
Radboud University Nijmegen

Bachelor’s Thesis

Logging NFC data on a Google Nexus S

Author:
Hans Harmannij
s3028933

Supervisor:
prof. dr. B.P.F. Jacobs

Co-supervisor:
drs. ing. R. Verdult

August 27, 2012

Abstract

To analyze Android applications using Near Field Communication (NFC) and to assess their security,
it is important to be able to log the NFC communication of those apps. In this thesis an application
is presented that can log the communication on the phone that contains the NFC controller, i.e. what
is communicated between the NFC controller and the software. In the process the Android library
providing NFC functionality is dissected and a first analysis is made of the data that is sent by Android
to the controller and what is received back. Also some security considerations are brought forward
since the methods used to log the data can be used by attackers to eavesdrop and alter the data.

2

Contents

1 Introduction 5
1.1 Problem description . 5
1.2 Justification . 5

2 Theoretical framework 7
2.1 Near Field Communication . 7
2.2 NFC in Google phones . 7
2.3 Host Controller Interface . 7
2.4 Root access in Android . 8

3 Analysis of Libnfc-nxp 9
3.1 Interaction of modules . 9
3.2 Sent data . 13

3.2.1 Analyzing the data . 14

4 NFC Logging app 17
4.1 Functionality . 17
4.2 Problems to overcome and decisions to be made . 17

4.2.1 Layer to log . 17
4.2.2 Communication between libnfc-nxp and app . 17
4.2.3 Using the app with unmodified Android build . 18

4.3 The app . 18
4.4 Security implications . 18

5 MIFARE Classic example 21

6 Concluding 23
6.1 Conclusion . 23
6.2 Future work . 23

A Step by step instructions to log NFC communication 29

B Log of booting the phone 31

C Log of reading a MIFARE Classic card 37

3

4

Chapter 1

Introduction

1.1 Problem description

Lately, more and more smartphones are produced with support for Near Field Communication (NFC)
(e.g. [1, 2, 3, 4, 5]) Many of these phones are running the Android operating system (e.g. [1, 2, 3, 4])

The NFC structure in phones like these is shown in fig. 1.1. There is communication between the
CPU of the phone and a controller that handles the NFC communication. This controller communicates
using radio signals to some other NFC device like an RFID card or a payment terminal. The data
between CPU and controller is not the same as what is sent through the air. What the controller sends
to the other device however does depend on what is sent by the CPU and what the other device sends
to the controller influences what is sent to the CPU. So both communication channels are related and
parts of the data will be the same.

If it is known what is being sent using NFC through its radio field and what is sent internally to
and from the NFC-chip, this can be analyzed, and the security of this technique, its implementation
and of the applications using it can be assessed.

NFC is a well researched subject, so ways to intercept what is sent through the air are already
known and used (e.g. [6, 7]). Its use in Android is more recent [8] and therefore less researched. I will
therefore focus on intercepting what is sent between CPU and controller.

The goal of my research is to find a way to see what is sent to the chip in Android phones that is
responsible for Near Field Communication and what is received from the chip.

1.2 Justification

A very important application for NFC in smartphones is mobile payment. There are numerous com-
panies and consortia that are developing a mobile payment system using NFC, like Google Wallet [9],
Visa [10], Isis [11], MasterCard Paypass [12] and Six Pack [13].

Figure 1.1: NFC structure in phones

5

In these systems security is an import issue. If the systems are not secure, an attacker might for
example be able to tamper with transactions. He might then be able to transfer a different amount of
money to and from bank accounts than what is supposed to be transferred. So an attacker can then,
for example, pay less than he should or receive more than he should. Another scenario is that the
attacker tampers with payments of others and redirects them to his bank account. If the attacker can
not tamper with payments, there will still be a problem if he can see information about the payment
that should remain private.

The Android operating system is open source ([14]). This means that someone can change the
system, including the parts handling NFC on his own phone. If he uses his phone for a mobile payment
the changes he made may be able to perform one of the scenarios above. Also if an attacker can gain
control of other devices he may be able to do this on other phones than his own.

This is not an exhaustive list of attack scenarios. It does show that there are possible security
threats in the use of NFC and mobile payment. It is therefore important to assess those techniques.
Publishing about security threats may give attackers new ways for their attacks. However, without
research attackers often find vulnerabilities themselves. Research leads to preventing those attacks
since it helps the creators of the systems to make their systems more secure and warns people about
insecure systems. Where needed, responsible disclosure can be applied.

To analyze mobile payment apps and other NFC enabled apps, you have to know how those apps
work and what is sent through NFC. The most straightforward way to get this information is from
the creators of the apps. For several reasons however, they often do not disclose this information but
use a principle called security through obscurity, in which they hope that if attackers don’t know how
the system is secured, they can’t hack it. There are numerous cases where systems like this turned
out not to be secure (e.g [15]). The Kerckhoffs’ principle expresses this by stating that the security
of a cryptographic system should only depend on the secrecy of the key and not on the secrecy of the
system itself [16].

6

Chapter 2

Theoretical framework

2.1 Near Field Communication

NFC is a contactless technology for the short range. It operates at distances of about 4 centimeters
or less, with a transfer rates of up to 424kbps. It uses the existing standards for contactless card
technology (ISO/IEC 14443 [17, 18, 19, 20], JIS X 6319-4 [21]). It is therefore compatible with cards
that conform to those standards. This means that NFC devices can read such cards, but also that the
devices can emulate them. NFC extends the contactless card technologies making NFC devices capable
of communicating to each other [22].

The NFC Forum defines the NFC Data Exchange Format (NDEF). An NDEF message can contain
one or more payloads of an arbitrary type. The standards defines a format for these messages [23], and
a protocol for exchanging these messages, for example between two NFC devices or between an NFC
reader and an NFC card [24].

2.2 NFC in Google phones

Google has developed two phones with support for NFC, the Google Nexus S [1] and the Google Galaxy
Nexus [2]. These phones run the mobile operating system from Google, Android. This operating system
has NFC support since the version called Gingerbread, version 2.3 [8]. The source code for Android is
freely available [14]. NFC functionality can be found in this source code, and is implemented in the
library libnfc-nxp.

In both of the Google phones, the PN544 NFC Controller is used [25, 26]. This is the chip that
controls the NFC communication. It uses the Host Controller Interface (HCI). This standard describes
how the CPU communicates with the NFC Controller.

2.3 Host Controller Interface

HCI defines an interface between hosts in a host network [27]. Hosts are “logical entities that operate
one or more service(s)”. The host network has a star topology with the host controller in the center,
and one or more hosts physically connected to the host controller. HCI consists of three levels:

• Gates for exchanging commands, responses and events

• Host Controller Protocol (HCP) messaging mechanism

• HCP routing mechanism

Hosts exchange messages through pipes. A pipe is a logical communication channel connecting a gate
of one host to a gate of another host. There are static pipes which are always available and dynamic
gates which can be created and deleted. There are also two types of gates: management gates for
managing the network and generic gates.

