

Analyzing Password Strength
Martin M.A. Devillers

Juli 2010

ABSTRACT

Password authentication is still the most
used authentication mechanism in today’s
computer systems. In most systems, the
password is set by the user and must adhere
to certain password requirements. Addition-
ally, password checkers rank the strength of
a password to give the user an indication of
how secure their password is. In this paper,
we take a look at a large database of user
chosen passwords to determine the current
state of affairs. In the end, we extract a mod-
el from the database and provide our own
password checker which ranks passwords in
various ways. We ran this checker against
our dataset which shows that over 90% of
the passwords is highly insecure.

INTRODUCTION

As we perform increasingly important
tasks from our living room computer, the
topic of computer security also becomes in-
creasingly important. And indeed, many ad-
vances have been made in the field of com-
puter security to protect home users from
digital crime. For instance, the wireless
transmission protocol, Wi-Fi, has had sever-
al (much overdue) security overhauls to pro-
tect home users from being eavesdropped or
worse (1). However, when we look at what we
typically use to authenticate ourselves with,
we are stuck with a system that dates back
to the Roman empire (2): passwords.

Although an ancient concept, password
authentication is, and most likely will be for
a long time, the most used authentication
mechanism for computer users.

Password authentication requires no
specialized hardware, such as with finger-
print authentication, can be easily imple-
mented by developers and just as easily used
by users. In short: It’s usable.

But is it safe? The topic of “Security ver-
sus Usability” has always been of much de-
bate in the computer security world (3). Us-
ers must be protected from harm by security
controls, but these controls may not interfere
(much) with the tasks the users want to per-
form. For instance, a firewall that simply
blocks all traffic can be considered secure,
but heavily impedes the overall usability of
the system.

Security experts or system developers are
usually the ones who have to make this tra-
deoff, but with password authentication, this
task is essentially passed on to the user (3):
One can either choose a short and simple
password, which is easy to remember but
also easy to crack, or a very long and com-
plicated password, which is hard to remem-
ber but also hard to crack.

Unfortunately, most users do not see a
tradeoff: They see an obstacle and they will
choose the path of least resistance to over-
come that obstacle. Thus, short and simple
passwords that are easy to remember, but
also easy to guess, are used (4).

To stop users from using weak pass-
words, most systems enforce certain re-
quirements that a password must meet be-
fore it gets set. Examples of common re-
quirements are minimal length of the pass-
word, the occurrence of uppercase letters,
digits and/or symbols in the password and
inequality with the user’s username or e-
mail address (5).

Radboud University Nijmegen 2 Martin M. A. Devillers

However, holding on to the principle of
the path of least resistance, one can expect
users to try and ‘circumvent’ these require-
ments in a predictable manner (4). For in-
stance, given that an user starts out with an
actual word such as ‘house’ and the re-
quirement that the password must contain
at least one digit is given, one might expect
the user to simply suffix the word with a sin-
gle digit. In the findings which we will
present, you will see that 15% of the pass-
words were a word or name suffixed with the
number one.

In this paper, we will first discuss the da-
taset which we used to perform our research.
After this, we will show you the results of our
preliminary tests on this dataset. In the next
chapter, we will go one step further and ex-
tract actual patterns from the passwords.
After this, we will show you how we used a
probabilistic approach to password analysis.
In the final chapter, we will present you our
password checker, which combines the re-
sults of all the previous chapters.

DATASET

On December 4th 2009, a hacker
breached a company database of RockYou!1
containing the usernames and unencrypted
passwords of about 32 million users (3). This
database was subsequently published to the
internet and is now in wide circulation. Ob-
viously, we don’t condone hacking, but the
presence of this database gives us an unique
opportunity to perform a large scale empiri-
cal study on passwords.

The most notable fact about the afore-
mentioned affair would not be that a large
database was hacked, but that the pass-
words inside the database were stored in
unencrypted form (so-called plaintext pass-
words). These days, it is common practice to
salt and hash passwords before permanently
storing them, which makes it generally hard
to study passwords even when granted
access to the right databases.

