
Radboud University Nijmegen

Bachelor Thesis

Evaluating implementations of SSH by
means of model-based testing

Author:
Erik Boss

Supervisor:
Erik Poll

Abstract
This thesis presents an evaluation of implementations of the Secure Shell

(SSH) protocol by applying model-based testing techniques. In doing so, an
evaluation can be given of the techniques themselves when applied to a fairly
complex system such as SSH. More specifically, only the server side of the
OpenSSH implementation of the SSH transport layer is actually tested and
evaluated. However, this can be easily extended to test the client side and/or
other implementations. The process of testing and evalution is detailed in
order to provide a guide to a) testing the rest of SSH; b) applying model-based
testing techniques to similar protocols as SSH.

August 6, 2012

Contents

1. Introduction 2

2. Background 2
2.1. Model-based Testing . 2
2.2. Secure Shell Protocol . 3
2.3. OpenSSH . 4
2.4. Tools . 5

2.4.1. JTorX . 5
2.5. yEd . 5

3. Models of SSH and OpenSSH 5

4. Testing implementations of SSH 9
4.1. Setup . 9
4.2. Implementing the middleman . 10
4.3. Implementing the adapter . 11
4.4. Testing environment . 12
4.5. Testing the OpenSSH Server . 12
4.6. Acceptance . 12
4.7. Security . 13

5. Evaluation 15
5.1. Evaluation of OpenSSH . 15
5.2. Evaluation of Model-based Testing . 16

6. Conclusions 16

7. Acknowledgements 17

A. middleman.pl 19

B. adapterutil.c 21

C. sshconnect.c 25

D. packet.c 25

1

1. Introduction

The Secure Shell (SSH) protocol and the tools built upon it such as scp and sftp are
often vital for the tech savvy user. It is therefore important that an implementation of
SSH implements the specification correctly. Model-based testing techniques claim that
they can do just that, testing whether a specification is implemented correctly.

This thesis aims to test an implementation of the SSH Transport Layer, OpenSSH
in this case, with model-based testing techniques and in doing so give an argument for
the (in)correctness and (in)security of this implementation. Also, it will propose and
implement a way to work around some of the problems encountered when preparing an
application for model-based testing. A deliberate effort was made to make the solutions
proposed work at least for other parts and/or implementations of (Open)SSH. At best,
the solutions will help with the testing of implementations of other protocols or sys-
tems as well. Lastly, an evaluation is provided of both the implementation of the SSH
transport layer and the model-based testing process in general.

Note that this thesis does not aim to build and test models of all the different levels
and protocols of the SSH architecture. Also, this thesis does not give a proof that the
implementation of SSH that is tested is either secure or correct.

Section 2 will provide some of the background of this thesis, i.e. some information
about model-based testing, SSH and the tools used. Section 3 contains the basic models
of the SSH Transport Layer, as proposed in earlier research. The bulk of this thesis is in
section 4, which describes both the preparation needed for testing and the testing itself.
Section 5 evaluates OpenSSH on the basis of the test results. Furthermore, it attempts
to evaluate the usefulness of model-based testing of complex systems such as SSH.

2. Background

To understand the later sections properly some background knowledge is convenient and
so this section will provide some information about the most important notions like
SSH and model-based testing. Also, it provides information about the tools used in the
process of testing.

2.1. Model-based Testing

Model-based testing is a method of testing the correctness of a given system or com-
ponent by means of executing testcases that are generated systematically from a model
of the system[6]. Typically, this type of testing deals with testing functionality of the
System Under Test (SUT) or Implementation under Test (UIT) as a black box. This
process is illustrated in Figure 1. It consists of the following components:

Model: A model of correct and/or desired behaviour created on the basis of a specifica-
tion of the SUT. This model usually takes the form of some sort of finite automaton
such as regular Deterministic Finite Automata (DFA’s) or Mealy Machines, as used
in [5].

2

Test application: Some machine that systematically derives tests from the model. These
tests typically consist of series of inputs and their corresponding outputs.

Test driver: The part of the test application that communicates with the SUT by means
of the abstract input and output. These will often take the form of some sort of
label. For instance, in Figure 3b there is a label ?VERSION_C for inputting the
client’s version exchange message. Likewise, abstract output can be something like
!VERSION_S which means that the server has sent its version exchange message to
the client.

Adapter: The adapter is in charge of converting abstract input to concrete input and
concrete output to abstract output. This first conversion typically entails con-
verting a label into something the SUT understands. This can be function call,
a message sent over a socket, etc. The adapter is not needed if the abstract in-
put/output and concrete input/output are the same. The result of which is that
the test driver and SUT can communicate directly.

System Under Test: The system being tested. This can treat it as a black box, we can
only know of behaviour that is actually externally observable.

Model-based testing is particularly useful for those cases where one has limited or no
access to the source code of the implementation. Of course, it can also be used when
the source code is available.

Figure 1: Model-based testing with an adapter.

Several tools exist to assist one in using model-based testing techniques to test a given
system. One such tool is JTorX [1], which is a tool for deriving model-driven tests and
executing those tests.

2.2. Secure Shell Protocol

The Secure Shell (SSH) protocol is a protocol for secure remote login and other secure net-
work services over an insecure network [11]. The protocol is specified in five so-called Re-
quest for Comments documents (RFC’s), namely [10],[11],[12],[13] and [14], hereafter ref-

3

erenced respectively as [SSH-NUMBERS], [SSH-ARCH], [SSH-USERAUTH], [SSH-TRANS]and
[SSH-CONNECT]. This is the same convention as used in the RFC’s.

