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Abstract

In this paper an solution for multi-threaded handling of iTask web-
requests is being proposed. This solution preserves much of the original
iTask system and aimed to preserve the uniqueness constraint present on
the ”World” object. There are however several issues with this solution
that need to be solved before attempting implementation. This paper
should therefore be considered as a proof of concept than a detailed guide
about how to proceed with a multi-threaded iTask web-server.
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1 Introduction

Web-based application have always lend them self well for multi-threaded pro-
cessing. Pure functional languages like clean also lend them self well for multi-
threading the functions. However these two concepts have not been merged and
this what I try to do in this paper.

We first discuss what the points of interest are regarding the multi-threading
of the framework. Using UPPA AL models to discover critical sections and check
for system invariants.

Then using the results from the UPPAAL models to build a solution. Keep-
ing as much of the properties that Clean has and keep it as easy to use as
possible as The skill required to define workflows should be as low as possible.



2 Literature

2.1 Clean

The programming language Clean is a pure functional language currently being
developed in Nijmegen, the Netherlands. Apart from being pure it can also
switch between evaluating strict or lazy, support higher order functions, and
implements generic and dynamic typing.

In this paper we will heavily rely on dynamic and generic typing to generate
the needed boilerplate for the user to easily interact with the new features.
The generics are mainly used to accept every type to be put into a dynamic.
And dynamics are used to serialize functions and data to file, to be able to
communicate using while the file system. How the new features use the dynamics
and generics is described later in the paper, the inner workings however are not.
They are described extensively in this paper by P. Achten et all [1].

2.2 ITask

"ITask is a scientific prototype of a Work-flow Management System (WFMS).
It is also a real-world application that deploys and coordinates contemporary
web technology” [4] ITask is a programming library made in and for the pure
functional programming language Clean.

The general idea of the iTask WFMS is to provide a "as simple as it gets”
powerful work-flow definition language. Most contemporary WFM systems use
special purpose specification languages which are less expressive than needed
in some cases. The iTask system tries to solve this by using a programming
language as a base for their WFMS as this grants them some features for free.
features like general recursion, powerful abstract types, and function abstrac-
tion. They use a functional programming language because this gives them
higher order functions and a more expressive language for the set-domain in
which the iTask system operates. It also gives them fast compiler and inter-
preter technology.

The framework in its original state does not provide a multi-threaded web-
server to serve contents to its users. When I am finished it will, so this system
can be deployed in an environment with a large number of users. The lack
of multi-threaded serving of content usually is not a problem if the tasks are
performed linearly, but as the user has the ability to grant either tasks to other
users, leave the task to be completed by somebody else or to be finished at a
later time this causes some issues. The iTask system uses a disk cache to store
user sessions before they are completed and serves them again when needed. It
does not however supply the programmer with synchronisation primitives to be
able to access this cache concurrently. This is why this paper will try to identify
the critical sections in the iTask framework and find a suitable solution to these
concurrency issues.

2.3 Uppaal

Uppaal is a toolbox for modelling, simulation and verification of state machines,
therefore anything that can be modelled with state machines.[5] The toolbox
consists of 3 parts. One of these is a modelling language in which to model



your system, In either a graphical or scripting fashion. The second part is a
simulator in which you can quickly inspect your models behaviour. Finally part
three is the model verifier in which you can check for invariants in the entire
model. The verifier then performs an exhaustive search on the statemachine or
model that you created. It then reports its findings back to you. This allows
you to make a model of a system that heavily depends on timing and simulate
during the modelling process to look for model flaws before the model checker is
used. This last observation is quite vital to using the Uppaal tool, as checking
your model with the verifier is very computational expensive. You on the other
hand can exploit what you already know about the model to find flaws faster
and then later check if you missed a situation in which an invariant no longer
holds.

Uppaal offers both a WYSIWYG (what you see is what you get) editor
and a textual interface to input your models. The internal compiler transforms
any graphical part of the model to the textual which can then be parsed and
verified by the model checker. The Uppaal description language is also very
flexible as it could be adapted to support models which can be transformed to
timed automata. If parts of the uppaal system need te be adapted, they can be.
This enables the modeller to input a model that isn’t a pure timed-automata
and have the system do all the necessary conversions for the model checker as
described by [5].

