
Bachelor thesis

Firefox extension security

Julian Verdurmen
Computer Science

January 28, 2008
copyright Julian Verdurmen – 2007-2008

Abstract

The purpose of this research is to understand the security risks of the Firefox
extension mechanism. It will be shown that the security of the extension
system can be (easily) compromised. A proof of concept is used to illustrate
several of the security weaknesses.

Acknowledgment

I would like to thank Bart Jacobs for supervising this thesis and organizing sev-
eral discussions and meetings. Allan van Hulst for helping with English grammar
and spelling of this research paper. The Postbank N.V. and the Rabobank Group
for the valuable and interesting meetings.

I

Contents

1 Introduction 1
1.1 Scope . 2
1.2 Motivation . 2

1.2.1 Comparison between extensions and applications . . . 3
1.3 Deliverables(s) . 4
1.4 Participating parties . 4

2 The extension system 5
2.1 Building . 5
2.2 Installing . 5
2.3 Script injection . 5
2.4 Extension security model . 6

2.4.1 Sandbox Review System 6
2.4.2 Javascript sandbox . 6
2.4.3 Signing . 7
2.4.4 Summary . 7

3 Proofs of concept 8
3.1 Perspective . 8
3.2 Simple: password stealer . 8

3.2.1 Analysis . 8
3.2.2 Design . 9
3.2.3 Source Code . 10
3.2.4 Weakness and main-issues 10

3.3 Challenge: Transform online-banking transactions 12
3.3.1 The Postbank online banking-system 12
3.3.2 Pages . 14
3.3.3 Source code . 21
3.3.4 Difficulties . 21
3.3.5 Weakness and main-issues 22
3.3.6 Recommendations in this case 23
3.3.7 Video . 23

II

Firefox extension security CONTENTS

4 Analysis 24
4.1 Indication of complexity . 24
4.2 Also possible . 24
4.3 Worst case scenario . 24
4.4 Involving security vulnerabilities 25

4.4.1 Installing without any notice 25
4.4.2 Installing under limited/guest account 26
4.4.3 Public computers . 26

4.5 Weakness and main-issues . 26
4.6 Related work/quotes . 26

5 Recommendations and Conclusions 28
5.1 Solution . 28

5.1.1 Behavior/responsible 28
5.1.2 Disable functionality 28
5.1.3 Disable extensions . 29

5.2 Recommendations . 30
5.2.1 Mozilla . 30
5.2.2 (End-)Users . 30
5.2.3 Web creators . 30

5.3 Conclusion . 30

III

List of Figures

2.1 The Firefox extension mechanism 6
2.2 Firefox extensions: Sandbox Review System 6

3.1 Postbank man-in-the-browser set-up 13
3.2 Postbank: Feedback channels with mobile phone option . . . 14
3.3 Postbank: Feedback channels with TAN-list option 14
3.4 Postbank website flow . 15
3.5 Postbank: Login screen . 16
3.6 Postbank: Main page . 17
3.7 Postbank: Create new transaction 18
3.8 Postbank: Confirm transaction(s) 19
3.9 Postbank: Tan page . 20
3.10 Postbank: Transaction(s) results 21

4.1 Example of extension updates offered to the user 25

5.1 Standard safe mode shortcut 29
5.2 Firefox popup when starting safe-mode 30

IV

Glossary

Query string
Information in the URL of the webpage.
See http://en.wikipedia.org/wiki/Query_string

DOM
Document Object Model Method to access contents of the webpage.
See http://en.wikipedia.org/wiki/Document_Object_Model

Webform
Also called (HTML)form. Form on a webpage. Possibility to send
data to a server, for example logging in. Most forms contain some
input fields and a (submit) button.
See http://en.wikipedia.org/wiki/Form_(web)

Extension
A small plugin that can be used in Mozilla products like Firefox. The
extensions are product-independent.
Note: The term plugin in the Mozilla world has a different meaning
compared with extensions. Plugins are a huger and complexer product.
For example: The flash player plugin, Java plugin and so on.

(Mozilla) Add-on
This could be a plugin, extension or theme that can be used in Mozilla
products like Firefox.

Webpage
Could be a website, or a web application.

Website
Site on the web. Blogs and news sites for example.

Web application
An application on the web. Mailsite, online banking etcetera.

V

http://en.wikipedia.org/wiki/Query_string
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Form_(web)

Firefox extension security LIST OF FIGURES

E-government
(electronic government). Goverment webpages. In holland think about
DigiD1. Electronic voting is another example. See http://en.wikipedia.
org/wiki/E-Government

1http://www.DigiD.nl

VI

http://en.wikipedia.org/wiki/E-Government
http://en.wikipedia.org/wiki/E-Government
http://www.DigiD.nl

Chapter 1

Introduction

Preface

Many computer users are convinced that the browser Firefox is more se-
cure than the often criticized browser Internet Explorer. Firefox has some
features, like themes and extensions, that makes the browser more ’exten-
sible’. But what are the side effects of this extensibility? Does Firefox’
extensibility come at the expense of security? And will this lead to security
vulnerabilities?

Goal

Besides determining the security risks of extensions, the goals of this research
are:

• (Re)open the discussion, of the security risks and problems of online
services, like online banking and E-government.

• Some are already familiar with the problem, but don’t realize the
consequences of the problem.

• Create and show a real example of this problem. Although, some
people already have indicated that this could be a problem. I didn’t
find any convincing proof-of-concept; only some theory.

Research question

How can Firefox’s extension mechanism be (mis)used to create security vul-
nerabilities for the user?

1

Firefox extension security Chapter 1. Introduction

Important subquestions

I will consider these subquestions:

• What is the current security model for Firefox extensions?

• Is there a security problem with the extension system? And if there
is a problem:

– What are the reasons of the security problem? What is the main
issue?