The RFC’s contain the following information:

[SSH-NUMBERS] denotes the numbers and labels used in the protocol for use in, for
instance, error messages.

[SSH-ARCH] contains a description of the architecture used, the security goals it wants
to reach and the terminology and notations used in the RFC’s.

[SSH-USERAUTH] describes the authentication protocol and public key, password and
host-based client authentication methods.

[SSH-TRANS] describes the SSH transport layer protocol, Diffie-Helman key exchange
and the minimal amount of algorithms needed to implement the SSH transport
layer protocol.

[SSH-CONNECT] describes the SSH Connection protocol for, amongst others, interactive
login sessions and X11 forwarding.

SSH is most commonly used for securely accessing shell accounts on UNIX-like sys-
tems. Several versions of the protocol are used today, but for the rest of this document
the use of SSH-2 (as opposed to SSH-1) is assumed, when the particular version is not
explicitly specified.
[SSH-TRANS] describes, amongst other things, the Binary Packet Protocol (BDP).

BDP is a specific format for packets used throughout the SSH protocols. With the
execption of a few messages in the beginning of the transport protocol, all communication
is done with these BDP packets. Key amongst the information stored in the packet is
the message type. This is one of the types defined in [SSH-NUMBERS], for instance
SSH MSG KEXINIT. Note that in further usage of these message labels, the prefix SSH MSG

will be left out. The whole packet, as stated in [SSH-TRANS], is this:

uint32 packet_length

byte padding_length

byte[n1] payload; n1 = packet_length - padding_length - 1

byte[n2] random padding; n2 = padding_length

byte[m] mac (Message Authentication Code - MAC); m = mac_length

2.3. OpenSSH

The most common implementation of SSH is, at the time of writing, OpenSSH [2] which
aims to be a

(. . .) FREE version of the SSH connectivity tools that technical users of the
Internet rely on. Users of telnet, rlogin, and ftp may not realize that their
password is transmitted across the Internet unencrypted, but it is. OpenSSH

4

encrypts all traffic (including passwords) to effectively eliminate eavesdrop-
ping, connection hijacking, and other attacks. Additionally, OpenSSH pro-
vides secure tunneling capabilities and several authentication methods, and
supports all SSH protocol versions.

Originally, OpenSSH was developed by and for the OpenBSD Project[3] but since its
introduction versions for other operating systems have been developed. It is written in
C and actively maintained. The most recent stable version of the Linux version as of
June 2012 (the one used for this thesis) is v6.0p1, released on the 21st of April 2012.

2.4. Tools

A brief overview of the tools used in the process of testing SSH. JTorX serves as the test
application, yEd was used for the creation of the models.

2.4.1. JTorX

JtorX is a a tool for model-driven test derivation and execution, based on the ioco
theory[1]. It serves as the testing tool for the model-based testing done in this thesis.
It was chosen due to its relative easy-of-use for people not accustomed to such methods
and its support for various formats of model specifiction. The theory on which it builds
is neatly explained in [6] and I will forego repeating that information here.

2.5. yEd

yEd [4] is java-based cross-platform graph editor. Notable is the fact that it supports
exporting to graphml files, and this format happens to be one of the formats JTorX
accepts. This allows us to easily create the models needed for model-based testing
without having to learn a graph specification language.

3. Models of SSH and OpenSSH

In order to test any implementation of SSH, including OpenSSH, by means of model-
based testing techniques we obviously need a model to test with. In our case, since we
are interested in the SSH transport protocol, we need a model that fully specifies the
protocol as given in the RFC’s, most notably in [SSH-TRANS].

Creating a model of SSH is rather difficult since the RFC’s don’t explicitly contain
this model. So one has to derive this model from the specification and the model is
therefore prone to errors of interpretation. Luckily, this work has already been done. In
[8] and [7] we find models respectively for the OpenSSH and SSH Tranport layer. Since
redoing all the work is unnecessary, these are the models of SSH we will consider. Note
that some changes have been made to these models. Some labels on states and/or edges
were renamed in order to make the models more alike and to make it easier to write a
generic adapter later on. Also, the first model has had extra states added to make sure
only one label exists for a given edge. Lastly, the TRAFFIC transitions were removed

5

since they only appeared in one of the models and since they are part of the higher level
protocols they are not needed for the transport layer models. Also note that both of
these models only describe the expected behaviour of the implementation and thus they
are referred to as being benign. Later on, malicious versions will be introduced that try
to break the implementation.

The reason why two different models are given will be obvious later on. The model of
SSH will be used first in testing, and this testing will reveal that the implementation of
OpenSSH is indeed more similar to the OpenSSH model. This makes sense, since that
model was crafted, at least partially, on the basis of the implementation, as opposed the
being based on the specification only.

The models in Figure 2 and Figure 3 don’t differ too much if you look carefully. The
most prominent difference is the fact that the SSH protocol in general allows for some
parallelism in the messages sent. For instance, there is no fixed order in who (server or
client) sends their version, VERSION S and VERSION C, first. The model for OpenSSH
does impose such an order. For OpenSSH, the server always sends its VERSION S first.

