
Kernel Machines for Multi-Class
Classification: A Joint Kernel

Approach

Antolin Thomas Janssen

Radboud University
Institute for Computing and Information Sciences

Nijmegen, The Netherlands, 6525 AJ

2009

Supervisors

Evgeni Tsivtsivadze
Institute for Computing and Information Science
Radboud University
Nijmegen, 6525 AJ
The Netherlands

Tom Heskes
Institute for Computing and Information Science
Radboud University
Nijmegen, 6525 AJ
The Netherlands

i

ii

Abstract

Pattern analysis is about the automatic detection of patterns in data, and
plays an important role in many modern artificial intelligence and com-
puter science problems. With patterns we mean any relations, regularities
or structures that are present within a source of data. By detecting signif-
icant patterns in the data, a system can make predictions about new data
coming from the same source. We can say that the system has acquired gen-
eralisation power by learning a pattern in the data from that source. There
are many important problems that can only be solved using this approach,
ranging from bio informatics to web retrieval. In recent years, pattern anal-
ysis has become a standard method for software engineering, and is used in
many commercial products.

This thesis describes several algorithms and compares their performances
on different datasets. This to research the possibilities that we have when
we want to extract possibly interesting relationships between datapoints.
The improvement of these kind of techniques can be important for future
research because with increasing computational power, increasingly larger
datasets can be analyzed, so that we can find relationships we never knew
existed. One of these datasets is called SCOP, or the Structured Classi-
fication of Proteins, which we can analyze to better understand how our
body works and how different proteins are related. To detect these rela-
tionships we use an algorithm called Regularized Least Squares. Also its
performance is compared to a very similar algorithm, called SVMLight, and
several other machine learning techniques, namely Naive Bayes, KStar and
Random Forest. We show that the performance depends on the problem
that is analyzed, where things like linear separability and the number of
examples in the dataset have a notable influence. Nevertheless, the results
are stable on most datasets, resulting in a prediction system that can be
considered as a reliable advise-tool for making decisions about that dataset.
A rapidly developing field within this research is multiclass classification,
which extends the binary classification into a method that can handle prob-
lems with multiple classes. The multiclass extension for the algorithm that
we consider is a joint kernel approach which also provides stable results and
could be optimized to improve performance even more.

iii

iv

Contents

1 Introduction 1
1.1 RLS - Binary . 1

1.1.1 Linear Regression . 2
1.1.2 Regularized Regression 5

1.2 SVMLight . 7
1.3 RLS - Multiclass . 8

1.3.1 Joint Kernel . 10
1.4 Naive Bayes . 12
1.5 K Star . 13
1.6 Random Forest . 14

2 Research 17
2.1 Experiments . 17

2.1.1 RLS on SCOP . 18
2.1.2 RLS on other datasets 19
2.1.3 SVMLight . 21
2.1.4 Bayes . 21
2.1.5 K* . 21
2.1.6 Random Forest . 22
2.1.7 AUC . 22

2.2 Results . 23
2.2.1 SCOP . 23
2.2.2 RLS vs. SVMLight . 28
2.2.3 RLS vs. Rest . 29

3 Conclusion 31

4 Appendix 33
4.1 Python . 33
4.2 Algorithm . 35

4.2.1 RLS on SCOP . 35
4.2.2 RLS on Rest . 35
4.2.3 SVMLight and SVMMulti 36

v

Chapter 1

Introduction

In this chapter we describe the methods and tools used during this research
project. First of all there is an extended description of the technique that
we implemented and its theoretical foundations. Second, there is a less
extended description of the SVMLight algorithm, a similar algorithm to
ours that has been optimized and has been shown to have good empirical
performance on a wide variety of datasets. In the third section we propose a
multi-class extension applicable to various kernel-based methods and briefly
state the ideas behind that technique. To finish the first chapter the other
investigated algorithms are described.

The goal of all examined algorithms is to detect patterns in datasets, or
to be more exact, to determine the relations between datapoints by using
their properties to calculate the similarities between those datapoints. To
start our research into the field of pattern analysis, first of all we need a
problem setting in which we are conducting our experiments, which is the
following: There is a dataset, which consists of a number of datapoints that
each have a class and a certain number of features. These features represent
the important properties of the datapoint. We want to analyze the relation
between the features of a datapoint and its class label, creating a model
which describes the estimated predicted relationships for that dataset. After
that we can use this model to predict the class label for a datapoint which
we haven’t seen before.

1.1 RLS - Binary

The algorithm on which most of this thesis is based is called Regularized
Least Squares. It is described in details in [14] and in principle is an ”ex-
tended form” of Least Squares Linear Regression. It is also known as ker-
nelized version of Ridge Regression and has been given different names by
different authors, namely LS-SVM [23] and Regularized Least-Squares [22],

1

1.1. RLS - BINARY CHAPTER 1. INTRODUCTION

[21]. This technique uses dot products (also called kernel functions) to calcu-
late the similarity between training examples. There are some mathematical
tricks to optimize this technique but the basic idea is pretty straightforward,
and consists of two steps:

• Mapping into feature space

• Computing similarities

The first step makes sure that the datapoints are linearly separable by map-
ping them into a higher dimension, which is done by a so called kernel
function. The second part consists of the learning algorithm which will do
the actual pattern recognition. This goes, as said above, by creating a model
using the dot products between the different datapoints. Once this is done
we can run the linear algorithm on unseen datapoints and make a prediction
with respect to the class of that datapoint.

1.1.1 Linear Regression

To come to a more in depth description of the idea behind the algorithm,
first of all we start with Linear Regression, because its idea is similar to that
of Regularized Regression but it is easier to explain because there are some
more advanced mathematics involved in the latter technique. Consider our
setting as mentioned above, a set of datapoints which have been mapped
into a higher dimension so that they are linearly separable. Then we want
to find a real valued linear function

g(x) = 〈w,x〉 = w′x =
n∑
i=1

(wi · xi), (1.1)

that best describes the relationship between the features and the class la-
bel in a given training set S={(x1,y1),...,(xl,yl)} of the feature vectors xi
from X ⊆ Rn with their corresponding labels yi in Y ⊆ R. The notation
x = (x1, x2, ..., xn) is used to denote the input vectors which are the vectors
containing the features and their values, and w′ is used to denote the trans-
pose of the vector w∈ Rn. Now that we have this structure we can define a
pattern function that matches the predicted value g(x) to the actual label
y, which should be approximately equal to zero.

f((x, y)) =| y − g(x) |=| y − 〈w,x〉 |≈ 0 (1.2)

This is also referred to as linear interpolation, that is, fitting a hyperplane
through the given n-dimensional points, which correspond with the n fea-
tures of the datapoint. To be more exact, if the data that has been generated

2

CHAPTER 1. INTRODUCTION 1.1. RLS - BINARY

is of the form (x, g(x)) where g(x) = 〈w,x〉 and there are exactly l = n lin-
early independent points, the parameters of w can be found by solving the
equation

Xw = y, (1.3)

where X is used to denote the matrix which rows are the transposed input
vectors (x1

′, ...xl
′) and y to denote the vector (y1, ..., yl)

′ which contains the
labels for each datapoint. After having said this, we can translate our error
function

f((x, y)) =| y − g(x) |=| ξ |, (1.4)

that gives the error for one particular training example, into a function
where we take all training errors for that set into account. As the name of
the algorithm says, the loss of a prediction is measured with the squared
error of the error function, which results in the following definition