The RockYou! database was acquired in
the form of a long text file where each pass-
word resides on its own line. The file con-
tained no other information, such as the

1 RockYou! (originally known as RockMySpace),
based in Redwood City, California is a publisher
and developer of applications and other social
network services. As of December, 2007 it is the
most successful widget maker for the Facebook
platform in terms of total installations.

usernames. Since the source of the data was
questionable at best, we ran various tests
and filters to ensure the quality of the data.
Various noise factors were discovered:

1. Analysis showed that entries longer
than 30 characters were more often noise
than actual passwords. A lot of entries were
pieces of HTML or JavaScript, which might
be indicative of an injection attack or some
kind of input anomaly. Others contain a sin-
gle character repeated up to a hundred
times. The most likely explanation for this
anomaly, are users who want to quickly
sign-up and fill in bogus information to get a
onetime account. Such entries cannot be
considered to be actual passwords, since the
user does not have the intention of memoriz-
ing or re-using the password. Since these
entries are much longer than normal entries,
a filter was applied that removes any entry
longer than 30 characters.

2. At various points in the database, the
character encoding switches. For instance,
the first 3 million passwords contain Un-
icode characters in their HTML encoded
form. Hereafter, Unicode characters are
stored in their actual form, which might be
indicative of the backend switching to UTF-8
encoding support. Similarly, the file itself is
part encoded in ANSI and part encoded in
UTF-8. Character analysis gave indication
when these switches occurred and a pro-
gram was written to rewrite the database in
one uniform encoding scheme (UTF-8).

3. Various (uncommon) passwords occur
multiple times in close proximity to each
other. This might be indicative of a single
user registering multiple accounts. A filter
was applied that removes these extra occur-
rences. Common passwords did not apply to
this filter, as they may naturally occur mul-
tiple times in close proximity.

PRELIMINARY TESTS

Before we started with the actual analy-
sis, various basic tests were ran to gain
some insights into the database. These in-
clude a letter frequency analysis, a character
type analysis, a length distribution analysis
and a common password analysis.

Letter frequency analysis helps us in var-
ious ways. Knowing the frequency of each
letter gives us the ability to define a more
fine-grained metric for measuring password
strength. By grading the chance of occur-

Radboud University Nijmegen 3 Martin M. A. Devillers

rence of each individual character rather
than grading each letter a flat twenty-sixths
chance of occurrence.

Furthermore, letter frequency analysis
allows us to measure the degree in which the
passwords conform to actual words. This
helps us to better understand if the dataset
follows a language and what language this
might be (6).

Figure 1 shows the letter frequencies of
the dataset and those of the English and
Spanish language. As you can see, the dis-
tribution of the RockYou! dataset shows
great similarity to those of the English and
Spanish language. When we do a quick
search for English and Spanish words in the
dataset, we find that 10% of the entries
match English words and 2.5% match Span-
ish words.

Character type analysis looks at every
password and flags what kind of characters
make up the password. We distinguish be-
tween the following character types:

 Lowercase, which are the standard lo-
wercase letters of the alphabet.

 Uppercase, which are the standard up-
percase letters of the alphabet.

 Digits, which are the digits zero through
nine

 Symbols, which are any characters found
in the non-extended ASCII set that do not
belong to the above categories. Most of
these can be found on a standard Ameri-
can keyboard.

 Unicode, which are any characters that
do not belong to the above categories.
Examples of these are the euro sign and
the Japanese alphabet.

Given these categories, 2ହ ൌ 32 combina-
tions are possible. However, we expect that
only a few will be really prominent.

Figure 2 – Character type analysis

Figure 2 shows the results of our charac-
ter type analysis. The largest category, which
nearly makes up for half the dataset, are
passwords that consist solely out of lower-
case characters. This is troublesome, consi-
dering that most passwords are only 6 to 8
characters long and the letters found in the
passwords conform to that of a language.

Lower
Case
42%

Lower
Case,
Digit
33%

Digit
16%

Other
9%

Figure 1 – Letter frequencies of the RockYou! dataset, English and Spanish language

0%

2%

4%

6%

8%

10%

12%

14%

16%

a b c d e f g h i j k l m n o p q r s t u v w x y z

P
er

ce
n

ta
ge

RockYou English Spanish

Radboud University Nijmegen 4 Martin M. A. Devillers

This would suggest that a significant part
of our dataset are words or names. Another
troublesome result, are the passwords that
consist solely out of digits, which represents
16% of the dataset. Numeric passwords have
limited complexity.

