STATIC CODE ANALYSIS IN JAVA
Bachelor Thesis

Fabian van den Broek

Supervisor: dr.ir. Erik Poll

Radboud University, Nijmegen

Abstract. Software contains bugs and bugs cost money. A good way to find
some bugs quickly is the use of static code analysis. There are no exabers

on the use of static code analyzers in the industry, but in our experieriees to
software developers actually make use of them. This thesis describesy that
was conducted to find out why only so few developers in the Java coiymuse
static code analysis. Furthermore, a case study is performed to invedtiga
advantage of using a static code analyzer for Java, namely FindBugsreal
world application.

1 Introduction

Software inevitably contains bugs and bugs can cause seffirgezing and malfunc-
tioning and decreased security. The consequences of bags fam waste of capital
to patients’ deaths. Many techniques to deal with bugs haem ldeveloped, such as
testing, debugging and expert code reviews. A lot of bugstteeesult of common
coding mistakes. For example, the eponymousdnwoverflow problem in C is a com-
mon mistake and in Java many mistakes are made with Objegqiarison using==".

It is commonly known that the earlier bugs are found, the iesgsts to fix them.
Static code analyzers are tools designed to find many typesnomon made mistakes.
Using static code analysis throughout development resuftading certain bugs at an
early stage. Other uses of static code analysis are guigpgriecode reviews [1] and in
programming education [2]. Static code analyzers havaazkior a couple of decades
and have steadily improved. Nowadays, they excel at sotiimmon problems and
tracing variables throughout source code. The use of statle analysis generally re-
duces the number of bugs [3], improves the security of anegpn [4], and improves
overall code quality [5].

However, little information is known about how often statade analyzers are used
during software development. In my experience, softwaveldgers judge static code
analysis useful, yet they do not use them. An explanatiorttiz may be found in
a commonly heard complaint of developers about static codéysis. Namely, static
code analysis produce many false positives. However, ianesnunclear whether this
conception is true.

This thesis investigates the use of static code analyzessgdava developers and
the number of usefull warnings produced by the static coddyaar FindBugs. More
specifically, the following research questions were adar@sconcerning the use of

static code analyzers: what percentage of the developensdse of the existence of
static code analysis, why do developers choose not to use abale analysis, how of-

ten are static code analyzers used during software develatpind how do developers
experience static code analysis.

In section 2, a short introduction to static code analysigvsn. Section 3 describes
the survey that was conducted in the Java community to disdbe attitudes of Java
developers towards static code analysis. Next, sectiorsdritbes a case study of the
number of false positives produced by the SCA tool FindB&gzally, conclusions are
provided in section 5 and some recommendations for futuré imcsection 6.

1.1 Related work

There has already been some research into static code ianatgdy. In [3], Rutar et
al. compared five static code analyzers by running them axaral Java projects and
comparing the output and the run times. They conclude tleetls quite a bit of dif-
ference between the bugs these tools find and suggest thé aiseeta tool combining
multiple static code analyzers.

FindBugs is an open-source static code analyzer creatduelyriversity of Mary-
land. On their website they are now performing a survey af iwen, to find out how
FindBugs is used [6].

In [7,8] Kim and Ernst have tried to improve the priorizatitivat static code ana-
lyzers use to present their reported bugs. They measurdidrtheertain bug categories
remain within a software project in order to find out whicheygf bugs are more im-
portant for developers.

2 Static codeanalysis

Static code analysis is the analysis of computer softwatieoat actually running the
software. Usually this is done automated by another progféuis article is about using
this analysis technique to automatically search for bugsmaprove source code. There
are numerous tools around, both commercially and free,wihicthis.

In the late seventies the Lint tool became popular. It wasaticstode analyzer
for the C programming language which looks though the sococde for certain code
patterns of often made mistakes. This tool was named aféeutidlesirable bits that
gather in sheep wool because of static electricity. Frora barstatic code analysis has
seen many tools for many languages, each wiffedint success.

Static code analysis can be used for more then finding bugsnidst widely used
application of static code analysis is most likely type dtiieg, which is found in nearly
every compiler of every strongly typed language. Type checis also performed with-
out actually running the program. This article however willy refer to the automated
scanning of bugs within code when mentioning static codéyaisa

Most static code analyzers nowadays read the code and goretrabstract model
from this. In this abstract model they can then look for kndwig patterns. There are
also several static code analyzers that complement thes&skvith some form of data
flow analysis [9]. Using data flow analysis these tools cankti@ossible values for

variables at dferent points in the program and follow possibly ‘tainteddum through
a program.

Static code analysis is neither sound nor complete. That &y no static code
analyzer is able to find only bugs (and no false positives)isdrable to find all bugs
present in a program. This is in fact an example of the moremgdmesult known as
Rice’s theorem, which informally states that no programhbkedo verify for which
programs a certain property holds. The problem of statityaisain fact is undecidable,
but like all undecidable problems it is still possible to fumseful approximations.

Because these tools are not exact, they will have falseipesita bug report that
does not signify an actual bug) and false negatives (ungetéeigs). The rates of false
positives and negatives is a good measure to compare stalécanalyzers [3]. Other
important criteria can be the overall usability and theigbib modify the behavior of
these tools (extending or reducing the bug detectors) ontimeber of bug detectors
that these toolsféer.

2.1 When to use static analysis?

There are basically two moments or situations were a staticce code analyzer can
be useful. The first is during testing or when auditing sowaxe, the second is during
development and before testing. In the first situationstatde analysis is often used to
get some idea of the quality of the source code or as a guidedode reviewer. In the
second situation programmers employ static code analftsiscmmpilation and before
testing. Both approaches will demandtdrent things from a static code analyzer. For
usage during an audit users will typically not mind a largasé positive rate if this
means that more bugs are found (lower false negative rate$t programmers who
use these tools will mostly be glad getting rid of a few bugd aat receiving a large
amount of false positives.

Most static analysis tools can be tailored to be use in badlatsons, however there
are good reasons to promote the use of static code analyazeng dlevelopment and
before testing. The most important reason is that when & statle analyzer is used
in this way it will typically keep the time between the creatiof the bug and finding
them smaller. This is useful because the fixing of bugs costenihe later they are
discovered.

Another reason is that using a static code analyzer duri@gniplementation of a
program will likely lead to less bug reports per run then amyng these tools during
testing. Keeping the number of bug reports manageable wikenthe number of false
positives also less painful.

2.2 Static code analysisin Java

This paper will only look at static code analysis for the Jawsguage. The ¢lierence
between scanners forftérent languages is not in the methods of scanning, but in the
types of bugs they look for. Bter overflows is a typical example of a kind of bug any C
static analyzer will look for, but analyzers for the Javaglaage will not be interested in.
This however does not mean that all conclusions on statie eodlysis are generally
applicable for all tools. The bugs from a specific language loa easier to find then

those of another. Similarly the results of this paper cansmoply be applied to all
static code analyzers. The survey of section 3 is aimed alat& community, and it is
unclear to what measure the results wilfei when the same questions are directed to
programmers who useftirent languages. Also in section 4 a Java static code amalyze
is used on a Java project and these results

There are two sorts of static code analyzers for Java; thugestan the source
code and those that scan the byte code. Both approacheshie@ivbeanefits. Scanning
the source code means you scan the actual code written bydgemmer. Compilers
tend to optimize code and a bug found in the resulting byteqoijht not be easily
translatable to the defect in the source code. Also you dbawe to compile the source
code before you can start checking it with static code aiglfgut scanning the byte
code is often a lot faster then scanning through the sourde.d®n large projects it
may be vital to keep the performance hits on static code aisdigw.