The model checker is designed to check for system invariants and reachability
properties. Checking if 2 instances of an automata can be in the same state or if
some variable in one of these automate’s state are the same as in the other or any
other properties expressible in logic. In this paper we will express the invariants
of the iTask system into logic and variables used in the model. The simulator
will try to find violations of the constraints after which these violations should
be mended using standard techniques for concurrency issues.

Another nice feature of Uppaal is that the verifier can generate a trace to
a state which violates your conditions in the verifier. This trace can help you
identify and mend the problem in the system.

2.4 Concurrent programming

A lot of research has already been done on concurrent programming. Conse-
quently a variety of interprocess communication and synchronisation methods
have been developed in the past. The challenge in concurrency is no longer to
correctly implement a solution, although this of course is a requirement, but
focuses more on having the right solution for the right problem. Choosing one
solution over another can have dramatic effects on your performance and or
maintainability of your code base [2].

For instance a solution could be to distinguish between types deciding to
allow write operations on atomic types, types no bigger than the size of a register
or word size of the system you are working on. The gain in performance will
be quite noticeable as you do not need to ask for the state of the variables.
However this solution requires you to have a deep understanding of the types
the read/write method is invoked with, and make a distinction which varies
from system to system. This leads to unmaintainable code as this requires a
rewrite or at least code addition every time you want to deploy your software
on a new system.



A more universal solution to implement synchronisation, like using a mon-
itor or a semaphore is much slower. A semaphore knows nothing about the
data it guards. It just knows it can allow one caller at a time to manipulate
data and to tell any subsequent caller to wait until the first caller says he has
finished manipulating the data. As abstract as it is it it does not allow for much
optimisation. All callers have to ask the semaphore if it’s all right to approach
the data even if has been available for a long time or if it is an atomic data type.
Depending on how long it takes for the semaphore to respond this could take
up valuable computation time. We should keep this in mind when choosing our
solutions and find a balance between abstraction and performance.



3 ITask models in Uppaal

To show that there is a need for synchronisation in the iTask framework this
paper will attempt to create a simple model in Uppaal. This model will model
will consists of a small part of the framework and show iTask programs requires
synchronisation when concurrency is allowed.

3.1 Adapting Uppaal

The iTasks 3 WFMS has a document that describes the semantics in the lan-
guage Clean*. This programming language is used as it is more readable for
the Haskell community as Haskell is the standard in the functional language
world. This document comes in handy when making an implementation of the
iTasks system. Part of this research will be to model a small part of the Itask
framework in Uppaal. By doing this I hope to prove that certain actions should
be made atomic before multi-threading can be applied to iTask in its current
form.

The tool I'm using for this is called Uppaal, this tool has a big advantage as
it can automatically check for any condition you want it to check over several
automata at once. This allows you to specify a certain property, make a model,
and then verify if the condition is satisfied in the given model. If this is not the
case you can ask the verifier to create a trace that leads to this violation.

What properties are we looking for? Well the properties are hidden inside
the semantics document. Two examples are ”two tasks can never have the same
Task-id” or ”two tasks can never have the same time stamp”. Before we can
actually check if these properties would be violated by our new environment we
need to overcome some minor technical issues.

Uppaal has a basic definition language which is a subset of the C program-
ming language with added domain specific types such as clocks, states etc. This
being said it does not have interface to define algebraic data types, so this needs
to be worked around.

3.1.1 Enumerations

Even though the highlighted keyword enum in the declaration language suggests
it, Uppaal does not contain enumerations. Also the most basic algebraic type
definition in Clean only contains possible labels. This is equivalent to enumer-
ation types found in other languages. The language does contain ”const” and
bounded integers so it is easy to add your own enumerations and they to make
them readable by using ”typedef” to hide the underlying bounded integer type.

To give an example related to our domain, here is how I modelled the ”Sta-
bility” type. In Clean* it is defined as follows.

Stability = Unstable | Stable

Listing 1: algebraic type definition

In the model definition language of Uppaal this looks as such, listing 2.




typedef int[0,1] Stability;
const Stability stability UNSTABLE = 0;
const Stability stability.STABLE = 1;

Listing 2: Uppaal enum emulation

3.1.2 Records

Thankfully records are convertible to C-type structures. So records like State
and World are represented as structures with data members. And Uppaal sup-
ports the use of C-type structures so we can port these types straightforwardly.
Furthermore in the next few models we only model the structures members we
need, to clarify what variables matter.