The messages that are exchanged through these pipes are HCP-messages. These messages consist
of a 1 byte header and a variable number of bytes of data. The first two bits of the header describe
the instruction type of the message (0 for commands, 1 for events, 2 for responses) and the last 6 bits
identify the instruction. See fig. 2.1.

These messages are sent in HCP packets (fig. 2.2). The messages can be fragmented. The packets
have a 1 byte header. The first bit is the chaining bit (CB). If CB = 0, the following packet contains

7

Figure 2.1: HCP Message structure[27]

Figure 2.2: Fragmentation of HCP messages in HCP packets[27]

a fragment of the same message, if CB = 1, the packet is the last one for this message. The last 7 bits
are the pipe identifier (pID) to denote the pipe the packet should be send through.

2.4 Root access in Android

For security reasons, Android denies access to certain, critical parts of the system to untrusted appli-
cations. This means that if we want to use those parts we will either have to circumvent the restriction
system or we will have to gain elevated privileges. This last option is known as rooting. Smartphone
users often root their phones to get more functionality out of their device. For the Google phones there
are standard, secure ways to do this. Security vulnerabilities have been exploited to gain root privileges.
(e.g. Levitator [28], ZergRush[29]) These exploits have been created for users who are willingly rooting
their phone, but vulnerabilities like these are also misused by malicious apps [30].

8

Chapter 3

Analysis of Libnfc-nxp

3.1 Interaction of modules

In Android, NFC is implemented in the library libnfc-nxp. Since the source code of this library is
available as part of the Android source, we can analyze this library and find a way to log the data going
through it. From the doxygen [31] documentation we can see that there are different parts: DAL, FRI,
HAL, HCI, Libnfc, LLC and OSAL. We have to find out how these modules interact with each other.

In order to do so, all the function calls were logged. To do this, the source code was modified to
write a message to the Android log at the start of each function and before the function returns. For
the DAL and OSAL modules this broke the NFC functionality. The changes to these modules where
therefore rolled back. They will be revisited later on.

After modifying the code to log the function calls, an NFC task is performed with the phone. After
that the android log is parsed and the results are visualized in a tree view.

For booting the phone a typical part of the visualized log can be seen in fig. 3.1. The beginning of
the full log can be found in appendix B.

We observe that the following steps are taken for transceiving data. First the data is sent by going
through the modules Libnfc, HAL, HCI and finally LLC. When the writing is finished, a write callback
is called which starts the reading. The reading takes place in two steps. Note that this is the case for
this example. In other places in the log we see more steps. In the final reading step we go back through
the modules LLC, HCI, HAL and Libnfc.

For reading a MIFARE Classic card we see a similar pattern (fig. 3.2), but now it starts with
reading. This can take a couple of reading steps, similar to those while booting. The reading goes
through the modules LLC, HCI, HAL and Libnfc, and then from Libnfc a command to connect to the
MIFARE Classic is send through the modules Libnfc, HAL, HCI and LLC. This is followed by a write
callback similar to the one we saw earlier.

In a later phase of reading the MIFARE Classic, we see that the card is checked for NDEF (fig.
3.3). In this case an extra module is used: FRI. This is called by Libnfc and in turn calls the HAL.
The reading step is similar to what we saw before, but again goes through the FRI module. The first
part of the full log can be found in Appendix C

We can model the interaction of the different modules as a layered model:

Libnfc
FRI

HAL
HCI
LLC

We have two modules left of which we now do not know how they relate to the other modules:
OSAL and DAL. According to Wikipedia, an Operating System Abstraction Layer (OSAL) is an API
providing wrapper functions to common operating system functionality [32]. When looking at the source
and its documentation, we see that the OSAL in Libnfc-nxp does indeed provide such functionality,
like freeing and allocating memory and managing timers. A search through the libnfc-nxp source code
shows that the OSAL-functions are called from all other modules.

According to Wikipedia, DAL can be a Data Access Layer, which provides functions for persistently
storing data [33], or a Database Abstraction Layer, which provides database functionality [34]. The
doxygen documentation for the DAL module shows that this is not the functionality it provides. A
search through the source shows that the DAL is used by the Libnfc-layer when this layer registers the

9

(a) Transceiving data

(b) Write callback (c) Reading data

Figure 3.1: Typical steps when transceiving data

10

(a) Reading

(b) Connecting to the card

Figure 3.2: Connecting a MIFARE Classic

11

Figure 3.3: NDEF Check while reading a MIFARE Classic

12

different layers but mainly the DAL is used by the LLC layer. The DAL calls callback functions that
are passed through to it. In the function call logs we can see that the callback functions being called
are from the LLC Layer. We can update our layer model with this:

Libnfc

O
S

A
LFRI

HAL
HCI
LLC
DAL

3.2 Sent data

We can use what we now know to find suitable functions which we can modify to write the data going
through that function to a log. If we are interested in the commands from and responses to apps and
are not interested in how this is handled at a lower level, we can log in libnfc functions. The downside
of this is that there are a lot of different libnfc-functions which can be called by the application. All
these different functions would have to be modified.

If we are interested in the exact data that is sent to and received from the chip we have to log
at a lower level. This has the extra advantage that all paths that send data go through the function
phLlcNfc Interface Write and all data is received through the function phLlcNfc RdResp Cb, as we
can see in the function call logs.

Because of that, those two functions were altered, and logging functionality is added to them. In
the logs in appendices B and C this extra logging functionality can also be seen. Since we did not log
at the lowest level, at the DAL, we can’t see any changes this layer makes to the data. To check this,
a usb evaluation board (OM5596, [35]) was used. This board was connected to a desktop computer,
the data going through the COM-port for the board was logged. Then the PN544 on the board was
switched on. We can now compare this log to the log we have for booting the phone. The start of the
logs are as following:

Android Board
Write 05 F9 04 00 C3 E5 05 F9 02 00 13 B1
Write 05 F9 02 00 13 B1
Read 03
Read E6 17 A7 03 E6 17 A7
Write 05 80 81 03 EA 39 05 80 81 03 EA 39
Read 05
Read 81 81 80 A5 D5 05 81 81 80 A5 D5
Write 06 89 81 02 01 EB 54 06 89 81 02 04 46 03
Write 03 C1 AA F2
Write 06 92 81 02 01 5F 57
Read 0D 93 81 80 02 03 00 00 45 6C 6C 69 C7 F4
Read 0D
Read 8A 81 80 61 6E 64 72 6F 69 64 38 48 CC
Write 05 92 81 14 F9 6D 05 9B 81 14 E7 F1
Write 03C231C0
Read 03
Read C3B8D1

We see that they are not the same, but similar. We can therefore presume that the DAL does not
change the data. In the Android log we see the message “ i2c read() called to read n bytes”. We can
find this message being logged in phDal4Nfc i2c read. This function uses the read system call[36] to
read data from the file descriptor associated with the NFC controller. This means this is the bottom
of the layer model. We also see a phDal4Nfc i2c write function that uses the write system call[37]
to write data directly to the controller. We can also add logging functionality here. In appendix C it
can be seen that the data logged here is the same as in the LLC layer. This confirms that the DAL
does not change the data.