L(g, S) = L(w, S) =
l∑

i=1

(yi − g(xi))
2 =

l∑
i=1

ξi
2 =

l∑
i=i

L((xi, yi), g)), (1.5)

where L((xi, yi), g) = ξ2 is used to denote the squared error of the prediction
function g for one example (xi, yi) and L(f, S) to denote the summed loss
of the error function on the training set S. Now it becomes clear that the
solution to the problem is to choose a weight vector w ∈W that minimises
the total loss of the function. If we rewrite the error function using the other
notation we get the following equation

ξ = Xw− y, (1.6)

so that we can rewrite the loss function as

L(w, S) = || ξ ||2 = (y−Xw)′(y−Xw), (1.7)

where X′ denotes the transpose of X. Now we can seek the w that minimises
the loss by taking the derivative of this function with respect to w and setting
it equal to the zero vector

δL(w, S)

δw
= −2X′I(y−Xw) = −2X′y + 2X′Xw = 0, (1.8)

as we can see from equation (76) in [19]:

δ

δs
(x−As)′W(x−As) = −2A′W(x−As), (1.9)

so that we, after simplifying, get the equation

X′Xw = X′y, (1.10)

3

1.1. RLS - BINARY CHAPTER 1. INTRODUCTION

and if the inverse of X′X exists we can find the solution to the minimizing
of the loss by solving the following equation

w = (X′X)−1X′y. (1.11)

One large downside of this approach, which is also called primal regression,
is that solving this equation requires the computation of the inverse of a
n×n matrix, that is features × features, which will be very inefficient when
there are more features then datapoints. This is because X is of dimensions
l × n, which makes X′ of dimensions n × l so that X′X is of dimensions
n× n. This results in a complexity of O(n3) which means that the number
of operations t(n) is bounded by t(n) ≤ Cn3 for some constant C.

Now that the optimal w is known, the actual predictions can now be
done by using the prediction function as mentioned above

g(x) = 〈w,x〉 . (1.12)

To end this first section we take a look into a way how to reduce the com-
putational complexity by rewriting equation (1.11) so that it becomes a so
called dual regression problem, which is done in the following way

w = (X′X)−1X′y

= X′X(X′X)−1(X′X)−1X′y

= X′X(X′X)−2X′y

= X′α,

so that we obtain a linear combination of the training examples (l × l)

w =
l∑

i=1

αi · xi. (1.13)

Now that the principle of Regression is known, we can proceed to the
next section where this algorithm will be expanded to Regularized Regres-
sion, where we add an extra parameter to restrict the choice of functions
when computing a solution to the problem. The reason why we do this is be-
cause there usually isn’t an exact relationship between the features and the
classes, but an approximate one. To make sure that the algorithm doesn’t
try to match every datapoint exactly we introduce a parameter to control
the number of errors on the training- vs. the number of errors on the test-
set. If we optimize this parameter we get a more appropriate approximation
of the relationship, by creating a smoother function that doesn’t overfit the
data. Overfitting means that the function tries to match each datapoint ex-
actly, which results in a prediction function with not enough generalisation
power to predict accurately.

4

CHAPTER 1. INTRODUCTION 1.1. RLS - BINARY

1.1.2 Regularized Regression

As mentioned in the last part of the previous section, we introduce another
parameter to restrict the functions being chosen as solutions for the problem,
the so called regularisation parameter. After introducing this parameter the
optimization problem that we need to solve for Regularized Regression is

min
w
Lλ(w, S) = min

w
λ|| w ||2 +

l∑
i=1

(yi − g(xi))
2, (1.14)

where λ is a positive r ∈ R that defines the relative trade-off between the
loss and the norm and thus controls the degree of regularisation, so that
the problem is reduced to an optimization problem over Rn. The loss of
the function is the measure described in the previous section, the summed
squared error that the loss function returns. The (Euclidean) norm of a
vector z is also known as

|| z ||=
√
z · z =

√
z12 + z22 + ...+ zn2. (1.15)

The loss function can be rewritten so that the relationship between Linear
and Regularized Regression becomes more apparent

L(w, S) = (min
w
λ|| w ||2 +

l∑
i=1

(yi − g(xi))
2

= (y−Xw)′(y−Xw) + λ|| w ||2

= (y−Xw)′(y−Xw) + λw′w,

where || w ||2 is equal to w′w because of

|| z ||2 =
√
z · z ·

√
z · z = 〈z, z〉 = z′z, (1.16)

so that the derivative of λw′w is λw. Now that we know what we need to
optimize, the reasoning is parallel to the one of the Linear Regression. First
we need to take the derivatives of the function that we need to optimize,
according to the same equation (76) in [19]:

δ

δs
(x−As)′W(x−As) = −2A′W(x−As), (1.17)

which results in the equations

X′Xw + λw = (X′X + λIn)w = X′y, (1.18)

where I is the n×n identity matrix. Because X′X+λIn is always invertible if
λ > 0 the solution to this problem can be calculated by solving the equation

5

1.1. RLS - BINARY CHAPTER 1. INTRODUCTION

(1.19), because the addition of λI ensures that the matrix is not singular. If
a square matrix is singular, which means that it has a determinant that is
equal to zero, it is not invertible.

w = (X′X + λI)−1X′y = Xy′(X′X + λI)−1 (1.19)

So that the prediction function is defined by

g(x) = 〈w,x〉 = Xy′(X′X + λI)−1x. (1.20)

Notice that this equation again needs to invert a n×n matrix, similar to the
primal solution of the Linear Regression problem. But again we can rewrite
it to make sure that the inversion only needs to be done on a l × l matrix.
In order to do this we must rewrite equation (1.15) in terms of w so that
we obtain

w = λ−1X′(y−Xw) = X′α, (1.21)

so that we again get the weightvector w in terms of a linear combination of
the training examples (l × l)

w =
l∑

i=1

αi · xi, (1.22)

with α = λ−1(y = Xw). We can then rewrite this equation as following

α = λ−1(y−Xw) (1.23)

λα = y−XX′α (1.24)

(XX′ + λIl)α = y (1.25)

α = (XX′ + λIl)
−1y (1.26)

α = (G + λIl)
−1y, (1.27)

which results in the following prediction function

g(x) = 〈w,x〉 =

〈
l∑

i=1

αi · xi,x

〉
=

l∑
i=1

αi 〈xi,x〉 = y′(G+λIn)−1k, (1.28)

where ki = 〈xi,x〉. It can be seen that the matrix XX′ is denoted as G,
which is also known as the Gram matrix. Both the Gram matrix and the
matrix (G+λIl) are of dimensions l×l so that the computational complexity
of the computing of its inverse will be a lot less than when computing the
inverse of (X′X + λIn) which has dimensions (n × n). This is because the
number of examples is limited most of the time, but the number of features
can be of that vast numbers that computing it with the primal method is a

6

CHAPTER 1. INTRODUCTION 1.2. SVMLIGHT

futile job. There’s one disadvantage, which is that the prediction of a new
example will always be more computationally expensive (O(nl)) versus the
O(n) of the primal solution. Nevertheless it shows that the dual solution
can offer huge advantages because of the reduction of required computations
to calculate the vector α.