3.1.3 Function calls

Uppaal does allow for function definitions in the declaration language, but only
if the function is to be considered an atomic operation. In this paper we need to
be able to split the functions we model up into multiple state machines to keep
things manageable. This requires us to do some extra work regarding emulating
function calls and returns. Currently there is no way in Uppaal to directly pass
values from one state machine to another. For this purpose I have added more
variables to the global state to emulate these features.

Firstly we need to represent the function arguments and get these into our
model. We do this by making a structure containing all the argument members.
Then we declare an array of size two of the made type above to store the
arguments with which we call the function. When the function gets called this
state machine, representing the called function, will access this array to get the
arguments on which to operate. But we haven’t covered the calling mechanism
yet. This is handled by the only synchronisation method built in Uppaal.

This synchronisation method uses a type of variable called a channel and on
this channel there are 2 operations. The ”?” and ”!” operation. The ”!” sends a
signal over the channel and all state machines that have the corresponding ”?”
operation in their next transition are allowed to make that specific transition.
Alternatively the ”?7” operation blocks until a corresponding ”!” operation is
performed.

These synchronisation operations are not the only operation the state ma-
chines can perform on a state transition. So on the same edge you would do the
array manipulations we talked about earlier. To be more precise; on the edge
containing the ”7” synchronisation operation the machine accesses the ”stack”
array to get his function arguments. Here is an example of the system in action.

The function ”evaluate Task” in the iTasks framework takes a ”Task” and
a ”State” as argument. So there is a structure containing just that and just for
convenience we name the structure ”arg_evaluateTask” in listing 3.




//*kxxxx Argument Structs skskxx

typedef struct

{
Task_t ta;
World_t world;

} arg-evaluateTask;

Listing 3: Example function argument struct

Then we create the array for the function arguments. In this model there are
two threads as this is enough to verify if our properties hold. The two threads
take up most of the available resources during the validation phase so more
threads would simply not be possible at this time. This also means that there
have to be two places for us to store each thread’s function arguments. As
function arguments are pushed to the stack prior to calling the function we call
these array variables stacks.

//*xxxx Function stacks ssxxx
const int TNR = 2;
arg_evaluateTask stack_evaluateTask [TNR];

Listing 4: The function ”stacks”

Then we have the channel type variable to facilitate the synchronisation
routines of Uppaal.

//xxxxx Channels / function calls sxkxx
chan call_evaluateTask [TNR];

Listing 5: Function calling in Uppaal

Following are two pictures (figure 1 and figure 2) of the state machines
utilizing this function call method.

As you can see this test state machine ”calls” the other state machine shown
below

In these examples you can also see that we use the same mechanic to transfer
return values from one state machine to another. We will call these places a
return point from now on.




Figure 1: A state machine calling another state machine as if it were a function.
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Figure 2: A state machine Responding to the call by the caller above.
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3.1.4 Limiting the search space

Since the models we built are big we need a way to keep the search space as
small as possible, but we should do this without limiting the model to not enter
states it could enter under normal circumstances. Fortunately Uppaal allows for
bounded integers. We use these bounded types to model things like timestamps
which would eventually also run out if we used normal integer types as these
have an implicit maximum value dependent on the system architecture. For
example if they get bigger then the register size of the current host computer,
or in this case Uppaals max int (16 bits signed integer). But this simplifies and
speeds up our model checking.

This however has the troubling side-effect that it introduces deadlock as the
bounded variable cannot grow larger than its upper bound. These issues would



also be present in the real system but would not emerge as quickly as the integer
sizes would be much larger. That being said we still want to check if our model
deadlocks on other parts as a result of our concurrent programming. So we
allow deadlocks only if these bounded variables in the global state have met
their upper bound. This allows us to generate traces of deadlocks that occurred
because of flaws in the model instead of inherent properties of computer memory,
or lack of it.

