which looks though the sourcecode for certain code
patterns of often made mistakes. This tool was named after the undesirable bits that
gather in sheep wool because of static electricity. From here on static code analysis has
seen many tools for many languages, each with different success.

Static code analysis can be used for more then finding bugs. The most widely used
application of static code analysis is most likely type checking, which is found in nearly
every compiler of every strongly typed language. Type checking is also performed with-
out actually running the program. This article however willonly refer to the automated
scanning of bugs within code when mentioning static code analysis.

Most static code analyzers nowadays read the code and construct an abstract model
from this. In this abstract model they can then look for knownbug patterns. There are
also several static code analyzers that complement these checks with some form of data
flow analysis [9]. Using data flow analysis these tools can track possible values for



3

variables at different points in the program and follow possibly ‘tainted’ input through
a program.

Static code analysis is neither sound nor complete. That is to say no static code
analyzer is able to find only bugs (and no false positives) noris it able to find all bugs
present in a program. This is in fact an example of the more general result known as
Rice’s theorem, which informally states that no program is able to verify for which
programs a certain property holds. The problem of static analysis in fact is undecidable,
but like all undecidable problems it is still possible to finduseful approximations.

Because these tools are not exact, they will have false positives (a bug report that
does not signify an actual bug) and false negatives (undetected bugs). The rates of false
positives and negatives is a good measure to compare static code analyzers [3]. Other
important criteria can be the overall usability and the ability to modify the behavior of
these tools (extending or reducing the bug detectors) or thenumber of bug detectors
that these tools offer.

2.1 When to use static analysis?

There are basically two moments or situations were a static source code analyzer can
be useful. The first is during testing or when auditing sourcecode, the second is during
development and before testing. In the first situation static code analysis is often used to
get some idea of the quality of the source code or as a guide fora code reviewer. In the
second situation programmers employ static code analysis after compilation and before
testing. Both approaches will demand different things from a static code analyzer. For
usage during an audit users will typically not mind a larger false positive rate if this
means that more bugs are found (lower false negative rate). Most programmers who
use these tools will mostly be glad getting rid of a few bugs and not receiving a large
amount of false positives.

Most static analysis tools can be tailored to be use in both situations, however there
are good reasons to promote the use of static code analyzers during development and
before testing. The most important reason is that when a static code analyzer is used
in this way it will typically keep the time between the creation of the bug and finding
them smaller. This is useful because the fixing of bugs costs more, the later they are
discovered.

Another reason is that using a static code analyzer during the implementation of a
program will likely lead to less bug reports per run then onlyusing these tools during
testing. Keeping the number of bug reports manageable will make the number of false
positives also less painful.

2.2 Static code analysis in Java

This paper will only look at static code analysis for the Javalanguage. The difference
between scanners for different languages is not in the methods of scanning, but in the
types of bugs they look for. Buffer overflows is a typical example of a kind of bug any C
static analyzer will look for, but analyzers for the Java language will not be interested in.
This however does not mean that all conclusions on static code analysis are generally
applicable for all tools. The bugs from a specific language can be easier to find then



4

those of another. Similarly the results of this paper can notsimply be applied to all
static code analyzers. The survey of section 3 is aimed at theJava community, and it is
unclear to what measure the results will differ when the same questions are directed to
programmers who use different languages. Also in section 4 a Java static code analyzer
is used on a Java project and these results

There are two sorts of static code analyzers for Java; those that scan the source
code and those that scan the byte code. Both approaches have their benefits. Scanning
the source code means you scan the actual code written by the programmer. Compilers
tend to optimize code and a bug found in the resulting byte code might not be easily
translatable to the defect in the source code. Also you do nothave to compile the source
code before you can start checking it with static code analysis. But scanning the byte
code is often a lot faster then scanning through the source code. On large projects it
may be vital to keep the performance hits on static code analysis low.

3 Attitude towards static analysis tools

In this section we try to determine the attitude of Java programmers towards static
analysis of Java code.
The remainder of this section will look closer at the survey,how it was set up, its results
and some discussion on those results. A copy of the actual survey can be found in
appendix A.

3.1 Setup

To answer various aspects on the use of static code analyzersseveral smaller questions
were asked. A precondition for using static code analyzers is awareness of their exis-
tence. Consequently, the first question on the survey is to find what percentage of the
participants is aware of the existence of static code analyzers. The next question inves-
tigates why people who are aware of the tools decide not to usethem. This provides
insights into the appearance of static code analyzers and prejudices around them. To
discover the popularity of particular static code analyzers, the next question is which
static code analyzers are used. Finally, the last question investigates what problems are
encountered when using static code analyzers. This question provides insights into what
aspects of static code analyzers need to be improved in orderto attain a higher popular-
ity.

The first question was whether or not people were aware of the existence of static
code analysis for Java. If they were not, it ended the survey for them. The group that
continued was divided into two subgroups; participants whoare using or have used
static code analyzers and participants who have never used static code analyzers. Both
subgroups were presented different questions. The participants who used static code an-
alyzers were asked three questions: (1) which tools they have used, (2) why they started
using the tools, and (3) what problems they encountered whenusing these tools. The
participants who never used static code analyzers were asked what their reasons were



5

for not using the tools.

To get a good population, various sources were used to find participants. There are
several Java communities both on the Internet and in real life. Two of these communities
were used to find subjects for the questionnaire. OWASP-NL [10] is a Dutch applica-
tion security community. They held a meeting sponsored by Fortify[11], with a talk on
secure programming with static analysis. This made this an audience with a relatively
high knowledge on static code analysis, and around twenty people here participated in
the survey.

The spring conference of the NL-JUG, the Dutch Java user group, was the second
place the survey was held. This J-SPRING[12] is a yearly conference where eleven
thousand Java specialists were present. Around thirty people filled in a questionnaire
here. I used my personal Linked-IN network to find contacts that used Java, also through
the NL-JUG group. This resulted in the rest of the participants filling in the question-
naire online.

3.2 Results

This survey was conducted from the 25th of March until the 30th of May 2008, both
online and via paper forms. In the end there where 101 responses in the survey. Of
course this is not a representative group for the Java community, because of the manner
in which the survey was spread, but perhaps some conclusionscan still be drawn from
the results. These results can be found in table 3.1.