The KEXINIT and NEWKEYS messages are a different sort of beast. In the models of
OpenSSH, Figure 2, it appears as though the client sends its message first. This is not
entirely the case. Both client and server send their respective KEXINIT messages first
and then read the other party’s KEXINIT. This was described, although not explicitly,
in [8], and can be verified by analysing the order of function calls in ssh_kex2() and
do_ssh2_kex(). So in this, the SSH model is more accurate than the OpenSSH model
since it tries to model this. That is, it matches the description in the specification
and it matches the actual implementation, However, we will see that during testing it
appears as though the client sends its message first. The same thing holds for NEWKEYS

as is apparent from kexecdh_client() and kexecdh_server() since they both call
kex_finish() which first sends the NEWKEYS packet and then reads it.

6

(a) Client (b) Server

Figure 2: Models of OpenSSH (benign)

7

(a) Client (b) Server

Figure 3: Models of SSH with parallelism (benign)

8

4. Testing implementations of SSH

In this section the development and design of the testing setup is described. Also, the
results of the testing are presented.

4.1. Setup

The goal of the setup is to prepare a test architecture that allows for the model-based
testing of any SSH server implementation. Figure 1 showed a general setup for model-
based testing. If we were to implement this directly for the SSH Transport layer on the
server side, this would result in something like in Figure 4. This is a perfectly fine way
of doing things. However, there are a few problems. The easiest way to send packets
from the adapter to the server is by calling functions in the client. However, the client
of choice, OpenSSH, keeps a lot of state. The prime example of this is the dispatch
table, an array of function pointers that contains different values in different stages of
the protocol. Also, the functions are full of side effects that edit this state. This makes
it very hard to send packets to the SUT.

Figure 4: Model-based testing of SSH with an adapter.

Considering this, another approach was needed. The idea is simple: instead of keeping
the adapter and the OpSSH client separate or perhaps trying to create the packets
manually, extend the OpenSSH client with the functionality of the adapter. The client
will keep the state correct for the extension to call functions in the client in order to
send packets to the server. The client should be modified to only send packets when the
extension allows it. This combination of extension and client will hereafter be known as
the extended adapter.

Now the test driver can apply stimuli to the extended adapter, as though the above
changes never happened, and in doing so test the server. It is very important that care
is taken to not interfere with the client too much. In order to preserve the validity of the
client’s function calls and state, the changes made should not be more obtrusive than
necessary.

As it turned out, the extended adapter was sending quite a bit more output to the
driver than expected. Ideally, we want it to only communicate via labels (as in Figure 4)

9

and due to the extra output this was initially not the case. Two solutions come to
mind: filtering the output and/or turning some of the output off. The former seems the
better solution since we want to avoid changing/extending the client as much as possible.
Filtering can be done outside the SUT and does therefore require no modifications to
the client. Furthermore, we also needed something to start the actual OpenSSH process
and be able actually send labels to this process. A solution could be to combine all these
things into a component separate from the adapter. This component would then serve
as a kind of middleman between the adapter and the test driver.

Given this middleman, the whole scheme would then look like Figure 5. Note that
the middleman is optional in the sense that is useful for testing SSH but it may not be
needed for testing implementations of other protocols. Also, this functionality can also
be directly implemented in the extended adapter. This would, however, require further
modifications to the client and this should be avoided where possible.

Figure 5: Model-based testing with a middleman and extended adapter.

As a side note, this approach, with an adapter integrated in some client and output
filtering with a separate component, can be used for testing other protocols as well,
provided that the client is modifiable.

4.2. Implementing the middleman

One of the advantages about separating the middleman from the adapter is that is does
not necessarily have to be written in the same language as the SUT. The same is often
true for the adapter, but for the adapter this is much more difficult since it probably
needs to call functions on the SUT.

Because of the freedom to choose a different language and the fact that filtering input is
relatively hard in C (OpenSSH’s implementation language), the middleman was written
in Perl. Perl was specifically chosen since it has both great text processing power and a
nice interface to processes on a UNIX-like system.

10

What middleman.pl (for the source, see appendix A) does is actually rather simple.
It:

1. Spawns a OpenSSH process with the adapter integrated;

2. Determines which file handles are open for reading;

3. Reads the input from each open file handle, thus making sure that the input and
output are interleaved (if both filehandles are open);

4. Filters the output by checking whether the output consists of a message the adapter
recognizes.

5. Writes the filtered label(s) from the extended SSH process to the driver;

6. Writes the label(s) from the driver to the SSH process;;

7. Repeat from 2 until the test driver is done testing or until the SSH process termi-
nates

The filtering is very simple. For instance, say the adapter outputs !VERSION_S, this
is a label that the test driver (JTorX) will recognize since it is a valid transition label
in the model. However, if the adapter outputs [someuser@hostname ~]$ (which is the
PS1 or prompt) then this should not be written to the test driver since it is not a label
that it recognizes.

4.3. Implementing the adapter

The extended adapter, i.e. the modified OpenSSH client with an extension, as it is
implemented is meant to do one thing and one thing only. It attempts to make the
OpenSSH client input enabled, which it is not by default. Normally this means listening
for input and calling for functions corresponding to the input. The same holds here,
except that the implementation is different. For one, in order to keep the state valid, the
adapter only reacts on input when the client actually wants to do something relevant.
That means, the extension reacts when the client wants to send a packet to the server.
This ensures, as much as possible, the validity of the state whenever the adapters reacts.
At any other time this cannot be guaranteed.

When the the client tries to send a packet the following happens:

1. If the packet is not part of the SSH transport layer it is sent along to the server as
if nothing happened. If it is, the adapter looks for output from the test driver (or
the middleman, to be precise).