3.1.5 Uppaal’s use

Although I was originally planning to validate the whole system in this manner,
this was not possible. The search space grows exponentially, so every state you
add increases the computation capacity needed to validate the system. This
resulted in using this as a tool to prove parts of the system and use the ”Ref-
erential transparency” property of Clean. In short the referential transparency
means: ”a function called with the same arguments will always return the same
value, no matter the state of the program”.

So if T prove a certain property holds within a certain function, no matter
what the state of execution of another function would be, it would not alter the
way this function interacts with his arguments and thus yielding a correct result
all the time.

After modeling a few functions however I discovered that the primary issues
of the current system is not being able to share the world in a safe manner.
When we can do this we can multi-thread the whole system. The next sections
will try to give a solution to this problem.



4 A general extension for threading

In this section we will discuss what solutions are possible to the problems found
by the Uppaal models and how to implement these solutions. This will give us
a generic toolbox to use within the iTask system. But firstly we will discuss it
outside this setting to focus on the solutions that are being introduced instead
of the framework itself.

4.1 Points to change

We will discuss the weak points in the system as identified by making Uppaal
models using the methods clarified in section 3.1. Following is a list of things
to tackle when making the system multi-threaded:

e State object ”World”. This ”World” is essentially a variable all Tasks can
access. This is exactly the issue I identified in section ?7.

e Uniqueness constraint of the ”World” variable. The world can be copied
but it will be a separate instance as of the uniqueness constraint.

e Shared data of the iTask framework (RWshared). Also these can be
spawned and shared within the world and we should be able to access
them from within tasks.

e Inter-thread communication. The threads need a way to communicate
with each other now facilitated by the world but this will no longer be
accessible in the new system as it was in the old system.

4.1.1 State object world

Clean uses a state object world to interact with the the outside ”World”. This
state is extended in the iTask framework and is called ”world”. This is an
abstraction for everything the underlying operating system supplies as a service
to it’s programs. Think of input- and output operations as a prime example.
To be able to create a socket we need this world object. This means all access
to this world should be regulated by some kind of mutex lock or only a single
thread should have access to this object.

4.1.2 Uniqueness constraint of the ”world” object

In Clean their is a concept of unique objects. These objects may be duplicated
but this will create a second distinct object. The thing I need in this paper
are multiple references to the same object. For example; when opening a file in
Clean you get a object of type ”Unique File” (transcribed as ”*File”). If you
could duplicated the reference to a file currently in state A. 2 functions could get
a File in state A while function 1 might have written something in the file. This
first function could close the file while the second files still assumes it has an
open file handle. These inconsistencies are prevented by this uniqueness typing,
but is exactly what I need for my solution.

The world object is an example of such an uniqueness typed object. But as
stated in section 4.1.1 we either need to regulate access to the State by mutual
exclusion or only give a single thread access to the world object.
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The most common solution in imperative programming is by using a ”mu-
tex” lock. These mutexes will only grant the first thread that accesses it and
will sleep the other thread until the first thread releases it’s lock on the mutex.
But in the context of pure functional languages this means we have to represent
them without using global state. As pure functional languages do not allow
global state all information must be be passed to the function. But the callers
in this case are the threads, and if they would know what to pass to this mu-
tex function, which in turn would use this information to determine whether
to grant access or block the incoming thread, we wouldn’t need to ask the if
we are allowed to access the data. As the threads would have the information
needed to determine if the data is safe to access. As we know this is not the
case, therefore implementing a mutex in the classic way is impossible in Clean.
This also rules out other standard solutions like Spin-locks and wait-notify syn-
chronisation primitives.

We will come back to the solution in our abstract and real world solution
sections.

4.1.3 Shared data of the iTasks framework

This problem boils down to the unique world problem. Both threads need
access to the world object to be able to either read or write data from or to the
RWShared data types. So if we solve the issue of the unique world we solve this
issue as well. There is however the possibility for have RWShared object not
located in the world but more local, but as it is possible to also store them in
the world my solution has to be universal enough to accommodate them.

4.1.4 Inter-thread communication

The pure functional nature of Clean makes coupling separate parts together
difficult. You can not have a common middle ground as it has to be contained
in one of the separate units, in this case threads. A Mailbox system in Clean
is impossible to make because of the lack of locking mechanisms. So one never
knows if it is safe to push a message to the receiver, and there is nowhere a
message could be send to that is available to both parties.

