
Reinforcement Learning and the
Parallel Actions Common Goal problem

Radboud University Nijmegen
Computer Science Bachelor Thesis

Author: Ivan Koster
Student number: 0814903

Course number: IBI009 (9ec)

Supervisors:
Dr. ir. M. van Otterlo

Dr. I.G. Sprinkhuizen-Kuyper
Dr. P.C. Groot

June 14, 2012

Abstract

There exists an interesting category of problems, in particular in real-time strategy and
colonization games. The player can perform several actions, usually in parallel, like
gathering resources and building structures, with a single goal in mind. He has to
consider which actions to take and how to schedule them, in order to reach the goal in
the fastest way possible. We call these problems parallel actions common goal (PACG)
problems.

In this thesis we will try to solve these problems with reinforcement learning. To
do this, we show that it is possible to capture PACG problems in a Markov Decision
Processes (MDP). An MDP can be translated into a programming language, resulting
in a simulator. Next, the simulator can be used as the environment for a reinforcement
learning agent. We will focus on one complex PACG problem in particular, the browser
game Ogame.

After that, we will show that, if implemented in a tabular form, Q-learning can
consistently learn the optimal policy in simple PACG problems. This will be done
using a simplified version of the Ogame problem. Following this, we will introduce a Q-
learning algorithm for more complex PACG problems, which includes Artificial Neural
Networks and Experience Replay. We will then test this algorithm on the simplified
Ogame problem to show that it also learns optimal policies. At last, we will try to use
this algorithm to learn good policies for the complex Ogame problem.

i

Contents

1. Introduction 1
1.1. Research goal . 1

1.1.1. Research products . 2
1.1.2. Motivations for this research . 2

1.2. Short introduction to Ogame . 2
1.2.1. Limiting the problem: explicit assumptions 4

1.3. Structure of this thesis . 4
1.4. Theoretical framework . 4

1.4.1. Short introduction to Markov Decision Processes 5
1.4.2. Short introduction to reinforcement learning 5

2. Modelling the problem 7
2.1. Toy MDP . 7

2.1.1. States . 8
2.1.2. Actions . 8
2.1.3. Transition function . 9
2.1.4. Reward function . 10
2.1.5. Transition table . 10

2.2. Improving the toy MDP . 11
2.2.1. Afterstates . 11
2.2.2. Starvation and spamming no op to gain resources 12
2.2.3. Toy MDP version 2 . 14

2.3. Ogame MDP . 15
2.3.1. From toy MDP to Ogame MDP 15
2.3.2. States . 15
2.3.3. Actions . 16
2.3.4. Transition function . 23
2.3.5. Reward function . 25

2.4. Research product one . 25

3. Building the environment 26
3.1. State class . 27
3.2. Action class . 27
3.3. OgameFormulas class . 28
3.4. Simulator class . 29
3.5. UserTerminal class . 29
3.6. Computation time tweaks . 29
3.7. A note on Semi Markov Decision Processes 31
3.8. Simulator robustness . 32
3.9. Research product two . 32

ii

Contents

4. Building the learning agent 33
4.1. Q-learning . 33
4.2. Exploration policy . 34
4.3. The value function and generalization . 35

4.3.1. Artificial neural networks . 35
4.4. Experience replay . 38
4.5. Research product three . 38

5. Experiments and results 39
5.1. Defining a good policy . 39
5.2. Toy MDP experiments . 39

5.2.1. Value iteration experiment . 39
5.2.2. TD(0)-learning versus Q-learning experiment 40
5.2.3. Learning the optimal policy with tabular Q-learning 41
5.2.4. Full learning algorithm on toy simulator 45

5.3. Ogame MDP experiments . 52

6. Thesis conclusion 54

Bibliography 55

Appendices 56

A. Actions in Ogame 56
A.1. List of actions included in the MDP . 60

B. Toy model additions 61
B.1. Functions for toy model actions . 61
B.2. Transition tables . 62
B.3. Toy MDP version 2 . 65

B.3.1. States . 65
B.3.2. Actions . 66
B.3.3. Transition function . 68
B.3.4. Reward function . 69

C. Ogame MDP functions 70

D. Source code 76

iii

1. Introduction

Imagine a game in which we can build several buildings that have certain resource costs.
When choosing to build one, the resources are spent and a timer starts. When the timer
runs out, the building is finished. Continuously choosing to build the same building
upgrades its level by one at a time, increasing the resource costs and build timer, but
also the effectiveness of the building. We can build only one building at the same time.
Let us call this our building assembly line. Now imagine we have another assembly
line to research certain technologies. The research assembly line behaves similar to the
building one. These assembly lines can perform actions in parallel, but they share the
same resource pool. Some actions for these assembly lines might have preconditions.
For example, some buildings can only be built if we have researched certain technologies
to an adequate level. Finally, we have a certain goal to reach. For example, we want
to upgrade a certain building or technology to level ten. The faster we reach this goal
state, the better. The assembly lines have to work together to reach this goal by sharing
resources and meeting preconditions. In the game we have described here, the player
tries to solve a problem which we call the parallel actions common goal (PACG) problem.
This problem is core to exciting games, an example is Ogame.

This thesis is about trying to shed light on how to solve these problems, using
Ogame and reinforcement learning (RL). Games like Ogame are usually too complex
to bruteforce the answer. This is where reinforcement learning comes in: we are going
to use learning algorithms to learn to play Ogame. These algorithms learn a policy: a
function that maps the current game state to the best action for that particular state.
For Ogame, a policy becomes better the faster it reaches the goal state.

For humans, Ogame is relatively easy to learn to a certain degree, by using simple
but effective policies. Finding the optimal policy is hard though: the huge amount of
actions and therefore states quickly overwhelm the human mind. We wonder if rein-
forcement learning can find a good or even the optimal policy.

1.1. Research goal

The main question this research seeks to answer is:

Can reinforcement learning find a good policy for playing Ogame?