– Can I make a proof of concept?

– Give an indication of complexity. (how difficult is it?)

– What is also possible?

• What could be a worst-case scenario?

• How can the problem be solved?

– From the point of view of the creator of Firefox, the Mozilla
company.

– From the the point of view of the end-user.

• Can I give some recommendations?

• Are there any involving issues? What are they? Can the in combina-
tion with the proof-of-concepts cause a bigger security vulnerability?

• Is there any related research project?

1.1 Scope

I will research this question only on the Mozilla product Firefox. It’s also
possible to use extensions on Mozilla’s mail client Thunderbird[1], and it’s
likely the security vulnerability also applies to Thunderbird.
I will stay with Firefox, and not any other (Internet) browser, like Internet
Explorer, Opera etcetera. In those browser it’s also possible to use plu-
gins equal in behavior and possibilities to Firefox extensions. (but called
widgets[20], or add-ons[26].)

1.2 Motivation

These are the reasons for researching this question:

2

Firefox extension security Chapter 1. Introduction

Firefox has become quite popular
As already said in the preface (1), Firefox is used more and more
often[38]. In my opinion is has the potential to become the most used
browser in the world.

Extensions are popular
The extensions on Firefox are very popular. In fact, I’m using more
than ten extensions on my own system.

Signed extensions are rare
Extensions could be signed by the developer. But in fact almost no-
body does so. As a result that signed extensions are hard to find. I
checked the top twenty of the most popular extensions[12], and only
one was signed.

Some differences with real (Windows) applications
Comparing extension with real (Windows) applications, there could
be found some subtle differences. This is explained in more details in
section 1.2.1.

Underestimate of end-user/unfamiliar to end-user
It looks like the (end-)users underestimate the possibilities and secu-
rity risks of the extensions. Most people don’t care they aren’t signed,
the extensions are still used. Maybe the root of the problem is that the
(end-)user even doesn’t known these problems/vulnerabilities. Some-
one should attend to this.

Underestimate of Mozilla
Mozilla also underestimates the security risks. Of course, they know
that malicious extension can be made. But Mozilla doesn’t seem to
care; there couldn’t be found much documentation of possible prob-
lems when installing malicious extensions. Mozilla doesn’t care if ex-
tensions are signed or not. Firefox accepts them all, without any re-
strictions. The same for the Extension repository of Mozilla[11], and
the Recommended Add-ons[13] section, all are allowed.

1.2.1 Comparison between extensions and applications

There are some subtle differences between extensions and (Windows) appli-
cations.

From the view of the end-user

• The installation is very simplified comparing with a (Windows) ap-
plications. If you install an extension, no EULA1 is shown and there

1EULA = End User License Agreement

3

Firefox extension security Chapter 1. Introduction

is only a few clicks needed. This in contrast with the installation of
(most) (Windows) applications.

• If a user is installing a (Windows) application, people are more aware
that it is important who has build/published the software. In contrast
to extensions; the developer can be anyone.

From the view of security software

There is a huge difference for security software like firewalls, virus scanners
and anti-spyware software.

• With (Windows) programs it is suspicious that the program is commu-
nicating on the Internet. The (Windows) firewall also gives a warning.
But because extensions are running in the browser, it isn’t suspicious.
A browser always has to communicate with the Internet. The exten-
sions also use the same (TCP) port as the browser, port 80.

• It’s suspicious that an application always start when the computer
starts up. In contrast, all extensions will be started when the browser
Firefox launches.

1.3 Deliverables(s)

This research will deliver the next products:

• Paper with findings to the research (sub)question.

• Proof(s) of concept

• A video of a proof of concept.

1.4 Participating parties

There are four participating parties in this research:

1. (End)-user: The end-user using Firefox and online websites/web ap-
plications. I will call this the user.

2. Developer: The developer of the (possible malicious) extension for
Firefox.

3. Mozilla: The Mozilla company, the creator of Firefox.

4. Web creator: The creator/builder/responsible of the (involving) web-
site/web application.

4

Chapter 2

The extension system

Extensions are small plug-ins that give the browser Firefox more function-
ality. The functionality of the extensions are very different; from layout to
security features. Some people state that the strength and popularity of
Firefox is a result of the many extensions provided by the community. But
also the security counts:

One of the main reasons for the Firefox browser’s successful
seizure of market share from Microsoft’s Internet Explorer is the
desire to escape the inundation of PC-slowing spyware. [24]

2.1 Building

Extensions are mainly build in the script-language JavaScript. It’s also
possible to write some code in C++. Using the script-language the DOM[39]
can be accessed.

2.2 Installing

Extensions can be found on several webpage’s like,
https://addons.mozilla.org, http://extensionroom.mozdev.org and
webpage’s of extension authors.

2.3 Script injection

The JavaScript extensions can be seen as script injection. For example: if
a webpage is loaded, all scripts of the extensions will be internal injected to
the page. This can be seen illustrated in figure 2.3.

5

https://addons.mozilla.org
http://extensionroom.mozdev.org

Firefox extension security Chapter 2. The extension system

Figure 2.1: The Firefox extension mechanism

2.4 Extension security model

2.4.1 Sandbox Review System

Before the extension for the public is available at https://addons.mozilla.
org, it will be reviewed and tested with a Sandbox review system[15], see
figure 2.4.1.

Figure 2.2: Firefox extensions: Sandbox Review System

2.4.2 Javascript sandbox

With the Javascript sandbox principle[9], there is no direct communica-
tion between the extension and the webpage. This sandbox system use the
XPCNativeWrapper[21], to indirect communicate with the webpage. In the

6

https://addons.mozilla.org
https://addons.mozilla.org

Firefox extension security Chapter 2. The extension system

code the content property is used. This avoids security holes, but it can be
turned off by the extension developer.