13

3.2.1 Analyzing the data

Starting from the second write-message we can recognize HCI-packets[27] inside the sent messages. The
following is for the android-data:

Write 05 F9 04 00 C3 E5
Read 03 E6 17 A7

Write 05 80 81 03 EA 39
81: CB=1 (no chaining), pID=1 (administration pipe).
03:Command, ANY OPEN PIPE

Read 05 81 81 80 A5 D5
81: CB=1, pID=1.
80: Response, ANY OK

Write 06 89 81 02 01 EB 54
81: CB=1, pID=1.
02: Command, ANY GET PARAMETER.
01: Parameter index=1

Write 03 C1 AA F2 (No HCI-packet)

Read 0D 8A 81 80 61 6E 64
72 6F 69 64 38 48 CC

81: CB=1, pID=1.
80: Response, ANY OK.
61. . . 38: Parameter value

Write 05 92 81 14 F9 6D
81: CB=1, pID=1.
14: Command, ADM CLEAR ALL PIPE

Write 03 C2 31 C0 (No HCI-packet)
Read 03 C3 B8 D1 (No HCI-packet)

So what we see is that in this stage all packets are for the administration pipe, and no chaining is
used. The commands being send are:

1. ANY OPEN PIPE: The administration pipe is opened. Response: OK

2. ANY GET PARAMETER: Parameter 1 is requested. The administration pipe is connected to
the administration gate of the host controller. For this gate the requested registry, with ID=1, is
SESSION IDENTITY. This registry contains a session identifier. This can be used to see whether
the host configuration changed. Response: OK, SESSION IDENTITY=61 6E 64 72 6F 69 64 38

3. ADM CLEAR ALL PIPE: Delete all dynamic pipes, close all static pipes and set all registries
for the static pipes to their default value. Response: Not received.

What can be seen is that every sent message, after the first two, is built up as follows: two bytes -
HCI Packet - two bytes. The first byte always contains the length of the message, excluding this length
byte itself. This is a possible explanation for why in Android first one byte is read and then, when
the number of bytes to read is known, it reads the rest of the message. In the function call logs it can
be seen that the function phLlcNfc H ComputeCrc is called. We can call this on the sent messages,
excluding the last two bytes:

u i n t 8 t msg [] = {(u i n t 8 t)0 x05 , (u i n t 8 t)0xF9 , (u i n t 8 t)0 x04 ,
(u i n t 8 t)0 x00 , (u i n t 8 t)0 , (u i n t 8 t) 0} ;

u i n t 8 t l en = msg [0] ;
phLlcNfc H ComputeCrc (msg , len −1, &msg [len −1] , &msg [l en]) ;
pr intArray (msg) ;

This gives as output:
05 F9 04 00 C3 E5

This matches the message above, so the last two bytes are the CRC. The same applies to the other
messages.

There are, in the snippet above, two write-messages without content. When looking to the full log,
including function calls we see the following:

14

Both messages are sent from an ACK-timeout callback. Also note that the second bit of the second
byte is 1 if and only if the message is an ACK-timeout message like these. We don’t see any ACK
messages being sent, but we can see responses missing in the cases that an ACK-timeout message is
sent. So the responses act as acknowledgments. The first bit of the second byte is always 1. For the
remaining 6 bits of the second byte these bytes are shown in their binary representation:

Write 11 111 001 Does not comply
Read 11 100 110 Does not comply
Write 10 000 000
Read 10 000 001
Write 10 001 001
Write 11 000 001 ACK Timeout
Read 10 001 010
Write 10 010 010
Write 11 000 010 ACK Timeout
Read 11 000 011 ACK Timeout
Write 10 100 100
Read 11 000 111 ACK Timeout

The byte is split in one pair and two triples of bits. Both bits of this pair we already discussed. The
second triple appears to be a message identifier, and the first triple is the identifier of the message it
is a response to. For an ACK the first triple is always 000, and the second triple is the identifier of the
message that timed out.

15

16

Chapter 4

NFC Logging app

4.1 Functionality

The goal of the project is to create an app to log the NFC data going from the software to the NFC
Controller. We have seen that the data that is sent internally consists of HCI-packets with a header
and trailer added by the LLC-layer, and that it does not contain the exact same data that is sent with
radio signals. For example, if the phone is emulating a card, anti-collision and authentication protocols
are handled by the NFC controller. However, if a reader reads data from the emulated card, this data
does have to be sent from the CPU to the controller.

This means that the app will not log all data that is sent through the air. To retrieve this data
other methods are available[6, 7].

The app will be usable without having to install a modified Android build. It can install itself on a
rooted Nexus S device.

The logs are saved to a file. The app does not interpret the data. To know what the HCI-packets
mean a separate application could be developed, or one could interpret the data by hand using the
available HCI documentation[27].

4.2 Problems to overcome and decisions to be made

4.2.1 Layer to log

As we have seen there are different layers to log. A decision had to be made about where the logging
is taking place. At the highest layer the exact commands from the apps using NFC can be seen. At
lower layers their encoding in HCI-messages can be seen, and the header and trailer from the LLC-layer
can also be logged in those layers. Since there are a lot of different functions that can be called in
the higher layers it is very well possible that apps use other functions than what we have seen in the
function call logs. At the LLC layer everything is done using the phLlcNfc Interface Write function
for writing to the controller and all data is received using the function phLlcNfc RdResp Cb. Also since
the commands at higher layers are encoded in HCI-messages this layer gives the most information.
Therefore this is the layer that will be logged.

4.2.2 Communication between libnfc-nxp and app

The logs should be written to a file. This can be done directly in the NFC-library or in the app. For
logging in the app, there should be a communication channel from libnfc-nxp to the app. The app has
then control over the data and can decide whether to store it or not, store it to a user specified file, and
display it on the screen. If the NFC-library logs directly to a file it will be at a predefined location, or
we need a communication channel from the app to the library. We have less control over the data in
the app. An advantage of this tactic is that the app does not have to be running while the logging is
happening.

In Android we can create a service that runs in the background [38]. We can use this to have our
app running in the background while logging. Therefore we will create a communication channel from
libnfc-nxp to the app and let the app control the data.

For the communication we will use a named pipe. Once created, this pipe can be used as a regular
file. The library writes to the pipe and the app reads from it. Such pipes cannot be created in a
regular app. We will need root access to do so. With root access we can run shell commands using
root privileges. This way we can run the mkfifo [39] command for creating a named pipe.

17

Figure 4.1: Screenshot of the logging app

4.2.3 Using the app with unmodified Android build

Only a small part of Android is changed to make the logging possible. If the user of the phone uses
the same version of Android as the one where the changes are made, it is therefore not needed to
install an entire Android build on the phone. Only the changed parts have to be overwritten. These
files are /system/lib/libnfc.so, /system/lib/libnfc jni.so and
/system/app/Nfc.apk. If the Android build of the user is different from the build in which log-
ging is added, NFC may stop working when these files are overwritten, because the files on which the
NFC parts depend are different.