2. If the label received from the test driver is the same as the label corresponding
with the type of the packet, the packet is sent to the server unaltered. If it is not
the same, the packet that corresponds to the output from the test driver will be
send to the SUT. This typically entails calling some function(s) that actually take
care of sending the packet.

11

Besides being able to react to input from the test driver, the adapter also has to
be capable of observing output from the SUT. Again, this output corresponds to the
transitions in the model with a ’ !’ prepended. Luckily, this is very easy. When a packet
is read, the packet_read() family of functions return the type of the packet read. Since
these packets are the output from the server, the type only has to be converted to a label
and then printed to the test driver by the adapter. Due to the fact that the middleman
filters the output it doesn’t matter whether the packet is part of the transport layer or
not.

Some implementation details were obviously left out. For a better idea what had to
change to make all the above work, see Appendix B, Appendix C and Appendix D. In
these files, the only changes are those in a #ifdef USE_ADAPTER block.

4.4. Testing environment

For the testing both the server and the extended client were running on the same laptop,
in this case a Lenovo X220 with 4GB RAM and an Intel Core i5 processor. The laptop
was running the most recent version of Arch Linux at that time1. Running everything
on the same machine allowed for easy monitoring of both the server (sshd) and client
(ssh) processes. The OpenSSH source code for client and server are from version 6.0p1,
the most recent stable version dating from the 21st of April 2012 as of June 2012.

A SSH keypair was created to facilitate passwordless login to the SSH server. This
made sure that the only interactions with the client were those required for using the
adapter. The middleman could have been adapted to handle login with a password, but
this is not as convenient.

4.5. Testing the OpenSSH Server

As stated earlier, for the testing of the OpenSSH server implementation JTorX was
utilized. Configuring JTorX is rather easy and given the fact that start out with the begin
SSH server model (Figure 3b), setting JTorX up is then a simple matter of providing
the path to the middleman and the path to the model in graphml format. After this,
the actual testing is rather straightforward and goes as described in subsubsection 2.4.1.

4.6. Acceptance

First, I had JTorX run tests to see whether OpenSSH provides the behaviour specified
in the benign SSH server model. Due to the benign SSH server model only containing
correct behaviour, this is an acceptance test. Recall that this model does not contain
information on how unexpected messages are handled. These unexpected messages will
be handled in the next section. As expected, this test failed. This was, of course, due to
the fact that the model has the parallelism we touched upon earlier and OpenSSH does
not really implement this. The model contains transitions and states that do not occur
when testing. I found that:

1Arch Linux is a rolling-release distribution and has no version number for easy referencing.

12

• VERSION S is always sent before VERSION C.

• KEXINIT C always takes place before KEXINIT S. Do note that this is not precisely
true due to the reasons described in section 3.

• KEXDH INIT is always sent after both parties have sent and received their KEXINIT
messages.

• NEWKEYS C is always sent before NEWKEYS S. Again, this is due to the same reasons
as held for KEXINIT.

• The server did not take initiative in asking for a re-keying procedure.

Of course, if the model in Figure 3b were to be changed to accommodate these dif-
ferences, the model would be the exact same model given by Figure 2b. Indeed, when
this model was loaded into JTorX and given the same treatment, it passed the tests
admirably except for the last point.

The problem with this last point is that it does happen, but only after an hour
or so. A single test run, when performed automatically, takes seconds, not hours.
[SSH-TRANS]has the following to say about this:

It is RECOMMENDED that the keys be changed after each gigabyte of

transmitted data or after each hour of connection time, whichever

comes sooner. However, since the re-exchange is a public key operation,

it requires a fair amount of processing power and should not be performed

too often.

This notion is implemented in packet.c as packet_need_rekeying(). It seems rea-
sonable that the conditions here actually do occur but I haven’t yet been able to force
them in a test environment. For this reason I will not remove the transition from the
model.

Acceptance testing yields a model that is highly similar to the model proposed in [8]
and seen in Figure 2b. We will therefore use this model to do the tests in the next
section.

4.7. Security

In order to make use of JTorX in testing for unexpected input and/or output we need
to make a few changes to the model. Intuitively, this results in an adapter that can also
send messages in the wrong order. To do this, We add a new state UNDEFINED STATE

(see Figure 6) and create transitions for every possible input or output message that
we recognize to itself (UNDEFINED STATE). Also we create transitions from every state
that gets input to this undefined state. This new model is the malicious OpenSSH
server model. For example, a transition is made from WAIT FOR VERSION, but not from
SEND VERSION. We label these transitions with τ or tau which signifies a non-observable
transition. A quick test shows that this malicious model still accepts all the series of

13

Figure 6: The undefined state.

input/output that the earlier model did. This makes sense because this new model
actually contains all traces that consist of the messages contained in UNDEFINED STATE.
Formally, the benign OpenSSH server model is a strict subset of the malicious OpenSSH
server model.

State / Message VERSION C KEXINIT C KEXDH INIT NEWKEYS C

WAIT VERSION M ⊥ ⊥ ⊥
WAIT FOR KEX ⊥ ⊥ M ⊥
WAIT FOR KEXDH INIT ⊥ ⊥ M ⊥
WAIT FOR NEWKEYS ⊥ ⊥ ⊥ M
COMMUNICATION ⊥ M ⊥ ⊥
SERVER REKEX ⊥ ⊥ M ⊥

Table 1: Results of (un)expected input. ⊥ signifies termination of the SUT, M signi-
fies that this transition was part of the benign OpenSSH model and so is not
considered unexpected input.

