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ABSTRACT 

Password authentication is still the most 
used authentication mechanism in today’s 
computer systems. In most systems, the 
password is set by the user and must adhere 
to certain password requirements. Addition-
ally, password checkers rank the strength of 
a password to give the user an indication of 
how secure their password is. In this paper, 
we take a look at a large database of user 
chosen passwords to determine the current 
state of affairs. In the end, we extract a mod-
el from the database and provide our own 
password checker which ranks passwords in 
various ways. We ran this checker against 
our dataset which shows that over 90% of 
the passwords is highly insecure. 

INTRODUCTION 

As we perform increasingly important 
tasks from our living room computer, the 
topic of computer security also becomes in-
creasingly important. And indeed, many ad-
vances have been made in the field of com-
puter security to protect home users from 
digital crime. For instance, the wireless 
transmission protocol, Wi-Fi, has had sever-
al (much overdue) security overhauls to pro-
tect home users from being eavesdropped or 
worse (1). However, when we look at what we 
typically use to authenticate ourselves with, 
we are stuck with a system that dates back 
to the Roman empire (2): passwords. 

Although an ancient concept, password 
authentication is, and most likely will be for 
a long time, the most used authentication 
mechanism for computer users.  

Password authentication requires no 
specialized hardware, such as with finger-
print authentication, can be easily imple-
mented by developers and just as easily used 
by users. In short: It’s usable. 

But is it safe? The topic of “Security ver-
sus Usability” has always been of much de-
bate in the computer security world (3). Us-
ers must be protected from harm by security 
controls, but these controls may not interfere 
(much) with the tasks the users want to per-
form. For instance, a firewall that simply 
blocks all traffic can be considered secure, 
but heavily impedes the overall usability of 
the system.  

Security experts or system developers are 
usually the ones who have to make this tra-
deoff, but with password authentication, this 
task is essentially passed on to the user (3): 
One can either choose a short and simple 
password, which is easy to remember but 
also easy to crack, or a very long and com-
plicated password, which is hard to remem-
ber but also hard to crack. 

Unfortunately, most users do not see a 
tradeoff: They see an obstacle and they will 
choose the path of least resistance to over-
come that obstacle. Thus, short and simple 
passwords that are easy to remember, but 
also easy to guess, are used (4).  

To stop users from using weak pass-
words, most systems enforce certain re-
quirements that a password must meet be-
fore it gets set. Examples of common re-
quirements are minimal length of the pass-
word, the occurrence of uppercase letters, 
digits and/or symbols in the password and 
inequality with the user’s username or e-
mail address (5). 
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However, holding on to the principle of 
the path of least resistance, one can expect 
users to try and ‘circumvent’ these require-
ments in a predictable manner (4). For in-
stance, given that an user starts out with an 
actual word such as ‘house’ and the re-
quirement that the password must contain 
at least one digit is given, one might expect 
the user to simply suffix the word with a sin-
gle digit. In the findings which we will 
present, you will see that 15% of the pass-
words were a word or name suffixed with the 
number one. 

In this paper, we will first discuss the da-
taset which we used to perform our research. 
After this, we will show you the results of our 
preliminary tests on this dataset. In the next 
chapter, we will go one step further and ex-
tract actual patterns from the passwords. 
After this, we will show you how we used a 
probabilistic approach to password analysis. 
In the final chapter, we will present you our 
password checker, which combines the re-
sults of all the previous chapters. 

DATASET 

On December 4th 2009, a hacker 
breached a company database of RockYou!1 
containing the usernames and unencrypted 
passwords of about 32 million users (3). This 
database was subsequently published to the 
internet and is now in wide circulation. Ob-
viously, we don’t condone hacking, but the 
presence of this database gives us an unique 
opportunity to perform a large scale empiri-
cal study on passwords.  