Ogame is a text based browser game and the PACG problem that will be inves-
tigated for this thesis. An introduction to Ogame will follow shortly in Section 1.2.
See Section 5.1 for the definition of a good policy. To find a good policy, we use a
reinforcement learning algorithm. There are all kinds of these algorithms, but we will
use Q-learning. It is probably the most known reinforcement learning algorithm. It
has several advantages and disadvantages. See Section 4.1 for more information about
Q-learning.

1

1. Introduction

To answer the main research question, the research is split into three smaller sub
questions:

1. Can we create a model of Ogame, such that we can use it in reinforcement learning?

2. Can we build a piece of software that represents that model, so that we can run
reinforcement learning algorithms on it?

3. Can we implement Q-learning in such a way that it can learn a policy for playing
Ogame?

1.1.1. Research products

The three sub questions will lead to three products:

1. A model that represents Ogame and can be used in reinforcement learning.

2. A simulator based on the model.

3. An implementation of Q-learning, possibly including techniques to enhance learn-
ing performance.

In the end we will have a piece of software with a simulator of Ogame and an
implementation of Q-learning. Together they will be used to answer the main research
question. The source code for the software can be found in Appendix D.

1.1.2. Motivations for this research

This thesis exists, because there has not been a lot of research on this particular PACG
problem. It will try to provide insight in how to tackle it. Another reason is that
reinforcement learning is a very exciting topic. One of the best examples is the TD-
Gammon algorithm of Tesauro (1994). It is an algorithm that learns to play backgam-
mon. It performed so well, that it is at least equal to the best human backgammon
player. Backgammon players worldwide also use a new unconventional opening strategy
that TD-Gammon premièred.

For a third reason: this thesis also has a personal point to it. In my youth I have
played the game that will be used for this research, Ogame. Since then I always asked
myself if a computer could learn to play this game better.

1.2. Short introduction to Ogame

Ogame is a text-based strategy game with a space theme. It was launched in 2000
and currently has around two million players. The game is made and maintained by
Gameforge AG.1

In Ogame a player starts with an undeveloped planet, the Homeworld. The player
can develop this planet and eventually colonize other planets. He/she can use three
types of resources for this: metal, crystal and deuterium. Resources are produced by
production buildings: mines for metal and crystal and a synthesizer for the deuterium.
These production buildings need to be powered with energy, which can be produced by a

1For more information, visit: http://www.ogame.org and http://www.gameforge.com

2

1. Introduction

Figure 1.1.: The building assembly line of Ogame

solar plant. If there is not enough energy, the production rate of resources suffers. There
are also other utility buildings, like a research lab, where research can be conducted, or
the shipyard, where spaceships can be built. For an impression of the building assembly
line of Ogame, see Figure 1.1.

The universe of Ogame is organized into galaxies, systems and planets. A universe
is divided into ten galaxies, each galaxy has 499 systems and each system has fifteen
planet slots. A planet slot can contain a planet, debris field and a moon. Travelling
within a system is fast, between systems is slow and between galaxies even slower. A
new player gets appointed a new Homeworld in a random galaxy and system. He can
build mines and other buildings until the planet is “full”.

Fleets of ships can be sent to planet slots. Space battles occur when two fleets
meet each other. The players themselves have no influence over the battle once it starts.
If the attacker wins, he steals the resources of the defender. Debris of the ships that
got destroyed will go to the debris field of the planet slot, which can be harvested with
special ships, by any player.

3

1. Introduction

There are many other aspects to Ogame, like alliances and expeditions, but these
will be left aside in this thesis.

1.2.1. Limiting the problem: explicit assumptions

The main research question says we are looking for a good policy to play Ogame. The
game has a large number of actions and essentially no end. This leads to a fast growing
and infinite state space.1 Because of this we will use some restrictions in this thesis.
We will define the goal state as the moment when the player owns one Colony Ship.
Upon reaching the goal, the player gets a large reward. Building a Colony Ship is a key
moment for a player’s career, from which they can continue with different strategies.
This restriction limits the problem, but keeps it from becoming trivial: this goal state
is still significantly deep2 in the state space.

To keep the model from becoming incredibly complex, we will also omit the players
other than the learning agent. In our model the learning agent will be the only player
in the universe. For the proposed goal state this is not unthinkable: it is quite possible
a player does not interact with other players before building his/her colony ship.

We will also omit all the actions that do not contribute to getting to the goal state
or complicates the problem considerably. Appendix A explains why certain actions are
omitted.

Future research could improve upon this thesis by including the omitted actions
or changing the goal state. It could also remove the goal state all together and use a
different reward model that suits the never ending nature of Ogame better.

Note that we are using Ogame version 3.0.1, which was the live version when this
thesis was written.

1.3. Structure of this thesis

We will continue this chapter with the introduction of the theoretical framework. Next,
we will model the problem in Chapter 2 and create several models. Then the models will
be transferred to a software implementation in Chapter 3. Chapter 4 will introduce Q-
learning and several techniques to enhance its performance and then propose a learning
algoritm. At last, Chapter 5 will experiment with the learning algorithm and show the
results.

1.4. Theoretical framework

To solve our Ogame problem, we will model it as a Markov Decision Process (MDP) and
then apply reinforcement learning (RL). RL is the method that will eventually produce
the policy we are looking for. RL algorithms are specifically designed to solve MDPs.
MDPs are “an intuitive and fundamental formalism for decision-theoretic planning, re-
inforcement learning and other learning problems in stochastic domains” Wiering &
Otterlo (2012)[Section 1.1]. Section 1.4.1 will introduce MDPs and Section 1.4.2 will
explain reinforcement learning.

1A state is a particular setting of the game “board”. The state space of a game is the set of all these
states.

2A state deep in the state space is interpreted as: it takes “many” transitions to reach this state from
the starting state.

4

1. Introduction

1.4.1. Short introduction to Markov Decision Processes

Some of the earliest research on MDPs was done by Bellman (1957). A more recent
approach can be found in Puterman (1994) and Wiering & Otterlo (2012). An MDP
models an environment (Ogame) into a set of states and actions. A state contains
information about what the game world looks like, for example how much resources a
player has. The set of actions contain the actions the player can do in the environment.
Performing these actions makes changes to the environment, causing it to transition
between states. Performing actions also gives a reward. The goal of an MDP is to
perform actions in such a way (following a policy) that it maximizes these rewards.
If the states contain enough information to decide which actions to take in order to
maximize the rewards, and we do not need information from previous states, then the
process has the Markov property.