We will first look at the spread of static code analyzers through the Java community.
How many actually use these tools and how often do they use them? And which tools
do they use? Then we will look at the reasons users, who never used such tools, may
have for not using these tools and finally we will look at the problems users encountered
while using static code analyzers.

Usage One of the main reasons for not using static code analyzers, may be unfamil-
iarity with such tools. Therefor the first question the survey inquired about was the
awareness of the existence of static code analyzers by the participant. Of the 101 partic-
ipants, around 80 percent stated that they were at least aware of the existence of static
code analyzers for Java.

The rest of the survey was only taken by the eighty people who were aware static
source code analyzers exist for Java. Asked about their use of static code analyzers,
revealed that nearly forty percent had never used such tools(though they were aware
of their existence). Thirty percent had used a static code analyzer at some point, but
did not continue using them on software projects. Another thirty percent do still use
such tools, from which only six percent state to use them as often as possible. This is
of course a shockingly small number of people, which immediately justifies to question
the effectiveness of static source code analysis. We will come to the reasons for not
using any static analysis shortly, but over thirty percent of this group has had reasons to



6

Table 3.1. Results of the survey. The actual result can be obtained in a .csv file from
www.science.ru.nl/infstud/ fabianbr/basc/results.csv

A        (SSCA’)   J?
Yes 80
No 21

H     SSCA   J  ?
No, Never28

Yes, I have tried out a tool for a bit, but I don’t regularly use one.27
Yes, I use one or more SSCA’s on occasion to improve source code15

Yes, I use SSCA’s on as many coding projects as I can.8

W         SSCA?
I do not believe they will really find any bugs.1

The bugs these tools find are not the ones I am looking for6
It’s too much of a hassle to install these tools and learn to use them.13

There is never enough time in a software project to begin using these tools.15
Other, There is not enough budget to begin using these tools.2

Other, Never considered using such a tool.3
Other4

W SSCA’   ?
Fortify SCA 12

ParaSoft JTest12
Coverity Prevent3

FindBugs37
PMD 22

Eclipse Phoenix/ Eclipse TPTP9
CheckStyle9

Jlint 9
Other, ESC/JAVA2 1

Other, JSR308 checkers1
Other, GOT1

Other, FxCop1

W      SSCA?
I was required to use these tools by the company I worked for.5

The use of such tools was encouraged by the company I worked for.12
Out of personal interest.32

Other, education7
Other2

W  /         SSCA’?
Installation problems (eg frequent Eclipse crashes with SSCA plug-in).4

Too steep learning curve in using these tools.9
The tool falsely marks too much code as a bug.7

After using a SSCA, there are still too many bugs left.6
The use of a SSCA uses up a lot of time with bugs that are not my main concern. 11

The tool reports so many bugs that I do not know where to start.15
The tool does not display the bugs ordered by severity.21

The tool does not display the bugs categorized (eg. security or performance bugs).9
It is hard or impossible to remove certain bug patterns from the list of bugsthe tool checks for.9

It is hard or impossible to extend the list of bugs the tool checks for with selfcreated bug patterns.10
On projects there is too little time to invest in learning/ using SSCA’s.21

It is not company policy.9
Other, performance issues.3

Other4



7

stop using these tools (figure 3.1).

40
%

30 %

24
%

6 %

No, Never.
Yes, I have tried out a tool for a bit, but
I don’t regularly use one.
Yes, I use one or more SSCA’s on oc-
casion to improve source code.
Yes, I use SSCA’s on as many coding
projects as I can.

Fig. 3.1. Results of the question on the usage of static code analysis.

Those participants who have used static code analyzers wereasked which ones they
have used. The results can be seen in table 3.2. Please note that the column with percent-
ages indicates the percentage of answers that contained a specific tool. Scince this was
a question where more then one answer was possible, the totalof this column exceeds
a hundred percent.

Table 3.2. Results of the question “Which SSCA’s have you used?” (multiple answerswere pos-
sible)

Tool CountPerc. of users
FindBugs 37 71%

PMD 22 42%
Fortify SCA 12 23%

ParaSoft JTest 12 23%
Eclipse Phoenix/ Eclipse TPTP 9 17%

JLint 9 17%
CheckStyle 9 17%

Coverity Prevent 3 8%
ESC/Java2 1 2%

JSR308 checkers 1 2%
GOT 1 2%

The first result here is that in this question most participants checked multiple tools.
Nearly every participant who has used a static code analyzerat some time, has tried sev-
eral ones. The popularity of FindBugs is another striking result here, nearly three quart
of the participants who once used a static code analyzer usedFindBugs. The best scor-



8

ing commercial tools are ParaSoft JTest and Fortify SCA. ESC/Java2, JSR308 checkers
and GOT where not pre-defined choices in the survey, but filledin on blank spots, so
they might have done better if they where pre-printed answers. However ESC/Java2 and
JSR308 checkers are both tools that require extra user input, by requiring the program-
mer to annotate their code, and which were not a direct part ofthis research. Further-
more JSR308 tools have only existed for a couple of months now.

If we look further into the reasons the participants stated for starting to use static
code analyzers we find that personal interest is the decisivefactor for nearly sixty per-
cent of the test group. Some twenty percent started to use static code analyzers on stim-
ulation by the company they worked for and just under ten percent uses them because
it is company policy to use them. There was also a group of around twelve percent who
started using these tools for some form of education (figure 3.2).

9 %

21
%

55 % 12 %

3 %

I was required to use these tools by the
company I worked for.
The use of such tools was encouraged
by the company I worked for.
Out of personal interest.
For educational purposes.
Other

Fig. 3.2. Why did you start using static source code analysers?

Prejudice One third of the Java community stating they knew of the existence of static
code analyzers has never used one. It is of course interesting to see why this group never
wanted to use these tools. They might have good reasons for this, but perhaps they also
have some misconceptions about static code analysis that leads to them never trying one
of these tools.

This group was asked what their reasons were for never tryingout a static code
analyzer. The answers can be divided into three categories:

– Correctness, the assumptions that these tools will not find much (relevant) bugs;
the first two reasons from figure 3.3.

– Usability, the assumption that learning to use these tools is to problematic; the third
reason from figure 3.3.

– Procedural, lack of time or money for using these tools; the fourth and fifth reason
from figure 3.3.