The most notable fact about the afore-
mentioned affair would not be that a large 
database was hacked, but that the pass-
words inside the database were stored in 
unencrypted form (so-called plaintext pass-
words). These days, it is common practice to 
salt and hash passwords before permanently 
storing them, which makes it generally hard 
to study passwords even when granted 
access to the right databases. 

The RockYou! database was acquired in 
the form of a long text file where each pass-
word resides on its own line. The file con-
tained no other information, such as the 
                                           
1 RockYou! (originally known as RockMySpace), 
based in Redwood City, California is a publisher 
and developer of applications and other social 
network services. As of December, 2007 it is the 
most successful widget maker for the Facebook 
platform in terms of total installations. 

usernames. Since the source of the data was 
questionable at best, we ran various tests 
and filters to ensure the quality of the data. 
Various noise factors were discovered: 

1. Analysis showed that entries longer 
than 30 characters were more often noise 
than actual passwords. A lot of entries were 
pieces of HTML or JavaScript, which might 
be indicative of an injection attack or some 
kind of input anomaly. Others contain a sin-
gle character repeated up to a hundred 
times. The most likely explanation for this 
anomaly, are users who want to quickly 
sign-up and fill in bogus information to get a 
onetime account. Such entries cannot be 
considered to be actual passwords, since the 
user does not have the intention of memoriz-
ing or re-using the password. Since these 
entries are much longer than normal entries, 
a filter was applied that removes any entry 
longer than 30 characters. 

2. At various points in the database, the 
character encoding switches. For instance, 
the first 3 million passwords contain Un-
icode characters in their HTML encoded 
form. Hereafter, Unicode characters are 
stored in their actual form, which might be 
indicative of the backend switching to UTF-8 
encoding support. Similarly, the file itself is 
part encoded in ANSI and part encoded in 
UTF-8. Character analysis gave indication 
when these switches occurred and a pro-
gram was written to rewrite the database in 
one uniform encoding scheme (UTF-8). 

3. Various (uncommon) passwords occur 
multiple times in close proximity to each 
other. This might be indicative of a single 
user registering multiple accounts. A filter 
was applied that removes these extra occur-
rences. Common passwords did not apply to 
this filter, as they may naturally occur mul-
tiple times in close proximity. 

PRELIMINARY TESTS 

Before we started with the actual analy-
sis, various basic tests were ran to gain 
some insights into the database. These in-
clude a letter frequency analysis, a character 
type analysis, a length distribution analysis 
and a common password analysis.  

Letter frequency analysis helps us in var-
ious ways. Knowing the frequency of each 
letter gives us the ability to define a more 
fine-grained metric for measuring password 
strength. By grading the chance of occur-
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rence of each individual character rather 
than grading each letter a flat  twenty-sixths 
chance of occurrence.  

Furthermore, letter frequency analysis 
allows us to measure the degree in which the 
passwords conform to actual words. This 
helps us to better understand if the dataset 
follows a language and what language this 
might be (6). 

Figure 1 shows the letter frequencies of 
the dataset and those of the English and 
Spanish language. As you can see, the dis-
tribution of the RockYou! dataset shows 
great similarity to those of the English and 
Spanish language. When we do a quick 
search for English and Spanish words in the 
dataset, we find that 10% of the entries 
match English words and 2.5% match Span-
ish words. 

Character type analysis looks at every 
password and flags what kind of characters 
make up the password. We distinguish be-
tween the following character types: 

 Lowercase, which are the standard lo-
wercase letters of the alphabet. 

 Uppercase, which are the standard up-
percase letters of the alphabet. 

 Digits, which are the digits zero through 
nine 

 Symbols, which are any characters found 
in the non-extended ASCII set that do not 
belong to the above categories. Most of 
these can be found on a standard Ameri-
can keyboard.  

 Unicode, which are any characters that 
do not belong to the above categories. 
Examples of these are the euro sign and 
the Japanese alphabet. 