3 Attitudetowards static analysistools

In this section we try to determine the attitude of Java pougners towards static
analysis of Java code.

The remainder of this section will look closer at the surveyy it was set up, its results
and some discussion on those results. A copy of the actuatyswan be found in
appendix A.

3.1 Setup

To answer various aspects on the use of static code anabaarsal smaller questions
were asked. A precondition for using static code analyzeesviareness of their exis-
tence. Consequently, the first question on the survey is tbwimat percentage of the
participants is aware of the existence of static code aredyd he next question inves-
tigates why people who are aware of the tools decide not tdhesa. This provides
insights into the appearance of static code analyzers ajddices around them. To
discover the popularity of particular static code analgzéine next question is which
static code analyzers are used. Finally, the last questi@sifigates what problems are
encountered when using static code analyzers. This gugstiwides insights into what
aspects of static code analyzers need to be improved in tr@¢tain a higher popular-
ity.

The first question was whether or not people were aware ofxiséeace of static
code analysis for Java. If they were not, it ended the surgeyhiem. The group that
continued was divided into two subgroups; participants & using or have used
static code analyzers and participants who have never tatc code analyzers. Both
subgroups were presentedfdrent questions. The participants who used static code an-
alyzers were asked three questions: (1) which tools they bieed, (2) why they started
using the tools, and (3) what problems they encountered wbay these tools. The
participants who never used static code analyzers weral aghat their reasons were

for not using the tools.

To get a good population, various sources were used to firittipants. There are
several Java communities both on the Internet and in reallifo of these communities
were used to find subjects for the questionnaire. OWASP-NI i a Dutch applica-
tion security community. They held a meeting sponsored biififii 1], with a talk on
secure programming with static analysis. This made thisualieace with a relatively
high knowledge on static code analysis, and around twerdgplpénere participated in
the survey.

The spring conference of the NL-JUG, the Dutch Java userpgwes the second
place the survey was held. This J-SPRING[12] is a yearly emmice where eleven
thousand Java specialists were present. Around thirtylpdiied in a questionnaire
here. I used my personal Linked-IN network to find contacs tised Java, also through
the NL-JUG group. This resulted in the rest of the partictpditling in the question-
naire online.

3.2 Reaults

This survey was conducted from the 25th of March until théh3fitMay 2008, both
online and via paper forms. In the end there where 101 reggoinsthe survey. Of
course this is not a representative group for the Java cotitynbacause of the manner
in which the survey was spread, but perhaps some conclusémstill be drawn from
the results. These results can be found in table 3.1.

We will first look at the spread of static code analyzers tigtotine Java community.
How many actually use these tools and how often do they usetend which tools
do they use? Then we will look at the reasons users, who neest such tools, may
have for not using these tools and finally we will look at thelpgems users encountered
while using static code analyzers.

Usage One of the main reasons for not using static code analyzexg,b@ unfamil-
iarity with such tools. Therefor the first question the syrirquired about was the
awareness of the existence of static code analyzers by thieipant. Of the 101 partic-
ipants, around 80 percent stated that they were at leaseav/dine existence of static
code analyzers for Java.

The rest of the survey was only taken by the eighty people wlie\aware static
source code analyzers exist for Java. Asked about their fusktic code analyzers,
revealed that nearly forty percent had never used such (tmsgh they were aware
of their existence). Thirty percent had used a static coddéyaer at some point, but
did not continue using them on software projects. Anothetytipercent do still use
such tools, from which only six percent state to use them nafs possible. This is
of course a shockingly small number of people, which immediigustifies to question
the dfectiveness of static source code analysis. We will come éa¢lasons for not
using any static analysis shortly, but over thirty percdrhis group has had reasons to

6

Table 3.1. Results of the survey. The actual result can be obtained in a .csv file fro
www.science.ru.riinfstud fabianbybas¢results.csv

ARE YOU AWARE THAT STATIC SOURCE CODE ANALYZERS (SSCA’) EXIST FOR JAVA?

Yes|80
No|21

HAVE YOU EVER USED A SSCATO EXAMINE SOME JAVA SOURCE CODE?

No, Never28

WHAT WAS YOUR REASON FOR NEVER TRYING oUT A SSCA?
| do not believe they will really find any bugs.

Other, There is not enough budget to begin using these B9

Other4

Whaica SSCAS HAVE YOU USED?

Fortify SCA|12
ParaSoft JTegt2
Coverity PrevenB
FindBugs37
PMD|22
Eclipse Phoenix Eclipse TPTKF9
ChecksStyl
Jlint|9
Other, ESCIAVA2|1
Other, JSR308 checkels
Other, GOT1
Other, FxCo

WHY DID YOU START USING A SSCA?
| was required to use these tools by the company | worke(bfg

Yes, | have tried out a tool for a bit, but | don’t regularly use ¢2e.
Yes, | use one or more SSCA's on occasion to improve source tgde
Yes, | use SSCA's on as many coding projects as ||8an.

The bugs these tools find are not the ones | am looking fo
It's too much of a hassle to install these tools and learn to use thgm.
There is never enough time in a software project to begin using theseg 18ols.

Other, Never considered using such a t&ol.

=

Is.

or.

The use of such tools was encouraged by the company | worketi
Out of personal interes82

Other, educatiof7

Other2

WHAT WERE / ARE THE MAIN PROBLEMS YOU ENCOUNTERED WHILE USING SSCAs?
Installation problems (eg frequent Eclipse crashes with SSCA plugkir

After using a SSCA, there are still too many bugs |6éft

Too steep learning curve in using these tq8lg.
The tool falsely marks too much code as a bug.

The use of a SSCA uses up a lot of time with bugs that are not my mainmcoide

n).

The tool reports so many bugs that | do not know where to 51&

The tool does not display the bugs ordered by seve?it]

The tool does not display the bugs categorized (eg. security or peafae bugs)9

It is hard or impossible to remove certain bug patterns from the list of thegwol checks fof9
Itis hard or impossible to extend the list of bugs the tool checks for withcsetfted bug patterng0
On projects there is too little time to invest in learnjhgsing SSCA521

It is not company policy9

Other, performance issu¢3.

Othen4

rt.

stop using these tools (figure 3.1).

— No, Never.

=
§ o Yes, | have tried out a tool for a bit, Qut
| don't regularly use one.
o Yes, | use one or more SSCA'sS on pc-
20 o 6% casion to improve source code.
i mm Yes, | use SSCAs on as many codjng
< projects as | can.