1.2 SVMLight

The next algorithm is very similar to ours, with only small differences, which
we note when we encounter them. Again we consider a dataset with data-
points which have a set of features and a class label. One important dif-
ference to note is that this implementation solves a classification problem
instead of a regression problem, which means that the predicted value is ei-
ther 1 or -1 instead of being a real value with our implementation. Suppose
[4] there is some hyperplane that divides the positive and negative examples:

∀iyi(xi ·w + b)− 1 ≥ 0, (1.29)

where w is the normal to the hyperplane and | b | / || w || is the perpendic-
ular distance from the origin to the hyperplane, with || w || the Euclidean
norm of w (as mentioned in the last section). Next we define the margin
margin = d− + d+ where d+(d−) stands for the distance from the closest
positive(negative) example to the hyperplane separating the two classes of
datapoints. We can now formulate the problem as looking for the hyper-
plane that has the biggest margin, so that our distance between possible
predictions is as big as possible. To get a better picture of the mentioned
parameters consider Figure 1.21.

Figure 1.21 Principle of the Support Vector Machine

7

1.3. RLS - MULTICLASS CHAPTER 1. INTRODUCTION

Now we continue to the actual definition of the algorithm. Suppose we
assume that all datapoints in the training set satisfy the following equations:

x ·w + b ≥ +1 for yi = +1 (1.30)

x ·w + b ≥ −1 for yi = −1, (1.31)

which we can combine into the following inequality

∀iyi(xi ·w + b)− 1 ≥ 0, (1.32)

where we can intuitively see that if the prediction xi ·w + b is equal to the
actual class label yi the the inequality holds, namely (−1 ·−1)−1 = (1 ·1)−
1 = 0 ≥ 0. The solution to the problem now again lies in minimizing the loss
with respect to the w and b parameters so that the margin is maximized.
We can formulate this as:

min
f∈H

1

l

l∑
i−1

(1− yif(xi))+ + λ|| f ||2K , (1.33)

where (k)+ = max(k, 0) and λ|| f ||2K is the regularization parameter. If we
compare this formula with the one of the Dual RLS solution we can see that
they both use a similar formulation:

min
f∈H

1

l

l∑
i−1

V (yi, f(xi)) + λ|| f ||2K , (1.34)

where V (yi, f(xi)) is the function that is used to calculate the loss, which
is the squared error in RLS ((y − g(xi))

2) and (1 − yif(xi))+ in this case.
This kind of problem is called a convex quadratic programming problem, of
which a detailed description is not considered in this thesis. For a detailed
description we refer to [4].

1.3 RLS - Multiclass

So far in the thesis we discussed binary classification problems. However,
frequently the problem at hand requires considering more than two-class
classification - e.g. the case when the label y is chosen from the set Y of
cardinality k > 2. Several methods have been proposed to address this
problem. Most of these methods aim to reduce the multi-class classification
problem into a problem that deals with binary classes and then in some way
combines the obtained results. For instance, we can create a binary classi-
fication problem for each of the k classes. In this situation we consider the
examples y = l1 to belong to a positive class and all other examples having

8

CHAPTER 1. INTRODUCTION 1.3. RLS - MULTICLASS

class labels l2,...,k belonging to the negative class. This type of approach is
usually called one-versus-all [20].

There are other possibilities to deal with the multi-class learning prob-
lem, for example the all-pairs approach. In this case [11] we consider all
possible pairs of classes l1, l2 ∈ Y. We run the algorithm for these two
classes considering them as positive and negative ones, respectively. This
means that

(
k
2

)
hypothesis have to be generated and combined. Tibshirani

calls this the all-pairs-approach.
Finally there are more general suggestions how to treat multi-class clas-

sification problems. Initially proposed in [7] and later extended by Allwein
[1] the approach is know as ECOC - error correcting output codes. The main
idea behind this method is to construct a coding matrix M ∈ {−1,+1}k×c,
where c is some positive integer and where every row of the coding matrix is
associated with a single class l ∈ Y. The binary learning algorithm is then
run once for each column of the matrix on the induced binary problem in
which the label of each example labeled y is mapped to M(y, s). This gives
a number of prediction functions for each column of the matrix M, namely
fc. Now, given an example x, we then predict the label y for which row of
the matrix is closest to (f1(x) . . . fc(x)).

Allwein proposed a generalization of this approach, by allowing the cod-
ing matrix to contain also 0 elements in addition to −1,+1. By doing so they
suggest that some entries in the coding matrix constructed on all data points
M(y, s) may be zero, indicating that we are not interested how the predic-
tion function fs categorizes examples with label l. For every s = 1, . . . l the
algorithmA has labeled data in the form (xi,M(yi, s)) for all examples in the
training set and omitting all examples where M(yi, s) = 0. The algorithm
A uses this information to generate the prediction functions fs : X → R.

We also introduce the loss function similar to Allwein [1] so that fs on
example xi with the label M(yi, s) ∈ {−1,+1} is L(M(yi, s), fs(x)). When
M(yi, s) = 0 we simply want to ignore the appropriate prediction function,
and for convenience can select the loss to be equal to 0. The average loss
for all of the training examples can be written as follows:

1

nl

n∑
i=1

l∑
s=1

L(M(yi, s), fs(x))

Let us by M(r) denote the row of the coding matrix M constructed on the
training data points. Also we denote the prediction vector of the example
x as follows: f(x) = (f1(x) . . . fl(x)). The question to be raised is given
the predictions for a single example how can we determine the appropriate
class label? To answer this one can possibly come up with several methods,
however, here we follow Allwein who suggested to use so called loss-based
decoding. The basic approach here is to find which row corresponding to

9

1.3. RLS - MULTICLASS CHAPTER 1. INTRODUCTION

M(r) is ”closest” to the prediction vector f(x). Formally we need to find
the label which minimizes the distance d(M(r), f(x)). One way of doing this
is to compute the Hamming distance between these two vectors:

dH(M(r), f(x)) =
l∑

s=1

(1− sign(M(r), s), fs(x)))

2
,

where sign refers to the function sign(k), which returns −1 when k < 0, 0
when k = 0 and +1 when k > 0. This would correspond to the approach
proposed in [7]. However one can possibly ”improve” distance metric, this
by also taking into account the magnitudes of the differences between the
predicted labels and the appropriate rows of the coding matrix. Formally
we can write

dL(M(r), f(x)) =

l∑
s=1

L(M(M(r), s), fs(x)).

By using this approach together with joint kernel maps to deal with multi-
class classification problems we are able to show notably better performance
of our algorithm compared to several baseline methods.

1.3.1 Joint Kernel

In this section we briefly describe the joint kernel used in this study. We
intend to describe the algorithm and the approach in details in a separate
publication which is currently under preparation.

Joint kernel is a nonlinear similarity measure between input-output pairs,
i.e., J((x, y), (x′, y′)) where (x, y) and (x′, y′) are labeled training examples.
We can write:

J((x, y), (x′, y′)) = 〈ΦXY(x, y)ΦXY(x′, y′)〉,

where ΦYX is the map into dot product space. The function taking form
of the kernel as described above is positive definite and can be written as a
dot product.

As it can be seen in the definition above, the main idea behind the joint
kernel is to describe the similarity between input-output pairs by mapping
pairs into a joint space. A joint kernel can encode more than just information
about inputs or outputs independent of each other: it can also encode known
dependencies/correlations between inputs and outputs. Joint Kernels have
been already studied and several variations are proposed in [25]. In our
algorithm the joint kernels are used to construct the joint similarity space
between the input data point features and their multi-class encoding. One
of the kernels we use in our experiments is the following modification of
Gaussian:

10

CHAPTER 1. INTRODUCTION 1.3. RLS - MULTICLASS

JRBF ((x, y), (x′, y′)) = exp
− ||(x, y)− (x′, y′)||2

σ2
.