Normal apps do not have access to the files that need to be overwritten, because of a couple of
restrictions. First of all, /system is read-only, so we can’t write to it. Also, access to the files to be
overwritten is restricted to read-only for non-root users. With root access we can execute the mount

[40] command to remount /system read-write. We can use chmod [41] to give all users write-access to
the files. This way we can overwrite the system files with our modified versions, and not a full Android
installation is needed. After the files are overwritten, a reboot is required for the changes to take effect.
This can be achieved with the reboot [42] command.

4.3 The app

A screenshot of the app can be seen in fig. 4.1. The button Install default installs the system files that
are packaged with the app. The Backup button copies the current system files to a location chosen
by the user. The button Install from file installs system files from a user-chosen location. This can
be used to restore a backup or to install a newer version of the files than the ones packaged with the
app. If the Logging-checkbox is checked a service is started. This service creates a named pipe at
/system/nfclogpipe. It then starts reading this named pipe. Everything that is received on this pipe
is written to the file specified in the textbox with the Save log to... label. If the app is active it also
writes the logs to the Log-text area. The service keeps running when the app is closed. If the checkbox
is unchecked, the service is given a stop command, on which the service stops reading, removes the
named pipe and the service stops running.

The phLlcNfc Interface Write and phLlcNfc RdResp Cb functions have been modified to write
their data to /system/nfclogpipe. If this pipe does not exist the error is ignored, which means that
no logging is happening when the reader service has not created the named pipe.

4.4 Security implications

We have seen that it is possible to modify the NFC code in Android. We have access to the data and
are able to write this to a Android log, file or application. Since we can change the functions that pass
through this data, an attacker should be able to make alterations to this data. This can be a problem
for payment applications, for example, if such an app is not secured against this type of attack. An

18

attacker may then be able to change transactions to make it possible for him to, for example, pay less
than he should, or receive more than he should or make the money go to another account.

We have also seen that on a rooted phone it is possible to install the modified parts without having
to install an entire Android image. This means that an attacker can do the things mentioned above
with transactions made by others, if he has root access on their phone. This can be because the phone
owner has willingly rooted his phone. But there are also vulnerabilities known that can be used to get
root access (e.g. [28], [29]). Using methods like these a malicious app could gain root access without
any action from the user and without him noticing it.

19

20

Chapter 5

MIFARE Classic example

As an example of how the app can be used to find sensitive information we will log the use of an
app that reads an OV-Chipkaart. The OV-Chipkaart is a MIFARE Classic card. Every sector of the
memory of these cards is protected using two keys, key A and key B. Different sectors can have different
keys. The HCI standard used by the PN544 has built in functionality for working with such cards,
including authentication[27]. This means that the keys will probably be sent to the NFC controller,
and that they will be logged by our application. The OV-Chipkaart app requires these keys for the
specific card to be known. To obtain these keys the MIFARE Offline Cracker GUI (MFOC GUI) [43]
is used. This application uses an NFC reader to communicate with a MIFARE Classic card, and one
can crack the keys of a card with one press on a button. The cracking will take a few hours, however.

Apart from these cracked keys, there are also some default keys used in
MIFARE Classic cards. These include A0A1A2A3A4A5, 000000000000,
and FFFFFFFFFFFF.

The first time the OV-Chipkaart application is used it will try every key it knows on each sector it
wants to read. These keys include both the default keys and the keys retrieved using the MFOC GUI.
So when we log this, it will not give any information of the keys that are actually used. However, the
application will save the keys it eventually used. For later runs it will only use the keys that worked.

We can activate our logging app while we use the OV-Chipkaart app to read a card for a run with
saved keys. We will then have a log of the communication between CPU and NFC controller. We
expect to see the keys found obtained by the MFOC GUI in this log. When searching for these keys,
the following messages were found:

21

11 A9 85 21 60 01 7C D0 00 F0 A0 A1 A2 A3 A4 A5 DE E5 default key
11 A9 85 21 60 01 7C D0 00 F0 A0 A1 A2 A3 A4 A5 DE E5 default key
11 8D 85 21 60 00 7C D0 00 F0 00 00 00 00 00 00 AD F5 default key
11 9F 85 21 60 00 7C D0 00 F0 00 00 00 00 00 00 1D C7 default key

...
11 A0 85 21 60 58 7C D0 00 F0 33 28 B4 96 E7 6D C1 28 cracked key
11 BB 85 21 60 58 7C D0 00 F0 33 28 B4 96 E7 6D 29 03 cracked key

...
11 96 85 21 60 F0 7C D0 00 F0 5E 51 FA 2D F6 AC 0E 05 cracked key
11 B2 85 21 60 F0 7C D0 00 F0 5E 51 FA 2D F6 AC 6E 60 cracked key

...
11 A0 85 21 60 A0 7C D0 00 F0 FF 0F 97 21 31 D4 08 B1 cracked key
11 A9 85 21 60 A0 7C D0 00 F0 FF 0F 97 21 31 D4 50 A8 cracked key

...
11 84 85 21 60 B0 7C D0 00 F0 BE 64 7C 70 2A 65 13 3D cracked key
11 8D 85 21 60 B0 7C D0 00 F0 BE 64 7C 70 2A 65 4B 24 cracked key

...
11 A0 85 21 60 C0 7C D0 00 F0 D3 8A 0E 54 2C F6 22 0F cracked key
11 A9 85 21 60 C0 7C D0 00 F0 D3 8A 0E 54 2C F6 7A 16 cracked key
11 B2 85 21 60 F0 7C D0 00 F0 5E 51 FA 2D F6 AC 6E 60 cracked key
11 84 85 21 60 F0 7C D0 00 F0 5E 51 FA 2D F6 AC BE 37 cracked key

...
11 9F 85 21 60 C0 7C D0 00 F0 D3 8A 0E 54 2C F6 AA 41 cracked key
11 B2 85 21 60 C0 7C D0 00 F0 D3 8A 0E 54 2C F6 92 3D cracked key

...
11 A0 85 21 60 B0 7C D0 00 F0 BE 64 7C 70 2A 65 73 58 cracked key
11 BB 85 21 60 B0 7C D0 00 F0 BE 64 7C 70 2A 65 9B 73 cracked key

...
11 B2 85 21 60 C0 7C D0 00 F0 D3 8A 0E 54 2C F6 92 3D cracked key
11 BB 85 21 60 C0 7C D0 00 F0 D3 8A 0E 54 2C F6 CA 24 cracked key

...
11 BB 85 21 60 80 7C D0 00 F0 63 8E 15 83 07 6F C0 C8 cracked key
11 84 85 21 60 80 7C D0 00 F0 63 8E 15 83 07 6F 48 86 cracked key