Fig. 3.1. Results of the question on the usage of static code analysis.

Those participants who have used static code analyzersaskeg which ones they
have used. The results can be seen in table 3.2. Please aidtesticolumn with percent-
ages indicates the percentage of answers that containetifispool. Scince this was
a question where more then one answer was possible, thefdtas column exceeds
a hundred percent.

Table 3.2. Results of the question “Which SSCA's have you used?” (multiple ansmemrs pos-
sible)

Tool CountPerc. of users
FindBugs 37 71%
PMD 22 42%
Fortify SCA 12 23%
ParaSoft JTest 12 23%
Eclipse Phoenix Eclipse TPTP 9 17%
JLint 9 17%
CheckStyle 9 17%
Coverity Prevent 3 8%
ESQGJava2 1 2%
JSR308 checkers 1 2%
GOT 1 2%

The first result here is that in this question most participahecked multiple tools.
Nearly every participant who has used a static code anazeme time, has tried sev-
eral ones. The popularity of FindBugs is another strikirgutehere, nearly three quart
of the participants who once used a static code analyzerkisd®8ugs. The best scor-

ing commercial tools are ParaSoft JTest and Fortify SCA. H8@2, JSR308 checkers
and GOT where not pre-defined choices in the survey, but filezh blank spots, so
they might have done better if they where pre-printed ansviéowever ES{Java2 and
JSR308 checkers are both tools that require extra user, inpuequiring the program-
mer to annotate their code, and which were not a direct pattisfresearch. Further-
more JSR308 tools have only existed for a couple of months now

If we look further into the reasons the participants statedsfarting to use static
code analyzers we find that personal interest is the dedmater for nearly sixty per-
cent of the test group. Some twenty percent started to use ctae analyzers on stim-
ulation by the company they worked for and just under tengrdrases them because
it is company policy to use them. There was also a group ofratdwelve percent who
started using these tools for some form of education (figlte 3

| was required to use these tools by|the
company | worked for.

] The use of such tools was encouraged
by the company | worked for.

g Out of personal interest.

g For educational purposes.

\mg Other

21%

9%

ofo

oo

Fig.3.2. Why did you start using static source code analysers?

Prejudice One third of the Java community stating they knew of the exrist of static
code analyzers has never used one. Itis of course integdstiee why this group never
wanted to use these tools. They might have good reasondsobth perhaps they also
have some misconceptions about static code analysis tu# te them never trying one
of these tools.

This group was asked what their reasons were for never tyuica static code
analyzer. The answers can be divided into three categories:

— Correctnessthe assumptions that these tools will not find much (relevangs;
the first two reasons from figure 3.3.

— Usability, the assumption that learning to use these tools is to prdile; the third
reason from figure 3.3.

— Procedural lack of time or money for using these tools; the fourth arti fifason
from figure 3.3.

! do not believe they will really fingd
any bugs.
] The bugs these tools find are not the
ones | am looking for.
It's too much of a hassle to install these
tools and learn to use them.
gm There is never enough time in a soft-
ware project to begin using these tools.
gm There are never enough funds in a soft-
ware project to begin using these toopls.
\mm Other

Fig. 3.3. Why did you never use a static code anlyzer.

The “other” option in this question spans all these categoaind some answers there
fall outside this categorization all together. It shouldrzed that lack of funds was
not a pre-printed option with this question, but it was filledby five percent of the
participants non the less.

Only one person declared to think that these tools wouldnd finy bugs. So in
general it would seem that people do believe these tools tk.\Whe main reasons for
never trying out a static code analyzer are not really ctme=s related. Nearly forty
percent of the reasons state that there simply is not enaonghar money in an orga-
nization to familiarize oneself with static code analygitso thirty percent thinks that
it is too much trouble to learn how to use these tools. So dveagh these people do
believe that static code analyzers would find bugs for thethéir code (they did not
check the correctness related reasons) they never use@weesixty percent of the
reasons for not using a static code analyzer come down tolzmiyenot being con-
vinced that the cost in time, money and trouble actually Weigp to the improvement
on their source code.

Experiences Now to look at the experiences by people who have actuallg tlsese
tools. The problems that users experience can roughly ligedivnto five categories

— Practical, for instance problems during installation, or performahtits.

— Correctnessthe actual #ectiveness of static code analysis at finding bugs.

— Usability, the usability of static code analyzers.

— Adaptability; problems with adding new or removing existing bug-patienrstatic
code analyzers

— Procedura) all problems not directly related to these tools, but tarthevironment,
such as project boundaries.

These five categories are chosen rather arbitrarily, eslhetihe categories practi-
cal and adaptability are actually sub-domains of the usgluategory. However this

10

division leaves room for a more detailed view on the resatisye can better determine
the big issues users encounter when using static code anslyz

] Practical

[Usability

[Adaptability

m Correctness
Procedural

X
o
2

Fig. 3.4. The problems users encountered while using static code analyzersdibyccategory.

The results can be seen in table 3.3, where the last colunwsshe percentage of
users who encountered these problems. Since participantscheck multiple answers
here, the total again exceeds a hundred percent. In figutb&rélative percentages of
the categories are shown.

The practical issues are problems such as unstable progrgmesformance issues,
only five percent of the checked problems fall into this catggThe correctness cate-
gory represents the actudtectiveness of static code analysis at finding bugs. Almost
twenty percent of the complaints fall into this category,stho concentrating on the
tools falsely marking too much code as a bug and the toolsnigndugs that are not
the users concern. The adaptability of these tools is a enolibr about 15 percent of
the experiences. These problems are evenly divided amtgsificulty to add new
and deactivate existing check rules. Forty percent of thpaeses fall in the usability
category. Since the adaptability can easily be seen as dityseisue, usability scores
as the most encountered problems with the use of these Tdwsusability issues here,
center specifically around the display of possible bug dietes. Procedural problems
are stated by over twenty percent of the participants. Anbasge is the shared number
one problem which 21 percent of the participants encoudf¢he lack of time to invest
in using or learning to use static code analyzers.

3.3 Discussion

As was stated earlier it is hard to draw conclusions from dhis, because of the way
the survey was spread through the Java community. Still hevthe result have been
presented, we might be able to arrive at some conclusions.