Yet again the solution is there, but just not in the Pure functional world
Clean lives in.

4.2 Abstract solutions

All the problems mentioned above can be tackled by a single solution. We make
an abstract State "mutator”. The State in this case being the world, but I'll
refer to State as this solution is generic and does not only work on ”Worlds”.
This will be a separate thread and is the only thread that has access to the
world object. This thread listens to some abstract queue that provides it with
functions to transform the world and sends the return-value of these functions
back to the sender via another abstract queue.

These queues are not unique and will not be pure in the sense of pure func-
tional as they depend on the state of the files used which could be altered at
any entity that misuses the system. These dirty object however are the only
dirty object this solution will introduce. And by regulating and keeping the
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interface to these objects to a minimum one could use other methods to prove
nice properties that are beyond the scope of this article.

In this chapter semantic functions will be framed and sample code will be
”inline” with the document. This is common practice in this particular academic
world and I will conform to these standards.

:: Pipe = Pipe Dynamic

WriteToPipe :: Pipe a —> Pipe | TC a

ReadFromPipe :: Pipe —> (Dynamic, Pipe)

DynStApply :: Dynamic *State —> (Dynamic, xState)
Match :: Dynamic —> Maybe a | TC a
::ReturnVal = Ret

:: Void = Void

: :Func = Func

Listing 6: The Pipe typedefinition.

This algebraic data-type is representing the abstract queues we introduce.
This type does not have any real object backing it up right now but lets assume
for now such a type exists and we’ll discuss concrete implementations in section
4.3

Next up writing and reading from a pipe and restricting its use.

WriteToPipe :: Pipe a —> Pipe | TC a
WriteToPipe p v = sWriteDynamic p (dynamic v :: a’”)

Match :: Dynamic —> Maybe a | TC a

Match (x :: a”) = Just x

Match other = Nothing

ReadFromPipe :: Pipe —> (Dynamic, Pipe)

ReadFromPipe p = sReadDynamic p

DynStApply :: Dynamic *State —> (Dynamic, *State)

DynStApply (f :: *State —> b) st = (dynamic (f st) :: b, st)
DynStApply - - = abort ”DynStApply:_arguments_of_wrong_type.”

Listing 7: The pipe API, containing all neccesary functions to operate with the
new threading model.

In this example I have chosen for an generic interface for both reading and
writing pipes. Maybe it would be better if the interface was more limited, but
for now it is easier to talk about a small powerful set of tools and focus on
solving the issues.

The functions sWriteDynamic and sReadDynamic are not specified further
in this document. They will be modified versions of the read and write dynamic
discussed in P. Achten et all [1]. These variant would be made to work on any
type underlying the actual Pipe type. The case of shared files will be discussed
in section 4.3

When writing something to a Pipe it can be either be of type tuple with
Ret or Func as first member. (Ret, Void) is for function normally returning a
State but this is handled by the masterthread and thus cannot be returned. So
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it just returns Void. Any other Ret tuple wil contain any arguments returned
beside State. So a function normally returning (Int, *State) will send a (Ret,
Int) tuple over the pipe. Last of the (Func, f) tuple will be send if a function
requests something of the world.

In the next block some convenience functions are denoted that you would
want to implement when holding a shared data-source in the proposed manner
So I will add them to the semantics description.

loopForInput :: *xState [(Pipe, Pipe)] —> *State
loopForInput st x
#(st, x) = iterate st x []

| x = [] = st
| otherwise = loopForInput st x
iterate :: xState [(Pipe, Pipe)] [(Pipe, Pipe)]
—> (xState, [(Pipe, Pipe)])
iterate st [] ops = (st, ops)
iterate st [(pin, pout) : ps] ops
#(df, pin) = ReadFromPipe pin
#(dv, st) = DynStApply df st
#mv = Match dv
|mv = Nothing = iterate st ps [(pin, pout) : ps]
|Ret = fst (fromJust mv)
| Void = snd (fromJust mv) = iterate st ps ops

| otherwise
//Do the meeded computations on the return value
= iterate st ps ops

unc =— fst (fromJust mv
F f f J
#(Just (Func, v)) = mv
#pout = WriteToPipe pout (Ret, v)

= iterate st [(pin, pout) : ps] ops

Listing 8: Convenience functions for handling input.