One can notice that we could define two separate similarity measures
(kernels) on inputs and the outputs (in this case the encoded labels of the
data points). However, it is more difficult for the algorithm to infer which
data points are related when providing this information separately. Also we
suggest several ways how to further improve performance of the method by
tweaking kernel function such that prior knowledge about particular dataset
is incorporated into the learning problem.

11

1.4. NAIVE BAYES CHAPTER 1. INTRODUCTION

1.4 Naive Bayes

In this section we take a look into the Naive Bayes algorithm, as also de-
scribed in [17]. It’s a technique which uses probability distributions to es-
timate the class of a datapoint. It does this by searching for the class for
which, given a set of attributes, the probability is highest. To make this
more concrete we can consider the following problem setting. Assume there
is a set of datapoints which each have a class label Y, which is also known as
the output variable, and a set of attributes X1, ...,Xn, the input variables,
which we assume to be conditionally independent from each other given Y.
This means that if we have the conditional distribution P(a | b, c) and a is
conditionally independent from b given c we can rewrite it to P(a|c), because
a does not depend on the occurrence of b. The reason why we assume this is
that it dramatically reduces the computational complexity by enabling the
possibility to write the distribution as a summation of the distributions of
its components. What this actually means will become clear later on this
page. To continue our description we assume a dependency of the class label
Y on its attributes X1, ...,Xn following the theory of probability estimation

P(Y | X). (1.35)

Finding the optimal probability and thus the correct class label can then be
formulated as

Ypredict = argmaxyP(Y | X)

= argmaxyP(Y = y | X1 = x1, ...,Xn = xn)

= argmaxy
P(X1 = x1, ...,Xn = xn | Y = y)P(Y = y)

P(X1 = x1, ...,Xn = xn)

= argmaxyP(Y = y)P(X1 = x1, ...,Xn = xn | Y = y)

= argmaxyP(Y = y)
n∑
i=1

P(Xi = xi | Y = y).

The third step is done according to Bayes Rule (P(A | B) = P(B|A)P(A)
P(B)), the

fourth step is possible because the denominator(P(X1 = x1, ...,Xn = xn))
does not depend on Y. The last step is the one where the conditional
independence makes it possible to rewrite the problem to reduce it’s com-
putational complexity, as mentioned above.

12

CHAPTER 1. INTRODUCTION 1.5. K STAR

1.5 K Star

The next algorithm that we examine is K Star, or K∗ for short, as explained
in [6], which uses entropy to calculate the similarity between two datapoints.
This intuitively means computing the complexity to transform one datapoint
into the other. A downside is that entropy only considers the shortest dis-
tance of all possible transformations between two datapoints, which results
in a distance that is very sensitive to small changes in that instance space.
To attack this problem K∗ considers a total distance of all transformations.
Having said that we come to the following definition of the algorithm:

Consider a set D of (possibly infinite) datapoints and T a finite set of
transformations on D. This means that each t ∈ T maps datapoints to
datapoints t : D : D. Also, T contains a so called stop symbol (σ) which
maps instances to themselves (σ(a) = a). Let C then be the set of all prefix
codes from T∗ which are terminated by σ. Now all members of T∗ and C
uniquely define the transformation

t(a) = tn(tn−1(...(t1(a))), (1.36)

where t = t1, ..., tn on D. Next we define a probability function p on T∗

which satisfies

0 ≤ p(tu)

p(t)
(1.37)∑

u

p(tu) = p(t) (1.38)

p(Λ) = 1, (1.39)

so that it satisfies ∑
t∈C

p(t) = 1. (1.40)

Next we can define the probability function P∗ as the probability from all
paths from datapoint a to datapoint b as

P∗(b | a) =
∑

t∈C:t(a)=b

p(t). (1.41)

And because we can prove that P∗ satisfies the properties∑
b

P∗(b | a) = 1 (1.42)

0 ≤ P∗(b | a) ≤ 1, (1.43)

we can define K∗ as

K∗(b | a) = − log2P
∗(b | a). (1.44)

13

1.6. RANDOM FOREST CHAPTER 1. INTRODUCTION

1.6 Random Forest

To finalize the descriptions of the used algorithms, the last one that we
consider is the one called Random Forest. Because this is an algorithm
that consists of a set of so called Decision Trees, we examine those first
and then get to the extension of that method, the Random Forest. As
described in[17], Decision Trees use a tree structure with nodes that have
a test for one of the attributes of a datapoint at each non-terminal node.
The branches that come from each node represent an answer to that test.
For each datapoint each attribute is checked and the associated branch is
chosen until it reaches a terminal node, which is also referred to as a ”leaf”.
That leaf decides to which class the datapoint belongs. To construct this
structure, we simply use a lot of datapoints from which the class labels are
known and save the values of the attributes as a path in the tree leading to
the leaf with that class label. As can be expected, these attributes can be of
different types, from Boolean values to ranges in real values. To make the
idea more apparent we consider an example as also written in [17]. Figure
1.61 shows a trained Decision Tree for a possible solution to the problem
when the weather conditions are suitable to play tennis.

Figure 1.61 Trained Decision Tree

As you can see there are three nodes: Outlook, humidity and wind, with
two answers each, yes or no, which means that this is a binary Decision Tree.
If the attributes of the datapoint, or in this case, the weather condition
(I.e. the set of attributes {Outlook, Humidity, Wind}) are checked and the
corresponding answers are chosen it will reach the class of that datapoint,
or in this case, the decision whether or not the weather is suitable to play
tennis.

14

CHAPTER 1. INTRODUCTION 1.6. RANDOM FOREST

Now that the idea of the Decision Tree is clear we can continue to the
Random forest, which uses exactly the same technique of deciding whether
a datapoint belongs to a certain class or not. Like described in [3] it now
simply constructs an arbitrary number of Decision Trees. It does this by
generating a random vector θk for each of the k trees. This vector is in-
dependent of the past generated random vectors θ1, ...,θk−1 but it has the
same distribution. This means that all random generated vectors are in
a vector space which has some defined distribution (normal,Gaussian,etc.).
Now a tree is constructed with the training set and this random vector θk,
so that we obtain a number of trees that all used a different vector to be
constructed, hence the name Random Forest. After we trained the tree we
can use the classifier h(x,θk) for each k, to classify the unknown datapoint,
also referred to as the input vector x. When we do this for each of the k
trees we can simply count votes and see which class label y is predicted most
frequently for that datapoint x.

15

1.6. RANDOM FOREST CHAPTER 1. INTRODUCTION

16

Chapter 2

Research

In this chapter we discuss the performed experiments and the associated
results, as well as the datasets being used. Because we compare the per-
formances of several algorithms on different datasets, this chapter is struc-
tured according to those comparisons. Also there is a division between the
actual algorithms and the results of the performed experiments. First we de-
scribe our algorithm and the SCOP (Structural Classification of Proteins)
dataset[18]. Second, we apply the algorithm to several datasets from the
LIBSVM website[5], so that we can compare our results with those of the
other algorithms. In the third section we describe the Python implemen-
tation of the wrapper for the SVMLight algorithm on the same datasets.
To finish the first part of this chapter we describe the algorithms from the
WEKA[10] program. The second part of this chapter consists of the ob-
tained results and the comparison between these results.

2.1 Experiments

As mentioned above, the first section of this chapter is about the experi-
ments, datasets and implementations which this thesis is based upon. We
use the programming language Python to implement the Regularized Least
Squares algorithm in two different ways, the first one is for the SCOP dataset
and the second to make it possible to run it on some datasets from the LIB-
SVM website. We also implement a Python script to run a ten fold version
of the SVMLight algorithm for a fair comparison. For the WEKA we choose
not to create a script because of the need for yet another programming lan-
guage called Jython.