Length distribution analysis gives us in-
sights in what the common length of user
chosen passwords are.

Figure 3 – Password length distribution

The results of the analysis, as shown in
Figure 3, do not show a normal form distri-
bution, but rather a truncated form. We ar-
gue that this is a result of minimum pass-
word length requirements. Strangely, the
database contained entries as short as one
character. At the moment of writing, the
RockYou! website enforces a minimum 8
character password length, but this was
most likely less (or non-existent) in the past
(10).

In the previous chapter we already noted
that we ignored any entry longer than 30
characters. The range of passwords of size
15 through 29 covered about 2 percent of
the database. Half the passwords of length
20 and above were e-mail addresses, thus
explaining their unusual length.

Finally, we take a look at the most com-
mon passwords. We expect these passwords
to be really weak, as a password that is
widely used is most likely one you can logi-
cally guess, find in a common password list-
ing or is context dependent (such as the
name of the service)

Password Count Percentage
123456 290731 0.8918%
12345 79078 0.2426%
123456789 76790 0.2356%
password 59463 0.1824%
iloveyou 49952 0.1532%

princess 33291 0.1021%
1234567 21727 0.0666%
rockyou 20903 0.0641%
12345678 20553 0.0630%
abc123 16648 0.8918%

Table 1 – Top 10 passwords

Table 1 shows the top 10 passwords with
their absolute counts. The use of numerical
sequences immediately stands out as 5 of
the 10 passwords represents this class.

When we break the numbers down to
percentages, two troublesome conclusions
can be drawn:

1. Roughly one out of every hundred
passwords is the sequence ‘123456’

2. The top 10, 100, 1,000 and 10,000
passwords cover respectively 2, 5, 11 and 22
percent of all passwords.

In other words, if an attacker would try
to gain access to a system by trying the top
10 most common passwords using a listing
of known accounts. He could expect to suc-
ceed within 25 accounts, costing him only
250 guesses. Given more accounts and just
the password ‘123456’, success could be ex-
pected with the 50th account, costing only 50
guesses. This attack is feasible without au-
tomation and low-profile enough to not raise
any alarms.

We compare our results with other top
tens of common passwords (4) (5) in Table 2.
All highlighted cells represent passwords
that are present in our top 10. It should be
noted that most other passwords are in our
top 100 and all are present in our top 1000.

RockYou! PCMag M.Burnet
123456 password 123456
12345 123456 password
123456789 qwerty 12345678
password abc123 1234
iloveyou letmein pussy
princess monkey 12345
1234567 myspace1 dragon
rockyou password1 qwerty
12345678 blink182 696969
abc123 Firstname mustang

Table 2 – Top 10 comparison (the last entry of PCMag
‘firstname’ is a placeholder for an actual firstname)

Although these overlapping lists, streng-
thens our believe that the RockYou! dataset
is representative, it at the same time sad-
dens us to see that so many users still use
very predictable passwords.

0%

5%

10%

15%

20%

25%

30%

5 6 7 8 9 10 11 12

P
er

ce
n

ta
ge

Radboud University Nijmegen 5 Martin M. A. Devillers

PATTERN ANALYSIS

The previous chapter showed several
ways of defining characteristics of a pass-
word. Now, we want to go a step further and
extract actual patterns from passwords. This
will help us to better understand how pass-
words are formed and ultimately allow us to
construct an improved password checker.