I would like to note that we use dynamics to store and somehow write the
data to and read from the pipes. This allows us to send functions and this is
exactly what we want to do, as we made a separate thread handling all the State
transformations. So the task of this thread is to check if there is information on
one of his incoming pipes and match that with a function that takes a xState
and returns a generic type a. Then he transforms the State and writes the
generic outcome of type a back on the corresponding Pipe. Lets have a look in
an abstract way.

work :: xState —> (Int, *State)

work st

# value = st.value

# st = {st & value = value + 1}

= (value, st)

futurelnt Pipe —> (Int, Pipe)
futureInt p

#(val, p) = ReadFromPipe p
#val = Match val

| val = Nothing = futurelnt p
#(Just (Ret v)) = val

| otherwise = (v, p)
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threadedFunction :: Pipe Pipe —> (Pipe, Pipe)
threadedFunction pout pin

#pout = WriteToPipe pout (Func, work)

#(val, pin) = futurelnt pin

#pout = WriteToPipe pout (Ret, val)

=(pin, pout)

startProgram :: xState —> xState

startProgram st

#pinl = Pipe (dynamic 0)

#poutl = Pipe (dynamic 0)

#pin2 = Pipe (dynamic 0)

#pout2 = Pipe (dynamic 0)

#(pinl, poutl) = startThread (threadedFunction pinl poutl)
#(pin2, pout2) = startThread (threadedFunction pin2 pout2)

= loopForInput st [(pinl, poutl), (pin2, pout2)]

Listing 9: Example usage.

In which ”st” contains an unique ”Filesystem” and startThread an abstract
function not further specified that runs the given function with parameters in a
separate thread.

By showing this piece of example code I hope I have shown how the tactic
works. But it might not be self-explanatory. The program starts by setting up
so called pipes and giving them to threaded functions so they can get on their
way. These threaded functions can go on their way and start executing the
real program. As soon as they hit a function call they wrap the function and
partially apply it until it only needs a *State variable. At this point the threads
sends it over the outgoing pipe it received earlier from the thread now holding
the *State variable. This program reads the wrapped function from the Pipe
applies it to the State and returns whatever value it is back on his outgoing
pipe corresponding with the incoming pipe on which he received his partially
applied function. From the moment the threaded function sent his request it
loops until he receives the answer to his request regarding the *State variable.
This might be a simple True/False value or even Void, or an action event from
a socket. The threads knows what it expects and can check this value to be of
that type. If so it accepts the value as being correct and moves on to the next
function call requiring the *State.

4.3 Real world solutions

Now that we discussed what we need for this approach we will have a look at
how we could implement this using the Clean language constructs. As we used
some non-existing language constructs to define the solution, but this does not
mean it can not be implemented in real Clean. We start by redefining the Pipe.
Pipe did not have any physical Clean data structure backing it in the previous
definition of the system, therefore it is impossible to use this type to store any
data as we assumed it could in the previous definition. So let redefine it so we
can work with it properly.

The Clean language usually has Files that are uniquely typed. Any variable
can be typed "unique” and in this case the uniqueness makes the underlying
data consistent as only one read/write operation can be carried out at any given
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time. But this is exactly what we do not want or at least what we can not have.
As we cannot have 2 references to the same unique file object between two
threads. Fortunately the Clean language also provides so called shared files to
which we can have multiple references. So our redefinition of the Pipe will be
as follows.

Pipe := File

Listing 10: Our real world Pipe type definition

As you can see the file misses uniqueness (”*7).

As defined in listing 7 we need a read- and write dynamic operation on these
pipes.

The read operations have already been made as discussed in this paper by
P. Achten et all [1]. These read operations are defined using a string and a file
system. But as I am using shared files in this section, these functions should
be redefined using a shared file. This will not be a problem as the underlying
function calls opens a file anyway and does the operations on it to extract a
dynamic. The Function only needs to be exposed or possibly be defined for
shared files.

