
Rahisi
simple web development

Marlon Baeten

June 21, 2010

Bachelor Thesis Computer Science
Radboud University Nijmegen
Supervisor: Pieter Koopman
Student number: 0609765
Course code: IBI006

Abstract

There are many frameworks and languages designed for the development of
web applications. Most of these are intended to be as generic and universal
as possible and can be used for any type of web application. This property
requires a high expressiveness and the availability of many functionalities. The
more expressiveness and functionalities a system has, the more complex and
incomprehensive it gets. For simple and small web applications this adds an
overhead.
Rahisi offers a solution to this problem. It focusses purely on simple web
applications. In Rahisi a web application can be defined using three small
definition languages. In each languages a clearly separated part of the system
is defined. The use of these dedicated languages result in a comprehensible
and easy to learn system, in which a simple web application can be defines
with a minimal amount of code. The anticipated disadvantage is the limited
expressiveness and small set of functionalities of Rahisi .

Contents

1 Introduction 3
1.1 The aim . 3

1.1.1 Comprehensible . 3
1.1.2 Fast development . 4
1.1.3 Easy maintenance . 4
1.1.4 Small learning curve . 4

1.2 Architecture . 4
1.2.1 The MVC principle . 4
1.2.2 Request handling . 5
1.2.3 Responsibilities . 6
1.2.4 Security . 6
1.2.5 Dependencies . 6

1.3 Principles and techniques . 6
1.3.1 The MVC architecture and loose coupling 7
1.3.2 Relational database . 7
1.3.3 The semantic web . 7
1.3.4 DRY principle . 7

1.4 Out of the scope . 7
1.4.1 Efficiency . 7
1.4.2 The front end . 8
1.4.3 Client side scripting . 8
1.4.4 Complex queries and database schemes 8
1.4.5 Large scale web applications 9
1.4.6 Non trivial data processing 9
1.4.7 Custom architectures . 9

1.5 Example application . 9

2 The model 12
2.1 Structure . 12
2.2 Definition . 13

2.2.1 Types . 13
2.2.2 Form validation . 14
2.2.3 Options of classes . 14
2.2.4 Relations between classes 15

2.3 Complete model of the blog example 15
2.4 Structure of a class definition 16
2.5 Grammar . 17

1

Contents 2

3 The controller 18
3.1 Definition . 18

3.1.1 Routing . 18
3.1.2 Responses . 19
3.1.3 Queries . 19
3.1.4 Save and delete . 20
3.1.5 Standard statements . 21
3.1.6 Special functions . 21

3.2 Complete controller of the blog example 21
3.3 Custom code . 22
3.4 Grammar . 22

4 The view 24
4.1 Syntax . 24
4.2 Statements . 24
4.3 Templates of the blog example 25
4.4 Grammar . 27

5 Implementation 28
5.1 Technologies . 28

5.1.1 Python . 28
5.1.2 Apache . 28
5.1.3 SQLite . 28

5.2 The model . 29
5.3 The controller . 29
5.4 The view . 29
5.5 Deployment . 30

6 Related work 31

7 Conclusion 32

2

Chapter 1

Introduction

The internet is a dynamic and fast evolving platform. Together with the
constantly changing internet, change the techniques that make it possible to
develop new web applications, or to modernise existing ones. There are dozens
of programming or scripting languages to choose from. On top of them dozens
or even hundreds of frameworks have been created to streamline the develop-
ment and maintenance of a web applications.
This thesis will describe yet another way to develop web applications. Rahisi
is designed with a clear goal in mind: to make the development of simple web
applications as fast, easy and with the least code as possible. These objec-
tives are achieved by designing three small definition languages. A model-, a
controller- and a template language. These will be described in chapters 2, 3
and 4
In this chapter we will describe the aim-, the architecture-, the principles and
techniques- and everything out of the scope of Rahisi .

1.1 The aim

The aim of Rahisi narrows down to be the perfect trade-off between the
amount of code needed to develop a web application and the expressiveness of
the system. The amount of code that is needed, has an almost direct relation
with the comprehensibility, development speed, the ease of maintenance and
the learning curve of the system.
The following paragraphs will explains these aims in more detail.

1.1.1 Comprehensible

In order to be of any use a system needs to be comprehensible. If a system is
comprehensible each step in the development phase becomes less complicated.
For example, when a system is easy to understand less errors will be made
during the implementation. Errors will cause extra effort in the testing phase;
they need to be detected, traced and repaired. There are also less obvious
benefits of a comprehensible system, like the happiness of the programmer.

3

1.2. Architecture 4

1.1.2 Fast development

The speed of a development process is a crucial characteristic to the success of
certain development process or technique. The time spend on the development
of a web application has a direct impact on the money that is spend. Another
argument to make the development process as fast as possible is the fact that
it makes it easier to cope with changing requirements. The time-to-market is
another important factor.

1.1.3 Easy maintenance

The time spend on maintenance is often underestimated [3]. Easy maintenance
can lower the time and thereby the costs of maintenance. If a system is complex
or has a confusing structure, the time that is spend to correct, update or adjust
even a tiny part can be far out of proportion. Small websites, like the website
for a student association, are often managed by many different people over
time. A lot of time and frustration are saved with a system that is easy to
maintain.

1.1.4 Small learning curve

Even with a dedicated web framework in a well known scripting language, web framework a
software framework
designed to make
common web
development tasks easier

building a small website can take a lot of time. When the developer is new to
a particular framework, most of the time is spend on reading documentation
and tutorials. Such a system could be an advantage for a professional web
developer that needs a lot of functionalities and flexibility. For a simple website
it is easier to have a smaller set of functionalities. Less functionalities and
flexibility can achieve a smaller learning curve. A small learning curve has
a direct influence on the maintainability and the speed of the development
process.

1.2 Architecture

1.2.1 The MVC principle

The architecture of Rahisi is based on the MVC principle for web applica-
tions like demonstrated in [1, 2]. There are many interpretations of the MVC
principle for web applications. Rahisi uses the one that is shown in figure 1.1.

4

1.2. Architecture 5

Browser Controller Model

View

Templates

Database

Server

Figure 1.1: MVC architecture

In figure 1.1 a schematic overview of the architecture of Rahisi is given. The
server stands for the web server which handles HTTP request and responses web server a program

that serves content
using the HTTP over
the World Wide Web

for Rahisi . In the scheme above Rahisi is a part of this server, it generates
content that the web server serves.

1.2.2 Request handling

A typical request is handled as followed:

• The client (web browser) sends a HTTP request to the server. The HTTP a
request-response bases
application layer
protocol often used to
request en send HTML
pages

server deliveries the request to the controller of a certain Rahisi web
application.

• The controller maps the request to a certain webpage. It sends one or

webpage a document
or other resource of
information that is
accessible trough a web
browser

more request for data (queries) to the model. The controller only queries
the data that is needed on the requested page.