Formally, a standard MDP consists of the following:

• A finite set of states S.
• A finite set of actions A.
• The transition function Pa(s, s

′) = Pr{st+1 = s′ | st = s, at = a}, which gives the
probability for when action a is chosen in state s at time t, it leads to state s′ at
time t+ 1.
• The reward function Ra(s, s

′) = E{rt+1 | st = s, at = a, st+1 = s′}, which gives
the expected immediate reward if choosing action a in state s leads to state s′.

In order to make an MDP model for our Ogame problem, we only have to define these
four elements, which we will do in the coming chapter. We will however use a slight
deviation of the standard MDP:

• The set of states S will be infinite, since Ogame has no end.
• Besides the set of actions A, we will introduce the set of actions As, which includes

all actions available in state s. This is necessary, because actions in Ogame can
have preconditions.

For more information on MDPs, we refer to Wiering & Otterlo (2012)[Section 1.3.1].

1.4.2. Short introduction to reinforcement learning

The book of Sutton & Barto (1998) is the leading resource on reinforcement learning.
This is their introduction: “Reinforcement learning is learning what to do–how to map
situations to actions–so as to maximize a numerical reward signal. The learner is not
told which actions to take, as in most forms of machine learning, but instead must
discover which actions yield the most reward by trying them. In the most interesting
and challenging cases, actions may affect not only the immediate reward but also the
next situation and, through that, all subsequent rewards. These two characteristics–
trial-and-error search and delayed reward–are the two most important distinguishing
features of reinforcement learning.”

An agent that uses reinforcement learning has three basic aspects: sense, actions
and goal(s). The sense aspect is the way the agent perceives the state of the environment
(Ogame). This is given to the agent via a state signal. The agent can perform actions
to affect the state and to eventually reach the goal(s).

Reinforcement learning is not supervised learning, which utilizes an all or partially
knowing supervisor. Reinforcement learning can be thought of as a journey to uncharted

5

1. Introduction

areas: the agent knows nothing and has to explore the environment to learn what is
there. While learning, the agent has to balance exploring and exploiting. To maximize
the reward, it has to exploit actions with good rewards, but it also has to occasionally
explore to find these good actions. It is not possible to focus on only one of these two
aspects and maximize the reward signal at the same time.

For more information about reinforcement learning, we refer to Sutton & Barto
(1998).

Elements of reinforcement learning

The following section is a paraphrase of Sutton & Barto (1998).
A reinforcement learning system has two main elements: the learning agent and

the environment, see Figure 1.2 for a graphical impression. In our case, the environment

Figure 1.2.: A graphical impression of reinforcement learning

will be a piece of simulation software. This simulator will be based on the MDP model
that we will present in the next chapter. The agent is the algorithm, or combination of
algorithms, that will try to learn from the environment. It has three sub elements for
this: an exploration policy, a reward function and a value function. A policy function is
often denoted as π. It is a function which maps every state s ∈ S to an action a ∈ A or
a ∈ As. The agent uses it to pick actions in the learning process.

The reward function is the same as in the MDP. It is a mapping of states to a
numerical reward. The agent will try to maximize this reward, thus the reward function
inherently defines the goal of the reinforcement learning problem. While the reward
function gives the agent an immediate sense of how good a certain state is, the value
function gives the agent a sense of what is good in the long run. The value of a state is
the combination of the immediate reward plus the rewards the agent can accumulate in
the future, starting from this state. The purpose of a reinforcement learning algorithm is
to learn this value function. It is usually initialized with an arbitrary value. The learning
process consists of taking actions and observing the rewards. The resulting experience
is then used to update the estimated value function to a better approximation of the
true value function, which it should eventually converge to. The resulting value function
can be used to extract the resulting policy. This policy will be used to measure the
performance of the agent and to answer our research question.

6

2. Modelling the problem

Creating an MDP for our Ogame problem from scratch turns out to be though. Ogame
is a complex game, with actions that have several preconditions and influence other
actions and assembly lines. It is also not immediately clear how the reward function
should work when actions are running in parallel. Modelling an MDP for Ogame can be
easier if we create a toy MDP first: a model of a simplified Ogame.

The simplified version of Ogame will feature only one kind of resource and two
assembly lines, with each one action. When the toy model is finished, it can be scaled up
to create the model for the Ogame problem. Another advantage is that we have a simple
and small model which we can experiment upon with reinforcement learning. This can
give us valuable insight for the later stages of this thesis.

The toy MDP is presented in Section 2.1, while an improved version, toy MDP
version 2, is presented in Section 2.2. Finally, Section 2.3 shows the Ogame MDP.

2.1. Toy MDP

To define an MDP of the toy problem, recall that we only have to define the following
elements:

• A set of states S.
• A finite set of actions A and As for each state s ∈ S.
• The transition function.
• The reward function.

We will define these in the next four sections. In these definitions we will use the
notations and functions as summarized in Table 2.1. The complete definition for the

Notation / function

svariablename Represents the value of the variable variablename in state
s.

(s, a)→ s′[var ← value] A state transition, where action a is executed in state s.
This leads to state s′ where the value of var is replaced with
value.

pint variablename A type indicator, this variable is a positive integer: 0, 1, 2,
3, . . .

cost(actionname, level) Returns the cost of the action actionname for the level level.

time(actionname, level) Returns the duration (building or research) time of the ac-
tion actionname for the level level.

prod(actionname, level) Returns the resource production of the building actionname
for the level level.

Table 2.1.: Notations and functions for the toy MDP

7

2. Modelling the problem

cost, time and prod functions can be found in Section B.1 in the appendix.

2.1.1. States

A state is determined by the values of the available metal, levels of the MetalMine and
LaserTechnology and timers for the assembly lines. Table 2.2 contains a legend for these
variables. If an assembly line is inactive, the corresponding timer value should be zero. If
two actions are running in parallel, the state should reflect that by having the two timer
values above zero. Any time a building or research action finishes, the corresponding
level value is raised with one.