Now we have access to all stimuli and observations in every state. This allows us
to determine the effects of sending unexpected input. The effects obtained are stated
Table 1.

The SUT terminates when given unexpected input due to the following reasons:

• Sending a proper BDP, as defined in subsection 2.2, packet before the versions are

14

exchanged can not work due to uninitialized variables (especially the key struct).
Also, the server is expecting a raw version string to be sent and any of the other
packets are in no way similar to this version string.

• Sending a version string is, as said before, just the sending of raw data and therefore
if the server thinks (due to the state of the protocol) that it is supposed to read a
BDP packet, it will terminate. Note that it only terminates after the next BDP
packet is sent, since that is when it notices the corruption.

• Everything that relies on keys (all except for VERSION C and to a lesser extent
KEXINIT C) needs the keys to be initialized. This is only the case after the exchange
of KEXINIT messages. So all NEWKEYS and KEXDH INIT messages sent before this
happens will terminate the program.

• In COMMUNICATION the dispatch table is set in serverloop.c in such a way that it
only recognizes the KEXINIT message and not the others.

5. Evaluation

5.1. Evaluation of OpenSSH

The intention is not to evaluate the entirety of OpenSSH based on a fairly limited test.
Limited in the sense that we did not test every component of SSH. What we can do is
conclude on the basis of the results from the last section that OpenSSH implements the
Transport Layer fairly accurately. Again, the parallelism is missing for the most part
but that was expected and already known from [8]. In a sense, the testing corroborates
this. When we removed the parallelism from the model, it fit like a glove.

The question of whether we should allow this difference with the specification remains.
As stated earlier, this difference is partially due to limitations on the testing techniques
used. If both parties send their KEXINIT packets first and then read those packets, it
will look like there is an order. In fact, for the test application it looks as though the
client always sends its KEXINIT first, and then server sends its own packet while a code
review clearly shows that both parties send their KEXINIT packets first. The same holds
for the NEWKEYS and KEXDH_INIT type packets. It think it reasonable that to conclude
that these discrepancies with the benign SSH server model are due to a limitation on the
testing techniques due the limited ability to model parallelism in labeled DFA’s. These
transgressions, if they even can be called that, should be allowed.

The fact that the VERSION order is fixed is a problem. VERSION_S is always before
VERSION_C. The RFC’s don’t specify an order to these messages, but OpenSSH has
chosen such an order. This will cause problems when an OpenSSH implementation
tries to connect to some other implementation that chooses differently. Both parties
will end up waiting for the other party to start sending a version string. Note that if
an implementation implements the parallelism correctly, it will be able to connect to
an OpenSSH implementation without problems. This particular transgression could be

15

problematic. However, it seems that the most common implementations of SSH make
the same choice in the matter and so no problems occur in practical usage.

As for the unexpected messages, the OpenSSH server has succeeded in handling every
packet from the transport layer the test driver could throw at it. Of course, in this case
handling means terminating the program. It is not clear from the RFC’s if this is always
the correct behaviour, they have some notion of sending SSH MSG UNIMPLEMENTED but
they do not state which messages are considered unimplemented[8]. Terminating the
process seems like a safe bet in any case.

5.2. Evaluation of Model-based Testing

Overall, using model-based testing techniques worked out rather well in the end. SSH is
in principal suited to this kind of testing since there is quite a well defined notion of input,
output and how these correlate. The way OpenSSH implemented however, negated this
advantage quite expertly. That doesn’t mean OpenSSH is poorly implemented as it does
what it is supposed nicely as evidenced by the last section. Typical adapters for test
drivers such as JTorX are easily implemented when used with code that is, for lack of a
better term, functional. Functional in the sense that it does not manipulate state all the
time. Alas, in OpenSSH pretty much every useful functions manipulates state or has a
dependency on the state being a in certain condition. This does not make it impossible
to write such an adapter, as evidenced by this thesis, but it does make it harder. An
implementation of SSH could be created that deals with most of these issues. However,
as far as I’ve been able to determine, this does not exist. Also, I feel as though any
implementation will have some issues with state due to the nature of SSH. The effects
could be lessened though by perhaps removing or limiting the use of the dispatch table.

In general the techniques applied are quite suited to a more complex system such as
SSH if certain conditions are met. The solution presented in this thesis depends on the
modifiability of the client and this is certainly not true for every system. Also, a model
still has to be provided or created and the existence of a proper specification, let alone a
decent model is not something that one always has for a system. These problems can be
(partially) averted by means of model inference, the automatic learning of models from
observable behaviour, as done in [5] with a tool such as the one in [9].

6. Conclusions

The primary goal of this thesis was to verify OpenSSH’s implementation of the SSH
Transport Layer Protocol by means of model-based testing techniques. As shown ear-
lier, barring the issues with parallelism which are not really issues at all and were known
beforehand, OpenSSH implements the specification almost exactly correct. As stated,
the problems that were found were mostly due to a lack of proper modelling of paral-
lelism leading to states and transitions that can not be observed. The problem con-
cerning version exchange should be addressed. This could be done by either updating
the specification to deal with the ambiguity concerning message order, or changing the
implementation to support the parallelism found in the model.

16

Also, as a case study for model-based testing it was useful. Model-based testing is
suitable for undertaking such a task as verifying a fairly complex system. The problems
that arose during the creation of the adapter were problems that are likely to occur in
quite a few systems. Hopefully, the solutions found in this thesis may help in solving
those problems for other systems. However, the adapter may still be very difficult to
implement even with a general idea on how to solve the problems that occur. State,
especially when there is a lot of it , really provides numerous issues.