• The model fetches the needed data from the database and passes it to
the controller.

• The controller passes the data to a template that is assigned to the
specified webpage.

• The template merges the dynamic data and a static webpage layout and
returns the result to the controller.

• The controller than passes the resulting webpage using the web server
back to the client (web browser).

5

1.3. Principles and techniques 6

1.2.3 Responsibilities

Controller
The controller is a function. As input it receives a HTTP request, the
output is a HTTP response. Another responsibility is to map a request
to a certain action or webpage. The controller also has to manipulate action part of the

controller that defines
the manipulations on
the models and the
needed views for a
certain request

the model, based on the request. It is responsible for storing data in
the model that is send with a request, and to query the model for data
that is needed in the view. The controller is also responsible for the
invocation of the needed template(s).

Model
The model is the definition and representation of the dynamic data in
a web application. It implements a uniform access and definition of
the data. Before data is stored in the database, the model has the
responsibility to validate the data.

View
The view consist of a set of templates. Templates are rendered to create
a representation of the data in one ore more formats. A typical example
is a HTML template that renders a webpage around the dynamic data
that is passed from the controller.

1.2.4 Security

The only way the security of a web application build in Rahisi can be com-
promised, and on which Rahisi has any influence, is input data. Input data,
is data send with a HTTP request. Malicious data can only influence the web
application when it is stored in the database. The only way to prevent mali-
cious data to be stored in the database is by validating it. The model in Rahisi
has extensive validation capabilities. These validation will be executed for all
data that is stored in the database. When decent validations are specified in
the model, the security of a Rahisi web application is assured.

1.2.5 Dependencies

In order to understand the operation of Rahisi it is important to know that
the definition of a web application in Rahisi is compiled before deployment.
In the compiling process Python [9] code is generated. The generated code
together with the code that handles the basic operation of Rahisi , compose
an interpretable web application. This web application operates within a web
server. The fact that Rahisi code is translated to Python code is important
to know for certain details in Rahisi , at which we will come back later.

1.3 Principles and techniques

The following subsections will enumerate the most important principles and
techniques of Rahisi .

6

1.4. Out of the scope 7

1.3.1 The MVC architecture and loose coupling

The MVC architecture was originally implemented in the programming lan-
guage Smalltalk. Nowadays, it is a commonly used pattern both in GUI ap-
plications, as in web applications. There are a lot of different flavours of the
architecture, but the most important property is the separations between a
model, a view and a controller. By giving these components clear responsibil-
ities and have them coupled loosely, the system gains a lot of flexibility.

1.3.2 Relational database

Rahisi uses a database based on the relational database model as a storage relational database
model of industry
standard database
software, in which data
is organised in tables
that often match with
real world objects

for data. Naturally there are many other ways to store data, but the flexibil-
ity, efficiency and widespread support of relational databases makes them a
suitable choice for Rahisi .

1.3.3 The semantic web

The semantic web [4] is the development on the World Wide Web, to make
information on webpages not only readable by humans, but also easy to parse
by computers. As stated in [4] this development will bring a variety of new
possibilities, like querying and combining information that can be found on
websites.
Rahisi is designed with the semantic web in mind. The loose coupling between
data (the model) and the representation of data (the view) makes it easy to
create new representations that are machine readable. For example: de posts
on a blog can be viewed on a HTML page, but without changing the model
or even the controller this information can also be presented in a XML RSS
feed [6].

1.3.4 DRY principle

The DRY principle (Do not Repeat Yourself) [7] states that duplicate code
must be avoided. Duplicate code or definitions can introduce a lot of errors,
make maintenance harder and cost extra time during development.

1.4 Out of the scope

In order to achieve the goals that are listed section 1.1, trade-offs have to be
made. In this section some of these trade-offs and constraints of Rahisi are
further explained.

1.4.1 Efficiency

Efficiency is not a important characteristic for Rahisi . Real optimisations and
fine-tuning is vital when a web applications has to serve thousands of visitors
every hour. In contrast to small web applications, that often have a small
amount of visitors. In addition a lot of resources can be saved by caching . caching storing

common accessed data,
like webpages, to boost
performance

There are plenty of caching systems that can save resources if they are low in
a certain environment.

7

1.4. Out of the scope 8

1.4.2 The front end

The front end of a web application means everything within the scope of design
or usability. The design is by good practice separated from the content of a
HTML page. For example in a separate CSS stylesheet. The front end of HTML markup

language for webpages

CSS language to define
the look and formatting
of documents written in
markup languages

a website is often done by different developers (or designers) than the ones
that develop the back end. This is not surprising: front-end development is
another discipline than back-end development. In addition to possible other
aims like aesthetics or style, usability is an important factor for the front
end of a web application. Once a system, that also controls the back end,
makes assumptions about the front end, a designer or a usability expert can
be obstructed. That is why Rahisi is not focussed on the front end. Another
important reason to separate the front end from the back end, is the need to
separate data (or content) and representation, like stated in subsection 1.3.3.

1.4.3 Client side scripting

In Rahisi a clear choice is made about the partitioning of a web application: partitioning the
separation of the code
between the client (web
browser) and the server

client side code is only used to enhance the user interface, thus for usability. In
a large part of the websites today client side code is used sole for this purpose.
In [1] a system is proposed that makes it possible to make the partitioning
decisions as late as possible in de development process. This can have a lot
of benefits. A reason to partition more responsibilities to the client, could
be performance. For example: it could be more efficient to let a browser
search trough a list of names instead of sending a new request to the server
and executing a query on the database. As stated before, efficiency is not
important for Rahisi , therefore the possibility of a late partitioning decision
is not needed. Note that the choice could be made to send more data to
the browser than the amount that is directly displayed, to make the web
application more responsive. This is however a usability choice.
In Rahisi there is the ability to add client side code to templates, but Rahisi
has no special features with respect to client side scripting.

1.4.4 Complex queries and database schemes

A relational database is managed with SQL. Using SQL, a database schema SQL standardised
language designed to
manage data in
relational databases

can be defined, a dataset can be queried and many other task can be done,
like managing database users and privileges.
With SQL, extensive database schemes can be defined. Rahisi limits the
possibilities when defining such a scheme. This is done for example in the
amount of datatypes as we shall see in chapter 2.
Within SQL there are many techniques to select data from a database. The
more complex a database structure, or application, the more complex queries
can grow. For a straightforward, simple web applications these are seldom
needed. The types of SQL queries most often used are listed below.

• Select all rows, optionally with an offset, a limit and an order of the
result.

• Select rows given the criteria of the item above, and a certain search
expression.

8

1.5. Example application 9

• Select statistics like the maximum, minimum, count or average of a cer-
tain field in the database, with an optional search expression.

There is no need to specify a join in a SQL query because they are done join a SQL statement
to combine two or more
tables in a database

automatically when a foreign key is specified in Rahisi . Chapter 3 will give a

foreign key a
referential constraint
between two tables

more precise definition of these queries.