2.4.3 Signing

As an extension developer it is possible to sign your extensions[17, 16]. But
there are two issues:

• It’s going to cost a lot of money and the developer is mostly one person
instead of a company.

After choosing an extension/Install Now, the box will say
’Signed’ ’Unsigned’. Signed means someone has paid for a
security certificate and authentication (which is not neces-
sarily a guarantee of anything) and Unsigned means they
haven’t.[7]

• It doesn’t provide a lot of security; there is only one responsible for
the extension’s behavior.

As result, there aren’t many signed extensions to be found on the web. This
is already mentioned in section motivation(1.2). The user gets a warning
if an extension is not signed. But because the fact that there aren’t many
signed extensions, people get used to that warning.
A quote:

Firefox itself warns users before installing any extensions.. . . Its
time to consider those warnings, seriously. [23]

2.4.4 Summary

Besides the above mentioned methods, there isn’t really any protection
against malicious extensions. Although there will be reviews and tests, this
is no guarantee; the test could be bad, the review fake or weak. And after
all, there is no responsibility for the tests/reviews if something goes wrong.

7

Chapter 3

Proofs of concept

To determine the possibilities of the extensions system, and to test the
vulnerability, I wrote some proofs of concept. First I started with a password
stealer. But in just 30 minutes it was working, far to simple. So I searched
for a more advanced proof of concept. I have taken an online banking
system, because money is important in our lives. I will try if I can do a
man-in-the-browser attack[34] on an online banking system.

3.1 Perspective

The next sections, the proof of concepts, are written in the perspective of
an extension developer. With ’user’, I mean the user that is browsing in
Firefox.

3.2 Simple: password stealer

There are many ways to try stealing passwords. Hacking into the password
manager is an option, or creating a keylogger. If a master password is set
for the password manager, it’s difficult to read the passwords without user
noticing[14]. And it’s not likely that all important passwords are stored
here. With a keylogger is too difficult to use successfully the recorded data,
although it’s possible. So, I have chosen for a more basic and to-the-point
approach; if the user submits a webform, I will intercept the content of this
webform and send the data to the outer world. That last thing I will do with
a simple URL request. As you will see, only 10 lines of codes are needed.
And it isn’t rocket science; just basic JavaScript code.

3.2.1 Analysis

There are some questions to solve:

8

Firefox extension security Chapter 3. Proofs of concept

What (confidential) information is needed?

What we basically need:

• The login name

• The password

• The URL where to login.

It isn’t always easy to determine the login name / password form the
webform. So I will send all form-data to the outer world.

Where to get confidential information?
Before logging in, this information is all present in the webpage and the
browser. All form data can be read from the Document Object Model
(DOM) . So just read the DOM, and copy the necessary information.

How to get confidential information in our scripts?
I’ve chosen for just copying the values of all fields of the webform on
the webpage, just before submitting the webpage. (using the submit
button event). Probably this will not work for all webpages with a
login system, because some website don’t use the browser webform
submit behavior. (this is particularly rare)

How to get the confidential information to the outside world?
If the required information is available, I just open a new website and
send all the information with the query string.

3.2.2 Design

This all can be summarized in an image. See figure 3.2.2

9

Firefox extension security Chapter 3. Proofs of concept

3.2.3 Source Code

First collect all the form data. This is very straightforward. There is a little
difference with standard JavaScript; the content property is needed.

1 // get a l l va luab l e f i e l d s
2 var f i e l d s = content . document . getElementsByTagName (” input ”)

Build up the query string with the collected information.
3 //where to send the in fo rmat ion ?
4 var t e x t u r l = ”http :// evi lWebSite / index . php” + ”?” ;
5
6 // c r e a t e the query s t r i n g with the in fo rmat ion .
7 for (i =0; i < f i e l d s . l ength ; i++)
8 t e x t u r l += ”&” + encodeURIComponent (f i e l d s [i] . name) + ”=” +

å encodeURIComponent (f i e l d s [i] . va lue) ;
9

10 //we a l s o want to know the URL where we can l o g i n .
11 t e x t u r l += ”&urlFromWebpage=” + encodeURIComponent (content . document .

å URL) ;

And at last, open a new webpage with the new URL. Close it immediately,
so no one will notice the request.

12 // send va lue s to the out s ide world . Open window with the u r l that we
å bu i ld .

13 window . open (t e x t u r l) ;
14
15 var wm =Components . c l a s s e s [”@mozil la . org / appshe l l /window−mediator ; 1 ”]
16 . g e tS e r v i c e (Components . i n t e r f a c e s . nsIWindowMediator) ;
17 var newWindow = wm. getMostRecentWindow (” nav igator : browser ”) ;
18
19 // c l o s e the window immediately .
20 newWindow . c l o s e () ;

This all should be done before submitting the page to the server. If we
put the above code in the function ripInfo,we can add this function to the
necessary event.

21 // l a s t param : true , o therw i se the form w i l l be
22 // submitted be f o r e the in fo rmat ion i s sneaked out .
23
24 // ta r g e t . addEventListener (type , l i s t e n e r , useCapture) ;
25 // http :// deve loper . moz i l l a . org /en/docs /DOM: element . addEventListener
26 window . addEventListener (” submit” , r i p In f o , true) ;

That’s all. We only need a website that collects all the information from
the URL. This could be a simple PHP-script for example. In case that
the user sees some flicker on the webpage, just redirect a new page to an
advertisement or other popular site.
The code is tested, and the user sees no pop-up window or new window.

3.2.4 Weakness and main-issues

It isn’t possible to read the password in the password manager, only if there
is a master password[14]. But this doens’t matter, the extension could read
this while, or just before, submitting to the page.