11

Table 3.3. The main problems users encountered while using static code analyzers.

| Category [Problem [CouniPercentage
Practical |Installation problems (eg frequent Eclipse crashes |with 8%
SSCA plug-in).
Usability |Too steep learning curve in using these tools. 9 18%
CorrectnessThe tool falsely marks too much code as a bug. 7 14%

CorrectnesgAfter using a SSCA, there are still too many bugs left| 6 12%
CorrectnessgThe use of a SSCA uses up a lot of time with bugs that at& 22%
not my main concern.
Usability |The tool reports so many bugs that | do not know whefe 1& 30%
start.
Usability |The tool does not display the bugs ordered by severity. 21 42%
Usability |The tool does not display the bugs categorized (eg. sedu- 18%
rity or performance bugs).
Adaptability It is hard or impossible to remove certain bug patterr® 18%
from the list of bugs the tool checks for.
Adaptability It is hard or impossible to extend the list of bugs the tod0 20%
checks for with self created bug patterns.
ProceduralOn projects there is too little time to invest in learnifjg 21 42%

using SSCA’s.
Procedural It is not company policy. 9 18%
Practical |Other, performance issues. 3 6%
Other |Other 4 8%

Usage If the twenty percent who have never heard of static codeyaagd is a large

group, is hard to say. As mentioned before, because of thaheasurvey was spread,
this number can not be seen as representative of the entalecdenmunity. A part of

the questionnaire was taken at a meeting of the OWASP-NLHA Outch application

security community, where one might expect more people taMabout static analysis.
This expectation indeed shows in the results. Figure 3.@shumly the results of the
question on awareness of static code analysis taken at theSB\Wheeting. When we
exclude the results from the OWASP meeting from the totalltesve get the percent-
ages shown in figure 3.6.

So the percentage of programmers unaware of static codgzenmbecomes nearly
a fourth, when we exclude results obtained from a meeting séturity minded per-
sons. This indicates that the actual number of people urawfastatic code analysis
is probably larger then the twenty percent concluded froendtitire test group. More
research will be necessary to find out whether this is an atewstimate. However if
around twenty percent of the Java community is indeed noteattat automated tools
exist to improve ones code, then some profit can still be gdiyenforming this group.

When we look at which tools the participants have used, tisene ireal diference
between the participants from the OWASP meeting and theofake test group. Be-
cause it was an OWASP meeting sponsored by Fortify, thisddoave had an influence
on the results, but the scores here were largely the sameragtie overall test group.

12

L
&
¥
Qg)6‘0
90% ©
I 094 -
4
No %

Fig. 3.5. Results enquiry on awareness of SCAs
at OWASP-NL. Fig. 3.6. Results enquiry on awareness of SCASs,

with OWASP-NL results excluded.

If we only look at the answers from the participants who stdtey still use static
code analyzers (as seen in table 3.4), FindBugs is still &t osed tool, but the fiier-
ence with PMD has shrunken. The relatively low rankings efdcbmmercial tools here
is prominent, because you would expect them to score mutériethis category.

The answers from the participants who stated that they rgelouse static code an-
alyzers are summarized in table 3.5. These are the progreswhe decided to try out
a static source code analyzer, but for some reason stoppeptoem. Again FindBugs
is firmly on top. Apparently about half of the participantsaave ever used FindBugs,
for some reason stopped using it on other projects. This doegeally say anything
on the quality of FindBugs seeing that over seventy perckthteoparticipants checked
FindBugs as a tool they used, it is no wonder it also scordshhig subsets of these
answers. There does not seem to be a strong relation betive@haice of tools and

Table 3.4. Top results from programmers who Table 3.5. Top results from programmers who

still use SCAs stopped using SCAs
Tool Count Tool Count
FindBugs 20 FindBugs | 17
PMD 14 PMD 8
CheckStyle 8 ParaSoft JTest 7
Eclipse Phoenix Eclipse TPTP 7 JLint 6
Fortify SCA 7 Fortify SCA| 5

the decision to stop using them. Furthermore if we look at¢lasons these participants
stated for using these tools, we find that nearly seventyepéraf them started using
these tools either for educational purposes or out of patsoterest, both of which are
reasons that can lead to short term use of static code analysi

It is striking that nearly all users of CheckStyle, are frequusers of static code
analysis. Perhaps the ease of use and up-front clarity ®fdbi attributes to this. Fur-

13

thermore this is a tool that can be used to enforce a compamnitisg guidelines, which
might also explain its popularity with frequent users otistaode analysis.

When looking at the reasons for starting to use static codlysisat is clear the
main reason is personal interest. About a third starts usiam because they are in
some way stimulated to do so by the company they work for. dasg the lion’s share
of the participants work for a company they have to write e for, thirty percent
is a low number.

Twelve percent stated they came to use static code anatygiddicational purposes.
This also seems a very low number because static code aefysbe a valuable tool
in programming education [2].

Prejudice In this section we will concentrate on the participants whear used static
code analyzers. Looking more closely at the reasons paatits had to never start using
static code analyzers, we see that around ten percent dygtethese tools do not find
the kind of bugs they are looking for. Please recall thatelae basically two ways of
using a static code analyzer; during the development psoé@sinstance checking for
bug patterns whenever a piece of code is compiled, and Atesledvelopment process
as an aid in testing, bug fixing or auditing. If a user comdia is not finding the bugs
he is looking for, then he will most likely be using a statiddecanalyzer at the very
end of the development phase. After all, during developmientwill probably be glad
with every bug these tools prevent you from creating.

It is of course true that static code analyzers are designéidd generic flaws, and
though some can be extended with additional bug patterreotofbr, for specific ap-
plication logic this might not be veryfigcient. However if you would use these tools
during the implementation of the source code, then this di@uévent some generic
flaws and (when extended) possibly enforce certain compading standards, which
would almost certainly lead to more reliable and better ta@able code [5]. This in
turn could decrease the troubles at the end of the produgtasess. So this reason for
not using static code analysis is questionable when usedyglevelopers.

As we found in the results, nearly seventy percent of theoreafor not starting to
use static code analyzers comes down to a cost-benefit éstintaat does not favor
static code analyzers. Costs in these estimates can beangrett also time andfort.
When used during development (some tools even have the dptiadd their check
to the ANT-build tasks) the performance hit for most toolsesy acceptable [3]. The
acquisition costs of these tools should not be a problemsidering the many free
alternatives. From own experience the training costs foeld@ers to learn how to
use such tools does not seem very high. Most of these tootsgiag-ins for Eclipse,
which should benefit their usability. Although anybody wlestever installed too many
eclipse plug-ins knows the performance issues this cag ationg with them, it seems
premature to reject them on low usability without ever ughem. It might be that most
people expect these tools to be too complicated in their$sé. could be a good idea
for creators of static code analyzers to advertise thelyxcts ease of use.

14

Experiences Now we will look further at the actual problems some parteifs have
experienced while using static code analyzers, startinly thie practical ones. As can
be found in table 3.3, this category represents problenssuiistable tools and impact
on performance. Only a small percentage state these erpesiemostly without a clear
link with the exact tools they have used.

When we look at the correctness category, the ability ofstaide analyzers to
actually find bugs, we see that around eighteen percent giralilems fall into this
category (figure 3.4). The first problem in this category esftise positives. Most tools
are being designed to minimize this number of false postiggmply because of its
annoyance. Conversely this also causes them to have a lfédgeenegative rate, which
is the second problem in this category. However nearly atigpants either checked
both these problems, or none of them. So around fourteereipeot all participants
still find the current rates of false positives and false tiegatroublesome.