9

2 %
14 %

29
%

34
% 5

%

16 %

I do not believe they will really find
any bugs.
The bugs these tools find are not the
ones I am looking for.
It’s too much of a hassle to install these
tools and learn to use them.
There is never enough time in a soft-
ware project to begin using these tools.
There are never enough funds in a soft-
ware project to begin using these tools.
Other

Fig. 3.3. Why did you never use a static code anlyzer.

The “other” option in this question spans all these categories and some answers there
fall outside this categorization all together. It should benoted that lack of funds was
not a pre-printed option with this question, but it was filledin by five percent of the
participants non the less.

Only one person declared to think that these tools wouldn’t find any bugs. So in
general it would seem that people do believe these tools to work. The main reasons for
never trying out a static code analyzer are not really correctness related. Nearly forty
percent of the reasons state that there simply is not enough time or money in an orga-
nization to familiarize oneself with static code analysis.Also thirty percent thinks that
it is too much trouble to learn how to use these tools. So even though these people do
believe that static code analyzers would find bugs for them intheir code (they did not
check the correctness related reasons) they never used one.Over sixty percent of the
reasons for not using a static code analyzer come down to somebody not being con-
vinced that the cost in time, money and trouble actually weighs up to the improvement
on their source code.

Experiences Now to look at the experiences by people who have actually used these
tools. The problems that users experience can roughly be divided into five categories

– Practical, for instance problems during installation, or performance hits.
– Correctness, the actual effectiveness of static code analysis at finding bugs.
– Usability, the usability of static code analyzers.
– Adaptability, problems with adding new or removing existing bug-patterns in static

code analyzers
– Procedural, all problems not directly related to these tools, but to their environment,

such as project boundaries.

These five categories are chosen rather arbitrarily, especially the categories practi-
cal and adaptability are actually sub-domains of the usability category. However this



10

division leaves room for a more detailed view on the results,so we can better determine
the big issues users encounter when using static code analyzers.

5 %

40
%

14 %

18
%

23 %

Practical
Usability
Adaptability
Correctness
Procedural

Fig. 3.4. The problems users encountered while using static code analyzers divided by category.

The results can be seen in table 3.3, where the last column shows the percentage of
users who encountered these problems. Since participants could check multiple answers
here, the total again exceeds a hundred percent. In figure 3.4the relative percentages of
the categories are shown.

The practical issues are problems such as unstable programsor performance issues,
only five percent of the checked problems fall into this category. The correctness cate-
gory represents the actual effectiveness of static code analysis at finding bugs. Almost
twenty percent of the complaints fall into this category, mostly concentrating on the
tools falsely marking too much code as a bug and the tools finding bugs that are not
the users concern. The adaptability of these tools is a problem for about 15 percent of
the experiences. These problems are evenly divided amongstthe difficulty to add new
and deactivate existing check rules. Forty percent of the responses fall in the usability
category. Since the adaptability can easily be seen as a usability issue, usability scores
as the most encountered problems with the use of these tools.The usability issues here,
center specifically around the display of possible bug detections. Procedural problems
are stated by over twenty percent of the participants. Amongthese is the shared number
one problem which 21 percent of the participants encountered; the lack of time to invest
in using or learning to use static code analyzers.

3.3 Discussion

As was stated earlier it is hard to draw conclusions from thisdata, because of the way
the survey was spread through the Java community. Still now that the result have been
presented, we might be able to arrive at some conclusions.



11

Table 3.3. The main problems users encountered while using static code analyzers.

Category Problem CountPercentage

Practical Installation problems (eg frequent Eclipse crashes with
SSCA plug-in).

4 8%

Usability Too steep learning curve in using these tools. 9 18%
CorrectnessThe tool falsely marks too much code as a bug. 7 14%
CorrectnessAfter using a SSCA, there are still too many bugs left. 6 12%
CorrectnessThe use of a SSCA uses up a lot of time with bugs that are

not my main concern.
11 22%

Usability The tool reports so many bugs that I do not know where to
start.

15 30%

Usability The tool does not display the bugs ordered by severity. 21 42%
Usability The tool does not display the bugs categorized (eg. secu-

rity or performance bugs).
9 18%

Adaptability It is hard or impossible to remove certain bug patterns
from the list of bugs the tool checks for.

9 18%

Adaptability It is hard or impossible to extend the list of bugs the tool
checks for with self created bug patterns.

10 20%

Procedural On projects there is too little time to invest in learning/
using SSCA’s.

21 42%

Procedural It is not company policy. 9 18%
Practical Other, performance issues. 3 6%

Other Other 4 8%

Usage If the twenty percent who have never heard of static code analyzers is a large
group, is hard to say. As mentioned before, because of the waythe survey was spread,
this number can not be seen as representative of the entire Java community. A part of
the questionnaire was taken at a meeting of the OWASP-NL[10], a Dutch application
security community, where one might expect more people to know about static analysis.
This expectation indeed shows in the results. Figure 3.5 shows only the results of the
question on awareness of static code analysis taken at the OWASP meeting. When we
exclude the results from the OWASP meeting from the total results we get the percent-
ages shown in figure 3.6.

So the percentage of programmers unaware of static code analyzers becomes nearly
a fourth, when we exclude results obtained from a meeting with security minded per-
sons. This indicates that the actual number of people unaware of static code analysis
is probably larger then the twenty percent concluded from the entire test group. More
research will be necessary to find out whether this is an accurate estimate. However if
around twenty percent of the Java community is indeed not aware that automated tools
exist to improve ones code, then some profit can still be gained by informing this group.

When we look at which tools the participants have used, there is no real difference
between the participants from the OWASP meeting and the restof the test group. Be-
cause it was an OWASP meeting sponsored by Fortify, this could have had an influence
on the results, but the scores here were largely the same as from the overall test group.



12

90%

Yes

10%

No

Fig. 3.5. Results enquiry on awareness of SCAs
at OWASP-NL.

76
%

Yes

24
%

No

Fig. 3.6. Results enquiry on awareness of SCAs,
with OWASP-NL results excluded.

If we only look at the answers from the participants who stated they still use static
code analyzers (as seen in table 3.4), FindBugs is still the most used tool, but the differ-
ence with PMD has shrunken. The relatively low rankings of the commercial tools here
is prominent, because you would expect them to score much better in this category.