Given these categories, 2ହ ൌ 32 combina-
tions are possible. However, we expect that 
only a few will be really prominent.  

 
Figure 2 – Character type analysis 

Figure 2 shows the results of our charac-
ter type analysis. The largest category, which 
nearly makes up for half the dataset, are 
passwords that consist solely out of lower-
case characters. This is troublesome, consi-
dering that most passwords are only 6 to 8 
characters long and the letters found in the 
passwords conform to that of a language.  
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Figure 1 – Letter frequencies of the RockYou! dataset, English and Spanish language 

0%

2%

4%

6%

8%

10%

12%

14%

16%

a b c d e f g h i j k l m n o p q r s t u v w x y z

P
er

ce
n

ta
ge

RockYou English Spanish



 
Radboud University Nijmegen 4  Martin M. A. Devillers 

This would suggest that a significant part 
of our dataset are words or names. Another 
troublesome result, are the passwords that 
consist solely out of digits, which represents 
16% of the dataset. Numeric passwords have 
limited complexity. 

Length distribution analysis gives us in-
sights in what the common length of user 
chosen passwords are.  

 
Figure 3 – Password length distribution 

The results of the analysis, as shown in 
Figure 3, do not show a normal form distri-
bution, but rather a truncated form. We ar-
gue that this is a result of minimum pass-
word length requirements. Strangely, the 
database contained entries as short as one 
character. At the moment of writing, the 
RockYou! website enforces a minimum 8 
character password length, but this was 
most likely less (or non-existent) in the past 
(10).  

In the previous chapter we already noted 
that we ignored any entry longer than 30 
characters.  The range of passwords of size 
15 through 29 covered about 2 percent of 
the database. Half the passwords of length 
20 and above were e-mail addresses, thus 
explaining their unusual length. 

Finally, we take a look at the most com-
mon passwords. We expect these passwords 
to be really weak, as a password that is 
widely used is most likely one you can logi-
cally guess, find in a common password list-
ing or is context dependent (such as the 
name of the service) 

Password Count Percentage
123456 290731 0.8918%
12345 79078 0.2426%
123456789 76790 0.2356%
password 59463 0.1824%
iloveyou 49952 0.1532%

princess 33291 0.1021%
1234567 21727 0.0666%
rockyou 20903 0.0641%
12345678 20553 0.0630%
abc123 16648 0.8918%

Table 1 – Top 10 passwords 

Table 1 shows the top 10 passwords with 
their absolute counts. The use of numerical 
sequences immediately stands out as 5 of 
the 10 passwords represents this class.  

When we break the numbers down to 
percentages, two troublesome conclusions 
can be drawn: 

1. Roughly one out of every hundred 
passwords is the sequence ‘123456’ 

2. The top 10, 100, 1,000 and 10,000 
passwords cover respectively 2, 5, 11 and 22 
percent of all passwords. 

In other words, if an attacker would try 
to gain access to a system by trying the top 
10 most common passwords using a listing 
of known accounts. He could expect to suc-
ceed within 25 accounts, costing him only 
250 guesses. Given more accounts and just 
the password ‘123456’, success could be ex-
pected with the 50th account, costing only 50 
guesses. This attack is feasible without au-
tomation and low-profile enough to not raise 
any alarms.  

We compare our results with other top 
tens of common passwords (4) (5) in Table 2. 
All highlighted cells represent passwords 
that are present in our top 10. It should be 
noted that most other passwords are in our 
top 100 and all are present in our top 1000. 

RockYou! PCMag M.Burnet
123456 password 123456 
12345 123456 password 
123456789 qwerty 12345678 
password abc123 1234 
iloveyou letmein pussy 
princess monkey 12345 
1234567 myspace1 dragon 
rockyou password1 qwerty 
12345678 blink182 696969 
abc123 Firstname mustang 

Table 2 – Top 10 comparison (the last entry of PCMag 
‘firstname’ is a placeholder for an actual firstname) 

Although these overlapping lists, streng-
thens our believe that the RockYou! dataset 
is representative, it at the same time sad-
dens us to see that so many users still use 
very predictable passwords. 
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PATTERN ANALYSIS 

The previous chapter showed several 
ways of defining characteristics of a pass-
word. Now, we want to go a step further and 
extract actual patterns from passwords. This 
will help us to better understand how pass-
words are formed and ultimately allow us to 
construct an improved password checker. 