10

Firefox extension security Chapter 3. Proofs of concept

Everything on the page can be read and send to the outside world by the
extension. So all the information you enter could be subject to (data)theft.

11

Firefox extension security Chapter 3. Proofs of concept

3.3 Challenge: Transform online-banking transac-
tions

After the simple proof of concept I tried some more challenging experiment.
Is it possible to change a bank transaction?

Can the account number/amount of the transaction edited without the
customer noticing? I will try this with a man-in-the-browser attack. This
is a kind of man-in-the-middle attack[10, 22, 34, 35].
I have decided to try this on the online banking system of the Postbank N.V.
Mostly for practical reasons; me and my supervisor have an own Postbank
account and therefore are familiar with the Postbank online banking system.
Also the Postbank is one of the largest finance banks in the Netherlands. It
has around 7.5 million bank accounts.

3.3.1 The Postbank online banking-system

The first security layer, logging in the online banking system, uses a fixed
user name and a user-chosen password. The website of the online banking
service uses the Https protocol[8]: the information stream between browser
and the Postbank is assumed safe.
For a money transfer to another bank-account the Postbank online banking
system uses TAN1-codes as a second security layer. These TAN-codes are
used for authentication of the money transfer. With the Postbank online
banking system there are two possibilities to receive the TAN codes:

1. The customer registered their mobile phone by the Postbank. The
TAN-codes are sent by SMS.

2. Otherwise (The customer didn’t registered their mobile phone); the
customer receives a list of 100 TAN codes[32]. These TAN-codes will
be used in random order. The website gives the TAN-code-number[31]

From a security point of view the first option (SMS) is superior to the second
option (TAN-list). The TAN-list can be copied without the customer notic-
ing. (or it’s too late.) Surprisely, many Postbank online banking customers
uses the TAN-list, around the half of the Postbank online users[37]. Some
reasons why people uses the TAN-list instead of the TAN-SMS system:

• The user has no mobile

• The user finds his mobile personal.

• The user doesn’t known the security aspect, or doesn’t care.

• Historical reason: the user started with the TAN-list, and didn’t moved
to the TAN-by-SMS system. (If it ain’t broke, don’t fix it)

1Transaction Authentication Number

12

Firefox extension security Chapter 3. Proofs of concept

Figure 3.1: Postbank man-in-the-browser set-up

TAN code by mobile phone

If the customer gets their TAN-code by mobile phone, he also receives:

• TAN-number

• TAN-code

• The total amount of money to transfer.

• The last three numbers of the bank-account where to transfer money
to, but only if the total amount is equal or bigger than 1000 Euro[19].

If there is a problem with receiving the TAN-code, you can call for a new
TAN-code. But then you only get:

• TAN-number

• TAN-code

TAN codes and the Tan-list

When the TAN-list is used, there is no feedback besides in the browser. This
is modeled in image 3.3.

13

Firefox extension security Chapter 3. Proofs of concept

Figure 3.2: Postbank: Feedback channels with mobile phone option

Figure 3.3: Postbank: Feedback channels with TAN-list option

3.3.2 Pages

There are several pages that have been needed to be edited by the malicious
extension. The browser has to show the expected values to the user. An
overview of the page-flow is given in figure 3.4.
Only the pages that will be needed for creating a new transaction are drawn.
In the next paragraphs I will mention for each page:

Purpose The purpose of the page to the (end) user.

Actions The actions needed to be done by the malicious extension.

Every page has a corresponding screenshot of the page. The (green) rounded
rectangles marks the important areas of the page. Unfortunately the whole
Postbank site is only available in dutch[30].

14

Firefox extension security Chapter 3. Proofs of concept

Figure 3.4: Postbank website flow

15

Firefox extension security Chapter 3. Proofs of concept

Login page

Purpose Login for the online bank system

Actions No actions here are needed. The login information isn’t needed, but
it can be stolen by the password stealer extension. See the section 3.2

Image 3.5

Figure 3.5: Postbank: Login screen

16

Firefox extension security Chapter 3. Proofs of concept

Main page

Purpose The main page shows the last ten transactions made of the user’s bank
account.

Actions The credit of the bank account is needed; how much money can be
transfered? The account numbers and amounts of all visible transac-
tions must be read and edited. We’re showing the expected values to
the user, so every transaction must be ’reverted’. At last the expected
credit of the bank account will be calculated and set to that value.

Image 3.6

Figure 3.6: Postbank: Main page

17

Firefox extension security Chapter 3. Proofs of concept

Transaction webform

Purpose At this page the user creates a new transaction.

Actions This is the most important page. At this place the new account num-
ber and amount must be injected. But also the values entered by the
user must be stored, for replacements in the forthcoming pages. This
has to be stable, many errors can be thrown here. (Wrong amount,
forgotten required value etcetera.)

Image 3.7

Figure 3.7: Postbank: Create new transaction

18

Firefox extension security Chapter 3. Proofs of concept

Transaction(s) confirm page

Purpose The user confirms at this page the created transactions. So the TAN
code can be send to the user. (only if the user uses the TAN-by-SMS
system).

Actions Replace the account number(s) and amount(s), otherwise the TAN-
code will be never entered. The total amount must be calculated and
replaced on the page.

Image 3.8

Figure 3.8: Postbank: Confirm transaction(s)

19

Firefox extension security Chapter 3. Proofs of concept

TAN code page

Purpose The user enters the TAN-code received by SMS or taken from TAN-
list (with the tan number mentioned on the page after ’volgnummer’.)
(image 3.9)

Actions Just replace the total amount of the transaction on the webpage. This
is already calculated in the previous page.

Image 3.9

Figure 3.9: Postbank: Tan page

20

Firefox extension security Chapter 3. Proofs of concept

Transaction(s) result page

Purpose This page gives an overview of the transactions that have been made.