Summarizing this, the set of states S is defined as:

s ∈ S if s = < pint res metal,
pint lvl MetalMine, pint lvl LaserTechnology,
pint timer build, pint timer research >

res metal The amount of metal resource owned.

lvl MetalMine The current level of the Metal Mine building.

lvl LaserTechnology The current level of the Laser Technology research.

timer build Building time remaining in seconds.

timer research Research time remaining in seconds.

Table 2.2.: Legend for Toy MDP state variables

The starting state s0, representing a new Ogame account, is given by:

s0 =< 0, 0, 0, 0, 0 >

2.1.2. Actions

The set of actions A is defined as:

A = {MetalMine, LaserTechnology, no op}

no op is an action an agent can take if he wants to perform a time step in the game.

Preconditions

The set of actions As is defined as:

As ⊆ A
MetalMine ∈ As ⇐⇒ stimer build = 0 ∧ cost(MetalMine, slvl MetalMine + 1) ≤ sres metal
LaserTechnology ∈ As ⇐⇒ stimer research = 0 ∧

cost(LaserTechnology, slvl LaserTechnology + 1) ≤ sres metal
no op ∈ As

Note that we write cost(MetalMine, slvl MetalMine + 1) instead of
cost(MetalMine, slvl MetalMine), because we want to know if we have enough resources to
upgrade the current MetalMine. The cost function returns values for the current level,
not for upgrades.

8

2. Modelling the problem

These predonditions can be explained as: you can only build or upgrade the Metal
Mine if you own the necessary amount of resources and are not building anything else.
The same goes for Laser Technology. The no op action is always available, without it,
the agent cannot progress in time.

Effects

If the action MetalMine is applied in state s, it results in a new state s′, in which:

• The amount of metal we have is reduced by the metal cost of the action.

• The timer build is set to the time it takes to build the MetalMine.

Formally:

(s,MetalMine)→ s′[res metal← sres metal − cost(MetalMine, slvl MetalMine + 1)]

[timer build← time(MetalMine, slvl MetalMine + 1)]

Analogously the action LaserTechnology is defined as:

(s,LaserTechnology)→ s′[res metal← sres metal − cost(LaserTechnology, slvl LaserTechnology + 1)]

[timer research← time(LaserTechnology, slvl LaserTechnology + 1)]

If the action no op is applied in state s, it results in a new state s′, in which only the
increase of time is taken into account. Essentially, the no op action does a time step of
one second and handles all the administrative tasks:

• The amount of metal we have is raised by the metal production we have.

• The lvl MetalMine is raised by 1 if we finished building it.

• The lvl LaserTechnology is raised by 1 if we finished researching it.

• The timer build is lowered by 1.

• The timer research is lowered by 1.

Formally:

(s, no op)→ s′ [res metal← sres metal + prod(MetalMine, slvl MetalMine)]
[lvl MetalMine← slvl MetalMine + 1] ⇐⇒ stimer build = 1
[lvl LaserTechnology← slvl LaserTechnology + 1] ⇐⇒ stimer research = 1
[timer build← stimer build − 1] ⇐⇒ stimer build > 0
[timer research← stimer research − 1] ⇐⇒ stimer build > 0

2.1.3. Transition function

The actions in our model are all deterministic, so the transition function is:

Pa(s, s
′) =

{
1 if a ∈ As ∧ (s, a)→ s′

0 otherwise

9

2. Modelling the problem

2.1.4. Reward function

We have not defined a goal state yet for the toy model, but we want to reward the agent
for reaching the goal state. Thus we have to define one, for example if our MetalMine
and LaserTechnology are both level 3. Formally:

sg =< , 3, 3, , > (where stands for an arbitrary value)
When designing the reward function, we have to carefully consider what we want the
agent to learn. We want learn how to get to the goal state, but also in the fastest way
possible. So we will reward the agent for getting to the goal state, but punish him for
taking longer to do so. This results in the following reward function:

R(s) =

{
50− x if s is a goal state
−x otherwise

Where x is the number of seconds passed since the previous (parent) state.

In other words: the MetalMine and LaserTechnology actions will always reward 0, since
they do not advance time. The no op action will generally reward -1, except when a goal
state is reached, then it will reward +49. Note that the no op action always receives the
big +50 reward for reaching a goal state, even though MetalMine or LaserTechnology
might be the “deciding” action. This occurs because the no op increases the level vari-
ables. Upon increasing the level variable that triggers a goal state, it receives the +50
reward. This is not desirable behaviour, because an agent would now learn that no op is
good, instead of that MetalMine or LaserTechnology is good. The incorrectly crediting
will be addressed in the following sections.

2.1.5. Transition table

A state transition table from starting state to goal state can give us a more graphical
impression of how this MDP works. It is also a quick and dirty check if our model does
not have anomalies. A hand made transition table can be found in Appendix B.2
(Table B.4).

10

2. Modelling the problem

2.2. Improving the toy MDP

The toy MDP we currently have turns out to have a few problems:

• When scaled up to a full model for Ogame, the state space becomes enormous.
Every no op action generates a new state, which is just slightly different from the
parent state.

• A phenomenon similar to starvation exists between the assembly lines.

• If an agent wants to build something, but does not own the resources yet, it has
to “spam” no op actions to advance time and gather resources. Ogame players
do not continuously click buttons to gather resources for a desired action. They
simply decide that they want to do action a in the future, when the resources are
available.

• The “wrong” actions are being credited with the high reach-the-goal reward.

2.2.1. Afterstates

The scaling problem can be solved by introducing afterstates, see Sutton & Barto
(1998)[Chapter 6.8]. Afterstates are states that contain the same information, but are
reached via different transition paths. For example, in Tic-Tac-Toe, player one choosing
action a and then player two choosing action b, leads to a state with the same game
board as player two choosing b and then player one choosing a. Combining these two
states, generated by different transition paths, in the same afterstate can greatly reduce
the state space.