M. Dell’Amico (6) studied a much smaller 
database of roughly 10,000 entries. Various 
regular expressions were ran against the da-
tabase, in an attempt to recognize patterns 
in passwords. We repeat their experiment on 
the RockYou! database and present both 
their and our results below in Table 3 

Expression Example IIMS RockYou
[a-z]+ abcdef 51.20% 41.69%
[A-Z]+ ABCDEF  0.29% 1.50%
[A-Za-z]+ AbCdEf 53.74% 44.05%
[0-9]+ 123456  9.10% 15.93%
[a-zA-Z0-9]+ A1b2C3 93.43% 96.20%
[a-z]+[0-9]+ abc123 14.51% 27.69%
[a-zA-Z]+[0-9]+ aBc123 16.30% 30.16%
[0-9]+[a-zA-Z]+ 123aBc  1.80% 2.75%
[0-9]+[a-z]+ 123abc  1.65% 2.53%

Table 3 – Regular expressions 

The most notable difference is the use of 
digits. Most percentages in the IIMS data-
base indicate a reliance on lowercase charac-
ters, whilst in the RockYou! database pat-
terns that contain digits are more prominent. 
The patterns that describe a word that is 
suffixed by a number are almost double as 
popular in the RockYou! database. Pass-
words that are made purely out of digits are 
also more popular in the RockYou! database. 

Based on these results we can argue that 
the users of RockYou! have been trained to 
create more secure passwords, most likely by 
other applications which enforce stricter re-
quirements. One exception would be the 
passwords that consist purely out of digits. 
These passwords are used more often in the 
RockYou! dataset and we consider these 
kind of passwords to be very insecure, due to 
their limited complexity.  

Besides the aforementioned expressions, 
we propose our own set of supplemental ex-
pressions. We are most interested in pass-
words that start with letters and end with 
digits, as they make up for one third of our 
dataset and regular expressions can help us 
better understand this set. Therefore, we 
repeat the regular expression ‘[a-zA-Z]+[0-
9]+’ and keep track of all the numbers that 

are matched. We then look at the most 
popular numbers and revert these back to 
regular expressions. 

Number Count Percentage
1 1476941 16.37%

123 325963 3.61%
2 284354 3.15%
12 213870 2.37%
3 166762 1.85%
13 150069 1.66%
7 147951 1.64%
11 122630 1.36%
5 120376 1.33%
22 107444 1.19%
23 106425 1.18%
01 102756 1.14%
4 101573 1.13%
07 100693 1.12%
21 100370 1.11%
14 95288 1.06%
10 92655 1.03%
06 86495 0.96%
08 86065 0.95%
8 83819 0.93%
15 83708 0.93%
69 81299 0.90%
16 78506 0.87%
6 76798 0.85%
18 71343 0.79%

Table 4 – Top 25 numeric suffixes 

Table 4 shows the 25 most used numeric 
suffixes, which makes up for halve the 
passwords matched by the regular expres-
sion ‘[a-zA-Z]+[0-9]+’. We expect single 
digits to be popular suffixes and indeed, the 
digit ‘1’ covers over a million passwords that 
use it as a suffix. However, double digit 
numbers occur twice as often as single di-
gits, which we did not expect. Interestingly, 
the digit 9 is only present once in the listing 
(and not even as a single digit number). 

Besides the top 25, we present a second 
list which contains entries longer than 2 
characters from the top 100. 