1.4.5 Large scale web applications

One of the aims of Rahisi is to implement simple web applications (like a small
blog for example). This means that large scale web applications, that are often
more complex or need a whole other structure, are out of the scope of Rahisi .
Rahisi limits the scale of the web application not by the size of the dataset
that is accessible trough the web application, but by the complexity of the
dataset. This is simply limited by the complexity of a database query, which
has to be possible to define in Rahisi . By focussing only small and simple
web applications, a smaller set of functionalities is needed. This has a lot of
advantages, like a small learning curve and a more comprehensible system.

1.4.6 Non trivial data processing

A small or mediate website is often primarily focussed on information sharing.
The difference between just sharing information and for example the extraction
of information out of data, is the data processing involved. In Rahisi there
are functionalities to render a piece of text to valid HTML or to translate
a date to the preferred format. There is no possibility within the system to
define new, custom ways to manipulate and modify data. This possibility will
make the language, in which the controller or the view is defined, a lot more
complex. Therefore it is out of the scope of Rahisi .

1.4.7 Custom architectures

The MVC architecture is the basis of Rahisi . In order to reach the aims
stated in section 1.1 this architecture can not be changed. The possibility
to construct a custom or more complex architecture will obstruct important
characteristics of Rahisi , like a small learning curve or the comprehensibility
of the system. For example, an architecture in which the database can be
queries from template files, has to support some kind of SQL expression in
the templates. This will compromise the loose coupling between the controller
en the view that is described in subsection 1.3.1. Therefore the developer is
obligated to work according to the MVC principle.

1.5 Example application

In order to describe and demonstrate Rahisi from now on, an example web
application is used. This application is a basic blog that enables the owner to
write new blog entries, and lists these entries (possibly separated over several
pages).
Summarised, the blog application consists of the following functionalities.

9

1.5. Example application 10

• Display the most recent articles spread over several pages.

• Display the most recent articles of a certain category, spread over several
pages.

• Add a new article.

In the example there are certain, more or less vital parts of the web application
left out on purpose:

• authentication In order to only allow the owner of the blog to post new
articles some way of authentication has to be implemented. Although
it is relatively straightforward to implement a basic authentication in
Rahisi , in the example application this is left out to make it less clut-
tered.

• client side scripting Like stated in subsection 1.4.3 client side scripting
is by a convention of Rahisi only used for the user interface, therefore
it has nothing to do with the operation of Rahisi . That is why it is left
out of the example.

Figure 1.2: Blog home

In figure 1.2 the homepage of the blog is illustrated. On the homepage the
latest articles and their meta information, like tags or a publication date, are tags keywords or terms

assigned to pieces of
information

shown. To display this page, Rahisi needs to fetch the latest articles from the
model. On the page a link is visible that enables the visitor to browse trough
older articles.

10

1.5. Example application 11

Figure 1.3: Add blog entry

In figure 1.3 the HTML form is shown that enables the author(s) of the blog to
add an article to the blog. This form can be reached by entering the associated
URL in the address bar of the web browser (http://www.example.com/add). URL Uniform Resource

Locator, a label for a
certain information
resource on the web

Most fields are common text input fields, except for the tag field. The tag field
enables the author(s) to add or delete multiple tags using a list of comma-
separated values.

11

Chapter 2

The model

The model is a definition and representation of the dynamic data that is acces-
sible trough a web application. It implements a uniform access, and definition,
of the data. The model can be seen as an abstraction to the database of the
application.
In Rahisi the name ‘model’ both identifies the component of the system that
implements the abstraction to the database, and the associated definitions of
data in the database.
In Rahisi the model is only accessible trough the controller. The way model
data is selected or queried will be described in chapter 3. In this chapter an
overview will be given of the syntax and semantics of the model.

2.1 Structure

In Rahisi an abstraction is made on top of SQL. Repetition of information,
or code, is a bad thing (see subsection 1.3.4). Therefore a ‘database table’ is
only defined once. With an abstract table definition in Rahisi , a class, a class
validation and a database table are created.
In order to understand the structure of the model, we will first define the
terminology:

• The model is the part of Rahisi that implements a uniform access, and
definition, of the dynamic data of a web application.

• The model consist of multiple classes that specify the fields of a set of
records that share these properties. A class can be directly mapped to
a table in the database.

• A record is a concrete data instance of a particular class. A record can
be directly mapped to a row in a database table.

• A field is the name and type of a particular value in a record that is
specified in the class of that record.

12

2.2. Definition 13

In addition to fields, in a class also extra options of that class and relationships
to other classes are defined. Classes in Rahisi are comparable with classes in
a OOP language, with the difference that there are no methods or inheritance OOP stands for Object

Oriënted Programming,
a programming
paradigm that uses data
structures consisting of
data fields and methods
called objects

in a Rahisi class. Records could be compared with instances of classes in a
OOP language.
Classes have two main responsibilities: storing data, and maintaining data
integrity. This last responsibility is realised in two ways:

• For each field a datatype is specified. This type will be converted to
an appropriate database field type, that also makes the data storage
efficient.

• Optionally the keyword ‘required’, ‘unique’, or a regular expression regular expression
string of characters
written in a formal
language that offers a
precise and flexible way
to match a text by a
pattern

can be added to a field definition. Together with the field type, these
options are used to verify data after a form submission. If a posted form

form submission the
event of sending data in
a HTML form via
HTTP to a web server

does not contain data in the required format of the class, it will not be
stored in the database.
For example: when a new article is submitted in the example application,
without a title specified, an error is shown, and the new post is not added.

2.2 Definition

The syntax of a class is based on YAML [5]. YAML is a serialisation standard
that form a very suitable basis for the syntax of classes in Rahisi . This is
because it is well readable for both humans and machines, and it has very
little syntactical overhead. These characteristics are consistent with the aims
of Rahisi , stated in section 1.1.

2.2.1 Types

The model of the blog application consists of three classes, namely post, tag
and category. The definitions of the fields in these classes is shown below.
For the illustration of the functionalities of a class, the classes of the example
application will be presented in parts. A complete overview of the example
classes will be given after this section.

1 Post :
2 author : s t r i n g (150)
3 t i t l e : s t r i n g (150)
4 body : t ex t
5

6 Tag :
7 name : s t r i n g (100)
8

9 Category :
10 name : s t r i n g (100)

The post class consist of three fields. After the name, the type of the field
is specified. The fields author and title have type string(150). This mean
that they are stored as a sequence of characters with a maximum of 150 char-
acters. The field body has the type text, this means that it can hold a large

13

2.2. Definition 14

sequence of characters, the limit of the amount of characters is dependent of
the database implementation.
In subsection 1.4.1 we assumed that efficiency is not important. This is why
Rahisi does not offer the choice between datatypes like TINYINT, SMALLINT,
MEDIUMINT, INT or BIGINT. These help a database to store integers of a certain
size as efficiently as possible. In Rahisi only the type int is available.
Another choice that is made with respect to table definitions is the fact that
all rows are identified with a unique identifier. This identifier is a extra integer
field called id. The value of this field will be automatically incremented for
each new row that is inserted in the database. That makes the definition of a
another primary-key unnecessary. Rahisi still offers the functionality to define primary-key

constraint on a database
table, used to ensure
that each row in a table
can be uniquely
identified

a field as unique, as we shall see in section 2.4.