M. Dell’Amico (6) studied a much smaller
database of roughly 10,000 entries. Various
regular expressions were ran against the da-
tabase, in an attempt to recognize patterns
in passwords. We repeat their experiment on
the RockYou! database and present both
their and our results below in Table 3

Expression Example IIMS RockYou
[a-z]+ abcdef 51.20% 41.69%
[A-Z]+ ABCDEF 0.29% 1.50%
[A-Za-z]+ AbCdEf 53.74% 44.05%
[0-9]+ 123456 9.10% 15.93%
[a-zA-Z0-9]+ A1b2C3 93.43% 96.20%
[a-z]+[0-9]+ abc123 14.51% 27.69%
[a-zA-Z]+[0-9]+ aBc123 16.30% 30.16%
[0-9]+[a-zA-Z]+ 123aBc 1.80% 2.75%
[0-9]+[a-z]+ 123abc 1.65% 2.53%

Table 3 – Regular expressions

The most notable difference is the use of
digits. Most percentages in the IIMS data-
base indicate a reliance on lowercase charac-
ters, whilst in the RockYou! database pat-
terns that contain digits are more prominent.
The patterns that describe a word that is
suffixed by a number are almost double as
popular in the RockYou! database. Pass-
words that are made purely out of digits are
also more popular in the RockYou! database.

Based on these results we can argue that
the users of RockYou! have been trained to
create more secure passwords, most likely by
other applications which enforce stricter re-
quirements. One exception would be the
passwords that consist purely out of digits.
These passwords are used more often in the
RockYou! dataset and we consider these
kind of passwords to be very insecure, due to
their limited complexity.

Besides the aforementioned expressions,
we propose our own set of supplemental ex-
pressions. We are most interested in pass-
words that start with letters and end with
digits, as they make up for one third of our
dataset and regular expressions can help us
better understand this set. Therefore, we
repeat the regular expression ‘[a-zA-Z]+[0-
9]+’ and keep track of all the numbers that

are matched. We then look at the most
popular numbers and revert these back to
regular expressions.

Number Count Percentage
1 1476941 16.37%

123 325963 3.61%
2 284354 3.15%
12 213870 2.37%
3 166762 1.85%
13 150069 1.66%
7 147951 1.64%
11 122630 1.36%
5 120376 1.33%
22 107444 1.19%
23 106425 1.18%
01 102756 1.14%
4 101573 1.13%
07 100693 1.12%
21 100370 1.11%
14 95288 1.06%
10 92655 1.03%
06 86495 0.96%
08 86065 0.95%
8 83819 0.93%
15 83708 0.93%
69 81299 0.90%
16 78506 0.87%
6 76798 0.85%
18 71343 0.79%

Table 4 – Top 25 numeric suffixes

Table 4 shows the 25 most used numeric
suffixes, which makes up for halve the
passwords matched by the regular expres-
sion ‘[a-zA-Z]+[0-9]+’. We expect single
digits to be popular suffixes and indeed, the
digit ‘1’ covers over a million passwords that
use it as a suffix. However, double digit
numbers occur twice as often as single di-
gits, which we did not expect. Interestingly,
the digit 9 is only present once in the listing
(and not even as a single digit number).

Besides the top 25, we present a second
list which contains entries longer than 2
characters from the top 100.

Number Count Percentage
101 51065 0.57%
1234 49619 0.55%
2007 30731 0.34%
2006 29122 0.32%
666 24317 0.27%
2008 24300 0.27%
12345 20276 0.22%
2005 18694 0.21%
007 18261 0.20%
420 16470 0.18%

123456 15811 0.18%
1994 14288 0.16%
1993 13695 0.15%

Radboud University Nijmegen 6 Martin M. A. Devillers

Number Count Percentage
1992 13609 0.15%
777 13223 0.15%
1995 13149 0.15%
2000 12613 0.14%
111 12426 0.14%
1991 12358 0.14%
1990 11740 0.13%
2004 11466 0.13%
321 11073 0.12%
1989 10940 0.12%
1987 10689 0.12%

Table 5 – Entries from top 100 numeric suffixes
with length larger than 2 characters

 Table 5 lists these entries. The length of
the entries exposes very apparent patterns.
All entries of length 4 are years. We argue
that the gap between 1994 and 2004 is in-
dicative of users using the current year dur-
ing sign-up or a birth year. We know that the
user base of RockYou! consists largely out of
teenagers. Entries larger than 4 represent
numeric sequences while entries with length
3 represent repetitive digits or numbers from
pop culture such as the number of the beast
(666), lucky sevens (777), James Bond’s call
sign (007) and four-twenty from the canna-
bis subculture (420).