The third problem in the correctness category, is intangsthe use of static code
analyzers takes up a lot of time with bugs that are not my maircern. So these par-
ticipants claim that static code analyzers do find bugs iir tteale, but they cannot be
bothered with these types of bugs. It is hard to state whorn®cbhere. Sure the bug
indicated by a static code analyzer might not be the problemayre looking for, but
it may very well be the problem you are looking for next week e other hand if
a developer spends a lot of time fixing bugs found by the statite analyzer, which
happen to be less important then the bugs it doesn'’t find,ntligt ruin the time a
developer can spend on the important bugs. Again this pmobkems less valid when
using a static code analyzer during the implementationgh&fen using a tool in this
way, it should use up relatively little time, while prevergisome bugs that do not need
fixing afterwards.

Almost fifteen percent of the participants found the adajitalof the static code
analyzer lacking. Either the addition of new bug patternshe deletion of an existing
bug pattern, was toofiicult or could not be done. The ability to deactivate a ceitvaip
check, that time and again has falsely marked a code patexibag seems imperative
for static code analyzers to enjoy user acceptance. Buttlasaddition of new rules
(e.g. prohibiting the use of certain libraries) can make¢ht®ols much more valuable
for a company. Most current versions of static code anasyhave these features, and
it is unclear from the responses which specific tools lackithe

The usability issues center around the display of possis bEven with this nar-
row definition, it is by far the biggest category of problemsl é&n fact the lack of order-
ing by severity of the possible bugs is the shared number ortdgm the participants
experience with static code analyzers. When these toolssaa an a large amount of
code for the first time, a lot of possible bugs will probablydetected. Problems arise
as to which bugs to concentrate on, when there are thousémissible bugs. Most
static code analyzers do have some ordering on severityeséthugs, but this ordering
is rather ad-hoc [7].

15

This is a very dificult problem to solve, since static code analyzers have Ro un
derstanding of the programs it scans. It can for instancerteéipat invalidated input is
queried directly to the database somewhere, but is this severe then a String com-
parison using==' somewhere else in the code? A static code analyzer doeswout k
whether the program will be used as an high end, Internetesiad database contain-
ing very sensitive information, or as a simple personalp@database on a stand alone
computer. In the first case the lack of input validation ishatoly worse, but the String
comparison might make essential functionality like loggin, impossible, or it might
not be a bug at all.

The problem only increases when a static code analyzer atersuthe same bug
patterns in multiple class files. Which of those is most imguatrto fix? First flagging
bug patterns in the class files where the most execution gatlisrough, might be an
option, but such an analysis is not scalable when the nunflodsiss files increase.

Better solutions to this problem seem to either give a staie analyzer more
understanding of the program it is checking, or by maintajra history on which bugs
were solved in the past. In order to increase the understgraistatic code analyzer
has on the code it checks, we have to give it more informatimutthe code. In the
case of Java this can be done via annotations. This techiiqised in ES@ava?2 [13]
and will be integrated into FindBugs [6]. The downside her¢hat it demands more
input from the user and thus becomes more work intensive.sfotyi-based warning
priorization has already been proposed [7,8], and seenm®pooive the precision of
static code analysis. This approach means that the soudeereuisions are reviewed
by scanning through the code in a versioning system and mingdhe average time
a certain bug category remains in the code. The faster aircdatig category is fixed
the less time it will remain in the code and the more importhase types of bugs will
be for the developers. However this approach will need aghéaistory of a software
project in order to be succesfull.

Analogously it is also hard to map certain bug patterns ingedatiegory (eg security
or performance). For some, like using ‘new Integer()’, éa&t of ‘Integer.valueOf()’,
this is a clear call - the ‘Integer.valueOf()’ statement isain more ficient, both com-
putational and memory wise - but for others like the Strinmparison this is impossi-
ble.

This is a problem that will probably not be addressed by ctatde analyzers in
the near future. Again, using static code analyzers freyudoring development is the
best remedy, because this will keep the number of reportgd maintainable.

Finally the procedural category, which besides coming @ed in the overall prob-
lems list, also contains the shared number one problem sitigistatic code analyzers;
lack of time on software projects. This is quite similar te froblems with lack of time
or funds to even begin with using static analysis tools frowva previous section. It
should be researched whether the use of these tools ouswhiglzosts.

16

4 A case study

As we have seen in the previous section one of the reasonsfarsing a static code
analyzer can be that these tools finffelient bugs than the ones developers care about.
It is of course possible for a static code analyzer to idgregiffoneous code within
source code that does not lead to erroneous behavior oftigegon. This is not exactly
the same as a false positive, since the bug pattern was farnetty and the code is
indeed faulty, but perhaps only under circumstances thahewer occur. This section
describes a practical experiment to see héisaive these tools are at finding the ac-
tual bugs that developers care about. A static code analyifldre run against several
releases of a software project that has been developedwiti®use of static analysis.
This project has had several bug fixes. If we compare the tefiw static code analyzer
creates then we can see how many of the reported bugs areegswokr time and thus
how efective the static code analyzer is at finding the bugs deeetopare about.

There has been more work in practical tests like this latalj14] Ayewah et al
look at FindBugs reports that are automatically generatad FindBugs runs over any
modified code in the Google code base. Using a hashing tashnigy follow every
bug through all the commits and can thus see how all the reghdmigs are handled.
They conclude that FindBugs indeed finds a lot of what thetigaial bugs, which are
defective code patterns that do not cause faulty behavitindprogram. This research
however was done on a code base that was created while uaiimestalyzers.

Sunghun and Ernst do not expect the production softwaregkeayine to have used
static code analysis during creation [7,8]. However, it migtill be the case that this
production software did use static code analysis. They wafihd a historical prior-
ization for bug reports by looking through the revision bigtof two software projects
and measuring how long specific code defects remain in the.ciky therefore as-
sume that more critical problems are fixed quickly. A simdasumption is made in this
research, where it is assumed that bugs which are impocatgvelopers are removed
from the code.

Wagner et al [15] evaluated FindBugs and PMD on two softwaogepts, in a re-
search that resembles this research the most. Their aimfilsdtdnow static analysis
tools can best be deployed in the quality assurance prooesseftware. They find that
very few of the reported bugs by these tools actually coteeldth documented bugs in
the deployed software.

This research will look at a single project where no statiglsis was used during
implementation. By comparing the bug reports of severaives from this project we
can see how many code defects identified by the static apdtysi were fixed during
future releases and thereby judge tlikeeiveness of a static analysis tool at finding
“real world” bugs.

41 Setup

As a static analysis tool, FindBugs was used for this rebedtds an open-source
static analysis tool for Java that is widely used as we coeddiis the previous section.

17

FindBugs examines the Java byte code for known bug pattedhperforms data flow
analysis [16]. Version 1.3.4 of FindBugs, the most currefgase at the time, was used
in this test.

The tested project is a commercial product developed indkia Enterprise Envi-
ronment (J2EE). For confidentiality reasons this projedt lvd referred to as project
X. ltis a typical web-based application with a database f&wk consisting of around
130.000 lines of code (LOC) divided over 500 classes in 1kages. The project was
developed from 2005 until recent, over several releasdwwitever using a static anal-
ysis tool during development.