17

2.1. EXPERIMENTS CHAPTER 2. RESEARCH

2.1.1 RLS on SCOP

The SCOP [18] database contains a detailed description of the structural
and evolutionary relationships between all proteins of which the structure is
known. Because almost all proteins have structural similarities with other
proteins and sometimes share a common evolutionary origin, this is an inter-
esting dataset to consider when we want to analyze relationships between the
class label and the features of a set of datapoints. Furthermore, the results of
these experiments can contribute to a better understanding of the evolution
of proteins. Because not all relationships can be identified automatically,
the SCOP is constructed manually by visual inspection and comparison of
structures. There are many levels in the hierarchy, but the principal levels
are family, superfamily and fold, as described below. The exact position of
boundaries between these levels is to some degree subjective, but the SCOP
evolutionary classification is generally conservative: where any doubt about
relatedness exists, make new divisions at the family and superfamily levels.

• Family : proteins are clearly evolutionarily related

• Superfamily: Probable common evolutionary origin

• Fold: Major structural similarity

As described in [15], the dataset consists of 54 families which each have at
least 10 family members (positive test examples) and 5 superfamily members
outside of the family (positive train examples). Negative examples are taken
from outside of the positive examples and are split into the training and test
sets in the same ratio as the positive examples. A more detailed description
of the SCOP dataset and the families is written in the second section of this
chapter, where we discuss the results.

18

CHAPTER 2. RESEARCH 2.1. EXPERIMENTS

We now describe our implementation of the Regularized Least Squares
algorithm. We start with the algorithm described in [24] and expand it so
it uses cross validation to find a prediction function that isn’t biased on the
test set, which means that it uses information from the test set to optimize
its parameters. Cross validation means that we divide the training set into
two parts, a cross validation- test and training set[8]. Then we run the
algorithm and save the performance measure for each chosen lambda. We
repeat this for the number of folds being used and average the performance
for each lambda over the number of folds. This intuitively means adding
all performance measures for each lambda together and dividing them by
the number of folds. Then we can use that lambda that has the highest
performance measure to create the real model, i.e. training the prediction
function with that one lambda on the full training set and evaluating the real
performance on the real test set. To find out which number of folds works
best on this kind of problem we try 5 folds, 10 folds and a pseudo-30 folds.
The latter is a technique where we use 10 fold cross validation three times,
and shuffle the training set before we start one of each three runs. The reason
that we do this is because to calculate our performance measure (AUC) we
need both positive and negative class members in the test set, and some
of the SCOP families do not have enough members(≤ 11) in their training
set to ensure this is the fact when we use more than 10 folds. This Area
Under Curve performance measure, or AUC for short, as described in[24],
is a measure that represents true positives as a function of false positives
for varying classification thresholds. When the classification is perfect, the
AUC will have a value of 1, if the classification is done random, the value
of the AUC measure will be 0,5. There is a more extended description in
the last part of this section. On the SCOP dataset we choose to use a linear
kernel because of the need of optimizing yet another parameter σ, which
is explained in the next section, where we use a Gaussian Kernel. The
reason why we choose to do this is that the SCOP database is of that vast
size that adding this extra optimization parameter results in increasing the
computational complexity by a notable amount, making computation times
even longer.

2.1.2 RLS on other datasets

Because of the size of the SCOP dataset, comparing our algorithm with other
machine learning algorithms using this dataset would be a time consuming
job. For this reason we choose to adapt our implementation so that it can use
datasets from the LIBSVM website [5], so that we have access to a variety
of datasets. Because of the possibility to choose smaller datasets, we can
optimize our algorithm even more by using the extra optimization parameter
σ as mentioned in the last section. The use of this Gaussian Kernel makes

19

2.1. EXPERIMENTS CHAPTER 2. RESEARCH

the algorithm more able to cope with non-linearly separable problems. The
difference between the linear kernel and the Gaussian kernel is that the
Gaussian doesn’t use the dot product K(x,x′) = 〈x, x′〉 to compute the
kernel matrix, but the equation

K(x,x′) = e−
(x−x′)2

σ2 , (2.1)

where σ is the new parameter that controls the width of the function. To
make this more apparent we consider the general Gaussian function

K(x,x′) = a · e−
(x−b)2

2c2 , (2.2)

which results in a characteristic symmetric ”bell curve” shape that is shown
in figure 2.1.1. The parameter a is the height of the curve’s peak(which is
one in our case), b is the position of the centre of the peak(the real class
value, x′), and c (σ/2) controls the width of the ”bell”.

Figure 2.1.1 Gaussian curve

What this means in our situation is that x is the predicted value, x′ is the
real value, and as a result the similarity measure produced by this function
is smaller when the value of σ is higher. This is because e−x is smaller if the
value of x is higher. To make a fairer comparison we choose to use several
datasets, five to be exact, named australian, diabetes, fourclass, ionosphere
and splice for the binary classification and six for the multiclass classifica-
tion. These datasets are called DNA, iris, vehicle, vowel, wine and glass.
The binary datasets are compared with all described algorithms and the mul-
ticlass datasets only with the multiclass implementation of SVMLight[13].
This is because of the good empirical performance of the SVMLight algo-
rithm and the similarity between that algorithm and our implementation.
An important note is that the AUC measure can not be used when evaluat-
ing multiclass predictions because of the form of the predictions, which we
describe in the separate section about the AUC performance measure. Thus,
we use another, simpler performance measure to measure the performance,
called the error rate, which is simply the number of false predictions divided
by the total number of predictions.

20

CHAPTER 2. RESEARCH 2.1. EXPERIMENTS

2.1.3 SVMLight

If we want to evaluate the performance of our algorithm, we need to have
a similar method with which we can compare it. The one we choose, SVM-
Light, is an efficient, well known algorithm, which has been shown to have
good empirical performance. To make a fair comparison we need to imple-
ment the same way of evaluating the performance. To do this, we use a
Python script to implement the optimizing of the parameters λ and σ, the
cross validation and the Area Under Curve measure (or error rate for the
multiclass) which we also use in our RLS. To make an even fairer comparison
we let our algorithm create files with the same training- and test sets that it
uses for it’s cross validation, so that we can use exactly the same test- and
training partitions for the SVMLight algorithm.

2.1.4 Bayes

WEKA is a program which contains a number of different machine learning
algorithms, a full list can be found here [10]. The reason why we choose to
use this program is the simplicity to use the LIBSVM datasets with different
kinds of algorithms without having to implement the methods. Because of
the low number of parameters on the Naive Bayes algorithm the optimizing
of the algorithm is easy. The first of the two Booleans is the use of a
kernel estimation for numeric values instead of a normal distribution. The
second is the use of supervised discretization to convert numeric attributes to
normal ones. Both are preprocessing parameters and do have an effect on the
performance. These two parameters are mutually exclusive, which means
that they can’t both be true. So this results in three different experiments,
one where both are false, one where the one is true and one where the other is
true. After we conduct these experiments we can simply get the output from
the program and use a script to calculate the AUC performance measure for
this algorithm.