The answers from the participants who stated that they no longer use static code an-
alyzers are summarized in table 3.5. These are the programmers who decided to try out
a static source code analyzer, but for some reason stopped using them. Again FindBugs
is firmly on top. Apparently about half of the participants who have ever used FindBugs,
for some reason stopped using it on other projects. This doesnot really say anything
on the quality of FindBugs seeing that over seventy percent of the participants checked
FindBugs as a tool they used, it is no wonder it also scores highly in subsets of these
answers. There does not seem to be a strong relation between the choice of tools and

Table 3.4. Top results from programmers who
still use SCAs

Tool Count
FindBugs 20

PMD 14
CheckStyle 8

Eclipse Phoenix/ Eclipse TPTP 7
Fortify SCA 7

Table 3.5. Top results from programmers who
stopped using SCAs

Tool Count
FindBugs 17

PMD 8
ParaSoft JTest 7

JLint 6
Fortify SCA 5

the decision to stop using them. Furthermore if we look at thereasons these participants
stated for using these tools, we find that nearly seventy percent of them started using
these tools either for educational purposes or out of personal interest, both of which are
reasons that can lead to short term use of static code analysis.

It is striking that nearly all users of CheckStyle, are frequent users of static code
analysis. Perhaps the ease of use and up-front clarity of this tool attributes to this. Fur-



13

thermore this is a tool that can be used to enforce a companiescoding guidelines, which
might also explain its popularity with frequent users of static code analysis.

When looking at the reasons for starting to use static code analysis it is clear the
main reason is personal interest. About a third starts usingthem because they are in
some way stimulated to do so by the company they work for. Assuming the lion’s share
of the participants work for a company they have to write Javacode for, thirty percent
is a low number.

Twelve percent stated they came to use static code analysis for educational purposes.
This also seems a very low number because static code analysis can be a valuable tool
in programming education [2].

Prejudice In this section we will concentrate on the participants who never used static
code analyzers. Looking more closely at the reasons participants had to never start using
static code analyzers, we see that around ten percent opted that these tools do not find
the kind of bugs they are looking for. Please recall that there are basically two ways of
using a static code analyzer; during the development process, for instance checking for
bug patterns whenever a piece of code is compiled, and after the development process
as an aid in testing, bug fixing or auditing. If a user complains he is not finding the bugs
he is looking for, then he will most likely be using a static code analyzer at the very
end of the development phase. After all, during developmentyou will probably be glad
with every bug these tools prevent you from creating.

It is of course true that static code analyzers are designed to find generic flaws, and
though some can be extended with additional bug patterns to look for, for specific ap-
plication logic this might not be very efficient. However if you would use these tools
during the implementation of the source code, then this would prevent some generic
flaws and (when extended) possibly enforce certain company coding standards, which
would almost certainly lead to more reliable and better maintainable code [5]. This in
turn could decrease the troubles at the end of the productionprocess. So this reason for
not using static code analysis is questionable when used by any developers.

As we found in the results, nearly seventy percent of the reasons for not starting to
use static code analyzers comes down to a cost-benefit estimation that does not favor
static code analyzers. Costs in these estimates can be monetary, but also time and effort.
When used during development (some tools even have the optionto add their check
to the ANT-build tasks) the performance hit for most tools isvery acceptable [3]. The
acquisition costs of these tools should not be a problem, considering the many free
alternatives. From own experience the training costs for developers to learn how to
use such tools does not seem very high. Most of these tools have plug-ins for Eclipse,
which should benefit their usability. Although anybody who has ever installed too many
eclipse plug-ins knows the performance issues this can bring along with them, it seems
premature to reject them on low usability without ever usingthem. It might be that most
people expect these tools to be too complicated in their use.So it could be a good idea
for creators of static code analyzers to advertise their products ease of use.



14

Experiences Now we will look further at the actual problems some participants have
experienced while using static code analyzers, starting with the practical ones. As can
be found in table 3.3, this category represents problems like unstable tools and impact
on performance. Only a small percentage state these experiences, mostly without a clear
link with the exact tools they have used.

When we look at the correctness category, the ability of static code analyzers to
actually find bugs, we see that around eighteen percent of allproblems fall into this
category (figure 3.4). The first problem in this category is the false positives. Most tools
are being designed to minimize this number of false positives, simply because of its
annoyance. Conversely this also causes them to have a higherfalse negative rate, which
is the second problem in this category. However nearly all participants either checked
both these problems, or none of them. So around fourteen percent of all participants
still find the current rates of false positives and false negatives troublesome.

The third problem in the correctness category, is interesting; the use of static code
analyzers takes up a lot of time with bugs that are not my main concern. So these par-
ticipants claim that static code analyzers do find bugs in their code, but they cannot be
bothered with these types of bugs. It is hard to state who is correct here. Sure the bug
indicated by a static code analyzer might not be the problem you are looking for, but
it may very well be the problem you are looking for next week. On the other hand if
a developer spends a lot of time fixing bugs found by the staticcode analyzer, which
happen to be less important then the bugs it doesn’t find, thismight ruin the time a
developer can spend on the important bugs. Again this problem seems less valid when
using a static code analyzer during the implementation phase. When using a tool in this
way, it should use up relatively little time, while preventing some bugs that do not need
fixing afterwards.

Almost fifteen percent of the participants found the adaptability of the static code
analyzer lacking. Either the addition of new bug patterns, or the deletion of an existing
bug pattern, was too difficult or could not be done. The ability to deactivate a certainbug
check, that time and again has falsely marked a code pattern as a bug seems imperative
for static code analyzers to enjoy user acceptance. But alsothe addition of new rules
(e.g. prohibiting the use of certain libraries) can make these tools much more valuable
for a company. Most current versions of static code analyzers have these features, and
it is unclear from the responses which specific tools lack them.

The usability issues center around the display of possible bugs. Even with this nar-
row definition, it is by far the biggest category of problems and in fact the lack of order-
ing by severity of the possible bugs is the shared number one problem the participants
experience with static code analyzers. When these tools are used on a large amount of
code for the first time, a lot of possible bugs will probably bedetected. Problems arise
as to which bugs to concentrate on, when there are thousands of possible bugs. Most
static code analyzers do have some ordering on severity of these bugs, but this ordering
is rather ad-hoc [7].



15

This is a very difficult problem to solve, since static code analyzers have no un-
derstanding of the programs it scans. It can for instance report that invalidated input is
queried directly to the database somewhere, but is this moresevere then a String com-
parison using ‘==’ somewhere else in the code? A static code analyzer does not know
whether the program will be used as an high end, Internet connected database contain-
ing very sensitive information, or as a simple personal recipe database on a stand alone
computer. In the first case the lack of input validation is probably worse, but the String
comparison might make essential functionality like logging in, impossible, or it might
not be a bug at all.