The write operation specified in 7 is a different story. There is no write
operation on shared files at this moment in time. This is for very good reasons
e.g. to prevent corruption of data that is bound to occur if used in normal file
interactions, however file access in this new framework is very restricted in the
sense that only 1 thread writes 1 file. And then waits until the other thread
acknowledges that he received that data. So no simultaneous writes are possible.
To stress that this should be impossible one could give the " WriteToPipe” some
special semantics. I would suggest to make it truncate the file and then write
it’s contents. This way you guarantee that if there was some information that
didn’t get processed by the master-thread (The thread which holds the world
and spawned the other worker threads) first gets deleted. Remember this is not
possible as the thread writes and waits for it to be processed, but this is just
be sure So the master-thread will be protected from receiving 2 request in the
time he actually can only process 1 Read.

Another fail-safe could be some way to enforce that only one request is made
at a time, without limiting the worker thread too much. But if the user abides
by the rules this won’t be a problem so I won'’t discuss possible solutions. This
could be achieved to enlarge the responsibility of the ”future” functions. These
functions are implemented by the end-user him self in this example. However
these functions can be generated for him by using generics but this makes the
example more difficult to understand so I left it out for simplicity. We could
implement a generic ”future” function as follows
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future :: Pipe —> (a,
future pipe
#(val, pipe)

X
el
@

)

ReadFromPipe pipe

# val = Match val

| val = Nothing = future pipe
# (Just (Ret v)) = val

| otherwise = (v, pipe)

Listing 11: A generic future

Another interesting proposed improvement upon the system that would
make matters a bit more complicated is by merging the request to the master-
thread and receiving an answer from this master-thread. One could easily ex-
pand the above ”Future” function to include sending a function to the master
thread but this would have to be done at the cost of readability. This also solves
the issue of having two requests on one shared file. As the only way to request
information is to enter the Future function and this Function blocks until it
receives an answer. If the user somehow evades using it in this way every write
should still truncate the file as to invalidate the current request and to prevent
the system from going into a deadlock.

Another implementation detail that should be addressed is that all the op-
erations which have something to do with the state will be very cpu intensive
as of busy waiting. Time after time we are retrying to see if there is any infor-
mation available. It is completely safe to do so but it is bad practise to waste
cpu cycles, checking if you can proceed with the execution. Some notification
mechanism could be developed for this purpose, but this is beyond the scope
of this paper and would probably be hard to implement using the file system
which I used for my proof of concept. Of course others are free to pick this up
and implement a better system that supports notification of threads.

4.4 An application of the semantics in iTask

To effectively use the new functions in iTask we need to adapt the dispatching
of requests. This function in embedded in the http-server of iTask should be
adapted to fit our new needs.

http_startServer options handlers world
//Start the listener

# (listener ,world) = startListener (getPortOption options) world
//Enter the listen loop

#(suci, pin, world) = sfopen ”mainpin” 1 world

#(suco, pout, world) = sfopen ”"mainpout” 1 world

| not suci && suco = abort "Pipe_creation_failed”

#(pin, pout) = startThread (loop options handlers listener [] [] [] pin pout)

= loopForInput world [(pin, pout)]

Listing 12: Rewritten http startServer

This function will process all the world requests made by its descendants
including all requests to make more pipes. This allows its descendants to spawn
more threads to achieve true multi-threaded processing of requests. All the
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functions needing the world should partially apply the function until the only
argument left to apply is the world and then write it to the pipes.

Further down in to the system every action request from the web server users
will trigger a new thread to handle this request. In addition a second thread will
be spawned to handle the next requests. This will result in a complete chain
leading to the original thread holding access to the world to handle all the world
access and then push it down the pipes into the system to where the request
was made. The system as it now stands is not very manageable and needs to
be improved upon if it were to be implemented. For now however it is a proof
of concept and how it could be improved will be discussed in section 5.
loop :: [HTTPServerOption]

[(!'(String —> Bool),! (HTTPRequest Pipe, Pipe —> (!HTTPResponse, Pipe, Pipe)))]
TCP_Listener [TCP_RChannel] [TCP_SChannel]

[ (HTTPRequest , Bool ,Bool ,Bool)] Pipe Pipe —> Pipe Pipe
loop options handlers listener rchannels schannels requests pout pin