All two digit numbers are represented
within the top 180 entries, which makes any
entry in that range have more than 50%
chance of falling in this category. We formu-
late this in a regular expression that
matches any two digit number.

Expression Description
^(1|12|123|1234
 |12345|123456)$

Numeric sequence

^[0-9]$ Single digit
^[0-9]{2}$ Double digit
^(19[7-9][0-9]
 |200[0-9])$

Year between 1970 and
2009

Table 6 – Regular expressions for numeric suffixes

Table 6 shows the patterns described as
regular expressions. It should be noted that
the order is of importance. For instance, we
consider the use of years as a suffix to be
more secure than a single digit suffix. Regu-
lar expressions and their order will play an
important role in our own password checker
which we will present later on.

N-GRAM APPROACH

Another approach to analyzing the data-
set is by counting the occurrences of small
sized character pairs that make up the
password. Such an approach delivers a so-
called n-gram model, which is one of the ap-
proaches used in a paper by M. Dell’Amico
(6) to generate passwords. An n-gram model
is a type of probabilistic model for predicting
the next item in a sequence. n-grams are
used in various areas of statistical natural
language processing and genetic sequence
analysis.

A n-gram model can be useful in two
ways:

1. It can be used to measure the likelih-
ood of a password as a product of the rela-
tive occurrences of its containing n-grams.
This gives us yet another metric to measure
passwords.

2. It can be used to generate new pass-
words, based on the n-gram model. This
could form the basis of a new kind of pass-
word attack strategy, which is smarter than
a brute force approach. (8)

To build a n-gram based model, every
possible combination of characters of every
password in the dataset must be extracted.
This is required to solve the probability term
of a n-gram based likelihood calculation,
which can be described with the term:

,௜ିଵݔ|௜ݔሺݎܲ ڮ,௜ିଶݔ , ௜ି௡ሻݔ

To calculate the probabilistic likelihood
of a password, the following formula is ap-
plied:

௡ܲሺߙሻ ൌ ሻ|ߙ|ሺߣ ෑ ௜ି௡ାଵߙሺݒ ௜ି௡ାଵߙ|௜ߙڮ ௜ିଵሻߙڮ
ଵஸ௜ஸ|ఈ|

Where ݊ is the size of the n-gram, ߙ is
the password, |ߙ| is the length of the pass-
word and ߣሺ|ߙ|ሻ is the probability of ߙ being
that length.

The formula ݒሺߙ௜ି௡ାଵ ௜ି௡ାଵߙ|௜ߙڮ ௜ିଵሻ isߙڮ
the conditional probability of the substring
௜ି௡ାଵߙ ௜ given all possible strings that canߙڮ
be created from ߙ௜ି௡ାଵ ௜ିଵ when appendedߙڮ
with a single character. This is an embodi-
ment of the term ܲݎሺݔ௜|ݔ௜ିଵ, ڮ,௜ିଶݔ , ௜ି௡ሻݔ
which is used by the n-gram model to pre-
dict ݔ௜ based on ݔ௜ିଵ, ڮ,௜ିଶݔ , ௜ି௡ and allowsݔ
us to calculate the probability of a n-gram.

Radboud University Nijmegen 7 Martin M. A. Devillers

Since we are calculating the product of a
series of probabilities, the assumption is
made that the collection of occurrences is
mutually independent, which means that we
assume that the following property of mutual
independence holds:

ݎܲ ൭ሩݔ௜

௡

௜ୀଵ

൱ ൌෑܲݎሺݔ௜ሻ
௡

௜ୀଵ

Although we know that this property
does not actually hold, the assumption that
it does is required for us to simplify the
problem. Through this independence as-
sumption, our model assumes the Markov
property, which enables reasoning and com-
putation with the model that would other-
wise be intractable.