Another point is that the distinction between adapter and SUT can be blurry in
systems such as OpenSSH where they are very similar and share much of the same code.
For instance, do you use the client to test the server and vice versa? If so, what model
do you use? The model of the client or the model of the server? It really is important
to make this clear.

For future work, several things come to mind. First, and most importantly, testing
the rest of the implementation using similar methods. In order to do that a full formal
model of the SSH protocols and components is necessary. As for model inference, this
could be used to ease the creation of said formal models and to check whether the work
contained in this thesis was correct. It won’t prove it correct, but it will provide an
argument for its (in)correctness.

7. Acknowledgements

I would like use this section for expressing my gratitude towards a) Erik Poll, for super-
vising and for providing the initial idea for this thesis; b) all the people, be they friends,
family or strangers that have aided me in other ways during the process of writing this
thesis. And of course for tolerating my rants about some part of the OpenSSH source
that eluded me2.

References

[1] JTorX. http://https://fmt.ewi.utwente.nl/redmine/projects/jtorx.

[2] OpenSSH. http://www.openssh.com/.

[3] The OpenBSD project. http://www.openbsd.org/.

[4] yEd. http://www.yworks.com/.

[5] F. Aarts, E. Poll, and J. de Ruiter. Formal models of banking cards for free.
Unpublished. 2012.

[6] L. Frantzen and J. Tretmans. Model-based testing of environmental conformance of
components. In Proceedings of the 5th international conference on Formal methods
for components and objects, pages 1–25. Springer-Verlag, 2006.

2This typically meant a segmentation fault.

17

http://https://fmt.ewi.utwente.nl/redmine/projects/jtorx
http://www.openssh.com/
http://www.openbsd.org/
http://www.yworks.com/

[7] E. Poll and A. Schubert. Verifying an implementation of SSH. In WITS, volume 7,
pages 164–177, 2007.

[8] E. Poll and A. Schubert. Rigorous specifications of the SSH Transport Layer. Tech-
nical Report ICIS-R11004, Radboud University Nijmegen, 2011.

[9] H. Raffelt, B. Steffen, T. Berg, and T. Margaria. LearnLib: a framework for extrap-
olating behavioral models. International Journal on Software Tools for Technology
Transfer (STTT), 11(5):393–407, 2009.

[10] Ylönen, T. RFC 4250, The Secure Shell (SSH) Protocol Assigned Numbers. http:
//tools.ietf.org/html/rfc4250, 2006.

[11] Ylönen, T. RFC 4251, The Secure Shell (SSH) Protocol Architecture. http://

tools.ietf.org/html/rfc4251, 2006.

[12] Ylönen, T. RFC 4252, The Secure Shell (SSH) Authentication Protocol. http:

//tools.ietf.org/html/rfc4252, 2006.

[13] Ylönen, T. RFC 4253, The Secure Shell (SSH) Transport Layer Protocol. http:

//tools.ietf.org/html/rfc4253, 2006.

[14] Ylönen, T. RFC 4254, The Secure Shell (SSH) Connection Protocol. http://

tools.ietf.org/html/rfc4254, 2006.

18

http://tools.ietf.org/html/rfc4250
http://tools.ietf.org/html/rfc4250
http://tools.ietf.org/html/rfc4251
http://tools.ietf.org/html/rfc4251
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4254
http://tools.ietf.org/html/rfc4254

A. middleman.pl

#! /usr/bin/env perl
#
middleman.pl
A middleman (hence the name) between the test driver and the edited openssh.
#
Copyright (c) 2012 Erik Boss <erik@erikboss. nl>
#

use warnings;
use strict ;

use v5.10;

use IO::Pty :: Easy;
use IO:: Select ;
use Getopt::Long qw/:config bundling/;

$| = 1;

my $verbose = 0; # Verbosity of the SSH process
my $quiet = 0; # Turn off debug output of the adapter
GetOptions(

’verbose |v+’ => \$verbose,
’ quiet |q’ =>\$quiet,

) ;

Messages I accept.
my
@messages = qw/

!CONNECT
!VERSION C
!VERSION S
!KEXINIT C
!KEXINIT S
!KEXDH INIT
!KEXDH REPLY
!NEWKEYS C
!NEWKEYS S
!IGNORE
!DISCONNECT
!UNIMPLEMENTED
!ERROR/;

(Hardcoded) path to program and its arguments.
my @args;
push(@args, ”/home/erik/projects/current/bachelor−thesis/src/openssh−6.0p1/ssh”);
if ($verbose > 0) {

push(@args, ’−’ . (’v’ x $verbose)) ;
}
push(@args, ” sshtest ”);

19

Initialize the pseudo tty .
my $pty = IO::Pty::Easy−>new;

Spawn SSH
syswrite(STDERR, ”Spawning SSH client... ”) if not $quiet ;
$pty−>spawn(@args);

if (!$pty−>is active()) {
if (not $quiet) {

die ”FAILED\n”;
} else {

die ;
}

}
else {

syswrite(STDERR, ”SUCCESS\n”) if not $quiet;
}

Initialize the set of input handles .
my $read set = new IO::Select() ;
$read set−>add($pty);
$read set−>add(\∗STDIN);

while ($pty−>is active()) {
Get all active /open input handles .
my ($rh set) = IO::Select−>select($read set, undef, undef, undef,0);

for my $rh (@$rh set) {
my ($res, $tmp) = (””,””);