2.1.5 K*

The second algorithm we use in our experiments does have some more pa-
rameters that can be set, like the globalBlend, missingMode and entropi-
cAutoBlend. The latter is a Boolean, the second is a 4 choice parameter
that determines how missing attribute values are treated and the first is an
integer in the range [0, 100]. Because of the need for another programming
language to write a script to optimize the parameters, we choose not to
consider every possible combination, but just optimize incrementally. This
means that we first choose the best performance for the minimum choice
(which is entropicAutoBlend or not), which results in two performance mea-
sures. When we see which gives the best performance we keep that setting

21

2.1. EXPERIMENTS CHAPTER 2. RESEARCH

and continue optimizing the next minimum choice, which is missing mode.
After we know the optimal choice for this parameter we continue to the op-
timizing of the last parameter, globalBlend, which we choose to do in steps
of 20, because the default value of this parameter is 20. This reduction in
optimization is because we conduct it manually, i.e. the entering of param-
eters, extracting predictions and using the same script as with Naive Bayes
to compute the AUC performance.

2.1.6 Random Forest

The last algorithm that we use in the experiments is also from the WEKA
program. The parameters that need to be optimized are: the maximum
depth of the trees, the number of features to be used in random selection,
the number of trees to be generated. There also is the random number seed,
which just makes sure that one can produce the same results by entering the
same random seed. Because the maximum depth can be unlimited and the
number of features can be set to random (and are by default) we optimize
using the number of trees first and then incrementally optimize the other
parameters using the optimal number of trees. This means that we take
a look into the effect of changing the number of features first and finally
optimize by changing the maximum depth. This way we try to reach optimal
performance without having to try each possible combination, which is a
futile job when no script is used.

2.1.7 AUC

In this section we describe the performance measure which we use to compare
the performance of the different techniques. This is because this measure
has been proven to be a better performance measure than accuracy[16].
AUC[2], as mentioned above, stands for Area Under Curve. The curve that
is being referred to is the Receiver Operating Characteristic curve, or ROC
for short. This curve details the rate of true positives against false positives
over the range of possible threshold values for a prediction function f , with
the area under that curve (AUC) being the probability that a randomly
chosen positive example(x+) has a higher decision value than a randomly
chosen negative example(x−). This can also be expressed as

AUC(f) = P (f(x+) > f(x−)), (2.3)

and refers to the true distribution of positive and negative examples. This
comes down to that this comparison of decision values is done for each
combination of examples. Which means that for each positive example, it is
checked that it’s higher than each negative example and for each negative
value it’s checked if it’s lower than each positive example.

22

CHAPTER 2. RESEARCH 2.2. RESULTS

2.2 Results

In the last part of this chapter we describe the results that we obtained
from our experiments. Similar to the last section we divide these in the
way that we conduct our comparisons. First, we consider our results of the
experiments on the SCOP dataset, using the different cross validation meth-
ods and the normal use (biased on the test set). Second, we compare our
algorithm with the SVMLight algorithm on both the binary and multiclass
classification problems and in the third section we compare our results with
the other machine learning algorithms described in this thesis.

2.2.1 SCOP

Like mentioned in the last section this dataset consists of 54 families, which
each are a classification problem. The detailed information about the fam-
ilies is described in the tables 2.2.1a and 2.2.1b, which can also be found
in [15].

Table 2.2.1a SCOP Family details

23

2.2. RESULTS CHAPTER 2. RESEARCH

Table 2.2.1b SCOP Family details

The reason we choose this dataset is that it’s an extensively used one and
the improvement on classifying this dataset can influence the development
of better techniques for those who are active in this field of research. To
achieve a fair prediction, we choose to let the machine learning algorithm be
unbiased with respect to the test set. This means that the construction of
the model is only dependent on the training set, of which the class labels are
not known. This can result in a worse performance than when not using this
technique, but it is fairer because we only consider the real relationship be-
tween the features and the class label and does not optimize with knowledge
of the class label. One reason performance can significantly drop is when
there is no clear link between the class and the features either due to a lot of
noise in the dataset or due to the true absence of a relationship. The latter
comes down to the point of looking for a relationship where it doesn’t exist,
which could be found if we use a biased prediction function that uses infor-
mation about the class labels of the real test set to construct its model. As
said in the last chapter, we implemented 30-pseudo-fold cross validation to
improve performance, because we thought that the performance might sta-
bilize when we obtain better averaged parameters by shuffling the dataset.

24

CHAPTER 2. RESEARCH 2.2. RESULTS

Unfortunately, after trying it out on a small family and seeing no improve-
ment we dropped the idea and don’t present any results about that. Instead
we focused on the comparison between the biased algorithm and the five and
ten fold ones. We present the results of these experiments below in table
2.2.2. As mentioned above, a score of 0.5 means that the predictions are
done randomly, and a score of 1 means the predictions are done perfectly.

Table 2.2.2 SCOP Results

If we use a graphical representation to present the performances for each
family we get the following separate plots:

SCOP 5 fold Results

25

2.2. RESULTS CHAPTER 2. RESEARCH

SCOP 10 fold Results

SCOP biased Results

This results in a joint plot where the families are not uniquely identified
but where the performance ratings are ordered in descending order to ensure
a clear overview of the comparison between the different techniques, which
is presented below in figure 2.2.3.

Figure 2.2.3 SCOP all Results

26

CHAPTER 2. RESEARCH 2.2. RESULTS

As we can see, the 10 fold performs significantly better than the 5 fold,
but doesn’t perform as well as the normal biased mode of predicting class
labels. This can be accounted to the noise in that particular family or to the
fact that there’s no apparent relation between the features of the datapoints
and their corresponding class labels. If there were enough datapoints avail-
able we could improve the performance of the cross validation approach by
increasing the folds used to attain a better estimate of the prediction func-
tion. To research the true cause of this drop in performance one could use
other algorithms to build a model for these families to see if it’s a problem in
the dataset or not. In [15], they also find an outlier family on which results
are notably worse using their method (SVM-pairwise). The reason why the
biased algorithm isn’t affected by this is that this is optimized using the real
test set, so that it recognizes relationships which aren’t apparent when only
considering the examples in the training set. Also, this performance could
be improved by using a Gaussian Kernel, so that relationships that aren’t
being considered by this approach (linear kernel) are found. The reason
why we did not do this, as mentioned above, is the notable increment in
computational complexity, because of the need to optimize with respect to
yet another parameter.

27

2.2. RESULTS CHAPTER 2. RESEARCH

2.2.2 RLS vs. SVMLight

This section consists of two parts, one being the comparison between our
binary algorithm and the SVMLight algorithm, and the other being the
comparison between the proposed multiclass algorithm and the SVMMulti
implementation. One parameter that isn’t fair in our comparison between
the multiclass algorithms is the fact that we use a Gaussian Kernel and the
SVMMulti uses a linear kernel. This is because the SVMLight/SVMMulti
algorithm can only use a Gaussian kernel when the problem is reformulated
into multiple binary classification problems. Because of this the SVMMulti
does not perform as well when considering datasets which are non-linearly
separable. One could also implement a linear kernel to make the comparison
more fair, but this thesis aims for an improvement in practical applicability.
Because of this reason we decide to make the limitations and possibilities of
each technique as clear as possible.

First we consider the binary problems where we use the Area Under
Curve (AUC) to determine the performance of the two different algorithms.
As mentioned before in this section, we want the value to be as close to one
as possible, which means that the predictions are as precise as possible. The
results of the experiments on the binary classification problems are presented
in table 2.2.4.

Table 2.2.4 AUC RLS vs. SVMLight

It can be seen that the performance of the algorithms is almost the same,
with some really small variation on three of the five experiments and com-
pletely the same result on the remaining two experiments. Because of the
similarity of the algorithms, we can expect to see similar results on a prob-
lem being analysed by both the Least Squares Ridge Regression and the
SVMLight algorithm. These experiments confirm this expectation, so that
we have a nice baseline for the comparisons with the other algorithms.