The length of the password determines
the amount of iterations, which generally
means that the longer the password, the
more iterations there are and the smaller the
overall outcome of the formula will be. This
is taken in account, due to the fact that
we’re explicitly including the probability of
the length of the password, as denoted by
 .ሻ, in our formula|ߙ|ሺߣ

In the event that ݅ ൏ ݊, which happens in
the first ݊ െ 1 iterations of the product, the
substring references a non-existing charac-
ter index of zero or smaller. These references
are substituted with the ‘»’ sign to denote
the fact that we are dealing with a starting
sequence. Thus, we get the convention:

ሺ݅݅׊ ൑ ௜ߙ|0 ൌ »ሻ

The set of possible characters is deter-
mined by the distinct characters which we
encounter in the dataset. Thus, we do not
include the full Unicode character set by de-
fault. Given the previous description of ݒ, the
corresponding formula looks like:

߭ሺܿଵ ڮ ܿ௡|ܿଵ ௡ିଵሻܿڮ ൌ
ሺܿଵߪ ௡ሻܿڮ

∑ ሺܿଵߪ ڮ ܿ௡ିଵܿҧሻ௖ҧא஼

The formula ߪ denotes the number of oc-
currences of the input string inside the mod-
el. The numerator part of the fraction
represents the number of occurrences of the
string that we are interested in (the n-gram),
whilst the denominator represents the num-
ber of occurrences of all possible permuta-
tions of that string. In the denominator, ܿҧ א ܥ
indicates a character from the set of all poss-
ible characters as encountered in our data-
set.

The actual value of ݊ has a huge impact
on the behavior of the model. In the next few
paragraphs, we will discuss various values of
݊ and their implications.

Using a value of one for ݊ (unigrams), will
make the algorithm contextless, as the algo-
rithm will only look at the frequency of single
letters. This is synonymous to using the cha-
racter frequency analysis from the previous
chapter to grade or predict passwords.

If one were to choose a very large ݊, then
the algorithm would lose its ability to dissect
passwords and simply grade a password by
its entire string of characters. This is syn-
onymous to calculating the frequency of a
given password within the original dataset. A
password generator with such a model would
(almost) never generate any passwords out-
side the dataset.

On another note, a large ݊ would also
impose problems of the computational kind.
As the value of ݊ increases, the amount of
possible n-grams increases exponentially.
Given a dataset of our size and a ݊ of 5 our
algorithm used up nearly a gigabyte of sys-
tem memory. For a larger ݊ we had to resort
to using a smaller subset of our dataset.

Finally, a large ݊ also imposes another
problem with the effectiveness of our algo-
rithm. As we said earlier, one of the powerful
features of using n-grams is that they can be
used to analyze or produce new (unseen)
data based on known data.

However, this imposes some require-
ments on the known data. Say we want to
calculate the strength of the phrase “pass-
word” with ݊ ൌ 4, thus giving the formula
ସܲሺ"password"ሻ. This would mean calculating

the product of the probabilistic frequencies
of all 4-grams contained within the phrase
“password”. Consider the 4-gram “word”,
which requires the calculation as shown at
the top of this page.

Now, consider a model which has never
seen the 4-gram “word”. This would result in
ሺ"word"ሻ݋ ൌ 0 and thus ݒሺ"word"|"wor"ሻ ൌ 0.
As we’re taking the product of ݒ in our algo-
rithm this would ultimately lead to
ସܲሺ"password"ሻ ൌ 0.

One might argue that this is favorable,
since we cannot grade something when we
have no background data. However, given
the previous example, we do have actual
values for ݒ for all the 4-grams preceding
“word”. Thus there is certainly some meas-

Radboud University Nijmegen 8 Martin M. A. Devillers

ure of occurrence present in the calculation,
which is lost when we multiply this by zero.
We overcame this limitation by altering the
algorithm to raise all occurrences by one and
counting any item that never occurs as one
instead of zero. This has little impact on n-
grams that occur many times and makes our
algorithm more robust when dealing with
unseen data. The downside being that n-
grams that occur very few times will have a
less accurate representation.

We used two third of our dataset as a
training set for our algorithm and the re-
maining one third as our test set.