2.2.2 Form validation

In the following code example, after the types of the fields author and body
the keyword required is added. This keyword tells Rahisi that in each record
of class post these field are not allowed to be empty.
After the type of field title a regular expression is added. With a regular
expression a more complex and precise verification can be specified. In this
example the field title has to consist of al least 2 and up to 150 characters
that either are alphanumeric, a underscore, a space or a comma. For a precise alphanumeric a

alphabetic or a numeric
character

definition of the regular expressions that can be used in Rahisi , see [10].

1 Post :
2 author : s t r i n g (150) , r equ i r ed
3 t i t l e : s t r i n g (150) , ' [\w,]{2 ,150} '
4 body : text , r equ i r ed
5

6 Tag :
7 name : s t r i n g (100) , '\w{2 ,100} '
8

9 Category :
10 name : s t r i n g (100)

2.2.3 Options of classes

Besides the field definition, a class can have another special field, called op-
tions. In this field two possible extra functionalities can be specified (timed
and comma-separated). These options make it faster and easier to add com-
mon properties of a class.
The post class has the option timed. This keyword instructs Rahisi to add
two extra fields to the class: a created and a updated field. The created field is
set to the current date and time when a new records is created. The updated
field is set to the current date and time every time the record is changed. The
created and updated fields are not shown in the class, but can be addressed
either in the controller, when querying a certain class, or in the view, to dis-
play them.
The option comma-separated adds the functionality that one or more records

14

2.3. Complete model of the blog example 15

can be stored from a single string of comma separated values. In the exam-
ple the tag class has the option comma-seperated. When a post record is
fetched, the tags also can be viewed as a comma separated list. This saves the
developer a lot of code.

1 Post :
2 opt ions : timed
3

4 Tag :
5 opt ions : comma−separated

2.2.4 Relations between classes

As we shall see in chapter 3, when a record of the class post is fetched from
the database, also all associated tags, and a category is fetched. These so
called relations are specified with two keywords has_one and has_many. The
has_one relation specifies that the class can have a relation with zero or one
record of the class that is specified after the keyword. The has_many relation
specifies that the class can have a relation with zero or more records of the
class that is specified after the keyword. For example, a post can have an
arbitrary amount of tags.

1 Post :
2 has one : Category , r equ i r ed
3 has many : Tag
4

5 Tag :
6 has many : Post
7

8 Category :
9 has many : Post

Typically when a post is added, one or more keywords and a category are
added to.

2.3 Complete model of the blog example

1 Post :
2 opt ions : timed
3 author : s t r i n g (150) , r equ i r ed
4 t i t l e : s t r i n g (150) , ' [\w,]{2 ,150} '
5 body : text , r equ i r ed
6 has a : Category , r equ i r ed
7 has many : Tag
8

9 Tag :
10 opt ions : comma−s epera ted
11 name : s t r i n g (100) , '\w{2 ,100} '
12 has many : Post
13

15

2.4. Structure of a class definition 16

14 Category :
15 name : s t r i n g (200)
16 has many : Post

2.4 Structure of a class definition

The model consist of a set of class definitions. Each class is declared with a
name (starting with a upper case character). The following attributes can be
specified in a class:

• Field
A field consist of a field name and a type. The possible types are:

a) int Integer value.

b) float Real number value.

c) string(n) String with maximum length n.

d) text Text field.

e) date Date field.

f) datetime Date and time field.

g) enum(values) An enum field can only contain one of the specified
int or string values.

Optionally the following properties can be added to a field:

a) required The field may not be empty.

b) unique The field has to hold a unique value between all records in
the database.

c) regex A specified regular expression that validates the field.

• Option
Option is a special keyword. After this keyword the following options
can be specified to add functionality to the class:

a) timed The class automatically adds the created and updated fields.

b) comma-separated When a class only consist of one string field,
the keyword comma-separated adds the possibility to add multiple
entries, separated by a comma, at once. When the class plays a
has_many role in another model, it also can be fetches as a comma
separated list.

• Relation
After the keywords has_one and has_many a relationship with a certain
class can be specified.

a) has one A record has at most one relation with a record of the
specified class name.

b) has many The record has zero or more relations with a record of
the specified model name.

16

2.5. Grammar 17

2.5 Grammar

All grammars in this thesis will be given in a from resembling the Backus
Naur Form [8]. All literal strings are surrounded by double quotes. Some
nonterminal symbols have no further production rules in this grammar, these
are explained below in natural language.

• <number> an integer number, such as -1 or 42.

• <string> a string of characters, without spaces or newlines.

• <regex> a Python regular expression (surrounded by quotes) [10].

• <field name> and <class name> strings that identify relatively a field
and a class.

〈model〉 → 〈class name〉 ":" 〈newline〉 〈field〉 〈newline〉 〈newline〉
〈field〉 → 〈field〉 〈newline〉 〈field〉 |
〈field name〉 ":" 〈space〉 〈type〉
["," 〈space〉 〈field option〉] |
"options:" 〈space〉 〈option〉 |
"has one:" 〈space〉 〈class name〉 |
"has many:" 〈space〉 〈class name〉

〈type〉 → "int"| "real"| "string(" 〈number〉 ")"
"text"| "date"| "datetime"| "enum(" 〈enum value〉 ")"

〈option〉 → 〈option〉 "," 〈space〉 〈option〉 |
"timed" | "comma-separated"

〈field option〉 → 〈field option〉 "," 〈space〉 〈field option〉 |
"required" | "unique" | 〈regex〉

〈enum value〉 → 〈enum value〉 "," 〈space〉 〈enum value〉 | 〈string〉
〈newline〉 → 〈opt-space〉 〈newline〉 | "\n"
〈space〉 → 〈space〉 〈space〉 | " "

〈opt-space〉 → 〈space〉 | ""

17

Chapter 3

The controller

The controller is a function. As input it receives a HTTP request and the
output in a HTTP response.
When a user pushes a link or a button on a Rahisi web application, or when
a URL to a Rahisi web application is entered in the address bar of the web
browser, the browser sends a HTTP request to the web server. The web
server passed this request to the controller. The controller manipulates the
model, fetches data from the model and invokes templates. In other words,
the controller handles all user requests and input of the web application.

3.1 Definition

In this section the functionalities of the controller in Rahisi is explained with
the use of the example application. The example controller is presented in
parts. On the end of this section a complete overview of the example controller
is given.