...
11 A9 85 21 60 90 7C D0 00 F0 AC 8A 5B 4B 97 1B 8C C4 cracked key
11 96 85 21 60 90 7C D0 00 F0 AC 8A 5B 4B 97 1B 04 8A cracked key

...
11 8D 85 21 60 A0 7C D0 00 F0 FF 0F 97 21 31 D4 30 CD cracked key
11 BB 85 21 60 A0 7C D0 00 F0 FF 0F 97 21 31 D4 E0 9A cracked key

...
11 B2 85 21 60 01 7C D0 00 F0 A0 A1 A2 A3 A4 A5 36 CE default key
11 B2 85 21 60 01 7C D0 00 F0 A0 A1 A2 A3 A4 A5 36 CE default key

Some of the messages are repeated many times, with only changes to the LLC part. If there are
more than two copies of a message, these copies are left out in the table above. 7C D0 00 F0 is the
Unique Identifier (UID) of the card. The parts in bold font are keys of the card. Not all keys are found.
All of these keys are of type A. So no keys of type B are found. Also not all keys of type A are found.

All messages of which the HCI part has the form 85 21 60 xx 7C D0 00 F0 xx xx xx xx xx xx

contain a key in the last 6 bytes. In this example we already knew the keys. But if we found a pattern
like this in a payment application we would be able to obtain the keys for this application, even if they
were secret. Without knowing the keys beforehand other ways have to be used to find such patterns.

22

Chapter 6

Concluding

6.1 Conclusion

An app has been created to log the data sent to and received from the NFC controller. Logging can be
done at different layers. Logging at the LLC layer logs the HCI packets, which contain the commands
for the controller, and the LLC header and trailer, which give information about ACK timeouts, and
which message is a response to which.

The logging is done by modifying the source code for libnfc-nxp. Installation of the modified library
can happen on a rooted phone. If the Android build on the phone is the same as the one to which
the logging is added, it is not necessary to install an entire custom Android build. Installation of such
a modified library can also be done by malicious apps if they have root access, either granted by the
owner of the phone or through a security exploit. A modified version of libnfc-nxp could pose a security
threat for insecure apps.

6.2 Future work

The security implications described in here are not vulnerabilities themselves, but they are a property
of Android that has to be taken into account when developing an application in which security is
important. Therefore apps like that should be assessed on their security. The app presented here can
provide a tool in doing so.

The application does not interpret any data, it just writes it to a file. This data has to be interpreted
to be of use. This can be done manually, but also by using software. Developing this software is
something that still has to be done.

23

24

Bibliography

[1] Google. Nexus s. Retrieved June 4, 2012, from http://www.android.com/devices/detail/

nexus-s, 2012.

[2] Google. Galaxy nexus. Retrieved June 4, 2012, from http://www.android.com/devices/detail/

galaxy-nexus, 2012.

[3] HTC. Htc one x. Retrieved June 11, 2012, from http://www.htc.com/www/smartphones/

htc-one-x/#specs, 2012.

[4] phoneslimited. Looking into the connectivity on the sam-
sung galaxy s3. http://www.newsbroadcast.co.uk/31552/

looking-into-the-connectivity-on-the-samsung-galaxy-s3, June 2012.

[5] Nokia. Detailed specifications for the nokia 808 pureview. Retrieved June 11, 2012, from http:

//www.nokia.com/global/products/phone/808pureview/specifications/, 2012.

[6] G.P. Hancke. Practical eavesdropping and skimming attacks on high-frequency rfid tokens. Journal
of Computer Security, 19(2):259–288, 2011.

[7] Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos Markantonakis. Practical nfc
peer-to-peer relay attack using mobile phones. In Siddika Ors Yalcin, editor, Radio Frequency
Identification: Security and Privacy Issues, volume 6370 of Lecture Notes in Computer Science,
pages 35–49. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-16822-2 4.

[8] Xavier Ducrohet. Android 2.3 platform and updated sdk tools. http://android-developers.

blogspot.nl/2010/12/android-23-platform-and-updated-sdk.html, December 2010.

[9] Google. Google wallet. Retrieved June 11, 2012, from http://www.google.com/wallet/, 2012.

[10] Visa. Visa Certifies Smartphones for Use as Visa Mobile Payment Devices. Press Release, Jan-
uary 2012. http://investor.visa.com/phoenix.zhtml?c=215693&p=irol-newsArticle&id=

1646350.

[11] Isis. Isis. Retrieved June 11, 2012, from http://www.paywithisis.com/, 2012.

[12] MasterCard. Paypass cell phone trial. Retrieved June 11, 2012, from http://www.mastercard.

com/us/paypass/phonetrial/index.html, 2012.

[13] Balaban, Dan. Dutch banks and telcos to move forward on m-payment project. http://nfctimes.
com/news/dutch-banks-and-telcos-move-forward-m-payment-project, July 2010.

[14] Google. Android open source project. Retrieved June 4, 2012, from http://source.android.

com/.

[15] F.D. Garcia, G. de Koning Gans, R. Muijrers, P. Van Rossum, R. Verdult, R. Schreur, and
B. Jacobs. Dismantling mifare classic. In 13th European Symposium on Research in Computer
Security (ESORICS 2008), pages 97–114. Springer Berlin / Heidelberg, 2008.

[16] A. Kerckhoffs. La cryptographie militaire. Journal des sciences militaires, 9(1):5–38, 1883.

[17] ISO. Iso/iec 14443-3: Identification cards contactless integrated circuit(s) cards - proximity cards
part 1: Physical characteristics, 2000.

[18] ISO. Iso/iec 14443-3: Identification cards contactless integrated circuit(s) cards - proximity cards
part 2: Radio frequency power and signal interface, 2001.

25

http://www.android.com/devices/detail/nexus-s
http://www.android.com/devices/detail/nexus-s
http://www.android.com/devices/detail/galaxy-nexus
http://www.android.com/devices/detail/galaxy-nexus
http://www.htc.com/www/smartphones/htc-one-x/#specs
http://www.htc.com/www/smartphones/htc-one-x/#specs
http://www.newsbroadcast.co.uk/31552/looking-into-the-connectivity-on-the-samsung-galaxy-s3
http://www.newsbroadcast.co.uk/31552/looking-into-the-connectivity-on-the-samsung-galaxy-s3
http://www.nokia.com/global/products/phone/808pureview/specifications/
http://www.nokia.com/global/products/phone/808pureview/specifications/
http://android-developers.blogspot.nl/2010/12/android-23-platform-and-updated-sdk.html
http://android-developers.blogspot.nl/2010/12/android-23-platform-and-updated-sdk.html
http://www.google.com/wallet/
http://investor.visa.com/phoenix.zhtml?c=215693&p=irol-newsArticle&id=1646350
http://investor.visa.com/phoenix.zhtml?c=215693&p=irol-newsArticle&id=1646350
http://www.paywithisis.com/
http://www.mastercard.com/us/paypass/phonetrial/index.html
http://www.mastercard.com/us/paypass/phonetrial/index.html
http://nfctimes.com/news/dutch-banks-and-telcos-move-forward-m-payment-project
http://nfctimes.com/news/dutch-banks-and-telcos-move-forward-m-payment-project
http://source.android.com/
http://source.android.com/

[19] ISO. Iso/iec 14443-3: Identification cards contactless integrated circuit(s) cards - proximity cards
part 3: Initialization and anticollision, 2001.