Six tagged versions of project X were retrieved from the si#fpoy. Each version
was about three months apart from the previous version.BecBindBugs works on
class files, these projects had to be build first. Then FindBagorts were generated
on all of them. These XML reports were then compared with exléhr.

To check whether the various software versions actuallyaioed the same re-
ported bugs, | manually compared all high priority bugs areha@lom sample of medium
priority bugs. This random sample was around two percent.

For every reported bug that remains in the project it is fidegd argue that they
were not fixed simply because developers were not informeidenfi, not because they
were not interesting for developers. Therefor a developepmject X was asked to
classify each reported bug of the newest version of projeictXone of the following
categories:

— False positivethe reported bug is not a bug at all.

— Nice to fix the reported bug signifies a code defect that will not readtulty pro-
gram behavior. However given enough time these can stithtezasting to fix, for
instance because they might prevent future bugs or becadrsg finem improves
the maintainability of the code.

— Important fix the reported bug will lead to faulty program behavior anoustt be
fixed.

— Needs researclthe reported bug needs more research in order to clasgifyaity
of these categories.

In this way we can measure whether if the reported bugs aesthdugs that developers
care about.

Every single bug that FindBugs finds will be called a repolied. When it is veri-
fied that a reported bug is an actual code defect (so not agalsgve) we will call it a
source code bug. The bugs that are actually encounterettipspgrams will be called
actual bugs. Whenever a reported bug dissapears in a ne@aseelve assume that this
reported bug was fixed and thus that this was an actual bugaksumed that during
the use of the program X, several actual bugs were encodraeckfixed in subsequent
releases. The question therefore is whether the use of Egsl®ould have prevented
some of these actual bugs by accurately reporting source lmags.

Note that in this research we only look at all reported bugs, see how many of
those are actual bugs. Thus every actual bug is a source cgdanid a reported bug.
This research states nothing about actual bugs that areepotted bugs. Also there
can be more reasons than a bug fix for the dissappearance pbrea bug, such as
the removal of an entire piece of code. However, for all thgghhpriority reported bugs

18

and the sample of medium reported bugs this was not the cdsth@memoval of said
reoported bugs was an actual bugfix.

4.2 Results

Table 4.6 shows the results FindBugs found in the six vessadrproject X that were
checked out of the version control system. This was the first static analysis was
applied to the code in this project.

Table 4.6. FindBugs reports from six ffierent versions of project X

[Version tag: [vi00[v110[v1.17[v120[v2.0.0][v207]
Total Lines of Code: 124724128015128401128624130505130788
Number of Classes: 506 | 517 | 519 | 519 | 526 | 526
Total number of bugs 1030 | 1045 | 1040 | 1035 | 1067 | 1061
High priority bugs 53 56 53 50 60 57
Bad practice 11 11 9 8 10 9
Correctness 3 4 4 2 7 5
Malicious code vulnerability 14 14 14 14 15 16
Dodgy 25 27 26 26 28 27
Medium priority bugs 977 | 989 | 987 | 985 | 1007 | 1004
Bad practice 229 | 230 | 231 | 231 | 235 | 235
Correctness 16 19 17 17 19 18
Malicious code vulnerability 62 62 62 63 66 66
Performance 557 | 567 | 566 | 566 | 574 | 573
Dodgy 113 | 111 | 111 | 108 | 113 | 112

The bug categories that are seen in table 4.6 are defined 8B&@s. These should
be interpreted as follows:

— Bad practiceare issues that involve clear violations of recommendedsgartiard
coding practice. For example, failing to close file or dassbeesources.

— Correctnessissues involving code that is probably incorrect in somg,er in-
stance dereferencing a sure null pointer. FindBugs steavesvery low false posi-
tive rate here.

— Malicious code vulnerabilitys a possible security vulnerability for malicious code,
such as not making fields final when they could be.

— Performancecontains potential performance issues, such as unnegetgact cre-
ation.

— Dodgy, code that seems odd, such as switch fall throughs. FindBllgss more
false positives here.

When we look at the number of reported bugs per thousand linesde we see that
this number remains at around eigth for all releases. Releh$.0 has the most bugs
per thousand lines of code and version 1.2.0 the least.

19

Assuming that most truly important actual bugs were resbbfter some versions
of this project, it seems that most reported bugs generatédnolBugs are indeed not
the kind of bugs developers are looking for. So althoughehesults say little about
the percentage of source code bugs in the reported bugsetbenpage of actual bugs
in the reported bugs seems very low.

We do see a decline in the number of reported bugs between snsiens. After
checking all the change logs and release files it seemed ¢hsibns 1.1.0 and 2.0.0
introduced a lot of new functionality into the system, whitersions 1.1.7, 1.2.0 and
2.0.7 mainly contained bug fixes when compared to the previeleases. This also
shows when we look at the increase of the total lines of codetlaa total number of
class files. In fact in this data there is a link between theeiase in class files and the
increase in reported bugs; the more class files are added podfect the more bugs are
reported by FindBugs. If few or no new classes are added tteenumber of reported
bugs drops.

Of course the number of reported bugs that are not resohadksg. Over a thou-
sand reported bugs are found throughout the releases. @fecthere is no guarantee
that these bugs are continuously the same. All the highipribut only two percent of
the medium priority bugs were tracked through the source cldds possible that some
of the bugs in a category were resolved and new ones werdaddegtween versions.
however, it seems unlikely that this happened for a largegrgage of the reported
bugs since the number of reported bugs per category betwersions are often so
close together.

Some of the bugs reported by FindBugs were indeed actual bhagte 4.6 shows
the results of the FindBugs test per priority level and buggary. About three fourth
of the number of bugs that are removed from the system ar&eld@athe High priority
category.

If we assume that the decline in reported bugs is caused Hixihg of actual bugs,
then it also shows that these types of bugs are specificatipred from certain cate-
gories. In categories like bad practice and correctnesswsametimes see drops in the
number of reported bugs, while none of the reported bugstegoaies like malicious
code vulnerability ever get fixed. Looking more closely a thigh priority reported
bugs gives us the results shown in table 4.7.

Source code bugs involving dropped or ignored exceptictendéad to actual bugs
that developers have to fix. The same can be said for null @oilereference errors.

The category of J2EE errors consists of four accounts ofttreng of non serializ-
able Objects into a HttpSession. This means that if the nts®ssion has to be stored
to disk then these non serializable objects will be lost.sEi@owever caused no actual
bugs and thus were never resolved.

The mutable static field category complains on the fact thagsl fields in the code
are not made ‘final’ even though they should be. This is a #gdssue and does not
lead to wrong program behavior, but is does make a programevaihle for attacks.
These issues were never dealt with and actually their nuordgrincreased over time.

The dead local store issues are also not fixed very oftenhbagtsource code bugs
can not really lead to actual bugs, they only obfuscate tde.co

20

Table 4.7. Detailed high priority reported bugs.