Actions Almost the same as the Transaction(s) confirm page. Just replace the
account number and amount.

Image 3.10

Figure 3.10: Postbank: Transaction(s) results

3.3.3 Source code

To preserve a good relation with the Postbank company, no source code will
be made public.

3.3.4 Difficulties

DOMContentLoaded saved the day

After the first tests the first problem popped-up; the change of the amounts
in the webpage was noticeable, especially with many page-refreshes (and
possible, with a slow computer.). This was a serious problem; in the ideal
way the customer shouldn’t notice anything strange.

If the amount was changed in the length, this was very noticeable. For
example: from 90 till 100, going from 2 till 3 characters, is very observable.

Because of the great support of JavaScript in Firefox, there was a solu-
tion. First the information was edited after the page was loaded, the so
called onload event[36]. This event is thrown if the whole page is loaded,
and rendered. With images or/and a slow computer this could take some
time.
But Firefox supported a rare JavaScript event: the DOMContentLoaded
event[27]. This event is thrown after the content is loaded, but before the

21

Firefox extension security Chapter 3. Proofs of concept

page is rendered. Because JavaScript is single-threaded, it waits for the
DOMContentLoaded actions, and then Firefox will render the webpage.

Replacements in the main page

To show the user by every load of the main page the expected values of the
transaction, the extension records all the transaction that are being made
and stores them in a local file.
The extension reads the real used amounts and account numbers, searches
the expected values, and replaces these on the page. For those reasons a
key-value mapping is created and stored in the local file. The key is created
with the real used account number & real used amount. And the value is
the expected account number & expected amount.

real used account number • real used amount
→ expected account number • expected amount

As can be seen, the combination account number and amount must be
unique. For this purpose the last real used amount will be saved, and with
every transaction the amount will be decreased by one. In this way, the user
cannot see any malicious changes. If the user logs in again, the expected
values are again showed. This last will only hold for the current PC, because
the transactions are stored local.

3.3.5 Weakness and main-issues

Everything on the page can be edited by the extension; transaction details,
error message etcetera. So everything you see cann’t be trusted. For this
problem (bi-directional) communication outside the browser is needed, or
the values must be checked without the website. This is partly done if
TAN-SMS system is used, but this isn’t the case when the TAN-list system
is used.

With a random reader this is also partly done. But too bad, in general not
all the important values (for the transaction), must be entered. (Amount,
transaction number)

Notice that this is far different compared with spoofing/phishing. With
spoofing/phishing the user can almost every time see something suspicious;
wrong certificate/URL, new webform, strange errors, etcetera. But with
this approach, that’s not possible.

22

Firefox extension security Chapter 3. Proofs of concept

3.3.6 Recommendations in this case

Although this research isn’t about security of online banking, Some recom-
mendations for this threat can be.

• Give the (user or bank) the possibility to (re)check the amount and
account number. In the best case, this is required.

– In case if a SMS system as second layer: SMS the amount and
account number to the bank

– In case if a random reader is used: Require that the amount and
account number must be typed-in the random reader, and check
these values of course.

• An other possibility: Every account you want to transfer money, must
be registered. Of course not through the internet. To other bank
accounts it isn’t possible to transfer money to, or in a limited ’mode’.

These solutions aren’t user-friendly. But, in my opinion, security is more
important than ’easy to use’. Also important: every user can do this, it isn’t
more difficult, only more work.

3.3.7 Video

For the proof-of-concept a video is made. In this video two times a trans-
action is made; one ’normal’ and one with showing the injection and tricks.
For reasons of privacy the video is edited.

23

Chapter 4

Analysis

4.1 Indication of complexity

It’s hard to indicate how much work or how difficult it is to write such an
extension. The extension don’t use any difficult or advanced stuff. The
Postbank man-in-the-browser extension has approximately 300-400 lines of
code. (physical SLOC[18]) In my opinion it is relative simple to create this:
2-3 days are enough. Also keep in mind that finding a bugs for spoofing is
more, and more unpredictable work.

4.2 Also possible

Besides the reading and editing issues, an extension could also (malicious or
not):

• Edit Firefox settings. With editing the proxy-settings, spoofing could
be possible.

• Run other applications[3].

• Read/write files[2].

• Post data to webpage[5].

• Create Sockets[4]

4.3 Worst case scenario

1. Create a malicious extension

2. Bribe a developer of a popular extension

3. Add the malicious code to the popular extension

24

Firefox extension security Chapter 4. Analysis

4. Upload the new extension, as a new update.

5. Every user that has already installed this extension, will get a pop-up
asking to install the update when Firefox (re)starts. See for example
figure 4.3.

6. with just two click, the update is installed.

With this method, it is easy to distribute very fast to many users. This is a
big issue.

Figure 4.1: Example of extension updates offered to the user

4.4 Involving security vulnerabilities

Some aspects of Firefox increase the insult of Firefox extensions. These will
mentioned over here, but not in details.

4.4.1 Installing without any notice

It’s possible to install an extension without the user noticing; no confirm
box or message will be shown. It’s also very easy to do this: Just drag
the extensions sources to the extensions directory of the Firefox profile.
Next time when the browser starts up, the extension will be installed on

25

Firefox extension security Chapter 4. Analysis

the background. This trick is possible for every Firefox profile where the
current user has write-access.

4.4.2 Installing under limited/guest account

Under a limited account under Windows, it’s still possible to install exten-
sions under Firefox. Even under a guest account, where you would expect
that no software can be installed, it’s still possible.

4.4.3 Public computers

If Firefox is used on a public computer, there is a huge security risk. It is
impossible to disable installing extensions. (only safe mode, will be men-
tioned later) And it is possible to install extensions on a Guest account. See
paragraph 4.4.2. Of course write-access is needed to that Firefox profile.