In our case, afterstates are a bit different: they are states that actually hold the
result of an action. For example, the afterstate of the MetalMine action would be the
state in which the Metal Mine has finished building. In the learning process we will only
consider these afterstates. This greatly reduces the state space, by throwing away the
unimportant states between action selection and action completition.

To reduce the state space even more, we can also only apply afterstates if the agent
can pick a “serious” action, in other words: an action other than no op.1 This is a good
thing, because we do not really want to bother the agent with having to advance time
by using no op. When a human player plays Ogame, he also does not have to click a
button every time he wants to go one second forward in time. Luckily our definition of
the actions in the MDP includes preconditions that precisely fit these afterstates: a state
s is an afterstate if and only if state s has at least one action available besides no op. So,
if we want to only consider afterstates in the MDP, we want it to automatically apply
the no op action if it is the only action available. To do this, we changed the transitions
in the MDP. So far this was our notation for transitions:

(s, a)→ s′[var ← value]

1This definition of afterstates makes it possible that you cannot “end the game” until you reach an
afterstate, even though you already accomplished the goal. This problem will be tackled in the next
section, where “serious” actions are guaranteed to become available at a goal state.

11

2. Modelling the problem

Automatically applying the no op action can be done by changing it to a recursive
notation:

(s, a)→
{
s′ if |As′ | > 1 where (s, a)→ s′[var ← value]
s′′ if As′ = {no op} where (s, a)→ s′[var ← value] ∧ (s′,no op)→ s′′

The first case applies when we have a transition which results in an afterstate, then we
apply the transition in the same way as we did in the earlier MDP. The second case
applies when we have a transition from which we can only continue by doing no op.
We first apply the transition and then continuously apply the no op action. This will
continue until we reach an afterstate.

For a graphical impression, compare Figure 2.1 to Figure 2.2. Both figures show
a transition path in which the agent starts in afterstate sa, chooses some action b and
continues using no op actions until he reaches the next afterstate sa′ . In the first figure,
which shows the old toy MDP, the agent has to perform all the no op actions to reach
sa′ himself. The toy MDP improved with afterstate transitions is shown in the second
figure. Here the agent only has to perform action b.

Figure 2.1.: Old transition system without looping no op

Figure 2.2.: Afterstate transition system with looping no op

Note that we will not rewrite every single action effect to this notation, because
of clarity and brevity. We showed how it works and assume it is implicitly used in the
model. The introduction of these afterstates reduces the state space incredibly. If we
rewrite the transition table B.4 for this new model to table B.5, the number of transitions
lowers from 47 to 18. This is a decrease of about 62%. This reduction becomes even
larger, the longer the game goes on, due to the nature of Ogame: timers for actions
become longer every time you upgrade that action.

2.2.2. Starvation and spamming no op to gain resources

Because the assembly lines share the same resource pool, the agent will probably learn
with some kind of bias towards the cheapest actions, simply because they are available
more. This behaviour can be compared to starvation. The only way to prevent starvation
in the current model is by using no op actions and hoping that different, more attractive
actions become available. Unfortunately this is not a good method, because performing
no op actions gives a negative reward. This might make the learning agent even less
inclined to prevent starvation.

12

2. Modelling the problem

Besides starvation, the model in general facilitates no op “spamming” behaviour.
When playing Ogame, a player usually finds some action a very attractive, but cannot
start it yet because of a lack of resources. They will then usually wait until the resources
are gathered and then start the action. Essentially, at time t, one decides to perform
action a at time t+ x, for some x. This decision can be simulated by performing no op
actions, but for the same reasons as with the starvation, it is a bad method. On top of
this, learning when to use the no op action would become really complex: when using it
for the “wait until action a can be performed”, it puts the experiences for every action
a into one: no op. It also lacks information: we cannot say for which action we are
waiting. The no op action would not be an action with just one use, but many uses. A
reinforcement learning agent will probably have difficulties learning when to use no op
this way, or he might not learn it at all.

Wait and no-wait actions

We can solve both problems of the previous mentioned section by introducing wait and
no-wait actions. The wait actions are the “perform action a at time t+x” actions. These
actions put the corresponding assembly line in a waiting mode and when the resources
are gathered, the action is automatically performed. No other actions can be performed
while in waiting mode or when one is still being performed.

We will not add wait actions for every single action in the model, this would
be redundant. Instead, we will replace all the current actions by corresponding wait
actions. For example, when choosing the action MetalMine, if enough resources are
available, the action will start, if not, waiting mode will be activated for this action.
This way, the agent can choose to perform an action, even though it does not own the
necessary resources yet. As a small example, action preconditions might change from:

MetalMine ∈ As ⇐⇒ stimer build = 0∧cost(MetalMine, slvl MetalMine+1) ≤ sres metal

To:

MetalMine ∈ As ⇐⇒ stimer build = 0 ∧ ¬swaiting build

Where swaiting build is true if the building assembly line is in waiting mode and false if
not. An action effect might change from:

(s,MetalMine)→ s′[res metal← sres metal − cost(MetalMine, slvl MetalMine + 1)]

[timer build← time(MetalMine, slvl MetalMine + 1)]

To:

(s,MetalMine)→

s′ [res metal← sres metal − cost(MetalMine, slvl MetalMine + 1)]

[timer build← time(MetalMine, slvl MetalMine + 1)]

if cost(MetalMine, slvl MetalMine + 1) ≤ sres metal

s′ [action build← MetalMine]

[waiting build← true]

otherwise

13

2. Modelling the problem

Where saction build can be set to the action which the building assembly line is waiting
for.

If wait actions are applied this way, starvation can occur. If one assembly line has
expensive actions and is waiting for resources, another assembly line can constantly con-
sumes all resources. To prevent this, we introduce one no-wait action for each assembly
line. These actions put the assembly line in a waiting-for-nothing mode or “do nothing
for some time” mode.

The precondition and effect of a no-wait action could look like this:

no wait build ∈ As ⇐⇒ stimer build = 0 ∧ ¬swaiting build ∧
¬(swaiting research ∧ saction research = null)

(s, no wait build)→ s′[action build← null]

[waiting build← true]

The no wait build action can only put the building assembly line in the waiting-for-
nothing mode if:

• it is not currently building something.
• it is not already in waiting mode.
• the other (research) assembly line is not in waiting-for-nothing mode, to prevent

deadlocks.