The problem only increases when a static code analyzer encounters the same bug
patterns in multiple class files. Which of those is most important to fix? First flagging
bug patterns in the class files where the most execution pathsgo through, might be an
option, but such an analysis is not scalable when the number of class files increase.

Better solutions to this problem seem to either give a staticcode analyzer more
understanding of the program it is checking, or by maintaining a history on which bugs
were solved in the past. In order to increase the understanding a static code analyzer
has on the code it checks, we have to give it more information about the code. In the
case of Java this can be done via annotations. This techniqueis used in ESC/Java2 [13]
and will be integrated into FindBugs [6]. The downside here is that it demands more
input from the user and thus becomes more work intensive. A history-based warning
priorization has already been proposed [7,8], and seems to improve the precision of
static code analysis. This approach means that the source code revisions are reviewed
by scanning through the code in a versioning system and measuring the average time
a certain bug category remains in the code. The faster a certain bug category is fixed
the less time it will remain in the code and the more importantthese types of bugs will
be for the developers. However this approach will need a change history of a software
project in order to be succesfull.

Analogously it is also hard to map certain bug patterns in a bug category (eg security
or performance). For some, like using ‘new Integer()’, instead of ‘Integer.valueOf()’,
this is a clear call - the ‘Integer.valueOf()’ statement is much more efficient, both com-
putational and memory wise - but for others like the String comparison this is impossi-
ble.

This is a problem that will probably not be addressed by static code analyzers in
the near future. Again, using static code analyzers frequently during development is the
best remedy, because this will keep the number of reported bugs maintainable.

Finally the procedural category, which besides coming in second in the overall prob-
lems list, also contains the shared number one problem with using static code analyzers;
lack of time on software projects. This is quite similar to the problems with lack of time
or funds to even begin with using static analysis tools from the previous section. It
should be researched whether the use of these tools outweighs the costs.



16

4 A case study

As we have seen in the previous section one of the reasons for not using a static code
analyzer can be that these tools find different bugs than the ones developers care about.
It is of course possible for a static code analyzer to identify erroneous code within
source code that does not lead to erroneous behavior of the program. This is not exactly
the same as a false positive, since the bug pattern was found correctly and the code is
indeed faulty, but perhaps only under circumstances that will never occur. This section
describes a practical experiment to see how effective these tools are at finding the ac-
tual bugs that developers care about. A static code analyzerwill be run against several
releases of a software project that has been developed without the use of static analysis.
This project has had several bug fixes. If we compare the reports the static code analyzer
creates then we can see how many of the reported bugs are resolved over time and thus
how effective the static code analyzer is at finding the bugs developers care about.

There has been more work in practical tests like this lately.In [14] Ayewah et al
look at FindBugs reports that are automatically generated from FindBugs runs over any
modified code in the Google code base. Using a hashing technique they follow every
bug through all the commits and can thus see how all the reported bugs are handled.
They conclude that FindBugs indeed finds a lot of what they call trivial bugs, which are
defective code patterns that do not cause faulty behavior bythe program. This research
however was done on a code base that was created while using static analyzers.

Sunghun and Ernst do not expect the production software theyexamine to have used
static code analysis during creation [7,8]. However, it might still be the case that this
production software did use static code analysis. They wantto find a historical prior-
ization for bug reports by looking through the revision history of two software projects
and measuring how long specific code defects remain in the code. They therefore as-
sume that more critical problems are fixed quickly. A similarassumption is made in this
research, where it is assumed that bugs which are important to developers are removed
from the code.

Wagner et al [15] evaluated FindBugs and PMD on two software projects, in a re-
search that resembles this research the most. Their aim is tofind how static analysis
tools can best be deployed in the quality assurance process for software. They find that
very few of the reported bugs by these tools actually correlate with documented bugs in
the deployed software.

This research will look at a single project where no static analysis was used during
implementation. By comparing the bug reports of several versions from this project we
can see how many code defects identified by the static analysis tool were fixed during
future releases and thereby judge the effectiveness of a static analysis tool at finding
“real world” bugs.

4.1 Setup

As a static analysis tool, FindBugs was used for this research. It is an open-source
static analysis tool for Java that is widely used as we could see in the previous section.



17

FindBugs examines the Java byte code for known bug patterns and performs data flow
analysis [16]. Version 1.3.4 of FindBugs, the most current release at the time, was used
in this test.

The tested project is a commercial product developed in the Java Enterprise Envi-
ronment (J2EE). For confidentiality reasons this project will be referred to as project
X. It is a typical web-based application with a database back-end, consisting of around
130.000 lines of code (LOC) divided over 500 classes in 15 packages. The project was
developed from 2005 until recent, over several releases without ever using a static anal-
ysis tool during development.

Six tagged versions of project X were retrieved from the repository. Each version
was about three months apart from the previous version. Because FindBugs works on
class files, these projects had to be build first. Then FindBugs reports were generated
on all of them. These XML reports were then compared with eachother.

To check whether the various software versions actually contained the same re-
ported bugs, I manually compared all high priority bugs and arandom sample of medium
priority bugs. This random sample was around two percent.

For every reported bug that remains in the project it is possible to argue that they
were not fixed simply because developers were not informed ofthem, not because they
were not interesting for developers. Therefor a developer on project X was asked to
classify each reported bug of the newest version of project Xinto one of the following
categories:

– False positive, the reported bug is not a bug at all.
– Nice to fix, the reported bug signifies a code defect that will not resultin faulty pro-

gram behavior. However given enough time these can still be interesting to fix, for
instance because they might prevent future bugs or because fixing them improves
the maintainability of the code.

– Important fix, the reported bug will lead to faulty program behavior and should be
fixed.

– Needs research, the reported bug needs more research in order to classify itin any
of these categories.

In this way we can measure whether if the reported bugs are indeed bugs that developers
care about.