4.5 Weakness and main-issues

As already mentioned, everything on the page can be read and edited (see
3.2.4 respectively 3.3.5), regardless https and the information that was not
(yet) send to the Internet. Also other threats could cause more problems,
see section 4.2.
But the main problem: Mozilla warns for bad practices, but the extension
developer acts like he is in godmode.

Because Firefox extensions are executable code, the coder can
do anything he wants, as long as he can code it. [23]

4.6 Related work/quotes

As said in Goal section 1, some people already know the Firefox extension
system isn’t very security-strong. A quote:

”The Trojan writes files directly to the Firefox folders without
putting up the confirmation,” said Craig Schmugar, the virus
research manager at McAfee’s Avert Labs. ”The Trojan is using
a mechanism to get its code executed when it hooks into Firefox.
And from a security model, that kind of functionality is all over
the place.”[25]

Also there was an extension trojan in the year 2006.[6]. Experts predicted
Firefox spyware will show up in the year 2007.[24]
The research of Peter Torr[33] has some overlap with this research. The
problems that are mentioned in Peter Torrs research:

26

Firefox extension security Chapter 4. Analysis

• Installing Firefox requires downloading an unsigned binary from a ran-
dom web server

• Installing unsigned extensions is the default action in the Extensions
dialog

• There is no way to check the signature on downloaded program files

• There is no obvious way to turn off plug-ins once they are installed

• There is an easy way to bypass the ”This might be a virus” dialog

27

Chapter 5

Recommendations and
Conclusions

5.1 Solution

In short there a three directions:

1. Guarantee of behavior, or a responsible one for this behavior

2. Disable some functionality

3. Disable the extensions

I considered some solutions:

5.1.1 Behavior/responsible

Sign every extension Who is responsible for signing these extensions?
Probably Mozilla won’t have the financial capacity for this, and cer-
tainly not in case of something will go wrong.

Download only from trusted resources No guarantee, the behavior could
be changed later.

5.1.2 Disable functionality

Restrict reading the page Disable the ability that extensions can read
the contents on a webpage. But as a result most extensions will be
useless.

No communication to outside world Again a restriction for extensions.
But tricky to check, and as seen in the Challenging proof-of-concept
(3.3), not a solution.

28

Firefox extension security Chapter 5. Recommendations and Conclusions

5.1.3 Disable extensions

Don’t use Firefox Not a solution but more as escape Other browsers
will also likely vulnerable; they have also a plugin-system, and Internet
Explore has the well-known ActiveX (Control) technology.

Disable extensions With this solution, some power of Firefox is reduced.
But rather I think the solution is that direction, I came with two
variants:

Use safe-mode The user has to use safe-mode for when security mat-
ters. (online banking, E-goverment etc). Safe-mode (temporary)
disable extensions and uses default settings[28, 29].
Although safe-mode is designed for (other) extension problems
(like Firefox hangs etcetera), safe-mode could be a good a easy
solution. The latest Firefox version default create a safe-mode
shortcut in the start menu, see figure 5.1. After Firefox is started
with safe-mode, an pop-up can be seen. (figure 5.2)

Disable for https Maybe Mozilla can build this nice feature into
Firefox. Default disable all the (installed) extensions for websites
that uses the secure https protocol. And a possible white-list.
Sites that don’t use https, are already not safe, and it’s unlikely
that serious websites don’t use https. It would be good if Mozilla
considers the feature; it should be a native feature of Firefox.

Figure 5.1: Standard safe mode shortcut

29

Firefox extension security Chapter 5. Recommendations and Conclusions

Figure 5.2: Firefox popup when starting safe-mode

5.2 Recommendations

5.2.1 Mozilla

• Continue discussion

• Promote safe-mode.

• Consider this feature: Disable extensions for https sites.

5.2.2 (End-)Users

• Use safe mode for sites when security matters. (online banking, E-
goverment etc).

• Trivial, don’t use the same passwords for different sites. Because pass-
words are easy to steal.

5.2.3 Web creators

Don’t trust the data that is received form the page; create a possibility to
(re)check the data, without using a browser.

5.3 Conclusion

This research showed it is possible, and easy to create extension with several
security risks. The extension developer lives in godmode, and can create
anything he wishes. Only signing is the real solution, but in practice it won’t
work. There are some real troubles with the installation of the extensions;

30

Firefox extension security Chapter 5. Recommendations and Conclusions

no administrator rights are needed, and the dialog can be skipped with just
drag ’n drop. Mozilla should keep the discussion alive, and promotes their
safe-mode. If lucky they consider the feature mentioned: disable extensions
for https sites. (serious) Online services should come with more checks and
protection. The solution until something changes, is to use safe mode. If
finances and privacy are valuable to you.

31

Bibliography

[1] Extensions for thunderbird.
https://addons.mozilla.org/en-US/thunderbird.

[2] Extensions read/write files:
http://developer.mozilla.org/en/docs/Code_snippets:
File_I/O.

[3] Extensions run other applications:
http://developer.mozilla.org/en/docs/Code_snippets:
Running_applications.

[4] Extensions run other applications:
http://xulplanet.com/tutorials/mozsdk/sockets.php.

[5] Extensions send post data to webpage:
http://developer.mozilla.org/en/docs/Code_snippets:
Post_data_to_window.

[6] The first extension trojan:
http://www.darknet.org.uk/2006/08/
firefox-extension-spyware-formspy/.

[7] How to install firefox extensions
http://www.wikihow.com/Install-Firefox-Extensions.

[8] Https protocol:
http://msdn2.microsoft.com/en-us/library/aa767735(VS.85)
.aspx.

[9] Javascript sandbox in firefox:
http://hublog.hubmed.org/archives/001570.html.