3.1.1 Routing

The routing of the controller, defines what piece of code will be executed after
a user pushes a button or enters a URL in the web browser.
In the controller each route is assigned with an action.

• An action is a set of commands that will process the data that is needed
to display a page, it defines the manipulations on the model and the
needed templates for a certain request.

• A route resembles a URL after the (top level) domain name, also called
a path. A route differs from a path in the fact that it can contain
variables.

A variable in a route is specified with a colon directly after a slash. This way
a certain action can be triggered with one or more variables. For example,
in the blog application a certain page can be viewed by requesting the URL
http://www.example.com/page/2. In the route /page/:page_number the
name starting with a colon matches all values until the next slash, or end of
the route, and stores this value in a variable with the same name. In this

18

3.1. Definition 19

case a variable named page number is created with the value 2. Examples of
request statements are shown below.

1 Request : /page / : page number
2

3 Request : / category / : category name

When a HTTP request is made Rahisi will try to match the requested path
with a specified route (after the keyword Request). When a path matches
more than one route, the first is chosen (the first match from the top). This is
why the next code example matches all request that are not matched by any
of the previous routes:

1 Request / : o therw i se
2 Response : 404 e r r o r

3.1.2 Responses

At the bottom of each action a response is specified. A response consist of one
or more names of templates, optionally preceded with a HTTP status code.
Standard the HTTP status code will be 200 (OK), other common responses,
like 404 (Not Found) or 500 (Internal Server Error), have to be specified
explicitly. For example see line 2 of the code above.

3.1.3 Queries

In an action often one or more models are queried. For example:

1 Request : /
2 view . pos t s = Post . g e tA l l (10)
3 Response : index

In the example above, the last 10 records are fetched from the model post.
These are assigned to the variable view.posts. By preceding the variable
with ‘’view.’ the variable is automatically accessible in all view templates
that are invoked by the action.
Possible queries in Rahisi are shown below. Brackets indicate that the enclosed
parameter is optional.

• getAll([limit [, offset [, order]]])
Fetch all records.

• getWhere([where[, limit [, offset]]][, order])
Fetch all records, given a certain search criterium.

• getCount([where])
Return the amount of records selected, given a certain search criterium.

• getStat(sum/avg/min/max, field [, distinct [, where[, order]]])
Return a statistic.

The parameters that are used in these queries specify the following:

• limit An integer value specifying, the maximum amount of records that
need to be fetched.

19

3.1. Definition 20

• offset An integer value specifying, the offset from where the next records
have to be fetched, in the current ordering.

• order A field name and a direction to order the results by. For example
‘’created desc’ fetches records ordered by the creation date and time
descending from new to old ones. Standard, records are ordered by the
order that they are stored, but than reversed.

• where A statement consisting of the logical combinators (and, or, not),
field names and variables, equality operators (=, !=, <, >, <=, >=, %=)
and parentheses to change priorities. These equality operators are used
in many programming languages and mathematics, except for %=, which
matches strings according to a certain definition. This definition can
contain a wildcard in the form of a percent character. This wildcard
matches on all characters. The statement "Arthur Dent" %= "%Dent"

will therefore result in the boolean value true.

The following parameters are used in the getStat query:

• sum/avg/min/max Respectively select the total sum, the average, the
maximum or the minimum from a specified field. This only works on
fields of type integer.

• field The field to calculate the statistic from.

• distinct The field to group the elements by.

In Rahisi queries can be applied to each others result. In the next code
example this is illustrated with the resulting posts of a certain category.

1 view . pos t s = Category . getWhere (name = category name) .
Post . g e tA l l (10)

The query ‘Category.getWhere(name = category_name).Post’ returns a set
of post records. The query ‘.getAll(10)’ selects the last 10 items from this
set.

3.1.4 Save and delete

With the functions save and delete one can add, modify or delete records in
the database. They can be applied in the controller to a specified model.
The function save adds a new record to the model, given the data in the
current HTTP request. This data is always coming from a HTML form. If
the identifier of a record is specified in a request, the thereby identified record
will be updated with the data available.
The delete function expects one parameter, namely the identifier of the record
that needs to be deleted.
Both the functions save and delete return the boolean value true on success
and false when an error occurred.

20

3.2. Complete controller of the blog example 21

3.1.5 Standard statements

In the controller, common programming statements can be used, like assign-
ment, arithmetic operations and conditional statements. In the next example
arithmetics are combines with an assignment.

1 o f f s e t = i t ems per page ∗ page number

The following code illustrates a conditional statement.

1 i f Post . save () :
2 view . message = 'New post saved . '
3 Response : index
4 e l s e :
5 view . message = ' Error in form . '
6 Response : add

3.1.6 Special functions

Besides normal statements and operations the following special functions can
be used in a controller action. Brackets indicate that the enclosed parameter
is optional.

• setCookie(name, value[, expire]) Instruct the browser of the client
via a HTTP response to store a cookie with the specified name, value cookie a text string

that is stored by a web
browser and returned in
a HTTP request every
time the browser
requests a page of the
server that sent the
cookie

and expiration time and date.

• getCookie(name) Return the value of the specified cookie.

• mail(to, from, subject, body) Send an email message to the specified
recipient.

• hash(value) Return the hash of a certain variable. This function is hash the result of an
one-way function that
takes an arbitrary block
of data and returns a
fixed-size bit string

often used to increase security in the web application.

3.2 Complete controller of the blog example

1 i t ems per page = 10
2

3 Request : /
4 view . pos t s = Post . g e tA l l (i t ems per page)
5 Response : index
6

7 Request : /page / : page number
8 o f f s e t = i t ems per page ∗ page number
9 view . pos t s = Post . g e tA l l (i t ems per page , o f f s e t)

10 Response : index
11

12 Request : / category / : category name
13 view . pos t s = Category . getWhere (name = category name)

. Post . g e tA l l (i t ems per page)
14 Response : category

21

3.3. Custom code 22

15

16 Request : / category / : category name /page / : page numer
17 o f f s e t = i t ems per page ∗ page number
18 view . pos t s = Category . getWhere (name = category name)

. Post . g e tA l l (i t ems per page , o f f s e t)
19 Response : category
20

21 Request : /add
22 Response : add
23

24 Request : post /add
25 i f Post . save () :
26 view . message = 'New post saved . '
27 Response : index
28 e l s e :
29 view . message = ' Error in form . '
30 Response : add
31

32 Request / : o therw i se
33 Response : 404 e r r o r

3.3 Custom code

Rahisi deliberately has limited functionalities. In order to still define oper-
ations that are not possible by default, Rahisi has the possibility to define
custom Python code or custom SQL queries. To define custom code, a curly
brace has to be inserted, followed by the language that is used (Python or
SQL). For example, the following statement could be inserted in an action to
transform a string to uppercase: {python string = string.uppercase()}.
This functionality is not included in the grammar of the controller, because it
is an extension of Rahisi .