Second we consider the multi-class problems, which results in table 2.2.5,
containing the Error rates for each problem, which should be as close to zero
as possible, since it is the number of false predictions divided by the total
number of predictions.

28

CHAPTER 2. RESEARCH 2.2. RESULTS

Table 2.2.5 Error rates RLS vs. SVMMulti

As you can see most of the performances of our algorithm are reasonable,
except the glass and the vehicle problems. The SVMMulticlass performs no-
tably worse on all datasets but one, which can probably be accounted to the
use of a Gaussian Kernel with our method. This is because a Gaussian kernel
results in an algorithm that is more able to handle with nonlinear separabil-
ity in datasets. The reason why one particular dataset gets a better result
on the SVMMulticlass is not completely apparent and could be researched
further. The reason why the two other datasets get such bad results can
probably be accounted to the strange or absent relationship between the
class label and the attributes.

2.2.3 RLS vs. Rest

To finalize our research, we present the results of the experiments with the
other methods that we used, again comparing them with our results on
those particular datasets. Because the WEKA program doesn’t provide the
AUC score, but rather outputs an average performance over 10 folds, we
implemented a Python script to compute the AUC values ourselves using
the output predictions produced by WEKA. We consider table 2.2.5, with
the results for all algorithms. The performances in that table are optimized
as described in the previous section. This again are AUC scores, which
means that 0.5 is a random prediction and 1 is a perfect one.

Table 2.2.5 AUC RLS vs. Rest Optimized

It can be seen that the performance depends on the dataset that is being
analyzed. This is because each algorithm uses his own methods to detect
the relationships. This is exactly the reason why we try to consider as many

29

2.2. RESULTS CHAPTER 2. RESEARCH

different datasets as possible. Another important thing to note is that the
most problems from the LIBSVM website are relatively easy compared to
a dataset like SCOP. This means that the relationship between the class
labels and the features is mostly linearly separable. This is probably the
reason that the performance of the researched algorithms is similar to the
performance of the Regularized Least Squares algorithm on most datasets.
On the Diabetes dataset there is a notable drop in performance probably
because this problem is more difficult.

30

Chapter 3

Conclusion

We present an algorithm that can be used for both binary and multi-class
classification. The latter is done using a joint kernel approach. We show
that it has similar results as the other machine learning algorithms that
we research, and even significantly outperforms them on one dataset. This
is probably because of the fact that this dataset is non-linearly separable.
We have also shown that it slightly outperforms SVMLight on all the cho-
sen binary datasets but one. In terms of computation time it was hard to
compare the performance of the two algorithms, mainly because we used
different computers to compute the results. Next to that would the compar-
ison not be completely fair because the SVMLight algorithm is optimized
extensively and our implementation is not. One thing we can consider is the
computational complexity of both algorithms, which is O(qlf) for each iter-
ation of SVMLight[12], where q is the number of rows in the Hessian matrix,
l is the number of training examples and f is the maximum number of non-
zero features in any of the training examples. For RLS the complexity[14]
of calculating α is O(n3), where n is the number of features. The disadvan-
tage is that these complexities are not that suited for comparison because
of the different variables that influence them. Nevertheless, one could run
all algorithms on the same computer and compare the computation time
needed for each one. With respect to the memory use one can say that
the algorithms need more memory as the problems get larger, where more
than 1 GB is no exception (on a SCOP family), but a precise comparison
is not considered in this thesis. The comparison of the multiclass part also
resulted in a notable better performance of the Regularized Least Squares
algorithm. One can say that this comparison isn’t completely fair because
of the fact that the SVMMulti algorithm doesn’t support a Gaussian kernel
unless it splits up the problem in multiple binary classification problems. To
counter that, one can say that the possibility to use a Gaussian kernel grants
permission to use one. One could always implement our algorithm with a

31

CHAPTER 3. CONCLUSION

linear kernel to compare those results. We also research the performance of
the algorithm on the SCOP database, on which we also get stable results
on most families. Some do give an AUC of under 0.5, which can probably
be accounted to the non-linear separability of those families, or the absence
of a real relationship between the features and the class labels. The rea-
son why the normal version did get all AUC scores above 0.5 is probably
because this algorithm is biased on the test set, meaning that it uses the
test data to optimize the parameters. Another reason could be that we do
not use a Gaussian kernel while researching SCOP because of the increase
of computational complexity when optimizing the σ parameter. Because of
the increase of computational power this could be an interesting extension
to be researched in future work.

32

Chapter 4

Appendix

4.1 Python

In this section we give a brief description of the programming language
Python, which we use to implement all our code. The goal of this section
is not to give a full overview of all the functions, which can be found on[9],
but to give someone who is familiar with imperative programming an idea
how the language is built up.

Python is a very clean language, which is very easy to learn when one
knows C++ or Java. It uses a simple syntax that’s the same on all basic
control structures. It also uses the modularity by enabling the possibility
to use different files (filename.py) for the different classes. One downside is
that debugging has to be done manually, with a lot of output to the console
screen. We begin with the hello world program, which can not be more
intuitive:

print ”hello world” or print ’hello world’

As we can see there is no semicolon and Python does it with both (”) and
(””). To get a better idea of the complete structure next we will consider
the basic statements, like the conditional statement:

if condition:
body

elif condition:
body

As we can see there is again no semicolon, the structure of the statement is
only done with the indent in the body of the if statement. The condition
can be an (in)equality, a Boolean or a concatenation of those using one of
the keywords and or or. The elif condition: can also be replaced by else: if

33

4.1. PYTHON CHAPTER 4. APPENDIX

you don’t want to use another condition. Next we have the for-loop, which
can be used in different ways making it very convenient to work with:

for element in list:
body

This just picks each element from a list, which can either be a real list
or a string (which essentially is a list of characters), and assigns it to the
element variable. Another nice thing is that Python does all the typing of
the variables for you, if you assign something(y) to a variable x, that variable
x will get the same type as y, overwriting the old type. The second way to
use the for loop is with the index of the list, where we can again also use it
to identify the index of a character in a string:

for index in range(0,len(list):
body

It’s important to note that the names index, element and list are arbi-
trary and that body is a way to denote another statement. len(), on the other
hand, is a function from Python. All statements that you want to be inside
the for loop need the same indentation in the beginning as the last statement
in that for loop. If you want to exit the loop you just begin the statement
on the same indent as the for statement itself. This works the same with all
functions. Another important function of a programming language, espe-
cially in our case, is to read and write files, which is also very easy in Python.
One simply decides what to do with the file (read,(over)write,append) and
choose the corresponding parameter for option (‘w’ for write, ‘r’ for read, ‘a’
for append). Write creates a file if it doesn’t exist and read and append will
give an error if it doesn’t exist. Write will also overwrite if the file exists.
Now one can simply use the function

file = open(filename, option)

and then use lines = file.readlines() to read or file.write(string) to write (a
string!) to a file. The function readlines() returns a list with all the lines in
the file.

34

CHAPTER 4. APPENDIX 4.2. ALGORITHM

4.2 Algorithm

This section does not consist of an overview of the code, because there is so
much code that it would become a mess. Instead, the code is available on
request and this section describes how to use the different scripts that we use
to research the algorithms. Because all is written in Python, you will need
the Python program (http://www.python.org/), as well as the NumPy pack-
age (http://numpy.scipy.org/). NumPy is the fundamental package needed
for scientific computing with Python.