Number Count Percentage
101 51065 0.57%
1234 49619 0.55%
2007 30731 0.34%
2006 29122 0.32%
666 24317 0.27%
2008 24300 0.27%
12345 20276 0.22%
2005 18694 0.21%
007 18261 0.20%
420 16470 0.18%

123456 15811 0.18%
1994 14288 0.16%
1993 13695 0.15%
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Number Count Percentage
1992 13609 0.15%
777 13223 0.15%
1995 13149 0.15%
2000 12613 0.14%
111 12426 0.14%
1991 12358 0.14%
1990 11740 0.13%
2004 11466 0.13%
321 11073 0.12%
1989 10940 0.12%
1987 10689 0.12%

Table 5 – Entries from top 100 numeric suffixes 
with length larger than 2 characters 

 Table 5 lists these entries. The length of 
the entries exposes very apparent patterns. 
All entries of length 4 are years. We argue 
that the gap between 1994 and 2004 is in-
dicative of users using the current year dur-
ing sign-up or a birth year. We know that the 
user base of RockYou! consists largely out of 
teenagers. Entries larger than 4 represent 
numeric sequences while entries with length 
3 represent repetitive digits or numbers from 
pop culture such as the number of the beast 
(666), lucky sevens (777), James Bond’s call 
sign (007) and four-twenty from the canna-
bis subculture (420). 

All two digit numbers are represented 
within the top 180 entries, which makes any 
entry in that range have more than 50% 
chance of falling in this category. We formu-
late this in a regular expression that 
matches any two digit number.  

Expression Description 
^(1|12|123|1234 
 |12345|123456)$ 

Numeric sequence 

^[0-9]$ Single digit 
^[0-9]{2}$ Double digit 
^(19[7-9][0-9] 
 |200[0-9])$ 

Year between 1970 and 
2009 

Table 6 – Regular expressions for numeric suffixes 

Table 6 shows the patterns described as 
regular expressions. It should be noted that 
the order is of importance. For instance, we 
consider the use of years as a suffix to be 
more secure than a single digit suffix. Regu-
lar expressions and their order will play an 
important role in our own password checker 
which we will present later on. 

N-GRAM APPROACH 

Another approach to analyzing the data-
set is by counting the occurrences of small 
sized character pairs that make up the 
password. Such an approach delivers a so-
called n-gram model, which is one of the ap-
proaches used in a paper by M. Dell’Amico 
(6) to generate passwords. An n-gram model 
is a type of probabilistic model for predicting 
the next item in a sequence. n-grams are 
used in various areas of statistical natural 
language processing and genetic sequence 
analysis.  

A n-gram model can be useful in two 
ways: 

1. It can be used to measure the likelih-
ood of a password as a product of the rela-
tive occurrences of its containing n-grams. 
This gives us yet another metric to measure 
passwords.  

2. It can be used to generate new pass-
words, based on the n-gram model. This 
could form the basis of a new kind of pass-
word attack strategy, which is smarter than 
a brute force approach. (8) 

To build a n-gram based model, every 
possible combination of characters of every 
password in the dataset must be extracted. 
This is required to solve the probability term 
of a n-gram based likelihood calculation, 
which can be described with the term:  

,௜ିଵݔ|௜ݔሺݎܲ ڮ,௜ିଶݔ ,  ௜ି௡ሻݔ

To calculate the probabilistic likelihood 
of a password, the following formula is ap-
plied: 

௡ܲሺߙሻ ൌ ሻ|ߙ|ሺߣ ෑ ௜ି௡ାଵߙሺݒ ௜ି௡ାଵߙ|௜ߙڮ ௜ିଵሻߙڮ
ଵஸ௜ஸ|ఈ|

 

Where ݊ is the size of the n-gram, ߙ is 
the password, |ߙ| is the length of the pass-
word and ߣሺ|ߙ|ሻ is the probability of ߙ being 
that length.  