3.4 Grammar

The grammar of the controller language is given in the same syntax as the
grammar in section 2.5. The nonterminals explained in section 2.5 are also
applicable, in addition to the nonterminal below.

• <view name> a string that identifies a view template.

〈controller〉 → 〈constant〉 〈newline〉 〈newline〉 〈action〉
〈constant〉 → 〈constant〉 〈newline〉 〈constant〉 |

〈variable〉 〈space〉 "=" 〈space〉 〈expression〉
〈action〉 → 〈action〉 〈newline〉 〈newline〉 〈action〉 |
〈request〉 〈newline〉 〈statement〉 〈newline〉 〈response〉

〈request〉 → "Request:" 〈space〉 〈route〉
〈route〉 → 〈route〉 〈route〉 |

"/" [":"] 〈string〉
〈response〉 → "Response:" [〈space〉 〈http response〉]

22

3.4. Grammar 23

〈space〉 〈view name〉
〈statement〉 → 〈variable〉 〈space〉 "="

〈space〉 〈expression〉 〈newline〉 |
"if" 〈space〉 〈boolean expression〉 〈space〉 ":" 〈newline〉
〈statement〉
["else:" 〈newline〉 〈statement〉 "fi" 〈newline〉]

〈expression〉 → 〈variable〉 | 〈math expression〉 |
〈string manipulation〉 | 〈model expression〉 |
"("〈boolean expression〉")"

〈model expression〉 → 〈class name〉 "." 〈query〉
〈query〉 → 〈query〉 "." 〈class name〉 "." 〈query〉 |

"getAll(" [〈number〉 ["," 〈space〉 〈number〉
["," 〈space〉 〈order〉]]] ")" |
"getWhere(" 〈where〉 〈space〉 ["," 〈space〉 〈number〉
["," 〈space〉 〈number〉 ["," 〈space〉 〈order〉]]] ")" |
"getCount(" [〈where〉] ")" |
"getStat(" 〈stat〉 〈space〉 〈field name〉
["," 〈space〉 〈field name〉 ["," 〈space〉 〈where〉
["," 〈space〉 〈order〉]]]")" |
"save()" | "delete(" 〈number〉 ")"

〈order〉 →〈order〉 "," 〈space〉 〈order〉 |
〈field name〉 〈space〉 "asc" | 〈field name〉 〈space〉 "desc"

〈where〉 → "(" 〈where〉 ")" |
〈field name〉 〈space〉 〈rel. operator〉 〈space〉 ":" 〈variable〉 |
〈where〉 〈space〉 "and" 〈space〉 〈where〉 |
〈where〉 〈space〉 "or" 〈space〉 〈where〉 |
"not" 〈space〉 〈where〉

〈boolean expression〉 → 〈variable〉 |
"(" 〈boolean expression〉 ")" |
〈boolean expression〉 〈space〉 〈rel. operator〉
〈space〉 〈boolean expression〉 |
〈boolean expression〉 〈space〉 "and"
〈space〉 〈boolean expression〉 |
〈boolean expression〉 〈space〉 "or"
〈space〉 〈boolean expression〉 |
"not" 〈space〉 〈boolean expression〉 | 〈math expression〉

〈rel. operator〉 → "=" | "<>" | "<" | ">" | "<=" | ">=" | "%="
〈math expression〉 → "(" 〈math expression〉 ")" |

〈math expression〉 〈space〉 〈math operator〉
〈space〉 〈math expression〉 |
〈number〉 | 〈variable〉

〈math operator〉 → "+" | "-" | "*" | "\" | "**" | "%"
〈variable〉 → 〈quote〉 〈string〉 〈quote〉 | 〈string〉 | 〈number〉
〈quote〉 → """

〈newline〉 → 〈opt-space〉 〈newline〉 | "\n"
〈space〉 → 〈space〉 〈space〉 | " "

〈opt-space〉 → 〈space〉 | ""

23

Chapter 4

The view

The view consist of a set of templates. Templates are rendered to create a
representation of the data passed by the controller, in possibly one ore more
formats.
A typical template is a HTML file that renders a webpage around the dynamic
data that is passed by the controller.

4.1 Syntax

View templates can consist of all possible unicode characters, with one ex- unicode industry
standard for the
consistent
representation of almost
all characters of all
languages

ception. Curly braces are ‘special’ characters used by Rahisi to define the
location of dynamic content in the document. To get around this restriction,
two curly braces can be used. From the point in the text that two curly braces
are opened, all curly braces will be left alone, until two closing curly braces
are encountered.
Like stated before, between curly braces dynamic content can be specified.
Examples of dynamic content are variables, manipulated variables or an other
template that needs to be inserted. The following section will give a descrip-
tion of the statements that can be used in a template.

4.2 Statements

Functions in a template need to be placed between two curly braces.

• {if condition} .. {else} .. {end}
Conditional statement. The else clause is optional.

• {variable.raw}
Return the preceded variable raw, without automatic HTML escaping . HTML escaping

convert characters and
structure in text so that
it will be displayed
correctly on a HTML
page

All other variables will be escaped, so that they are rendered properly
on a HTML page.

• {partial view name}
Render and insert a view template.

• {variable.format(date format)}
Format a date or a date and time.

24

4.3. Templates of the blog example 25

• {foreach(set as variable)} .. {end}
Loops trough a dataset for each row in that dataset, wile assigning a
specified variable to the current value in that dataset.

4.3 Templates of the blog example

In the example below the index template is shown. This template is invoked
to display the home page of the blog. The only code that is present in this
template invoke other templates: a header template, a template to display
blog posts, etcetera. The first line is a HTML comment with the filename of
the template.

1 <!−− index . t p l −−>
2 { p a r t i a l header }
3 { p a r t i a l post }
4 { p a r t i a l pag inat ion }
5 { p a r t i a l f o o t e r }

The following example contains a variable. A variable is a string (without
spaces) surrounded by curly braces, and is assigned in the controller. The
view will standard escape text variables, so that proper HTML is inserted.

1 <!−− category . t p l −−>
2 { p a r t i a l header }
3 <h2>{category}</h2>
4 { p a r t i a l post }
5 { p a r t i a l pag inat ion }
6 { p a r t i a l f o o t e r }

The next template holds a few new functionalities. On line 2 the {foreach(..)}
structure will loop trough every element in the dataset posts. In every iter-
ation the variable post will be assigned to a new row. Everything between
the foreach statement and the end of the loop, indicated with {end} will be
repeated in the resulting webpage.
On line 5 the variable post.created that holds a date and time is formatted the
the specified date format with the {format(..)} function.
On line 8-10 everything between the {if ..} and the {end} statements are
only shown if the variable category name is set.