N=1 N=2 N=3 N=4
aaaaa 123456 123456 123456
eeeee 123123 1234567 1234567
ale 12345 12345 12345678
aanaa 121234 12345678 123456789
aaaan 112345 234567 passwo
aaaaaa 123234 milove 12345
aaeaaa 123412 112345 passwor
aeaeae 123450 lover ilovey
ann 123452 012345 password

Table 7 – Most frequent passwords

Table 7 shows the top 10 most likely
passwords as graded by our algorithm for
various sizes of n. As we noted earlier, an
analysis based on unigrams (1-gram), is bas-
ically a character frequency analysis. As vo-
wels are the most frequently occurring cha-
racters in the natural language, passwords
that contain vowels are graded higher, than
those that do not. When we look further
down the list we see mostly short pronoun-
ceable passwords.

When using bigrams (2-grams), numbers
take the upper hand as they form the most
frequent two character pair in the dataset.
As we’ve seen from the previous chapter,
there are simply a lot of passwords that con-
sist out of or contain numerical sequences.
Moreover, the chance that some digit follows
another is larger than the chance that some
letter follows the other, simply because there
are only 10 digits as opposed to 26 letters.

When using trigrams (3-grams), text
based passwords start to show up, but nu-
merical sequences still prevail. This top 10
however shows similarities to the actual top
10 of most occurring passwords in the Rock-
You! Dataset.

Finally, when using quadrigrams (4-
grams), numerical sequences are overly
present, but the larger list of results show a
great deal of overlap with our own top 1000.

From our findings we concluded that us-
ing trigrams was a good trade-off between
accuracy and usability (in terms of perfor-
mance).

PASSWORD CHECKER

The previous chapters illustrated various
ways in which we can grade password
strength. In this chapter, we combine these
metrics into a program that can help users
to assess their passwords safety. Each step
employs one or more metrics, which leads to
one or more results. Each result has a name,
a short description in natural language what
the result represents and a severity level to
indicate the impact of the result. Some re-
sults are pure informative and therefore have
no severity impact.

At the core, our checker does various
things.

1. The length of the password is ana-
lyzed, as this is a simple metric that can rule
a password out as weak without even look-
ing at the actual content of the password.

2. The password is ran across a common
list of passwords. These are lists acquired
from the internet or calculated by ourselves
from our own dataset.

Pattern analysis is employed to deter-
mine if the password fits a common pattern.
One of the most important parts of this step
is to actually break up the password in let-
ter(s), digit(s) and symbol(s). If pattern analy-
sis fails to find a suitable pattern, an un-
mangling strategy is applied. Some users try
to add complexity to passwords by replacing
certain characters with digits or symbols (i.e.
password becomes p4$$w0rd) (14). This in-
hibits regular expression based pattern
matching from finding actual patterns. The
unmangling strategy attempts to revert said
mangled passwords to their letter based
form. Once a matching pattern has been
found, the algorithm looks at what groups
the pattern captured.

a. If any words were found during
the pattern analysis step, they will be
held against common dictionaries of
passwords, words and names. We prefer
to use small dictionaries of a specific
type, since this gives us more power and
certainty in describing what the word
represents.

Radboud University Nijmegen 9 Martin M. A. Devillers

b. If any numbers were found during
the pattern analysis step, they are in-
spected to see if they fit a common form
(such as a year).

c. If any symbols were found during
the pattern analysis step, they are in-
spected for common occurrence.

3. Finally, we use a 3-gram model based
on our dataset to grade the password. To
make our 3-gram based algorithm suitable
for password grading, we need to map the
range of possible values from our algorithm
to a set of gradations. First off, the actual
range of ଷܲሺߙሻ lies between 1 and 10ିଶ଼,
where the lower limit is a constraint set by
our computer environment. We determined
the boundary values for the gradations by
manually checking the results of our algo-
rithm on several sets of passwords. For in-
stance, running the algorithm on the top
1000 we computed earlier, gave us a good
boundary value for passwords that are ‘Criti-
cal’.

When all results are calculated, they are
presented to the user in order of severity.
Each result is accompanied with a short
message describing the ‘problem’ that was
found.

We used two third of the RockYou! data-
set as the training set and the remainder one
third as the test set. From the training set,
we constructed the various metrics required
by our password checker such as the n-gram
model and the length distribution. We then
ran the checker on our test set. 50% percent
of the passwords were reported as being
‘Critical’ which means such a password
should never be used. 45% percent was re-
ported as being ‘High’, which indicates that
the password should be changed or only
used for none-critical purposes. Only 5%
percent had a severity of ‘Medium’ or lower.