The formula ݒሺߙ௜ି௡ାଵ ௜ି௡ାଵߙ|௜ߙڮ  ௜ିଵሻ isߙڮ
the conditional probability of the substring 
௜ି௡ାଵߙ  ௜ given all possible strings that canߙڮ
be created from ߙ௜ି௡ାଵ  ௜ିଵ when appendedߙڮ
with a single character. This is an embodi-
ment of the term ܲݎሺݔ௜|ݔ௜ିଵ, ڮ,௜ିଶݔ ,  ௜ି௡ሻݔ
which is used by the n-gram model to pre-
dict ݔ௜ based on ݔ௜ିଵ, ڮ,௜ିଶݔ ,  ௜ି௡ and allowsݔ
us to calculate the probability of a n-gram.  
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Since we are calculating the product of a 
series of probabilities, the assumption is 
made that the collection of occurrences is 
mutually independent, which means that we 
assume that the following property of mutual 
independence holds: 

ݎܲ ൭ሩݔ௜

௡

௜ୀଵ

൱ ൌෑܲݎሺݔ௜ሻ
௡

௜ୀଵ

 

Although we know that this property 
does not actually hold, the assumption that 
it does is required for us to simplify the 
problem. Through this independence as-
sumption, our model assumes the Markov 
property, which enables reasoning and com-
putation with the model that would other-
wise be intractable.  

The length of the password determines 
the amount of iterations, which generally 
means that the longer the password, the 
more iterations there are and the smaller the 
overall outcome of the formula will be. This 
is taken in account, due to the fact that 
we’re explicitly including the probability of 
the length of the password, as denoted by 
 .ሻ, in our formula|ߙ|ሺߣ

In the event that ݅ ൏ ݊, which happens in 
the first ݊ െ 1 iterations of the product, the 
substring references a non-existing charac-
ter index of zero or smaller. These references 
are substituted with the ‘»’ sign to denote 
the fact that we are dealing with a starting 
sequence. Thus, we get the convention:  

ሺ݅݅׊ ൑ ௜ߙ|0 ൌ »ሻ 

The set of possible characters is deter-
mined by the distinct characters which we 
encounter in the dataset. Thus, we do not 
include the full Unicode character set by de-
fault. Given the previous description of ݒ, the 
corresponding formula looks like:    

߭ሺܿଵ ڮ ܿ௡|ܿଵ ௡ିଵሻܿڮ ൌ
ሺܿଵߪ ௡ሻܿڮ

∑ ሺܿଵߪ ڮ ܿ௡ିଵܿҧሻ௖ҧא஼
 

The formula ߪ denotes the number of oc-
currences of the input string inside the mod-
el. The numerator part of the fraction 
represents the number of occurrences of the 
string that we are interested in (the n-gram), 
whilst the denominator represents the num-
ber of occurrences of all possible permuta-
tions of that string. In the denominator, ܿҧ א  ܥ
indicates a character from the set of all poss-
ible characters as encountered in our data-
set. 

The actual value of ݊ has a huge impact 
on the behavior of the model. In the next few 
paragraphs, we will discuss various values of 
݊ and their implications. 

Using a value of one for ݊ (unigrams), will 
make the algorithm contextless, as the algo-
rithm will only look at the frequency of single 
letters. This is synonymous to using the cha-
racter frequency analysis from the previous 
chapter to grade or predict passwords.  

If one were to choose a very large ݊, then 
the algorithm would lose its ability to dissect 
passwords and simply grade a password by 
its entire string of characters. This is syn-
onymous to calculating the frequency of a 
given password within the original dataset. A 
password generator with such a model would 
(almost) never generate any passwords out-
side the dataset.  

On another note, a large ݊ would also 
impose problems of the computational kind. 
As the value of ݊ increases, the amount of 
possible n-grams increases exponentially. 
Given a dataset of our size and a ݊ of 5 our 
algorithm used up nearly a gigabyte of sys-
tem memory. For a larger ݊ we had to resort 
to using a smaller subset of our dataset.  