1 <!−− post . t p l −−>
2 { f o r each pos t s as post }
3 <div>
4 <h3>{post . t i t l e }</h3>
5 <p>By {post . autor } on {post . c r ea ted . format (d−m−Y)}</

p>
6 <p>{post . body}</p>
7 <p>Tags : {post . tags}</p>
8 { i f category name}<p>Category : { category name}</p>{

f i }
9 </div>

10 {end}

25

4.3. Templates of the blog example 26

The next template combines the if control structure and variables with arith-
metic operations.

1 <!−− pag inat ion . t p l −−>
2 <p>Go to page :
3 { i f pagenumber > 1}<a h r e f =”/{ i f category name } category

/{ category name }/{ end}page /{pagenumber − 1}”>Previous
{end}

4 <a h r e f =”/{ i f category name } category /{ category name }/{
end}page /{pagenumber + 1}”>Next

5 </p>

The following code holds a HTML form, which is used to add a new entry to
the blog.

1 <!−− add . t p l −−>
2 { p a r t i a l header }
3 <h2>Add post</h2>
4 <form ac t i on=”/add” method=”post”>
5 <p>Author : <input type=”text ” name=”author ” /></p>
6 <p>T i t l e : <input type=”text ” name=” t i t l e ” /></p>
7 <p><t ex ta r ea name=”body”></textarea></p>
8 <p>Category : <input type=”text ” name=”category ” /></

p>
9 <p>Tags : <s e l e c t s i z e =”10” name=”tags [name] ”

mu l t ip l e=”mul t ip l e”></s e l e c t ></p>
10 <p><input type=”submit” value=”Submit” /></p>
11 </form>
12 { p a r t i a l f o o t e r }

When a page is requested that does not exists, a HTTP 404 response is re-
turned. In addition the following HTML page is returned, that displays the
error in the browser of the client.

1 <!−− e r r o r . t p l −−>
2 { p a r t i a l header }
3 <h2>Error</h2>
4 </p>Page not found .</p>
5 { p a r t i a l f o o t e r }

The following templates hold the header and the footer of the blog. These are
needed to generate a proper HTML page.

1 <!−− header . t p l −−>
2 <!DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1.0

T r a n s i t i o n a l //EN”
3 ” http ://www. w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd

”>
4 <html>
5 <head>
6 <t i t l e >Blog</ t i t l e >
7 </head>
8 <body>

26

4.4. Grammar 27

9 <h1>Blog</h1>
10 { i f message}<p>{message}</p>{end}

1 <!−− f o o t e r . t p l −−>
2 </body>
3 </html>

4.4 Grammar

The following grammar uses the same syntax as the model and the controller
grammars. The nonterminals explained in section 2.5 and 3.4 are also appli-
cable, in addition to the one below.

• <date format> a date format string, given the directives of the Python
strftime function [11].

〈template〉 → 〈text〉
〈text〉 → 〈text〉 〈text〉 |

〈string〉 | "\n" | " " | 〈statement〉
〈statement〉 → "{foreach" 〈variable〉 〈space〉 "as"

〈space〉 〈variable〉 "}" |
"{if" 〈boolean expression〉 "}" | "{else}" | "{end}" |
"{" 〈variable〉 "}" | "{partial:" 〈space〉 〈view name〉 "}"

〈variable〉 → 〈math expression〉 |
〈variable〉 "." 〈manipulation〉 |
"range(" 〈number〉 ["," 〈space〉 〈number〉
["," 〈space〉 〈number〉]]] ")" |
〈string〉 | 〈string〉 "." 〈string〉 | 〈number〉

〈manipulation〉 → "substr(" 〈number〉
["," 〈space〉 〈number〉]]")" |
"date(" 〈date format〉 ")"

〈boolean expression〉 → 〈variable〉 |
"(" 〈boolean expression〉 ")" |
〈boolean expression〉 〈space〉 〈rel. operator〉
〈space〉 〈boolean expression〉 |
〈boolean expression〉 〈space〉 "and"
〈space〉 〈boolean expression〉 |
〈boolean expression〉 〈space〉 "or"
〈space〉 〈boolean expression〉 |
"not" 〈space〉 〈boolean expression〉 | 〈math expression〉

〈rel. operator〉 → "=" | "<>" | "<" | ">" | "<=" | ">=" | "%="
〈math expression〉 → "(" 〈math expression〉 ")" |
〈math expression〉 〈space〉 〈math operator〉
〈space〉 〈math expression〉 |
〈number〉 | 〈variable〉

〈math operator〉 → "+" | "-" | "*" | "\" | "**" | "%"
〈space〉 → 〈space〉 〈space〉 | " "

27

Chapter 5

Implementation

This chapter will give a description off the implementation of Rahisi . First,
the languages and software that is used to implement Rahisi is introduced.
Second, an explanation of the implementation of the model, controller and
view will be given. The general idea of Rahisi is that the files that define the
view, the model and the controller are first compiled to a program, separated
over several Python scripts. This program is embedded in a web server. The
result is a working web application.

5.1 Technologies

5.1.1 Python

Rahisi is implemented using Python to translate Rahisi code to new Python
code. The language Python is chosen because of the high level of abstraction
and the availability of many applicable libraries. Examples of the libraries
used in Rahisi are the PyYAML library, to parse YAML class definitions, or
the mod python [15] module that embeds Rahisi in the Apache web server
[16]. Another candidate language that also offers these possibilities is PHP,
but the fact that is is weakly typed and the lack of decent parsing libraries,
makes Python a better choice.

5.1.2 Apache

Apache is the most used web server [17]. Due to the wide range of function-
alities, and the fact that it is open-source, the popularity of Apache keeps
growing. The possibility to integrate a Python application seamlessly within
the Apache web server makes it an obvious choice for Rahisi . In a Rahisi
website, all the static content is directly served to the client by the Apache static content all

content on a webpage
that is not dynamically
generated, .i.e. all
images, stylesheets and
documents used or
accessible trough the
website

web server. All requests to non-static content are generated by the Python
scripts of Rahisi , and served by Apache.

5.1.3 SQLite

The database implementation used by Rahisi is SQLite [18]. SQLite is open-
source database management system that can be integrated within Python in
many ways. SQLite is the suited database for Rahisi due to good performance

28

5.2. The model 29

and many functionalities, in addition to the many bindings to Python. In the
implementation of Rahisi a DB-API 2.0 interface for SQLite databases [13] is
used. Also the fact that SQLite does not need any configuration (like setting
up database users) makes it fitted for Rahisi . But Rahisi is not dependent on
SQLite. The abstraction to database implementations that Python delivers,
makes it fairly easy to switch to an other database.