These actions give the learning agent means to prevent starvation, without getting
negative rewards.

Added benefit of the wait and no-wait actions is that the reward problem is also
solved: the reward function does not wrongly credit actions anymore. It now gives the
large reach-the-goal reward to the “deciding” action or the no-wait action that precedes
it.

2.2.3. Toy MDP version 2

To include all the above mentioned improvements, our toy model needs to be rewritten
quite a bit. For example:

• New variables need to be added to the state, to represent whether an assembly
line is in waiting mode, and for which action.
• Preconditions for actions need to be changed, and added for the no-wait actions.
• The effects of the actions need to be changed.

The complete rewritten toy MDP version 2 can be found in Appendix B.3.
Note that the no op action still does all the administrative tasks, but the learning

agent itself does not have to choose it anymore. No op was used for two things: advancing
time and hoping that more attractive actions would come available. Both these things
have become trivial since the addition of afterstates, wait and no-wait actions. When
using this model in a learning algorithm, the no op action can be hidden from the agent
with no problems.

Also note that we can easily find the optimal transition path from start to goal state
by hand. This is convenient later in this thesis, where we want to see how reinforcement
learning performs on the toy model. See table B.6 for the optimal transition path. It
turns out that the optimal path from start to goal state takes 34 simulated seconds. The
best policy an agent could learn is a policy that follows this path.

14

2. Modelling the problem

2.3. Ogame MDP

2.3.1. From toy MDP to Ogame MDP

Given the toy MDP as a base, the task of modelling the Ogame environment is a lot
more manageable. We can achieve this by adding and expanding the toy MDP:

• Besides cost, time and production functions, we add functions for calculating the
production factor and storage capacities.

• Adding all the Ogame actions. See Appendix A.

• Add the third assembly line (shipyard).

• Rewriting the no op action to handle all the new administrative tasks.

We will, again, define the four elements needed for an MDP in the coming sections. In
these definitions we will use the same notations for transitions as in the toy MDP. We
need some new types and functions for the Ogame MDP. A simple overview is given in
Table 2.3. The full definitions of the functions can be found in Appendix C.

Type / function

pint variablename A type indicator, this variable is a positive integer: 0, 1, 2,
3, . . .

double variablename A type indicator, this variable is a double-precision floating-
point.

bool variablename A type indicator, this variable is a boolean: true or false.
action variablename A type indicator, this variable is an action a ∈ A. . . .
cost resource(actionname,
level)

Returns the resource cost of the action actionname for the
level level.

time assemblyline(cost,
level roboticsfactory)

Returns the duration (building or research) time of an action
for assemblyline. The calculation uses only the resource
cost of the action and the level roboticsfactory.

prod resource(levels) Returns the resource production, calculating it by using the
levels of several buildings.

prec costs(resources,
actionname, level)

Returns true if we own the resources needed to perform the
action actionname for the level level.

prod factor(levels) Returns the production factor (0.0 - 1.0), calculating it by
using the levels of several buildings.

Table 2.3.: Notations and functions for Ogame MDP

2.3.2. States

The state structure stays the same as in the toy model. However, we now store the
resources in a double type instead of pint, because of introducing the production factor
in the model. Under influence of the production factor, production can become a real
number instead of a natural one.

15

2. Modelling the problem

The set of states S is defined as:

s ∈ S if s = < double res metal, double res crystal, double res deuterium,
pint lvl MetalMine, pint lvl CrystalMine, pint lvl DeuteriumSynthesizer,
pint lvl SolarPlant,
pint lvl RoboticsFactory, pint lvl Shipyard, pint lvl ResearchLab,
pint lvl CrystalStorage, pint lvl MetalStorage, pint lvl DeuteriumTank,
pint lvl EnergyTechnology, pint lvl ImpulseDrive, pint lvl ColonyShip,
pint timer building, pint timer research, pint timer shipyard,
bool waiting building, bool waiting research, bool waiting shipyard,
action action building, action action research, action action shipyard >

Table 2.4 explains what these variables represent.

Variable name Explanation

res resource The amount of resource owned.
lvl actionname The current level of the building, research or ship actionname.
timer building Building time remaining in seconds.
timer research Research time remaining in seconds.
timer shipyard Ship building time remaining in seconds.
waiting building True if build assembly line is in waiting mode.
waiting research Idem for the research assembly line.
waiting shipyard Idem for the shipyard assembly line.
action building The action for which the build assembly line is waiting or performing.
action research Idem for the research assembly line.
action shipyard Idem for the shipyard assembly line.

Table 2.4.: Legend for Ogame MDP state variables

The starting state s0, which represents a new Ogame account, is defined as:

s0 =< 500, 500, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, false, false, false, null, null, null >

Note that a new account starts with 500 metal and 500 crystal.

2.3.3. Actions

The set of actions A is defined as:

A = { MetalMine, CrystalMine, DeuteriumSynthesizer, SolarPlant,
RoboticsFactory, CrystalStorage, MetalStorage, DeuteriumTank,
ResearchLab, Shipyard,
EnergyTechnology, ImpulseDrive, ColonyShip,
no building, no research, no shipyard, no op }

It contains all the actions we determined (see Appendix A), including the no wait actions
for the three assembly lines and the administrative no op action.

Preconditions

As ⊆ A is the set of actions which includes all actions available in state s. For clarity,
we will first define three sets of available actions, one for each assembly line. We will
then combine these three sets to create As.

16

2. Modelling the problem

Part 1: building assembly line The set Abuildings will contain the available building
actions in As.