Is there is input waiting in the openssh process?
if ($rh == $pty) {

Read all the input waiting .
$res = $pty−>read(1);

Split what was read into separate messages.
my @results = split (”\n”,$res) ;
for my $res (@results) {

chomp($res);
syswrite(STDERR, ”SSH: −−$res−−\n”) if not $quiet;;
Is the message of known type?
if ($res ˜˜ @messages) {

Print the message (to the test driver) .
syswrite(STDOUT, ”$res\n”);
syswrite(STDERR, ”Wrote ’$res’ to STDOUT.\n”) if not $quiet;

}
}

}
elsif ($rh == \∗STDIN) {

Read the message up to (and including) the newline .
my $status;
do {

$status = sysread($rh, $tmp, 1);

20

$res .= $tmp;
}
while($status > 0 && !($tmp eq ”\n”));

Write message to the openssh process .
$pty−>write($res,0);

chomp($res);
syswrite(STDERR, ”Wrote $res to Pty.\n”) if not $quiet ;

}
else {

die ”This is not supposed to happen...\n”;
}

}
}
Cleanup
$pty−>close();

1;

B. adapterutil.c

#include ”adapterutil .h”

#include ”includes.h”

#ifdef USE ADAPTER

#include <string.h>
#include <unistd.h>

#include ”atomicio.h”
#include ”kex.h”
#include ”packet.h”
#include ”roaming.h”
#include ”ssh1.h”
#include ”ssh2.h”

Kex ∗kex;

adapter state ∗state = NULL;

void adapter setup () {
state = malloc(sizeof(adapter state)) ;
state−>busy = 0;

}

void register kex (Kex ∗kex) {
kex = kex ;
if (ADAPTER DEBUG)

fprintf (stderr ,”kex registered ...\ n”);
}

21

int adapter is busy () {
return state−>busy;

}

int send adapter packet(int type, int read) {
if (ADAPTER DEBUG)

fprintf (stderr , ”Attempting to send ’%s’\n”, type str (0,1, type)) ;
if (type == SSH2 MSG KEXINIT || type == SSH2 MSG KEXDH INIT ||

type == SSH2 MSG NEWKEYS || type == SSH2 MSG DISCONNECT ||
type == SSH2 MSG IGNORE || type == ADAPTER MSG VERSION) {

if (state−>busy == 1) {
if (ADAPTER DEBUG)

fprintf (stderr , ”Packet comes from adapter, letting it through ...\ n”);
return 0;

}
char ∗message from driver ;
int message;
if (read == 1) {

message from driver = read message from driver() ;
message = from type str(message from driver) ;

}
else

message = type;

if (ADAPTER DEBUG)
fprintf (stderr , ”message: %s(%d), type: %s(%d), read: %d\n”,

type str (0,1, message), message, type str (0,1, type) , type, read) ;
int connection out ;
char ∗buf;

if (read == 0 || message != type) {
state−>busy = 1;
switch(message) {

case SSH2 MSG KEXINIT:
// As seen in clientloop .c
kex−>done = 0;
kex send kexinit (kex) ;
packet write wait () ;
break;

case SSH2 MSG KEXDH INIT:
kexecdh client (kex) ;
break;

case SSH2 MSG NEWKEYS:
kex finish (kex) ;
break;

case SSH2 MSG DISCONNECT:
packet disconnect (”Disconnected due to adapter”);
break;

case SSH2 MSG IGNORE:
packet send ignore (8) ;
break;

case ADAPTER MSG VERSION:
connection out = packet get connection out() ;

22

buf = ”SSH−2.0−OpenSSH 6.0\r\n”; // Hardcoded client version string.
atomicio(vwrite , connection out , buf, strlen (buf)) ;
break;

default :
/∗ respond to driver (”!ERROR”);∗/
if (ADAPTER DEBUG)

fprintf (stderr ,”Wait wut?\n”);
state−>busy = 0;
return 1;

}
if (state−>busy == 1) {

state−>busy = 0;
return 1;

}
}

}
else {

if (ADAPTER DEBUG)
fprintf (stderr , ”Packet is not part of the transport layer , letting it through ...\ n”);

}
return 0;

}

char ∗ read message from driver () {
size t message size ;
char ∗message;

message size = ADAPTER MSG SIZE;
message = (char ∗) malloc(message size + 1);
int chars read = getline(&message, &message size, stdin) ;

if (chars read > 0)
message[chars read − 1] = ’\0’ ;

return message;
}

void respond to driver (char ∗response) {
if (strcmp(response,””) != 0) {

fprintf (stdout , ”%s\n”, response);
fflush (stdout) ;

}
}

char ∗ type str (int output, int client , int type) {
char ∗message, ∗ prefix , ∗ suffix ;

message = (char ∗) malloc(ADAPTER MSG SIZE);

switch(output) {
case 0 : prefix = ”?”; break;
case 1 : prefix = ”!”; break;
default : prefix = ””; break;

}

23

switch(client) {
case 0 : suffix = ” S”; break;
case 1 : suffix = ” C”; break;
default : suffix = ””; break;