[20] ISO. Iso/iec 14443-4: Identification cards contactless integrated circuit(s) cards - proximity cards
part 4: Transmission protocol, 2001.

[21] JSA. Specification of implmentation for integrated circuit(s) cards - part 4 : High speed proximity
cards, July 2005.

[22] NFC Forum. About nfc, 2011.

[23] NFC Forum. Nfc data exchange format (ndef), technical specification, 2006. http://www.

nfc-forum.org/specs/spec_list/.

[24] NFC Forum. Simple ndef exchange protocol, technical specification, 2011. http://www.

nfc-forum.org/specs/spec_list/.

[25] NXP. Google and NXP integrate NFC in Android 2.3. Press Release, December 2010. http://www.
nxp.com/news/press-releases/2010/12/google-and-nxp-integrate-nfc-in-android-2-3.

html.

[26] NXP. NXPs NFC solution implemented in Galaxy Nexus from Google. Press
Release, November 2011. http://www.nxp.com/news/press-releases/2011/11/

nxp-nfc-solution-implemented-in-galaxy-nexus-from-google.html.

[27] ETSI. Smart cards; uicc - contactless front-end (clf) interface; host controller interface
(hci)(release 7). http://www.etsi.org/deliver/etsi_ts/102600_102699/102622/07.05.00_

60/ts_102622v070500p.pdf.

[28] Jon Larimer and Jon Oberheide. Levitator. Retrieved June 11, 2012, from http://jon.

oberheide.org/files/levitator.c, 2011.

[29] ieftm. Revolutionary - zergrush local root 2.2/2.3. Retrieved June 11, 2012, from http://forum.

xda-developers.com/showthread.php?t=1296916, 2011.

[30] X. Jiang. Gingermaster: First android malware utilizing a root exploit on android 2.3
(gingerbread). Retreived June 11, 2012, from http://www.csc.ncsu.edu/faculty/jiang/

GingerMaster/, August 2011.

[31] Dimitri van Heesch. Doxygen. Retrieved June 4, 2012, from http://www.stack.nl/~dimitri/

doxygen/, May 2012.

[32] Wikipedia. Operating system abstraction layer — wikipedia, the free encyclopedia. Re-
trieved June 7, 2012, from http://en.wikipedia.org/w/index.php?title=Operating_system_

abstraction_layer&oldid=485346908, 2012.

[33] Wikipedia. Data access layer — wikipedia, the free encyclopedia. Retrieved June 7, 2012, from
http://en.wikipedia.org/w/index.php?title=Data_access_layer&oldid=481262985, 2012.

[34] Wikipedia. Database abstraction layer — wikipedia, the free encyclopedia. Retrieved
June 7, 2012, from http://en.wikipedia.org/w/index.php?title=Database_abstraction_

layer&oldid=468680557, 2012.

[35] NXP. Nxp nfc controller pn544 for mobile phones and portable equipment. Data sheet, February
2010. http://www.nxp.com/documents/leaflet/75016890.pdf.

[36] read(2) - linux programmer’s manual. Linux man page, February 2009. Retrieved June 11, 2012,
from http://www.kernel.org/doc/man-pages/online/pages/man2/read.2.html.

[37] write(2) - linux programmer’s manual. Linux man page, August 2010. Retrieved June 11, 2012,
from http://www.kernel.org/doc/man-pages/online/pages/man2/write.2.html.

[38] Google. Services. Android developer’s guide, June 2009. Retrieved June 11, 2012, from http:

//developer.android.com/guide/topics/fundamentals/services.html.

[39] David MacKenzie. mkfifo(1) - linux man page. Linux man page, 2010. Retrieved June 11, 2012,
from http://linux.die.net/man/1/mkfifo.

26

http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.nxp.com/news/press-releases/2010/12/google-and-nxp-integrate-nfc-in-android-2-3.html
http://www.nxp.com/news/press-releases/2010/12/google-and-nxp-integrate-nfc-in-android-2-3.html
http://www.nxp.com/news/press-releases/2010/12/google-and-nxp-integrate-nfc-in-android-2-3.html
http://www.nxp.com/news/press-releases/2011/11/nxp-nfc-solution-implemented-in-galaxy-nexus-from-google.html
http://www.nxp.com/news/press-releases/2011/11/nxp-nfc-solution-implemented-in-galaxy-nexus-from-google.html
http://www.etsi.org/deliver/etsi_ts/102600_102699/102622/07.05.00_60/ts_102622v070500p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102622/07.05.00_60/ts_102622v070500p.pdf
http://jon.oberheide.org/files/levitator.c
http://jon.oberheide.org/files/levitator.c
http://forum.xda-developers.com/showthread.php?t=1296916
http://forum.xda-developers.com/showthread.php?t=1296916
http://www.csc.ncsu.edu/faculty/jiang/GingerMaster/
http://www.csc.ncsu.edu/faculty/jiang/GingerMaster/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://en.wikipedia.org/w/index.php?title=Operating_system_abstraction_layer&oldid=485346908
http://en.wikipedia.org/w/index.php?title=Operating_system_abstraction_layer&oldid=485346908
http://en.wikipedia.org/w/index.php?title=Data_access_layer&oldid=481262985
http://en.wikipedia.org/w/index.php?title=Database_abstraction_layer&oldid=468680557
http://en.wikipedia.org/w/index.php?title=Database_abstraction_layer&oldid=468680557
http://www.nxp.com/documents/leaflet/75016890.pdf
http://www.kernel.org/doc/man-pages/online/pages/man2/read.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/write.2.html
http://developer.android.com/guide/topics/fundamentals/services.html
http://developer.android.com/guide/topics/fundamentals/services.html
http://linux.die.net/man/1/mkfifo

[40] mount(8) - linux man page. Linux man page. Retrieved June 11, 2012, from http://linux.die.

net/man/8/mount.

[41] David MacKenzie and Jim Meyering. chmod(1) - linux man page. Linux man page, 2010. Retrieved
June 11, 2012, from http://linux.die.net/man/1/chmod.

[42] Scott James Remnant. Reboot(8) - linux man page. Linux man page, 2009. Retrieved June 11,
2012, from http://linux.die.net/man/8/reboot.

[43] Mifare offline cracker gui. [Software] Retreived June 23, 2012, from http://www.huuf.info/OV/.

27

http://linux.die.net/man/8/mount
http://linux.die.net/man/8/mount
http://linux.die.net/man/1/chmod
http://linux.die.net/man/8/reboot
http://www.huuf.info/OV/

28

Appendix A

Step by step instructions to log
NFC communication

To enable logging on a Google Nexus S the following steps have to be followed:

1. Android has to be built from source. The Android Source website [14] explains how to download
the source and build Android.