Every single bug that FindBugs finds will be called a reportedbug. When it is veri-
fied that a reported bug is an actual code defect (so not a falsepositive) we will call it a
source code bug. The bugs that are actually encountered inside programs will be called
actual bugs. Whenever a reported bug dissapears in a newer release, we assume that this
reported bug was fixed and thus that this was an actual bug. It is assumed that during
the use of the program X, several actual bugs were encountered and fixed in subsequent
releases. The question therefore is whether the use of FindBugs would have prevented
some of these actual bugs by accurately reporting source code bugs.

Note that in this research we only look at all reported bugs, and see how many of
those are actual bugs. Thus every actual bug is a source code bug and a reported bug.
This research states nothing about actual bugs that are not reported bugs. Also there
can be more reasons than a bug fix for the dissappearance of a reported bug, such as
the removal of an entire piece of code. However, for all the high priority reported bugs



18

and the sample of medium reported bugs this was not the case and the removal of said
reoported bugs was an actual bugfix.

4.2 Results

Table 4.6 shows the results FindBugs found in the six versions of project X that were
checked out of the version control system. This was the first time static analysis was
applied to the code in this project.

Table 4.6. FindBugs reports from six different versions of project X

Version tag: v1.0.0 v1.1.0 v1.1.7 v1.2.0 v2.0.0 v2.0.7

Total Lines of Code: 124724128015128401128624130505130788
Number of Classes: 506 517 519 519 526 526

Total number of bugs 1030 1045 1040 1035 1067 1061
High priority bugs 53 56 53 50 60 57
Bad practice 11 11 9 8 10 9
Correctness 3 4 4 2 7 5
Malicious code vulnerability 14 14 14 14 15 16
Dodgy 25 27 26 26 28 27
Medium priority bugs 977 989 987 985 1007 1004
Bad practice 229 230 231 231 235 235
Correctness 16 19 17 17 19 18
Malicious code vulnerability 62 62 62 63 66 66
Performance 557 567 566 566 574 573
Dodgy 113 111 111 108 113 112

The bug categories that are seen in table 4.6 are defined by FindBugs. These should
be interpreted as follows:

– Bad practiceare issues that involve clear violations of recommended andstandard
coding practice. For example, failing to close file or database resources.

– Correctness; issues involving code that is probably incorrect in some way, for in-
stance dereferencing a sure null pointer. FindBugs strivesat a very low false posi-
tive rate here.

– Malicious code vulnerabilityis a possible security vulnerability for malicious code,
such as not making fields final when they could be.

– Performancecontains potential performance issues, such as unnecessary object cre-
ation.

– Dodgy; code that seems odd, such as switch fall throughs. FindBugsallows more
false positives here.

When we look at the number of reported bugs per thousand lines of code we see that
this number remains at around eigth for all releases. Release v1.0.0 has the most bugs
per thousand lines of code and version 1.2.0 the least.



19

Assuming that most truly important actual bugs were resolved after some versions
of this project, it seems that most reported bugs generated by FindBugs are indeed not
the kind of bugs developers are looking for. So although these results say little about
the percentage of source code bugs in the reported bugs, the percentage of actual bugs
in the reported bugs seems very low.

We do see a decline in the number of reported bugs between someversions. After
checking all the change logs and release files it seemed that versions 1.1.0 and 2.0.0
introduced a lot of new functionality into the system, whileversions 1.1.7, 1.2.0 and
2.0.7 mainly contained bug fixes when compared to the previous releases. This also
shows when we look at the increase of the total lines of code and the total number of
class files. In fact in this data there is a link between the increase in class files and the
increase in reported bugs; the more class files are added to the project the more bugs are
reported by FindBugs. If few or no new classes are added then the number of reported
bugs drops.

Of course the number of reported bugs that are not resolved isstriking. Over a thou-
sand reported bugs are found throughout the releases. Of course there is no guarantee
that these bugs are continuously the same. All the high priority but only two percent of
the medium priority bugs were tracked through the source code. It is possible that some
of the bugs in a category were resolved and new ones were inserted between versions.
however, it seems unlikely that this happened for a large percentage of the reported
bugs since the number of reported bugs per category between versions are often so
close together.

Some of the bugs reported by FindBugs were indeed actual bugs. Table 4.6 shows
the results of the FindBugs test per priority level and bug category. About three fourth
of the number of bugs that are removed from the system are located in the High priority
category.

If we assume that the decline in reported bugs is caused by thefixing of actual bugs,
then it also shows that these types of bugs are specifically removed from certain cate-
gories. In categories like bad practice and correctness we can sometimes see drops in the
number of reported bugs, while none of the reported bugs in categories like malicious
code vulnerability ever get fixed. Looking more closely at the high priority reported
bugs gives us the results shown in table 4.7.

Source code bugs involving dropped or ignored exceptions often lead to actual bugs
that developers have to fix. The same can be said for null pointer dereference errors.

The category of J2EE errors consists of four accounts of the storing of non serializ-
able Objects into a HttpSession. This means that if the current session has to be stored
to disk then these non serializable objects will be lost. These however caused no actual
bugs and thus were never resolved.

The mutable static field category complains on the fact that several fields in the code
are not made ‘final’ even though they should be. This is a security issue and does not
lead to wrong program behavior, but is does make a program vulnerable for attacks.
These issues were never dealt with and actually their numberonly increased over time.

The dead local store issues are also not fixed very often, but these source code bugs
can not really lead to actual bugs, they only obfuscate the code.



20

Table 4.7. Detailed high priority reported bugs.

Version tag: v1.0.0 v1.1.0 v1.1.7 v1.2.0 v2.00 v2.0.7

Bad practice 11 11 9 8 10 9
Checking String equality using== or != 1 1 1 0 1 1
Confusing method name 4 4 4 4 4 4
Dropped or ignored exception 2 2 0 0 1 0
J2EE error 4 4 4 4 4 4
Correctness 3 4 4 2 7 5
Masked field 0 0 0 0 1 1
Null Pointer dereference 1 3 2 0 5 2
Redundant comparison to null 2 1 2 2 1 2
Malicious code vulnerability 14 14 14 14 15 16
Mutable static field 14 14 14 14 15 16
Dodgy 25 27 26 26 28 27
Dead local store 24 26 25 25 27 26
Misuse of static fields 1 1 1 1 1 1

The case study until now assumed that if a source code bug causes a actual bug that
it will then at some point be removed. If the number of reported bugs drops between
releases, then this shows that the use of FindBugs on this project would have prevented
those actual bugs. However the rate of removed reported bugsis very low in the results
of tables 4.6 and 4.7. Of course it is still possible for thesereported bugs to accurately
identify source code and actual bugs that simply have not been found yet. In order to
test this a developer of project X was asked to review all reported bugs generated on
version 2.0.7 of project X. The results of this analysis can be found in table 4.8.