4.2.1 RLS on SCOP

For this script we can run the program by entering

python Run.py from to folds

Here from is the family where the algorithm starts, to is the family until
where the algorithm will run and folds is the number of folds used. Where
from ∈ [2, 54], to ∈ [3, 55] and folds is 1, 5 or 10, 1 being normal, 5 and
10 being 5 and 10 fold cross validation. The program outputs several files,
on the cross validation first of all it creates a folder for the family being
considered, 1 file for each fold, containing a list of AUC scores for each
lambda and one file with the final lambda and the AUC score on the real
test set. On the normal mode it creates a single file with all AUC scores
and another script can be run to calculate all the maximum AUC scores for
all families in families.info by typing

python AUC curve.py

4.2.2 RLS on Rest

To run the RLS algorithm on other datasets from the LIBSVM website[5],
both binary and multi-class the methods are the same. There are two ways
to run the program, either using

python Run.py
or using

python Rls auc.py x

Where Run.py runs it for all problems and the latter uses x, an integer vari-
able, which in our binary script can range from 0 to 4, to choose one of five
problems. In the multi-class script it can range from 0 to 5, because there are
6 multi-class problems which we consider. If one wants to use the latter way,
the file Rls auc.py has to be edited slightly by removing the comment symbol,
(#), before the line #filechoice = int(sys.argv[1]) #first argument (choose file).

35

4.2. ALGORITHM CHAPTER 4. APPENDIX

To change the datasets that are being used one can simply edit the same file
and assign other names to the filename variable. This script uses one input
file and next to creating an output file .out, it also creates the input files for
the SVMLight and SVMMulti scripts. As mentioned above, this works on
both the binary and the multiclass classification script.

4.2.3 SVMLight and SVMMulti

The SVMLight wrapper consists of two files, one to train the algorithm
and the second to run the real performance test. The first one, called by
python SVMLightWrapper.py, runs the algorithm for all problems in the
list subprobs[]. The second one, called by python SVMLightWrapperTest.py,
does the same but now does it only once, and uses the parameters in the lists
lambdas and sigmas, which have to be entered manually. This script uses in-
put files created by the binary RLS script and creates one file results $name$
where $name$ is the name of the problem. It also creates a .model file for
each fold. There’s also a file named SVMLightWrapper(linear).py, which can
be used to run the SVMLight algorithm with a linear kernel. The SVMMulti
wrapper works the same, but here there is no possibility to use a Gaussian
kernel.

36

Bibliography

[1] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing
multiclass to binary: a unifying approach for margin classifiers. Journal
of Machine Learning Research, 1:113–141, 2001.

[2] Ulf Brefeld and Tobias Scheffer. Auc maximizing support vector learn-
ing. In In Proceedings ICML workshop on ROC Analysis in Machine
Learning, 2005.

[3] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[4] Christopher J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–
167, 1998.

[5] Chih-Chung Chang and Chih-Jen Lin. Libsvm. http://www.csie.

ntu.edu.tw/~cjlin/libsvm/.

[6] John G. Cleary and Leonard E. Trigg. K*: An instance-based learner
using and entropic distance measure. In ICML, pages 108–114, 1995.

[7] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learn-
ing problems via error-correcting output codes. Journal of Artificial
Intelligence Research, 2:263–286, 1995.

[8] Bradley Efron and Gail Gong. A leisurely look at the bootstrap, the
jackknife, and cross-validation. The American Statistician, 37(1):36–48,
1983.

[9] Python Software Foundation. Python documentation. http://docs.

python.org/.

[10] Eibe Frank, Mark Hall, and Len Trigg. Weka. http://www.cs.

waikato.ac.nz/ml/weka/.

[11] Trevor Hastie and Robert Tibshirani. Classification by pairwise cou-
pling. In NIPS ’97: Proceedings of the 1997 conference on Advances in

37

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://docs.python.org/
http://docs.python.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

BIBLIOGRAPHY BIBLIOGRAPHY

neural information processing systems 10, pages 507–513, Cambridge,
MA, USA, 1998. MIT Press.

[12] Thorsten Joachims. Making large-scale support vector machine learning
practical. pages 169–184, 1999.

[13] Thorsten Joachims. A support vector method for multivariate perfor-
mance measures. In Luc De Raedt and Stefan Wrobel, editors, Proceed-
ings of the 22nd International Conference on Machine learning, volume
119 of ACM International Conference Proceeding Series, pages 377–384,
New York, NY, USA, 2005. ACM Press.

[14] Shawe-Taylor John and Cristianini Nello. Kernel Methods for Pattern
Analysis. Cambridge University Press, June 2004.

[15] Li Liao and William Stafford Noble. Combining pairwise sequence sim-
ilarity and support vector machines for detecting remote protein evolu-
tionary and structural relationships. Journal of Computational Biology,
10(6):857–868, 2003.

[16] Charles X. Ling, Jin Huang, and Harry Zhang. Auc: a statistically con-
sistent and more discriminating measure than accuracy. In IJCAI’03:
Proceedings of the 18th international joint conference on Artificial intel-
ligence, pages 519–524, San Francisco, CA, USA, 2003. Morgan Kauf-
mann Publishers Inc.

[17] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[18] Alexey G. Murzin, John-Marc Chandonia, Antonina Andreeva, Dave
Howorth, Loredana Lo Conte, Bartlett G. Ailey, Steven E. Brenner,
Tim J. P. Hubbard, and Cyrus Chothia. Scop. www.bio.cam.ac.uk/

scop/.

[19] K. B. Petersen and M. S. Pedersen. The matrix cookbook, oct 2008.

[20] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classifica-
tion. Journal of Machine Learning Research, 5:101–141, 2004.

[21] Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares
classification. In Advances in Learning Theory: Methods, Models and
Applications, volume 190. IOS Press, 2003.

[22] Ryan Michael Rifkin. Everything Old is New Again: A Fresh Look at
Historical Approaches in Machine Learning. PhD thesis, MIT, 2002.

[23] Johan A K Suykens, Tony Van Gestel, Jos De Brabanter, Bart De
Moor, and Joos Vandewalle. Least Squares Support Vector Machines.
World Scientific Publishing, Singapore, 2002.

38

www.bio.cam.ac.uk/scop/
www.bio.cam.ac.uk/scop/

BIBLIOGRAPHY BIBLIOGRAPHY

[24] Evgeni Tsivtsivadze, Jorma Boberg, and Tapio Salakoski. Locality ker-
nels for protein classification. In Raffaele Giancarlo and Sridhar Han-
nenhalli, editors, Proceedings of the 7th International Workshop on Al-
gorithms in Bioinformatics, (WABI 2007), pages 2–11. Springer, 2007.

[25] Jason Weston, Bernhard Schölkopf, and Olivier Bousquet. Joint ker-
nel maps. In Joan Cabestany, Alberto Prieto, and Francisco Sandoval
Hernández, editors, IWANN 2005, Vilanova i la Geltrú, Barcelona,
Spain, June 8-10, 2005, Proceedings, Lecture Notes in Computer Sci-
ence, pages 176–191, 2005.

39

ISBN ?
ISSN 1239-1883

	Introduction
	RLS - Binary
	Linear Regression
	Regularized Regression

	SVMLight
	RLS - Multiclass
	Joint Kernel

	Naive Bayes
	K Star
	Random Forest

	Research
	Experiments
	RLS on SCOP
	RLS on other datasets
	SVMLight
	Bayes
	K*
	Random Forest
	AUC

	Results
	SCOP
	RLS vs. SVMLight
	RLS vs. Rest

	Conclusion
	Appendix
	Python
	Algorithm
	RLS on SCOP
	RLS on Rest
	SVMLight and SVMMulti