{ MetalMine, CrystalMine, DeuteriumSynthesizer, SolarPlant, RoboticsFactory,

CrystalStorage, MetalStorage, DeuteriumTank, ResearchLab } ⊆ Abuildings
⇐⇒ stimer building = 0 ∧ ¬swaiting building

Shipyard ∈ Abuildings
⇐⇒ stimer building = 0 ∧ ¬swaiting building ∧ slvl RoboticsFactory ≥ 2

Part 2: research assembly line The set Aresearchs will contain the available research
actions in As. This set will be created from the set Areq researchs , which contains all the
action requirements in Ogame itself. This split up is needed, because Areq researchs is
used later in the preconditions for the no-wait actions.

EnergyTechnology ∈ Areq researchs ⇐⇒ slvl ResearchLab ≥ 1

ImpulseDrive ∈ Areq researchs ⇐⇒ slvl ResearchLab ≥ 2 ∧ slvl EnergyTechnology ≥ 1

Aresearchs =

{
Areq researchs if stimer research = 0 ∧ ¬swaiting research
∅ otherwise

Part 3: shipyard assembly line The shipyard assembly line is handled in the same
manner.

ColonyShip ∈ Areq shipyards ⇐⇒ slvl Shipyard ≥ 4 ∧ slvl ImpulseDrive ≥ 3

Ashipyards =

{
Areq shipyards if stimer shipyard = 0 ∧ ¬swaiting shipyard
∅ otherwise

Note that we pretend the shipyard assembly line works the same as the other two. In
Ogame it actually works like a sort of waiting queue, where you can queue up actions,
as long as you have the resources for them. In Section 1.2.1 we determined that we only
have to build one Colony Ship, so this behaviour is not needed in our MDP.

Combining parts 1, 2, 3 and adding no-wait actions We can now combine the sets
into set As:

Abuildings ∪Aresearchs ∪Ashipyards ⊆ As

Note that we used ⊆, instead of =, for a reason: we still want to add the no-wait actions
to As.

17

2. Modelling the problem

The no-wait actions tend to get a bit complex, in order to avoid deadlocks. Dead-
locks occur if all the assembly lines are in waiting mode. To avoid these, the no building
action is only available if:

• The building assembly line is not building something or in waiting mode.
• Not all other assembly lines are in a no-waiting mode.
• Not all other assembly lines have no “serious” action to choose. Where a serious

action is any action besides a no-wait action or no op.
• The research assembly line is not in waiting-for-nothing mode while the shipyard

assembly line has no serious action available.
• The shipyard assembly line is not in waiting-for-nothing mode while the research

assembly line has no serious action available.

no building ∈ As ⇐⇒ stimer building = 0 ∧ ¬swaiting building ∧
¬(swaiting research ∧ saction research = null

∧ swaiting shipyard ∧ saction shipyard = null) ∧
¬(Areq researchs = ∅ ∧Areq shipyards = ∅) ∧
¬(swaiting research ∧ saction research = null ∧Areq shipyards = ∅) ∧
¬(swaiting shipyard ∧ saction shipyard = null ∧Areq researchs = ∅)

The remaining no-wait actions have similar preconditions:

no research ∈ As ⇐⇒ stimer research = 0 ∧ ¬swaiting research ∧
¬(swaiting building ∧ saction building = null

∧ swaiting shipyard ∧ saction shipyard = null) ∧
¬(swaiting building ∧ saction building = null ∧Areq shipyards = ∅)

no shipyard ∈ As ⇐⇒ stimer shipyard = 0 ∧ ¬swaiting shipyard ∧
¬(swaiting building ∧ saction building = null

∧ swaiting research ∧ saction research = null) ∧
¬(swaiting building ∧ saction building = null ∧Areq researchs = ∅)

no op ∈ As

We have now fully defined As.
Note that there are two extra preconditions for some actions:

• On a new Ogame account, the deuterium production is zero, while metal and
crystal get produced in small amounts. Actions that require deuterium are not
available if there is no deuterium production. They can become available if a
Deuterium Synthesizer is built and the production factor is above zero. Note that
if keeping these actions available, without deuterium production, the agent might
learn to avoid these actions. This, however, adds extra complexity to an already
complex problem. It makes learning harder and more preconditions have to be
added to avoid deadlocks.
• Actions that require more resources than we can store in our storage tanks, should

not be available. It is also possible for an agent to learn this behaviour himself,
but we decide against it for the same reasons.

18

2. Modelling the problem

These preconditions will not be included in the MDP, for the sake of clarity. They will,
however, be included in the simulator in the next chapter.

Effects

Because most actions have a similar effect, we will introduce two sets, to be used as
shorthands:

BuildingActions = { MetalMine, CrystalMine, DeuteriumSynthesizer, SolarPlant,
RoboticsFactory, CrystalStorage, MetalStorage, DeuteriumTank }

ResearchActions = { EnergyTechnology, ImpulseDrive }

Simple building actions

∀ba ∈ BuildingActions,
(s, ba)→

s′ [res metal← sres metal − cost metal(ba, slvl ba + 1)]

[res crystal← sres crystal − cost crystal(ba, slvl ba + 1)]

[res deuterium← sres deuterium − cost deuterium(ba, slvl ba + 1)]

[timer building← time building(cost metal(ba, slvl ba + 1),

cost crystal(ba, slvl ba + 1), slvl RoboticsFactory)]

[action building← ba]

if prec costs(sres metal, sres crystal, sres deuterium, ba, slvl ba + 1)

s′ [action building← ba]

[waiting building← true]

otherwise

In other words, actions start building if there are enough resources for that action. If
not, it puts the building assembly line in waiting mode for that action. Note that slvl ba
is shorthand for slvl <action>, where < action > is substituted with ba. This was added
to improve readability.

Complex building actions The actions ResearchLab and Shipyard are a bit more com-
plex than the simple building actions, because of two reasons:

• In Ogame, the ResearchLab cannot be upgraded if research is conducted at the
same time.
• The Shipyard cannot be upgraded if ships are being constructed at the same time.

We will define the action ResearchLab to put itself in the waiting mode until the research
is finished, idem for the Shipyard. For the next two definitions, we have shortened
ResearchLab to RL and Shipyard to SY , because of layout reasons.