Finally, a large ݊ also imposes another 
problem with the effectiveness of our algo-
rithm. As we said earlier, one of the powerful 
features of using n-grams is that they can be 
used to analyze or produce new (unseen) 
data based on known data.  

However, this imposes some require-
ments on the known data. Say we want to 
calculate the strength of the phrase “pass-
word” with ݊ ൌ 4, thus giving the formula 
ସܲሺ"password"ሻ. This would mean calculating 

the product of the probabilistic frequencies 
of all 4-grams contained within the phrase 
“password”. Consider the 4-gram “word”, 
which requires the calculation as shown at 
the top of this page. 

Now, consider a model which has never 
seen the 4-gram “word”. This would result in 
ሺ"word"ሻ݋ ൌ 0 and thus ݒሺ"word"|"wor"ሻ ൌ 0. 
As we’re taking the product of ݒ in our algo-
rithm this would ultimately lead to 
ସܲሺ"password"ሻ ൌ 0.  

One might argue that this is favorable, 
since we cannot grade something when we 
have no background data. However, given 
the previous example, we do have actual 
values for ݒ for all the 4-grams preceding 
“word”. Thus there is certainly some meas-
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ure of occurrence present in the calculation, 
which is lost when we multiply this by zero. 
We overcame this limitation by altering the 
algorithm to raise all occurrences by one and 
counting any item that never occurs as one 
instead of zero. This has little impact on n-
grams that occur many times and makes our 
algorithm more robust when dealing with 
unseen data. The downside being that n-
grams that occur very few times will have a 
less accurate representation.  

We used two third of our dataset as a 
training set for our algorithm and the re-
maining one third as our test set.  

N=1 N=2 N=3 N=4
aaaaa 123456 123456 123456 
eeeee 123123 1234567 1234567 
ale 12345 12345 12345678 
aanaa 121234 12345678 123456789 
aaaan 112345 234567 passwo 
aaaaaa 123234 milove 12345 
aaeaaa 123412 112345 passwor 
aeaeae 123450 lover ilovey 
ann 123452 012345 password 

Table 7 – Most frequent passwords 

Table 7 shows the top 10 most likely 
passwords as graded by our algorithm for 
various sizes of n. As we noted earlier, an 
analysis based on unigrams (1-gram), is bas-
ically a character frequency analysis. As vo-
wels are the most frequently occurring cha-
racters in the natural language, passwords 
that contain vowels are graded higher, than 
those that do not. When we look further 
down the list we see mostly short pronoun-
ceable passwords. 

When using bigrams (2-grams), numbers 
take the upper hand as they form the most 
frequent two character pair in the dataset. 
As we’ve seen from the previous chapter, 
there are simply a lot of passwords that con-
sist out of or contain numerical sequences. 
Moreover, the chance that some digit follows 
another is larger than the chance that some 
letter follows the other, simply because there 
are only 10 digits as opposed to 26 letters. 

When using trigrams (3-grams), text 
based passwords start to show up, but nu-
merical sequences still prevail. This top 10 
however shows similarities to the actual top 
10 of most occurring passwords in the Rock-
You! Dataset. 

Finally, when using quadrigrams (4-
grams), numerical sequences are overly 
present, but the larger list of results show a 
great deal of overlap with our own top 1000.  

From our findings we concluded that us-
ing trigrams was a good trade-off between 
accuracy and usability (in terms of perfor-
mance).  

PASSWORD CHECKER 

The previous chapters illustrated various 
ways in which we can grade password 
strength. In this chapter, we combine these 
metrics into a program that can help users 
to assess their passwords safety. Each step 
employs one or more metrics, which leads to 
one or more results. Each result has a name, 
a short description in natural language what 
the result represents and a severity level to 
indicate the impact of the result. Some re-
sults are pure informative and therefore have 
no severity impact. 