//Process a completed request
| method_done && headers_done && data_done

// Create a response

#pout = WriteToPipe pout (Func, (sfopen ”loopPinl” 1))
#(looppin, pin) = future pin
#pout = WriteToPipe pout (Func, (sfopen ”respPinl” 1))
#(response , pin) = future pin
#pout = WriteToPipe pout (Func, (sfopen ”loopPoutl” 1))
#(looppout , pin) = future pin
#pout = WriteToPipe pout (Func, (sfopen ”“respPoutl” 1))

responsepout in future pin
#(resp pout, p P
looppin, looppout startThread (loop ... looppin looppout
p p
#(r..pin, r..pout) = startThread (http_makeResponse request handlers
etStaticOption options) responsepin responsepout
g
#(pin, pout) = redirector [(looppin, looppout),
(responsepin, responsepout)] pin pout

#pout = WriteToPipe (Func, (debug ” Generated.response:” options)) pout
#(-, pin) = future pin
#world = WriteToPipe (Func, (debug response options)) pout
#(-, pin) = future pin
where
redirector x pin pout
#(x, pin,pout) = iterate2 x [] (pin, pout)
| x =[] — (pin , pout)

= redirector x pin pout

iterate2 [] x pin pout (x, (pin,pout))
iterate2 [(lpin, lpout) : ps] ops pin pout
#(dmf, lpin) ReadFromPipe lpin

#(mf) = Match dmf
| mf =— Nothing = iterate2 ps [(lpin, lpout) : ops] pin pout
| Ret = fst (fromJust mf)
| Void = snd (fromJust mf) = iterate2 ps ops pin pout
| otherwise //do the needed computations
= iterate2 ps ops pin pout
| Func = fst (fromJust mf)
# (Just (Func, f)) = mf
# pout = WriteToPipe pout (Func, f)
#(v, lpin) = future pin
#(1pout) = WriteToPipe lpout (Ret, v)

= iterate2 ps pin pout



Listing 13: Rewritten loop

Like a mentioned earlier this solution is far from perfect and serves as a
proof of concept. People can rework and improve this to make it easier to use
and more efficient to execute. In the next chapters we’ll discuss other solution
that have been proposed and the points to improve in this solution
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5 Discussion

The solution proposed in Section 4.2 is by no means optimal. Using the file-
system for interprocess synchronisation is inherently slow. This paper does
provide a proof of concept that a system that synchronizes between pipes is
possible in the pure functional language clean if you are prepared to step out of
this pure world for small amounts of time. By consequently limiting how this
Pipe could be accessed by either describing the usage or by enforcing it trough
semantics, one could still use this system to prove certain properties as you limit
the states the program can be in.

Another downside of this solution that it brings clutter to the program. It
started as a nice clean idea in my head but resulted into a mess as I had to
disambiguate between results and functions, I even had to introduce a void
type. This needs to change if it would ever be implemented. This could be a
topic for later research.

There is however another type of solution. This solution was proposed by
Lészl6 Domoszlai and Rinus Plasmeijer in [3]. This solution involves roll-backs.
In a nutshell the method pushes as much work as possible to javascript and
thus the client. It also gives it a world object as is and tries to keep the world
consistent with the original world by performing a roll-back when it conflicts.
Although elegant there is no guarantee that if steps that can lead to a inconsis-
tent state will not be taken time and time again. Thus introducing a live-lock
as any algorithm that terminates probabilistic. Of course the chances of this
actually happening infinitely are very slim and one could fall-back to inter-
leaved execution if one would loop too many times, but This didn’t seem like
an attractive solution to me.

Another reason I did not reuse any of his work is that we worked in the same
time frame as each other but at different phases of the actual report. So at the
time this paper came out I couldn’t incorporate this any more in my work as I
spent all of my time finding a solution and am under serious time constraints.
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6 Conslusion

The solution proposed in this paper can be made to work, but as I went on with
this topic I stumbled upon more elegant solutions either proposed by colleagues
or by making discoveries inside the Clean language itself. Therefore the solution
isn’t as elegant as it could be. There is also room for improvement within this
solution. For instance the call-stack increases by one with each request and this
could turn ugly if left unfixed.

As a proof of concept this is fine but this solution should not be implemented
without improving on the key areas both discussed here and in the discussion
(section 5).
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