[Version tag: [[v1.0.0]v1.1.0[v1.1.7]v1.2.0[v2.00[v2.0.7|
Bad practice 11 | 11 9 8 10 9
Checking String equality using= or != 1 1 1 0 1 1
Confusing method name 4 4 4 4 4 4
Dropped or ignored exception 2 2 0 0 1 0
J2EE error 4 4 4 4 4 4
Correctness 3 4 4 2 7 5
Masked field 0 0 0 0 1 1
Null Pointer dereference 1 3 2 0 5 2
Redundant comparison to null 2 1 2 2 1 2

I
I
IR
N
IR
I
[EN
I
[EEN
(63}
[EEN
(o]

Malicious code vulnerability

Mutable static field 14 14 14 14 15 16
Dodgy 25 27 26 26 28 27
Dead local store 24 26 25 25 | 27 | 26

[N
[N
[N
[ERN
=
[N

Misuse of static fields

The case study until now assumed that if a source code bugsatectual bug that
it will then at some point be removed. If the number of repdideigs drops between
releases, then this shows that the use of FindBugs on thjsgpreould have prevented
those actual bugs. However the rate of removed reportedibwgsy low in the results
of tables 4.6 and 4.7. Of course it is still possible for theg@orted bugs to accurately
identify source code and actual bugs that simply have nat kménd yet. In order to
test this a developer of project X was asked to review all meplbbugs generated on
version 2.0.7 of project X. The results of this analysis carfidund in table 4.8.

The indicator of ‘False positive’ of course shows a falseedédn. ‘Nice to fix’
shows a source code bug that should be resolved, for insketarise it improves per-
formance or the readability of the code, but that does noseagctual bugs. Possible
actual bugs are indicated as ‘Important fix’ and the ‘Needsaech’ category are the
ones that require further study to find out the true extentefaroblems.

It took a developer around two hours to sift through the reggbbugs. It shows
here that FindBugs does perform a lot better then the firstrésslts might have led
to believe. A little over a fourth of the reported bugs arsdgbositives. There are still
twelve potential actual bugs in the code, that were deemgubritant enough to be
resolved immediately, and nearly three quart of the regdsteys indeed report source
code bugs, but they are not of immediate threat to the program

4.3 Discussion

These results are only from one software project made by omgpany. Naturally we
will need more scans onfierent projects to reliably conclude anything about the use-
fulness of FindBugs, let alone static code analyzers in gén€hat being said, the
results obtained here can still lead to some conclusiontuallg the results mostly
coincide with results from [8] where the authors also foumat the null pointer deref-
erence bugs were the FindBugs reports that got resolveshest.

Table 4.8. Classification of bugreports on version 2.0.7 of project X by a deezlop

| Bug pattern

[[False positivéNice to fix[important fi{Needs resear¢h

21

Percentage of total bugs 29% 68% 1% 2%
Total 309 719 12 21
High priority bugs 9 43 4 1
Bad practice 8 0 1 0
Correctness 0 2 3 0
Malicious code vulnerability 1 15 0 0
Dodgy 0 26 0 1
Medium priority bugs 300 676 8 20
Bad practice 228 4 2 1
Correctness 0 3 5 10
Malicious code vulnerability 55 11 0 0
Performance 2 569 0 2
Dodgy 15 89 1 7

It seems rather logical that null pointer related bugs arghamdled exception bugs
are resolved the fastest in this case study. These typegsténd to cause stack traces,
either on your screen or in your log files, which are signsanatasily picked up during
tests and reported as actual bugs to the developer.

It is also interesting to notice that the ‘redundant congaarito null’ report always
increases when the reports of null pointer deference deesedt seems likely that a
developer looking to fix a null pointer dereference becamer @autious and added
unneeded null checks. Every case of an extra ‘redundant aasop to null’ in the
high priority bugs has been manually verified to correspoit this intuition.

The fact that none of the malicious code vulnerability bugs r@solved can be
explained because project X is a standard web-applicaionweb-applications the
mutable static fields will not lead to actual bugs.

The priorization of the reported bugs by FindBugs seemedaxk \quite well. At
least the number of false positives is significantly lowethi@ high priority category.

A piece of code can contain a source code bug, recognizedhettode patterns of
a static code analyzer. Even though itis indeed a code défictioes not have to cause
faulty behavior of the program; an actual bug. An excellewatneple of this is so called
“dead code”; code that is unreachable or unused, e.g. alaiginstantiated, but never
used. Static code analyzers are typically quite adept abfirttiese bugs, but develop-
ers will probably not deem them very important, since theyodiocause faulty behavior
of the program. Should a static code analyzer complain abese bugs then? That is
a difficult question. On the one hand these reports can be very exgfoy a developer
who is not interested in finding these bugs. On the other thgsss of bugs can have
an impact on the performance of the program (instantiatargables you do not need
are wasted resources), but more importantly they can cotdrdeveloper with a more
serious mistake if he assumed the variable would be usedlese. Another serious
benefit of preventing these bugs is the increased readadnilit thus maintainability of
the code. In the end it is up to the user who can tune the stadie analyzer to suit his

22

needs.

Table 4.8 shows that the lion’s share of reported bugs wosldiXxed if the de-
velopers were given enough time. This seems another arduorarsing a static code
analyzer during development, since it often takes muchtilegsto edit the code just af-
ter writing it and because these bugs were designated as tdliitx’ developers would
probably fix most of them right away. Also around 530 of themeorted bugs were
from the likes of “it is more #icient to use Integer.valueOf(), then new Integer()” these
kind of advices will probably be adopted automaticaly byalepers once they are con-
fronted with such reports a couple of times.

As an added note, it took the developer that estimated thertexpbugs severity
around thirty minutes to tweak FindBugs in such a way thairibred 212 of the 309
false positives. This means that with a littl&at the performance of FindBugs can
greatly improve.

5 Conclusions

The objective of this thesis was to investigate the use ditstade analyzers among
Java developers and whether bugs found by static code anslgre considered by
developers to be important. A survey was performed among davelopers to inves-
tigate the use of static code analysis. Although the amofiptdicipants was not a
large enough sample of the entire Java community, someesiteg conclusions can
be drawn. Furthermore, a case study was performed to find loether the static code
analyzer FindBugs found bugs that were considered importan

The survey among Java developers showed that twenty pavasmtot aware of the
existence of static code analyzers. One cause seems of thé programming courses
do not mention static code analysis. Static code analysikldme taught and used in
programming courses because it will point out a lot of ofteedmbugs to beginning
developers.

In addition, the survey showed that static code analysisiig osed extensively
by six percent of the participants that knew static codeyaea existed. This number
shows that static code analysis faces a serious populadbtgm. Namely, the partic-
ipants that knew but never used static code analyzers itedichat the costs in time,
money, and fort do not weigh up to the improvement of source code. Moredtie
participants who used but stopped using static code amnalyeported that the main
problem is the lack of funds or time to incorporate it into fiveject. Developers of
static code analyzers should work on the ease of use anddh®fion of the ease of
use of their tools.

The participants who were using static code analyzers caingd that these tools
report an enormous amount of both important and irrelevags fin an unordered way.
Research is currently being done to prioritize reportecsthegter, allowing the devel-
oper to focus on the important bugs. In the meantime, thereestdy is to perform
static code analysis frequently from the start resulting imanageable number of re-

23

ported bugs. However, for the success of static code analitae essential that it finds
important bugs and presents them in an ordered way.