The indicator of ‘False positive’ of course shows a false detection. ‘Nice to fix’
shows a source code bug that should be resolved, for instancebecause it improves per-
formance or the readability of the code, but that does not cause actual bugs. Possible
actual bugs are indicated as ‘Important fix’ and the ‘Needs research’ category are the
ones that require further study to find out the true extent of the problems.

It took a developer around two hours to sift through the reported bugs. It shows
here that FindBugs does perform a lot better then the first test results might have led
to believe. A little over a fourth of the reported bugs are false positives. There are still
twelve potential actual bugs in the code, that were deemed important enough to be
resolved immediately, and nearly three quart of the reported bugs indeed report source
code bugs, but they are not of immediate threat to the program.

4.3 Discussion

These results are only from one software project made by one company. Naturally we
will need more scans on different projects to reliably conclude anything about the use-
fulness of FindBugs, let alone static code analyzers in general. That being said, the
results obtained here can still lead to some conclusions. Actually the results mostly
coincide with results from [8] where the authors also found that the null pointer deref-
erence bugs were the FindBugs reports that got resolved the fastest.



21

Table 4.8. Classification of bugreports on version 2.0.7 of project X by a developer.

Bug pattern False positiveNice to fix Important fixNeeds research

Percentage of total bugs 29% 68% 1% 2%
Total 309 719 12 21

High priority bugs 9 43 4 1
Bad practice 8 0 1 0
Correctness 0 2 3 0

Malicious code vulnerability 1 15 0 0
Dodgy 0 26 0 1

Medium priority bugs 300 676 8 20
Bad practice 228 4 2 1
Correctness 0 3 5 10

Malicious code vulnerability 55 11 0 0
Performance 2 569 0 2

Dodgy 15 89 1 7

It seems rather logical that null pointer related bugs and mishandled exception bugs
are resolved the fastest in this case study. These types of bugs tend to cause stack traces,
either on your screen or in your log files, which are signs thatare easily picked up during
tests and reported as actual bugs to the developer.

It is also interesting to notice that the ‘redundant comparison to null’ report always
increases when the reports of null pointer deference decreases. It seems likely that a
developer looking to fix a null pointer dereference became over cautious and added
unneeded null checks. Every case of an extra ‘redundant comparison to null’ in the
high priority bugs has been manually verified to correspond with this intuition.

The fact that none of the malicious code vulnerability bugs get resolved can be
explained because project X is a standard web-application.For web-applications the
mutable static fields will not lead to actual bugs.

The priorization of the reported bugs by FindBugs seemed to work quite well. At
least the number of false positives is significantly lower inthe high priority category.

A piece of code can contain a source code bug, recognized withthe code patterns of
a static code analyzer. Even though it is indeed a code defect, this does not have to cause
faulty behavior of the program; an actual bug. An excellent example of this is so called
“dead code”; code that is unreachable or unused, e.g. a variable is instantiated, but never
used. Static code analyzers are typically quite adept at finding these bugs, but develop-
ers will probably not deem them very important, since they donot cause faulty behavior
of the program. Should a static code analyzer complain aboutthese bugs then? That is
a difficult question. On the one hand these reports can be very annoying for a developer
who is not interested in finding these bugs. On the other thesetypes of bugs can have
an impact on the performance of the program (instantiating variables you do not need
are wasted resources), but more importantly they can confront a developer with a more
serious mistake if he assumed the variable would be used elsewhere. Another serious
benefit of preventing these bugs is the increased readability and thus maintainability of
the code. In the end it is up to the user who can tune the static code analyzer to suit his



22

needs.

Table 4.8 shows that the lion’s share of reported bugs would be fixed if the de-
velopers were given enough time. This seems another argument for using a static code
analyzer during development, since it often takes much lesstime to edit the code just af-
ter writing it and because these bugs were designated as ‘Nice to fix’ developers would
probably fix most of them right away. Also around 530 of these reported bugs were
from the likes of “it is more efficient to use Integer.valueOf(), then new Integer()” these
kind of advices will probably be adopted automaticaly by developers once they are con-
fronted with such reports a couple of times.

As an added note, it took the developer that estimated the reported bugs severity
around thirty minutes to tweak FindBugs in such a way that it ignored 212 of the 309
false positives. This means that with a little effort the performance of FindBugs can
greatly improve.

5 Conclusions

The objective of this thesis was to investigate the use of static code analyzers among
Java developers and whether bugs found by static code analyzers are considered by
developers to be important. A survey was performed among Java developers to inves-
tigate the use of static code analysis. Although the amount of participants was not a
large enough sample of the entire Java community, some interesting conclusions can
be drawn. Furthermore, a case study was performed to find out whether the static code
analyzer FindBugs found bugs that were considered important.

The survey among Java developers showed that twenty percentwas not aware of the
existence of static code analyzers. One cause seems of this is that programming courses
do not mention static code analysis. Static code analysis could be taught and used in
programming courses because it will point out a lot of often made bugs to beginning
developers.

In addition, the survey showed that static code analysis is only used extensively
by six percent of the participants that knew static code analyzers existed. This number
shows that static code analysis faces a serious popularity problem. Namely, the partic-
ipants that knew but never used static code analyzers indicated that the costs in time,
money, and effort do not weigh up to the improvement of source code. Moreover, the
participants who used but stopped using static code analyzers reported that the main
problem is the lack of funds or time to incorporate it into theproject. Developers of
static code analyzers should work on the ease of use and the promotion of the ease of
use of their tools.

The participants who were using static code analyzers complained that these tools
report an enormous amount of both important and irrelevant bugs in an unordered way.
Research is currently being done to prioritize reported bugs better, allowing the devel-
oper to focus on the important bugs. In the meantime, the bestremedy is to perform
static code analysis frequently from the start resulting ina manageable number of re-



23

ported bugs. However, for the success of static code analyzers it is essential that it finds
important bugs and presents them in an ordered way.