5.2 The model

The model in Rahisi is defined in a syntax that is based on YAML [5]. It
is implemented by parsing the class definitions and subsequently generation
the table definitions for the SQLite database and Python classes that define
each class of the Rahisi model. A class is parsed using the PyYAML module
[12]. The generation of SQLite table definitions are obvious, except for the
relations.
Each class is translated to a table, each field in that class is translated to a
database table field. To each table an id field is added, like stated in 2.2.1.
The SQLite type of the field is derived from the Rahisi type. For example
string(200) is translated to text. If there are any options specified, extra
fields are added. For example, when the option timed is specified, two extra
integer fields are added that hold timestamps, called created and updated.
If a has_one relation is added to a class, a field is added to the table definition
with a foreign key to the id of the referenced table. A has_many relations
causes Rahisi to generate a extra table. This table is used to define relations
between two tables, and consist off two fields that each hold the id of one of
the tables. The makes it possible that for each row, multiple relations to other
rows can be stored in the database.

5.3 The controller

The controller is, like the model and the view, parsed by Rahisi and translated
to Python code. Rahisi uses the Python SimpleParse module [14] together
with the grammar of the controller (see section 3.4). The SimpleParse module
parses the controller file to create a tree structures describing the structure
and statements of the controller file. The resulting tree is than translated to
Python statements.
Many statements in the Rahisi controller can be translated to Python code
directly, like assignments. Queries on the other hand, have to be translated
to valid SQL(ite) queries, that are embedded in the Python code.
Rahisi translates each action in the controller to a function. Code is generated
that maps a HTTP request to the appropriate action function. In the action
function the body of the action (translated to Python code) is placed. The
response statement in Rahisi is translated to a call to the generated view class,
that handles the templates.

5.4 The view

The view part of Rahisi consist of:

29

5.5. Deployment 30

• A Python class, that passes the variables from the controller to the
appropriate templates;

• A set of templates, consisting of pure Python code and text (like HTML
or XML).

The templates are translated from Rahisi templates. All Rahisi statements in
the templates are surrounded by curly braces. A Python script, that also uses
the SimpleParser module, parses these statements and translates the resulting
tree to new Python statements. If a partial template is called, the view class
ensures that the referred template is inserted.

5.5 Deployment

A typical Rahisi application consist of only a few files. A model file, a con-
troller file and a directory with a set of templates. To deploy a Rahisi ap-
plication, these files are first parsed and translated to Python code and SQL
queries and table definitions. The tables are created in a SQLite database.
Together with the Apache web server it constitutes a complete working web
application.
If the Rahisi applications has to be edited, the affected parts can be generated
again. If the structure of the classes in the model is edited, the affected tables
we be altered accordingly.

30

Chapter 6

Related work

Like stated before, there are dozens of programming or scripting languages to
choose from when developing a web application. On top of them dozens or
even hundreds of frameworks have been created to streamline the development-
and maintenance precess.
A few that are relevant to mention in relation to Rahisi are Ruby on Rails
[19], CakePHP [20] and Django [21]. These frameworks all follow the MVC
model, like Rahisi .

• Ruby on Rails is a web framework based on the language Ruby. It is
designed to create practical web applications, with less code, simplicity
and less configuration files than other frameworks. Ruby on Rails also
makes meta-programming possible. This makes a higher abstraction meta-programming

functions in a
programming language
that can be used like
statements

level in the code possible. A higher abstraction makes the code more
comprehensible.

• CakePHP is a web framework based on the web scripting language
PHP. It aims to “enable PHP users at all levels to rapidly develop robust
web applications”. In contrast with Ruby on Rails and Django it does
not have an extensive abstraction to the database, using models.

• Django is a Python based web framework. Between the three web ap-
plication frameworks mentioned, Django most resembles Rahisi . It also
has a high abstraction to database tables in the form of models. Django
aims to make the creation of complex, database driven web application
more easy and faster.

In contrast with the frameworks mentioned above, in Rahisi a web application
is not written in a existing scripting language. The definition languages used
by Rahisi are especially designed for their purpose: to make the development
of simple web applications as fast, easy and with the least code as possible.
Rahisi is a research in restricting the possibilities and functionalities when
developing a web application, and thereby decreasing the amount of code that
is needed while increasing the comprehensibility. This is unlike the frameworks
mentioned above, that aim to delivering as much functionalities as possible.
They are designed to make the development of complex web applications more
simple, Rahisi is designed to make the development of simple web applications
even simpler.

31

Chapter 7

Conclusion

In this thesis a profound introduction is given to Rahisi . Rahisi is a system,
or rather an experiment with the aim of making the development of simple
web applications, easier and faster.
The Rahisi experiment has been successful in decreasing the minimal amount
of code needed to define simple dynamic web applications. This is done us-
ing three special definition languages, each with a special purpose for every
part in the system. The limited set of statements used by Rahisi make a
web application more comprehensible and thereby ease the development and
maintenance.
The inevitable disadvantage of Rahisi is the finite expressiveness of the lan-
guages used in the system. Rahisi only delivers the functionalities of common
web application, like storing and querying data from a database and insert
the dynamic content in HTML pages. Another price that needs to be payed is
the fact that three little definition languages have to be learned. When devel-
oping a web application with Rahisi these special languages have to be used,
and not in an existing language, like PHP, Ruby or Python. This exclude the
possibility to use external libraries, or existing pieces of code.

32

Bibliography

[1] Avraham Leff and James T. Rayfield Web-Application Development Using
the Model/View/Controller Design Pattern IEEE Computer Society, Los
Alamitos, CA, USA, 2001

[2] Alan Knight, Naci Dai Objects and the Web IEEE Software, pp. 51-59,
March/April, 2002

[3] Richard J. Turver, Malcolm Munro An early impact analysis technique
for software maintenance Journal of Software Maintenance: Research and
Practice, vol. 6, 1994, pag. 35-52

[4] Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web Scien-
tific American, ISSN 0036-8733, vol. 284, 2001, pag. 34

[5] YAML(AML Ain’t Markup Language) http://www.yaml.org/

[6] RSS (Really Simple Syndication) http://validator.w3.org/feed/docs/
rss2.html

[7] DRY principle (Do not Repeat Yourself) http://c2.com/cgi/wiki?

DontRepeatYourself

[8] Backus Naur Form http://www.ietf.org/rfc/rfc2234.txt

[9] The Python programming language http://www.python.org

[10] Python regular expressions http://docs.python.org/library/re.

html

[11] Python time formatting http://docs.python.org/library/time.html

[12] Python YAML implementation http://pyyaml.org/

[13] Python SQLite module http://docs.python.org/library/sqlite3.

html

[14] Python SimpleParse http://simpleparse.sourceforge.net

[15] Apache/Python Integration http://www.modpython.org/

[16] Apache HTTP Server Project http://httpd.apache.org/

[17] Netcraft January 2010 Web Server Survey http://news.netcraft.com/

archives/2010/01/

33

Bibliography 34

[18] SQLite http://www.sqlite.org/

[19] Ruby on Rails web framework http://rubyonrails.org/

[20] CakePHP PHP web framework http://cakephp.org/

[21] Django Python web framework http://www.djangoproject.com/

34