As confirmed by the survey, users experience that the qualityeported bugs
should be improved. Our case study investigated the qualithe reported bugs by
FindBugs in one commercial software project. Thirty petagrthe bugs reported by
FindBugs were considered to be false reports. HoweverBtigd found 12 bugs that
were considered as critical and should be resolved righy.aflao, 68 percent of the
bugs were classified as worthy to fix, meaning that the bugtisnitical, but could be-
come critical or would lead to better maintainable codenttbese numbers, follows
the conclusion that in this case study, FindBugs shows tmlefective tool to improve
source code and to enforce certain coding standards.

6 Futurework

There are several general recommendations | have for s¥searstatic code analysis.
Namely, find more important bugs, and focus on the ease ofjssattic code analyzers
in software projects. However, to fulfil these recommeratat]j the opinions of devel-
opers on these subjects should be investigated. Namelghwviigs would developers
like to be found? What bugs do developers consider insignificAnd, what aspect do
developers think would increase user friendliness? In samna recommendation to
investigate the needs of the developer.

Also follow a Java project over time, that does not use sttite analysis, and
measure the number of bug fixes that would have been avoiddtif code analysis
had indeed been used. Then you would have the actual pegeeotabug fixes that
could have been avoided using a static code analyzer. Tegeith a transcript of the
hours that were spend fixing these bugs, a measurable ecoaogument for using
static code analysis might follow.

24

References

1. PIsch, R., Gruber, H., Pomberger, G., Saft, M., SehiS.: Tool support for expert-centred
code assessments. In: Proceedings of the IEEE Internationalr€noéeon Software Test-
ing, Verification, and Validation (ICST 2008). Volume 9-11., Lillehampiworwegen, IEEE
Computer Society Press (April 2008)

2. Truong, N., Roe, P., Bancroft, P.: Static analysis of students’ paggrams. In: ACE
'04: Proceedings of the sixth conference on Australasian computingaéidn, Darlinghurst,
Australia, Australia, Australian Computer Society, Inc. (2004) 317-325

3. Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bugrfgitbols for java. In: ISSRE
'04: Proceedings of the 15th International Symposium on Software RiglysEngineering,
Washington, DC, USA, IEEE Computer Society (2004) 245-256

4. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuoy.S Securing web application
code by static analysis and runtime protection. In: WWW '04: Proceedifigee 13th
international conference on World Wide Web, New York, NY, USA, ACAQ4) 40-52

5. Foster, J.S., Hicks, M.W., Pugh, W.: Improving software qualiith\static analysis. In:

PASTE '07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT worksbogProgram anal-

ysis for software tools and engineering, New York, NY, USA, ACM (2083—-84

. FindBugs:http://findbugs.sourceforge.net/

7. Kim, S., Ernst, M.D.: Which warnings should i fix first? In: ESECHE-87: Proceedings
of the the 6th joint meeting of the European software engineering cortierznd the ACM
SIGSOFT symposium on The foundations of software engineering, Yoeky NY, USA,
ACM (2007) 45-54

8. Kim, S., Ernst, M.D.: Prioritizing warning categories by analyzingwafe history. msp
(2007) 27

9. Louridas, P.: Static code analysis. In: IEEE Software. VolumeR2§Aug 2006) 58-61

10. OWASP-NL:http://www.owasp.org/index.php/Netherlands

11. Fortify: http://www.fortify.com/

12. NLJUG, J-Spring 2008http://www.nljug.org/pages/events/content/jspring_
2008/

13. ESQ@Java2:http://kind.ucd.ie/products/opensource/ESCJlava2/

14. Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., ZhauJ¥ing findbugs on production
software. In: OOPSLA '07: Companion to the 22nd ACM SIGPLAN coafiee on Object
oriented programming systems and applications companion, New YofkUSA, ACM
(2007) 805-806

15. Wagner, S., Deissenboeck, F., Wimmer, M.A.J., Schwalb Avi.evaluation of bug pattern
tools for java. unpublished (January 2007)

16. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN BRi(t12) (2004) 92—-106

»

25

A Questionnaire

Spring 2008 Static Source Code Analyzers for Java Radboud University of Nijmegen

Background This survey is a part of a bachelor thesis. The goal of this survey is to get a better view on the
use and problems of static source code analyzers (SSCA’s) for Java. Static source code analysis tools, also
called “static analysis tool”, “source code scanners”, or “so code analyz are tools that can identify
software failures (bugs) in source code, without actually compiling or executing the code. If you would like
to receive the outcome of this survey please fill out your email address here:

e only one e-mail with the results of this survey, after which

Please note your e-mail address is not mandatory. You will re

the record of your e-mail address will be deleted. Your e-mail address will not be given to another party.

1. Are you aware that static source code analyzers (SSCA’s) exist for Java?
D Yes.
D No, thank you very much for taking this survey.
2. Have you ever used a SSCA to examine some Java source code?
D No, never.
D Yes, I have tried out a tool for a bit, but I don’t regularly use one. please continue at question 4
D Yes, I use one or more SSCA’s on occasion to improve source code. please continue at question 4

D Yes, I use SSCA’s on as many coding projects as I can. please continue at question 4

w

. What was your reason for never trying out a SSCA? (multiple answers possible)
D I do not believe they will really find any bugs.
D The bugs these tools find are not the ones I am looking for.
D It’s too much of a hassle to install these tools and learn to use them.

D There is never enough time in a software project to begin using these tools.

O

Thank you very much for taking this survey.

[

‘Which SSCA’s have you used? (multiple answers possible)
D Fortify

D ParaSoft JTest

D Coverity Prevent

D FindBugs

[TpMD

[] Eclipse Phoenix / Eclipse TPTP
D Checkstyle

[]JLint

[

[

[

26

Static Source Code Analyzers for Java - Page 2 of 2 -

5. Why did you start using a SSCA? (multiple answers possible)
D I was required to use these tools by the company I worked for.
D The use of such tools was encouraged by the company I worked for.
D Out of personal interest.

|

. What were / are the main problems you encountered while using SSCA’s? (multiple answers possible)

(=]

D Installation problems (eg frequent Eclipse crashes with SSCA plug-in).

D To steep learning curve in using these tools.

D The tool falsely marks too much code as a bug.

D After using a SSCA, there are still too many bugs left.

D The use of a SSCA uses up a lot of time with bugs that are not my main concern.

D The tool reports so many bugs that I do not know were to start.

D The tool does not display the bugs ordered by severity.

D The tool does not display the bugs categorized (eg. security or performance bugs).

D It is hard or impossible to remove certain bug patterns from the list of bugs the tool checks for.
D It is hard or impossible to extend the list of bugs the tool checks for with self created bug patterns.
D On projects there is too little time to invest in learning / using SSCA’s.

D It is not company policy.
[
[

7. Do you have anything to add on the use of SSCA’s?

Thank you very much for filling out this questionnaire.