As confirmed by the survey, users experience that the qualityof reported bugs
should be improved. Our case study investigated the qualityof the reported bugs by
FindBugs in one commercial software project. Thirty percent of the bugs reported by
FindBugs were considered to be false reports. However, FindBugs found 12 bugs that
were considered as critical and should be resolved right away. Also, 68 percent of the
bugs were classified as worthy to fix, meaning that the bug is not critical, but could be-
come critical or would lead to better maintainable code. From these numbers, follows
the conclusion that in this case study, FindBugs shows to be an effective tool to improve
source code and to enforce certain coding standards.

6 Future work

There are several general recommendations I have for research on static code analysis.
Namely, find more important bugs, and focus on the ease of using static code analyzers
in software projects. However, to fulfil these recommendations, the opinions of devel-
opers on these subjects should be investigated. Namely, which bugs would developers
like to be found? What bugs do developers consider insignificant? And, what aspect do
developers think would increase user friendliness? In summary, a recommendation to
investigate the needs of the developer.

Also follow a Java project over time, that does not use staticcode analysis, and
measure the number of bug fixes that would have been avoided ifstatic code analysis
had indeed been used. Then you would have the actual percentage of bug fixes that
could have been avoided using a static code analyzer. Together with a transcript of the
hours that were spend fixing these bugs, a measurable economic argument for using
static code analysis might follow.



24

References

1. Plsch, R., Gruber, H., Pomberger, G., Saft, M., Schiffer, S.: Tool support for expert-centred
code assessments. In: Proceedings of the IEEE International Conference on Software Test-
ing, Verification, and Validation (ICST 2008). Volume 9-11., Lillehammer, Norwegen, IEEE
Computer Society Press (April 2008)

2. Truong, N., Roe, P., Bancroft, P.: Static analysis of students’ javaprograms. In: ACE
’04: Proceedings of the sixth conference on Australasian computing education, Darlinghurst,
Australia, Australia, Australian Computer Society, Inc. (2004) 317–325

3. Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding tools for java. In: ISSRE
’04: Proceedings of the 15th International Symposium on Software Reliability Engineering,
Washington, DC, USA, IEEE Computer Society (2004) 245–256

4. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web application
code by static analysis and runtime protection. In: WWW ’04: Proceedingsof the 13th
international conference on World Wide Web, New York, NY, USA, ACM (2004) 40–52

5. Foster, J.S., Hicks, M.W., Pugh, W.: Improving software quality with static analysis. In:
PASTE ’07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshopon Program anal-
ysis for software tools and engineering, New York, NY, USA, ACM (2007) 83–84

6. FindBugs:http://findbugs.sourceforge.net/
7. Kim, S., Ernst, M.D.: Which warnings should i fix first? In: ESEC-FSE ’07: Proceedings

of the the 6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, NewYork, NY, USA,
ACM (2007) 45–54

8. Kim, S., Ernst, M.D.: Prioritizing warning categories by analyzing software history. msr0
(2007) 27

9. Louridas, P.: Static code analysis. In: IEEE Software. Volume 23. (Jul/Aug 2006) 58–61
10. OWASP-NL:http://www.owasp.org/index.php/Netherlands
11. Fortify: http://www.fortify.com/
12. NLJUG, J-Spring 2008:http://www.nljug.org/pages/events/content/jspring_
2008/

13. ESC/Java2:http://kind.ucd.ie/products/opensource/ESCJava2/
14. Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Using findbugs on production

software. In: OOPSLA ’07: Companion to the 22nd ACM SIGPLAN conference on Object
oriented programming systems and applications companion, New York, NY, USA, ACM
(2007) 805–806

15. Wagner, S., Deissenboeck, F., Wimmer, M.A.J., Schwalb, M.:An evaluation of bug pattern
tools for java. unpublished (January 2007)

16. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not.39(12) (2004) 92–106



25

A Questionnaire

Spring 2008 Static Source Code Analyzers for Java Radboud University of Nijmegen

Background This survey is a part of a bachelor thesis. The goal of this survey is to get a better view on the
use and problems of static source code analyzers (SSCA’s) for Java. Static source code analysis tools, also
called “static analysis tool”, “source code scanners”, or “source code analyzers”, are tools that can identify
software failures (bugs) in source code, without actually compiling or executing the code. If you would like
to receive the outcome of this survey please fill out your email address here:
Please note your e-mail address is not mandatory. You will receive only one e-mail with the results of this survey, after which

the record of your e-mail address will be deleted. Your e-mail address will not be given to another party.

1. Are you aware that static source code analyzers (SSCA’s) exist for Java?

Yes.

No, thank you very much for taking this survey.

2. Have you ever used a SSCA to examine some Java source code?

No, never.

Yes, I have tried out a tool for a bit, but I don’t regularly use one. please continue at question 4

Yes, I use one or more SSCA’s on occasion to improve source code. please continue at question 4

Yes, I use SSCA’s on as many coding projects as I can. please continue at question 4

3. What was your reason for never trying out a SSCA? (multiple answers possible)

I do not believe they will really find any bugs.

The bugs these tools find are not the ones I am looking for.

It’s too much of a hassle to install these tools and learn to use them.

There is never enough time in a software project to begin using these tools.

Thank you very much for taking this survey.

4. Which SSCA’s have you used? (multiple answers possible)

Fortify

ParaSoft JTest

Coverity Prevent

FindBugs

PMD

Eclipse Phoenix / Eclipse TPTP

Checkstyle

JLint



26

Static Source Code Analyzers for Java - Page 2 of 2 -

5. Why did you start using a SSCA? (multiple answers possible)

I was required to use these tools by the company I worked for.

The use of such tools was encouraged by the company I worked for.

Out of personal interest.

6. What were / are the main problems you encountered while using SSCA’s? (multiple answers possible)

Installation problems (eg frequent Eclipse crashes with SSCA plug-in).

To steep learning curve in using these tools.

The tool falsely marks too much code as a bug.

After using a SSCA, there are still too many bugs left.

The use of a SSCA uses up a lot of time with bugs that are not my main concern.

The tool reports so many bugs that I do not know were to start.

The tool does not display the bugs ordered by severity.

The tool does not display the bugs categorized (eg. security or performance bugs).

It is hard or impossible to remove certain bug patterns from the list of bugs the tool checks for.

It is hard or impossible to extend the list of bugs the tool checks for with self created bug patterns.

On projects there is too little time to invest in learning / using SSCA’s.

It is not company policy.

7. Do you have anything to add on the use of SSCA’s?

Thank you very much for filling out this questionnaire.