CONCLUSION

Summarizing, when we look at the Rock-
You! Dataset, the preliminary tests indicate
that passwords are generally short, conform
to existing language patterns and show a
great deal of overlap. In other words, a sig-
nificant part of the user base has an inse-
cure password.

Moving onto pattern analysis, we have
shown that users that do try to enhance
their password, do so in a very predictable
manner: Over a million users chose a pass-

word consisting out of a word suffixed by the
digit one. We extrapolated common patterns
from the dataset and presented their occur-
rences.

The results from our n-gram approach
showed how probability calculation can help
us assess password strength. We looked at
various values of n for determining the op-
timal size of the model and determined that
trigrams (3-grams) were best suited for grad-
ing passwords.

The above findings were incorporated in
our own password checker, which we then
ran against our dataset. The results were,
again, troublesome, as 95% of the passwords
were marked as being highly unsafe. One
mitigating argument is that RockYou! pro-
vides a very simple non-critical service, thus
users may not feel inclined to provide a
strong password. Yet, with halve a million
users choosing a short numerical sequence
as a password, one may wonder if security in
terms of password authentication is at all
present.

REFERENCES

1. Alliance, Wi-Fi. Wi-Fi Protected Access:
Strong, standards-based, interoperable
security for today’s Wi-Fi networks. Wi-Fi
Alliance. [Online] April 29, 2003.
http://www.wi-
fi.org/files/wp_8_WPA%20Security_4-29-
03.pdf.
2. Paton, W.R. The histories of Polybius /
with an English translation by W.R. Paton.
s.l. : Heinemann ; Harvard University Press,
1922.
3. Security and usability: the case of the user
authentication methods. Braz, Christina and
Robert, Jean-Marc. s.l. : ACM, 2006. pp.
199--203.
4. Users are not the enemy. Adams, Anne
and Sasse, Martina A. s.l. : ACM, 1999,
Commun. ACM, Vol. 42, pp. 40--46. 0001-
0782.
5. A large-scale study of web password
habits. Florencio, Dinei and Herley,
Cormac. s.l. : ACM, 2007. pp. 657--666.
6. Microsoft. Create strong passwords.
Microsoft Online Safety. [Online] October 4,
2009. [Cited: November 19, 2009.]
http://www.microsoft.com/protect/fraud/pa
sswords/create.aspx.
7. Human selection of mnemonic phrase-
based passwords. Kuo, Cynthia,

Radboud University Nijmegen 10 Martin M. A. Devillers

Romanosky, Sasha and Cranor, Lorrie F.
s.l. : ACM, 2006. pp. 67--78.
8. Siegler, M.G. One Of The 32 Million With
A RockYou Account? You May Want To
Change All Your Passwords. Like Now.
TechCrunch. [Online] TechCrunch, December
14, 2009. [Cited: Februari 16, 2010.]
http://techcrunch.com/2009/12/14/rockyo
u-hacked/.
9. Prediction and Entropy of Printed English.
Shannon, C. E. 30, 1951, Bell System
Technical Journal, pp. 50-64.
10. RockYou Hack: From Bad To Worse.
TechCrunch. [Online] December 14, 2009.
http://techcrunch.com/2009/12/14/rockyo
u-hack-security-myspace-facebook-
passwords/.
11. 10 Most Common Passwords. PCMag.
[Online] May 2007.
http://www.pcmag.com/article2/0,2817,21
13976,00.asp.
12. Burnett, Mark and Kleiman, Dave.
Perfect Passwords: Selection, Protection,
Authentication. Rockland, MA : Syngress,
2005.
13. Measuring Password Strength: An
Empirical Analysis. Dell'amico, Matteo,
Michiardi, Pietro and Roudier, Yves. Jul
20, 2009.
14. Fast dictionary attacks on passwords
using time-space tradeoff. Narayanan,
Arvind and Shmatikov, Vitaly. s.l. : ACM,
2005. pp. 364--372.
15. Improving text passwords through
persuasion. Forget, Alain, et al. s.l. : ACM,
2008. pp. 1--12.