2. Change the library found in external/libnfc-nxp/ of the source to write the information that
has to be logged to /system/nfclogpipe.

3. Build Android and install it on the phone

4. Install the application NFCLogApp.apk on the phone

5. In the app, set the log file location to the preferred location

6. Enable logging

7. Execute the NFC actions you want to log

8. Disable logging

9. The logs can now be found in the previously specified file

Note that once Android has been built and installed on the phone, only the files out/target/product/crespo/system/lib/libnfc.so,
out/target/product/crespo/system/lib/libnfc jni.so and
out/target/product/crespo/system/app/Nfc.apk have to be copied to the phone, when changes are
made to the NFC library and no other parts have been changed. To do so, follow these steps:

1. Copy the mentioned files to the USB-storage of the phone

2. Use the ”Install from file” button in the app to select the location of the files and install them to
the right location on the phone.

29

30

Appendix B

Log of booting the phone

The following log is recorded during the booting of the phone and shows functions being called in libnfc-
nxp and data being logged in the phLlcNfc Interface Write and phLlcNfc RdResp Cb functions. Only
the start is included here because of the length of the log.

D/NFC (398): Entering phLibNfc_Mgt_ConfigureDriver.

D/NFC (398): Exit function

D/NFC (398): Entering phLibNfc_Mgt_Initialize.

D/NFC (398): Entering phLibNfc_UpdateNextState.

D/NFC (398): Exit function

D/NFC-HCI (398): Entering phHal4Nfc_Open.

D/NFC-HCI (398): Entering dlopen_firmware.

D/NFC-HCI (398): Exit function

D/ (398): Entering phHal4Nfc_Configure_Layers.

D/ (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Initialise.

D/ (398): Entering phLlcNfc_Register.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Register.

D/NFC-LLC (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_FSM_Update.

D/NFC-HCI (398): Entering phHciNfc_FSM_Validate.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/ (398): Entering phLlcNfc_Init.

D/ (398): Entering phLlcNfc_H_Frame_Init.

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Init.

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_TimerInit.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_CreateTimers.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_CreateUFramePayload.

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Write.

D/libnfc-nxp-log(398): NFC-Data LLC Interface writes: : 05F90400C3E5

D/ (398): Entering phLlcNfc_StopTimers.

31

D/ (398): Exit function

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_StartTimers.

D/ (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/ (398): Entering phLibNfc_Ndef_Init.

D/ (398): Exit function

D/NFC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_WrResp_Cb.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_RdResp_Cb.

D/libnfc-nxp-log(398): NFC-Data Receive callback: : 03

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_RdResp_Cb.

D/libnfc-nxp-log(398): NFC-Data Receive callback: : E617A7

D/ (398): Entering phLlcNfc_H_ChangeState.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ProRecvFrame.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ProcessUFrame.

D/ (398): Entering phLlcNfc_StopTimers.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ResetFrameInfo.

D/ (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Notify_Event.

D/NFC-HCI (398): Entering phHciNfc_Resume_Sequence.

D/NFC-HCI (398): Entering phHciNfc_Initialise_Sequence.

D/NFC-HCI (398): Entering phHciNfc_Admin_Initialise.

D/NFC-HCI (398): Entering phHciNfc_Allocate_Resource.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Allocate_Resource.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Open_Pipe.

D/NFC-HCI (398): Entering phHciNfc_Send_Generic_Cmd.

D/NFC-HCI (398): Entering phHciNfc_Build_HCPFrame.

D/NFC-HCI (398): Entering phHciNfc_Build_HCPHeader.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Build_HCPMessage.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Send_HCP.

D/NFC-HCI (398): Entering phHciNfc_Send.

D/ (398): Entering phLlcNfc_Send.

D/ (398): Entering phLlcNfc_H_CreateIFramePayload.

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

32

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_StoreIFrame.

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Write.

D/libnfc-nxp-log(398): NFC-Data LLC Interface writes: : 05808103EA39

D/ (398): Entering phLlcNfc_StopTimers.

D/ (398): Exit function

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_StartTimers.

D/ (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_WrResp_Cb.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Send_Complete.

D/NFC-HCI (398): Entering phHciNfc_Receive.

D/ (398): Entering phLlcNfc_Receive.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_RdResp_Cb.

D/libnfc-nxp-log(398): NFC-Data Receive callback: : 05

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_RdResp_Cb.

D/libnfc-nxp-log(398): NFC-Data Receive callback: : 818180A5D5

D/ (398): Entering phLlcNfc_H_ChangeState.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ProRecvFrame.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ProcessIFrame.

33

D/ (398): Entering phLlcNfc_H_UpdateIFrameList.

D/ (398): Entering phLlcNfc_H_IFrameList_Peek.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_DeleteIFrame.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Entering phLlcNfc_StopTimers.

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_H_SendInfo.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Receive_Complete.

D/NFC-HCI (398): Entering phHciNfc_Process_HCP.

D/NFC-HCI (398): Entering phHciNfc_Receive_HCP.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Process_Response.

D/NFC-HCI (398): Entering phHciNfc_Recv_Admin_Response.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Reset_Pipe_MsgInfo.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Resume_Sequence.

D/NFC-HCI (398): Entering phHciNfc_Initialise_Sequence.

D/NFC-HCI (398): Entering phHciNfc_Admin_Initialise.

D/NFC-HCI (398): Entering phHciNfc_Send_Generic_Cmd.

D/NFC-HCI (398): Entering phHciNfc_Build_HCPFrame.

D/NFC-HCI (398): Entering phHciNfc_Build_HCPHeader.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Build_HCPMessage.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Send_HCP.

D/NFC-HCI (398): Entering phHciNfc_Send.

D/ (398): Entering phLlcNfc_Send.

D/ (398): Entering phLlcNfc_H_CreateIFramePayload.

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_StoreIFrame.

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Write.

D/libnfc-nxp-log(398): NFC-Data LLC Interface writes: : 0689810201EB54

D/ (398): Entering phLlcNfc_StopTimers.

D/ (398): Exit function

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_StartTimers.

D/ (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

34

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_StartTimers.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_WrResp_Cb.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Send_Complete.

D/NFC-HCI (398): Entering phHciNfc_Receive.

D/ (398): Entering phLlcNfc_Receive.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-LLC (398): Exit function

35

36

Appendix C

Log of reading a MIFARE Classic
card

The following log shows the start process of Reading a MIFARE Classic card. In addition to the function
calls and the data logged in phLlcNfc Interface Write and phLlcNfc RdResp Cb it also shows the
data that is logged in phDal4Nfc i2c read and phDal4Nfc i2c write.

D/libnfc-nxp-log(398): NFC-Data i2c_read: 06

D/NFC-LLC (398): Entering phLlcNfc_RdResp_Cb.