At the core, our checker does various 
things.  

1. The length of the password is ana-
lyzed, as this is a simple metric that can rule 
a password out as weak without even look-
ing at the actual content of the password. 

2. The password is ran across a common 
list of passwords. These are lists acquired 
from the internet or calculated by ourselves 
from our own dataset. 

Pattern analysis is employed to deter-
mine if the password fits a common pattern. 
One of the most important parts of this step 
is to actually break up the password in let-
ter(s), digit(s) and symbol(s). If pattern analy-
sis fails to find a suitable pattern, an un-
mangling strategy is applied. Some users try 
to add complexity to passwords by replacing 
certain characters with digits or symbols (i.e. 
password becomes p4$$w0rd) (14). This in-
hibits regular expression based pattern 
matching from finding actual patterns. The 
unmangling strategy attempts to revert said 
mangled passwords to their letter based 
form. Once a matching pattern has been 
found, the algorithm looks at what groups 
the pattern captured. 

a. If any words were found during 
the pattern analysis step, they will be 
held against common dictionaries of 
passwords, words and names. We prefer 
to use small dictionaries of a specific 
type, since this gives us more power and 
certainty in describing what the word 
represents. 
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b. If any numbers were found during 
the pattern analysis step, they are in-
spected to see if they fit a common form 
(such as a year). 

c. If any symbols were found during 
the pattern analysis step, they are in-
spected for common occurrence.  

3. Finally, we use a 3-gram model based 
on our dataset to grade the password. To 
make our 3-gram based algorithm suitable 
for password grading, we need to map the 
range of possible values from our algorithm 
to a set of gradations. First off, the actual 
range of ଷܲሺߙሻ lies between 1 and 10ିଶ଼, 
where the lower limit is a constraint set by 
our computer environment. We determined 
the boundary values for the gradations by 
manually checking the results of our algo-
rithm on several sets of passwords. For in-
stance, running the algorithm on the top 
1000 we computed earlier, gave us a good 
boundary value for passwords that are ‘Criti-
cal’.   

When all results are calculated, they are 
presented to the user in order of severity. 
Each result is accompanied with a short 
message describing the ‘problem’ that was 
found. 

We used two third of the RockYou! data-
set as the training set and the remainder one 
third as the test set. From the training set, 
we constructed the various metrics required 
by our password checker such as the n-gram 
model and the length distribution. We then 
ran the checker on our test set. 50% percent 
of the passwords were reported as being 
‘Critical’ which means such a password 
should never be used. 45%  percent was re-
ported as being ‘High’, which indicates that 
the password should be changed or only 
used for none-critical purposes. Only 5% 
percent had a severity of ‘Medium’ or lower.  

CONCLUSION 

Summarizing, when we look at the Rock-
You! Dataset, the preliminary tests indicate 
that passwords are generally short, conform 
to existing language patterns and show a 
great deal of overlap. In other words, a sig-
nificant part of the user base has an inse-
cure password.  

Moving onto pattern analysis, we have 
shown that users that do try to enhance 
their password, do so in a very predictable 
manner: Over a million users chose a pass-

word consisting out of a word suffixed by the 
digit one. We extrapolated common patterns 
from the dataset and presented their occur-
rences.  

The results from our n-gram approach 
showed how probability calculation can help 
us assess password strength. We looked at 
various values of n for determining the op-
timal size of the model and determined that 
trigrams (3-grams) were best suited for grad-
ing passwords.  

The above findings were incorporated in 
our own password checker, which we then 
ran against our dataset. The results were, 
again, troublesome, as 95% of the passwords 
were marked as being highly unsafe. One 
mitigating argument is that RockYou! pro-
vides a very simple non-critical service, thus 
users may not feel inclined to provide a 
strong password. Yet, with halve a million 
users choosing a short numerical sequence 
as a password, one may wonder if security in 
terms of password authentication is at all 
present. 
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