}

switch(type) {
case ADAPTER MSG VERSION: message = ”VERSION”; break;
case SSH2 MSG KEXINIT : message = ”KEXINIT”; break;
case SSH2 MSG NEWKEYS : message = ”NEWKEYS”; break;
case SSH2 MSG KEXDH INIT :message = ”KEXDH INIT”; suffix = ””; break;
case SSH2 MSG KEXDH REPLY : message = ”KEXDH REPLY”; suffix = ””; break;
case SSH2 MSG CHANNEL OPEN :
case SSH2 MSG CHANNEL OPEN CONFIRMATION :
case SSH2 MSG CHANNEL EOF :
case SSH2 MSG CHANNEL CLOSE :
case SSH2 MSG CHANNEL REQUEST :
case SSH2 MSG CHANNEL SUCCESS : message = ”CHANNEL TRAFFIC”; break;
case SSH2 MSG CHANNEL DATA : message = ”TRAFFIC”; break;
case SSH2 MSG UNIMPLEMENTED : message = ”UNIMPLEMENTED”; suffix = ””; break;
case SSH2 MSG IGNORE : message = ”IGNORE”; suffix = ””; break;
case SSH2 MSG DISCONNECT : message = ”DISCONNECT”; suffix = ””; break;
case SSH2 MSG CHANNEL FAILURE : message = ”ERROR”; break;
default : sprintf (message, ”UNKNOWN(%d)”, type);

break;
}

char ∗ result ;
result = (char ∗) malloc(ADAPTER MSG SIZE);
sprintf (result , ”%s%s%s”, prefix, message, suffix) ;
return result ;

}

int from type str (char ∗ type str) {
if (type str != NULL && strlen(type str) > 4) {

if (type str [strlen (type str) − 1] == ’\n’)
type str [strlen (type str) − 1] = ’\0’ ;

if (strcmp(type str +1, ”IGNORE”) == 0)
return SSH2 MSG IGNORE;

if (strcmp(type str +1, ”UNIMPLEMENTED”) == 0)
return SSH2 MSG UNIMPLEMENTED;

if (strcmp(type str +1, ”DISCONNECT”) == 0)
return SSH2 MSG DISCONNECT;

if (strcmp(type str +1, ”KEXDH INIT”) == 0)
return SSH2 MSG KEXDH INIT;

if (strcmp(type str +1, ”KEXDH REPLY”) == 0)
return SSH2 MSG KEXDH REPLY;

char ∗msg = (char ∗) malloc(256);
strcpy (msg, type str +1);
msg[strlen (msg) − 2] = ’\0’;
if (strcmp(msg, ”KEXINIT”) == 0)

return SSH2 MSG KEXINIT;

24

if (strcmp(msg, ”NEWKEYS”) == 0)
return SSH2 MSG NEWKEYS;

if (strcmp(msg, ”VERSION”) == 0)
return ADAPTER MSG VERSION;

}
return −1;

}

#endif

C. sshconnect.c

int
ssh connect(const char ∗host, struct sockaddr storage ∗ hostaddr,

u short port , int family , int connection attempts, int ∗timeout ms,
int want keepalive , int needpriv , const char ∗proxy command)

{
// :
// OpenSSH code for setting up the connection.
// ;

#ifdef USE ADAPTER
adapter setup () ;
respond to driver (”!CONNECT”);

#endif
// :
// More OpenSSH code for finalizing the connection.
// :

}

void
ssh exchange identification (int timeout ms)
{

// :
// OpenSSH code for getting the version number from the server .
// :

#ifdef USE ADAPTER
respond to driver (”!VERSION S”);

#endif
// :
// OpenSSH code for checking whether the versions match.
// :

#ifdef USE ADAPTER
if (send adapter packet(ADAPTER MSG VERSION, 1) == 1)

return;
#endif

// :
// OpenSSH code for sending the client version string to the server .
// :

}

D. packet.c

25

int
packet read poll seqnr (u int32 t ∗seqnr p)
{

u int reason, seqnr ;
u char type;
char ∗msg;

for (;;) {
if (compat20) {

type = packet read poll2 (seqnr p) ;
if (type) {

active state −>keep alive timeouts = 0;
DBG(debug(”received packet type %d”, type));

}
#ifdef USE ADAPTER

if (ADAPTER DEBUG)
fprintf (stderr , ”Read: %s(%d)\n”, type str(1,0,type) ,type) ;

respond to driver (type str (1,0, type)) ;
#endif

// Original OpenSSH code. Returns the type of the message read.
}

static void
packet send2(void)
{

struct packet ∗p;
u char type, ∗cp;

cp = buffer ptr (& active state−>outgoing packet);
type = cp[5];

#ifdef USE ADAPTER
int read = 1;
if (type == SSH2 MSG CHANNEL DATA) {

buffer consume(& active state−>outgoing packet, 14);
char ∗adapter message = buffer ptr(& active state−>outgoing packet);
adapter message[buffer len (& active state−>outgoing packet) − 1] = ’\0’;
type = from type str(adapter message);
read = 0;

}
if (send adapter packet(type, read) == 1)

return;
#endif

// Original OpenSSH code.
}

26

	Introduction
	Background
	Model-based Testing
	Secure Shell Protocol
	OpenSSH
	Tools
	JTorX

	yEd

	Models of SSH and OpenSSH
	Testing implementations of SSH
	Setup
	Implementing the middleman
	Implementing the adapter
	Testing environment
	Testing the OpenSSH Server
	Acceptance
	Security

	Evaluation
	Evaluation of OpenSSH
	Evaluation of Model-based Testing

	Conclusions
	Acknowledgements
	middleman.pl
	adapterutil.c
	sshconnect.c
	packet.c