[10] Man-in-the-browser attack example:
Man-in-the-browserattackexample.

[11] Mozilla extension repository:
https://addons.mozilla.org/.

32

https://addons.mozilla.org/en-US/thunderbird
http://developer.mozilla.org/en/docs/Code_snippets:File_I/O
http://developer.mozilla.org/en/docs/Code_snippets:File_I/O
http://developer.mozilla.org/en/docs/Code_snippets:Running_applications
http://developer.mozilla.org/en/docs/Code_snippets:Running_applications
http://xulplanet.com/tutorials/mozsdk/sockets.php
http://developer.mozilla.org/en/docs/Code_snippets:Post_data_to_window
http://developer.mozilla.org/en/docs/Code_snippets:Post_data_to_window
http://www.darknet.org.uk/2006/08/firefox-extension-spyware-formspy/
http://www.darknet.org.uk/2006/08/firefox-extension-spyware-formspy/
http://www.wikihow.com/Install-Firefox-Extensions
http://msdn2.microsoft.com/en-us/library/aa767735(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/aa767735(VS.85).aspx
http://hublog.hubmed.org/archives/001570.html
Man-in-the-browser attack example
https://addons.mozilla.org/

Firefox extension security BIBLIOGRAPHY

[12] The mozilla extension repository for firefox, sorted on popularity.
https://addons.mozilla.org/en-US/firefox/browse/type:
1/cat:all/sort:popular.

[13] Mozilla recommend extensions for firefox:
https://addons.mozilla.org/en-US/firefox/recommended.

[14] Password manager and master password
http://developer.mozilla.org/en/docs/Using_
nsIPasswordManager#Retrieving_a_password. ”Note that the
user will be prompted for their master password if they have chosen to
set one to secure their passwords.”.

[15] Sandbox review system
https://addons.mozilla.org/en-US/firefox/pages/sandbox.

[16] Signed scripts & privileges: An example
http://www.mozilla.org/projects/security/components/
signed-script-example.html#levels.

[17] Signing a firefox extension with a windows authenticode ssl certificate
/ key.
http://oyoy.eu/huh/Firefox-extension-code-signed-with-spc-pvk/.

[18] Sloc definition:
http://msquaredtechnologies.com/m2rsm/docs/rsm_metrics_
narration.htm.

[19] Sms-tan contents:
http://www.postbank.nl/zakelijk/ing/pz/page/article/
detail/0,3049,1911_49027884_585506101,00.html. ”Bij bedragen
van 1.000 of hoger worden in het sms-bericht ook de laatste drie cijfers
van het rekeningnummer van de ontvanger vermeld en het bedrag van
die overschrijving.”.

[20] Widgets for opera.
http://widgets.opera.com/.

[21] Xpcnativewrapper for extensions
http://developer.mozilla.org/en/docs/XPCNativeWrapper.

[22] The next evolutionary step: Man in the browser attacks.
http://www.tricipher.com/downloads/Protecting_Online_
Transactions.pdf. tricipher, pages 3–4, june 2007.

[23] Joey Costoya. Malicious firefox extensions.
http://blog.trendmicro.com/malicious-firefox-extensions/.
Blog. March 2nd, 2006.

33

https://addons.mozilla.org/en-US/firefox/browse/type:1/cat:all/sort:popular
https://addons.mozilla.org/en-US/firefox/browse/type:1/cat:all/sort:popular
https://addons.mozilla.org/en-US/firefox/recommended
http://developer.mozilla.org/en/docs/Using_nsIPasswordManager#Retrieving_a_password
http://developer.mozilla.org/en/docs/Using_nsIPasswordManager#Retrieving_a_password
https://addons.mozilla.org/en-US/firefox/pages/sandbox
http://www.mozilla.org/projects/security/components/signed-script-example.html#levels
http://www.mozilla.org/projects/security/components/signed-script-example.html#levels
http://oyoy.eu/huh/Firefox-extension-code-signed-with-spc-pvk/
http://msquaredtechnologies.com/m2rsm/docs/rsm_metrics_narration.htm
http://msquaredtechnologies.com/m2rsm/docs/rsm_metrics_narration.htm
http://www.postbank.nl/zakelijk/ing/pz/page/article/detail/0,3049,1911_49027884_585506101,00.html
http://www.postbank.nl/zakelijk/ing/pz/page/article/detail/0,3049,1911_49027884_585506101,00.html
http://widgets.opera.com/
http://developer.mozilla.org/en/docs/XPCNativeWrapper
http://www.tricipher.com/downloads/Protecting_Online_Transactions.pdf
http://www.tricipher.com/downloads/Protecting_Online_Transactions.pdf
http://blog.trendmicro.com/malicious-firefox-extensions/

Firefox extension security BIBLIOGRAPHY

[24] Jay Lyman. Experts predict firefox spyware will show up this year.
http://www.linux.com/articles/42212. February 2005.

[25] Technology News Editor Marius Oiaga. Trojan disguised as firefox
extension.
http://news.softpedia.com/news/Trojan-Disguised-as-Firefox-Extension-30977.
shtml. Web. 26th of July 2006.

[26] Microsoft. Add-ons for internet explorer
http://windowshelp.microsoft.com/Windows/en-US/Help/
a426bb85-708c-4b75-87e2-874f9be3b4aa1033.mspx#section_4.

[27] Individual mozilla.org contributors. Gecko-specific dom events.
http://developer.mozilla.org/en/docs/Gecko-Specific_DOM_
Events#DOMContentLoaded.
Wiki. Not really documented: https://bugzilla.mozilla.org/
show_bug.cgi?id=286013.

[28] Individual mozilla.org contributors. Safe mode for firefox
http://www.mozilla.org/support/firefox/faq. FAQ.