D/libnfc-nxp-log(398): NFC-Data Receive callback: : 06

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Exit function

D/libnfc-nxp-log(398): NFC-Data i2c_read: 97855000A7AB

D/NFC-LLC (398): Entering phLlcNfc_RdResp_Cb.

D/libnfc-nxp-log(398): NFC-Data Receive callback: : 97855000A7AB

D/ (398): Entering phLlcNfc_H_ChangeState.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ProRecvFrame.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ProcessIFrame.

D/ (398): Entering phLlcNfc_H_UpdateIFrameList.

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_H_SendInfo.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Notify_Event.

D/NFC-HCI (398): Entering phHciNfc_Receive_Complete.

D/NFC-HCI (398): Entering phHciNfc_Process_HCP.

D/NFC-HCI (398): Entering phHciNfc_Receive_HCP.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Process_Event.

D/NFC-HCI (398): Entering phHciNfc_Recv_ReaderA_Event.

D/NFC-HCI (398): Entering phHciNfc_Notify_Event.

D/NFC-HCI (398): Entering phHciNfc_FSM_Update.

37

D/NFC-HCI (398): Entering phHciNfc_FSM_Validate.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Resume_Sequence.

D/NFC-HCI (398): Entering phHciNfc_Info_Sequence.

D/NFC-HCI (398): Entering phHciNfc_ReaderMgmt_Info_Sequence.

D/NFC-HCI (398): Entering phHciNfc_ReaderA_Info_Sequence.

D/NFC-HCI (398): Entering phHciNfc_Send_Generic_Cmd.

D/NFC-HCI (398): Entering phHciNfc_Build_HCPFrame.

D/NFC-HCI (398): Entering phHciNfc_Build_HCPHeader.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Build_HCPMessage.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Send_HCP.

D/NFC-HCI (398): Entering phHciNfc_Send.

D/ (398): Entering phLlcNfc_Send.

D/ (398): Entering phLlcNfc_H_CreateIFramePayload.

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_StoreIFrame.

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Write.

D/libnfc-nxp-log(398): NFC-Data LLC Interface writes: : 06BB8502029570

D/ (398): Entering phLlcNfc_StopTimers.

D/ (398): Exit function

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_StartTimers.

D/ (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_StartTimers.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

38

D/NFC-LLC (398): Exit function

D/libnfc-nxp-log(398): NFC-Data i2c_write: 06BB8502029570

D/libnfc-nxp-log(398): NFC-Data i2c_read: 0C

D/NFC-LLC (398): Entering phLlcNfc_WrResp_Cb.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Send_Complete.

D/NFC-HCI (398): Entering phHciNfc_Receive.

D/ (398): Entering phLlcNfc_Receive.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_AckTimeoutCb.

D/ (398): Entering phLlcNfc_StopTimers.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_CreateSFramePayload.

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Write.

D/libnfc-nxp-log(398): NFC-Data LLC Interface writes: : 03C3B8D1

D/ (398): Entering phLlcNfc_StopTimers.

D/ (398): Exit function

D/NFC-LLC (398): Exit function

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_RdResp_Cb.

D/libnfc-nxp-log(398): NFC-Data Receive callback: : 0C

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/libnfc-nxp-log(398): NFC-Data i2c_read: 98858004A55929B125809329

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Exit function

D/libnfc-nxp-log(398): NFC-Data i2c_write: 03C3B8D1

D/NFC-LLC (398): Entering phLlcNfc_WrResp_Cb.

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_RdResp_Cb.

D/libnfc-nxp-log(398): NFC-Data Receive callback: : 98858004A55929B125809329

D/ (398): Entering phLlcNfc_H_ChangeState.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

39

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ProRecvFrame.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_ProcessIFrame.

D/ (398): Entering phLlcNfc_H_UpdateIFrameList.

D/ (398): Entering phLlcNfc_H_IFrameList_Peek.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_DeleteIFrame.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Entering phLlcNfc_StopTimers.

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_H_SendInfo.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Receive_Complete.

D/NFC-HCI (398): Entering phHciNfc_Process_HCP.

D/NFC-HCI (398): Entering phHciNfc_Receive_HCP.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Process_Response.

D/NFC-HCI (398): Entering phHciNfc_Recv_ReaderA_Response.

D/NFC-HCI (398): Entering phHciNfc_ReaderA_InfoUpdate.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Reset_Pipe_MsgInfo.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Resume_Sequence.

D/NFC-HCI (398): Entering phHciNfc_Info_Sequence.

D/NFC-HCI (398): Entering phHciNfc_ReaderMgmt_Info_Sequence.

D/NFC-HCI (398): Entering phHciNfc_ReaderA_Info_Sequence.

D/NFC-HCI (398): Entering phHciNfc_Send_Generic_Cmd.

D/NFC-HCI (398): Entering phHciNfc_Build_HCPFrame.

D/NFC-HCI (398): Entering phHciNfc_Build_HCPHeader.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Build_HCPMessage.

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Send_HCP.

D/NFC-HCI (398): Entering phHciNfc_Send.

D/ (398): Entering phLlcNfc_Send.

D/ (398): Entering phLlcNfc_H_CreateIFramePayload.

D/ (398): Entering phLlcNfc_H_ComputeCrc.

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Entering phLlcNfc_H_UpdateCrc.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

40

D/ (398): Entering phLlcNfc_H_StoreIFrame.

D/ (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Write.

D/libnfc-nxp-log(398): NFC-Data LLC Interface writes: : 0684850203179F

D/ (398): Entering phLlcNfc_StopTimers.

D/ (398): Exit function

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_StartTimers.

D/ (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-LLC (398): Exit function

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/ (398): Entering phLlcNfc_StartTimers.

D/ (398): Exit function

D/ (398): Exit function

D/ (398): Exit function

D/NFC-LLC (398): Exit function

D/libnfc-nxp-log(398): NFC-Data i2c_write: 0684850203179F

D/NFC-LLC (398): Entering phLlcNfc_WrResp_Cb.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/NFC-HCI (398): Entering phHciNfc_Send_Complete.

D/NFC-HCI (398): Entering phHciNfc_Receive.

D/ (398): Entering phLlcNfc_Receive.

D/NFC-LLC (398): Entering phLlcNfc_Interface_Read.

D/NFC-LLC (398): Exit function

D/ (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-HCI (398): Exit function

D/NFC-LLC (398): Exit function

41

	Introduction
	Problem description
	Justification

	Theoretical framework
	Near Field Communication
	NFC in Google phones
	Host Controller Interface
	Root access in Android

	Analysis of Libnfc-nxp
	Interaction of modules
	Sent data
	Analyzing the data

	NFC Logging app
	Functionality
	Problems to overcome and decisions to be made
	Layer to log
	Communication between libnfc-nxp and app
	Using the app with unmodified Android build

	The app
	Security implications

	MIFARE Classic example
	Concluding
	Conclusion
	Future work

	Step by step instructions to log NFC communication
	Log of booting the phone
	Log of reading a MIFARE Classic card