[29] Individual mozilla.org contributors. Safe mode for firefox kb
http://kb.mozillazine.org/Safe_Mode_(Firefox). KB.

[30] Postbank N.V. The postbank site is only in dutch:
http://www.postbank.nl/ing/pp/page/faq/detail/0,2813,1859_
179989207_529889502,00.html.

[31] Postbank N.V. Tan random order:
http://www.postbank.nl/ing/pp/page/faq/detail/0,2813,1859_
332699154_414401256,00.html.

[32] Postbank N.V. Tanlist system:
http://www.postbank.nl/ing/pp/page/faq/detail/0,2813,1859_
332699154_674651423,00.html.

[33] Peter Torr. How can i trust firefox?
http://blogs.msdn.com/ptorr/archive/2004/12/20/327511.aspx.

[34] Tricipher. Threats: Man in the browser.
http://www.tricipher.com/threats/man_in_the_browser.html.
sep 2006.

[35] Computerworld UK. ’man in the browser’ is new threat to online
banking.
http://www.computerworld.com/action/article.do?command=
viewArticleBasic&articleId=9049080.
Computerworld UK, November 2007.

34

http://www.linux.com/articles/42212
http://news.softpedia.com/news/Trojan-Disguised-as-Firefox-Extension-30977.shtml
http://news.softpedia.com/news/Trojan-Disguised-as-Firefox-Extension-30977.shtml
http://windowshelp.microsoft.com/Windows/en-US/Help/a426bb85-708c-4b75-87e2-874f9be3b4aa1033.mspx#section_4
http://windowshelp.microsoft.com/Windows/en-US/Help/a426bb85-708c-4b75-87e2-874f9be3b4aa1033.mspx#section_4
http://developer.mozilla.org/en/docs/Gecko-Specific_DOM_Events#DOMContentLoaded
http://developer.mozilla.org/en/docs/Gecko-Specific_DOM_Events#DOMContentLoaded
https://bugzilla.mozilla.org/show_bug.cgi?id=286013
https://bugzilla.mozilla.org/show_bug.cgi?id=286013
http://www.mozilla.org/support/firefox/faq
http://kb.mozillazine.org/Safe_Mode_(Firefox)
http://www.postbank.nl/ing/pp/page/faq/detail/0,2813,1859_179989207_529889502,00.html
http://www.postbank.nl/ing/pp/page/faq/detail/0,2813,1859_179989207_529889502,00.html
http://www.postbank.nl/ing/pp/page/faq/detail/0,2813,1859_332699154_414401256,00.html
http://www.postbank.nl/ing/pp/page/faq/detail/0,2813,1859_332699154_414401256,00.html
http://www.postbank.nl/ing/pp/page/faq/detail/0,2813,1859_332699154_674651423,00.html
http://www.postbank.nl/ing/pp/page/faq/detail/0,2813,1859_332699154_674651423,00.html
http://blogs.msdn.com/ptorr/archive/2004/12/20/327511.aspx
http://www.tricipher.com/threats/man_in_the_browser.html
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9049080
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9049080

Firefox extension security BIBLIOGRAPHY

[36] W3c. Html 4.01 specification – w3c recommendation
http://www.w3.org/TR/REC-html40/interact/scripts.html#
h-18.2.3. December 1999.

[37] Webwereld. Approximately half of the users uses the tan-sms system.
(so the other half the tan-list)
http://www.webwereld.nl/articles/47954/
storing-tan-code-sms-jes-mijnpostbank-nl.html.
news, sept 2007. ”Ongeveer de helft van de klanten maakt gebruik van
de tan-codes per sms, maar niet al die mensen maken natuurlijk op dit
moment gebruik van Mijnpostbank.nl”.

[38] XiTiMonitor. Mozilla firefoxs use share stabilises in the european
countries.
http://www.xitimonitor.com/en-us/browsers-barometer/
firefox-september-2007/index-1-2-3-110.html.
XiTiMonitor, Oktober 2007.

[39] Xulplanet. Accesing webpage with the DOM (Document Object Model)
http://xulplanet.com/tutorials/xultu/dom.html.

35

http://www.w3.org/TR/REC-html40/interact/scripts.html#h-18.2.3
http://www.w3.org/TR/REC-html40/interact/scripts.html#h-18.2.3
http://www.webwereld.nl/articles/47954/storing-tan-code-sms-jes-mijnpostbank-nl.html
http://www.webwereld.nl/articles/47954/storing-tan-code-sms-jes-mijnpostbank-nl.html
http://www.xitimonitor.com/en-us/browsers-barometer/firefox-september-2007/index-1-2-3-110.html
http://www.xitimonitor.com/en-us/browsers-barometer/firefox-september-2007/index-1-2-3-110.html
http://xulplanet.com/tutorials/xultu/dom.html

	Introduction
	Scope
	Motivation
	Comparison between extensions and applications

	Deliverables(s)
	Participating parties

	The extension system
	Building
	Installing
	Script injection
	Extension security model
	Sandbox Review System
	Javascript sandbox
	Signing
	Summary

	Proofs of concept
	Perspective
	Simple: password stealer
	Analysis
	Design
	Source Code
	Weakness and main-issues

	Challenge: Transform online-banking transactions
	The Postbank online banking-system
	Pages
	Source code
	Difficulties
	Weakness and main-issues
	Recommendations in this case
	Video

	Analysis
	Indication of complexity
	Also possible
	Worst case scenario
	Involving security vulnerabilities
	Installing without any notice
	Installing under limited/guest account
	Public computers

	Weakness and main-issues
	Related work/quotes

	Recommendations and Conclusions
	Solution
	Behavior/responsible
	Disable functionality
	Disable extensions

	Recommendations
	Mozilla
	(End-)Users
	Web creators

	Conclusion