19

2. Modelling the problem

(s,RL)→

s′ [res metal← sres metal − cost metal(RL, slvl RL + 1)]

[res crystal← sres crystal − cost crystal(RL, slvl RL + 1)]

[res deuterium← sres deuterium − cost deuterium(RL, slvl RL + 1)]

[timer building← time building(cost metal(RL, slvl RL + 1),

cost crystal(RL, slvl RL + 1), slvl RoboticsFactory)]

[action building← RL]

if prec costs(sres metal, sres crystal, sres deuterium, RL, slvl RL + 1)∧
stimer research = 0

s′ [action building← RL]

[waiting building← true]

otherwise

(s, SY)→

s′ [res metal← sres metal − cost metal(SY, slvl SY + 1)]

[res crystal← sres crystal − cost crystal(SY, slvl SY + 1)]

[res deuterium← sres deuterium − cost deuterium(SY, slvl SY + 1)]

[timer building← time building(cost metal(SY, slvl SY + 1),

cost crystal(SY, slvl SY + 1), slvl RoboticsFactory)]

[action building← SY]

if prec costs(sres metal, sres crystal, sres deuterium, SY, slvl SY + 1)∧
stimer shipyard = 0

s′ [action building← SY]

[waiting building← true]

otherwise

20

2. Modelling the problem

Research actions According to Ogame, these actions can only be performed if the
ResearchLab building is not being upgraded. If it is, the action is put in waiting mode.

∀ra ∈ ResearchActions,
(s, ra)→

s′ [res metal← sres metal − cost metal(ra, slvl ra + 1)]

[res crystal← sres crystal − cost crystal(ra, slvl ra + 1)]

[res deuterium← sres deuterium − cost deuterium(ra, slvl ra + 1)]

[timer research← time research(cost metal(ra, slvl ra + 1),

cost crystal(ra, slvl ra + 1), slvl ResearchLab)]

[action research← ra]

if prec costs(sres metal, sres crystal, sres deuterium, ra, slvl ra + 1) ∧
¬(stimer building > 0 ∧ saction building = ResearchLab)

s′ [action research← ra]

[waiting research← true]

otherwise

Shipyard actions Similar to the research actions, these actions can only be performed
if the Shipyard building is not being upgraded. If it is, the action is put in waiting mode.

(s,ColonyShip)→

s′ [res metal← sres metal − cost metal(ColonyShip)]

[res crystal← sres crystal − cost crystal(ColonyShip)]

[res deuterium← sres deuterium − cost deuterium(ColonyShip)]

[timer shipyard← time shipyard(cost metal(ColonyShip),

cost crystal(ColonyShip), slvl Shipyard)]

[action shipyard← ColonyShip]

if prec costs(sres metal, sres crystal, sres deuterium,ColonyShip) ∧
¬(stimer building > 0 ∧ saction building = Shipyard)

s′ [action shipyard← ColonyShip]

[waiting shipyard← true]

otherwise

No-wait actions The no-wait actions simply put the assembly lines in waiting-for-
nothing mode.

(s, no building)→ s′[action building← null]

[waiting building← true]

(s, no research)→ s′[action research← null]

[waiting research← true]

(s, no shipyard)→ s′[action shipyard← null]

[waiting shipyard← true]

21

2. Modelling the problem

The no op action Before we define the no op action, we will create some boolean
values. These booleans increase the readability of the no op definition.

b1 = swaiting building ∧ saction building 6= null ∧
prec costs(sres metal + prod metal(slvl MetalMine),

sres crystal + prod crystal(slvl CrystalMine),
sres deuterium + prod deuterium(slvl DeuteriumSynthesizer),
saction building, slvl action building + 1) ∧

(saction building 6= ResearchLab ∨ stimer research < 1) ∧
(saction building 6= Shipyard ∨ stimer shipyard < 1))

Note that, again, slvl action building is shorthand for the level of the intended action. This
definition in other words: b1 is true if:

• The building production line is in waiting mode (but not for no-wait).
• There are enough resources to perform the action.
• If the production line is waiting for ResearchLab, we cannot be researching some-

thing.
• If the production line is waiting for Shipyard, we cannot be building a ship.

To summarize: b1 is true if the building assembly line can start building after gathering
resources for some action. b2 and b3 do the same for the research and shipyard assembly
lines, keeping the Ogame constraints in mind:

b2 = swaiting research ∧ saction research 6= null ∧
prec costs(sres metal + prod metal(slvl MetalMine),

sres crystal + prod crystal(slvl CrystalMine),
sres deuterium + prod deuterium(slvl DeuteriumSynthesizer),
saction research, slvl action research + 1) ∧

¬(stimer building > 1 ∧ saction building = ResearchLab) ∧
¬b1

b2 = swaiting shipyard ∧ saction shipyard 6= null ∧
prec costs(sres metal + prod metal(slvl MetalMine),

sres crystal + prod crystal(slvl CrystalMine),
sres deuterium + prod deuterium(slvl DeuteriumSynthesizer),
saction shipyard) ∧

¬(stimer building > 1 ∧ saction building = Shipyard) ∧
¬b1 ∧ ¬b2

Note that b2 is false if we are upgrading the ResearchLab or if b1 is true, because b1 might
have used all the resources we needed for this action. b3 is false if we are upgrading the
Shipyard or if b1 or b2 is true, because either might have used the resources we needed.

22

2. Modelling the problem

b4 = b1 ∨ swaiting building ∧ saction building = null ∧
(b2 ∨ b3 ∨ stimer research = 1 ∨ stimer shipyard = 1)

b5 = b2 ∨ swaiting research ∧ saction research = null ∧
(b1 ∨ b3 ∨ stimer building = 1 ∨ stimer shipyard = 1)

b6 = b3 ∨ swaiting shipyard ∧ saction shipyard = null ∧
(b1 ∨ b2 ∨ stimer building = 1 ∨ stimer research = 1)

b4 is true if the waiting mode on the building assembly line should be removed. b5 and
b6 do the same for the research and shipyard assembly lines.

With these boolean values we can define the no op action, which can be found in
Figure 2.3. Note that again shorthands are used, for example: slvl action building is short-
hand for slvl <action>, where < action > is substituted with saction building. prod levels is
shorthand for: “slvl MetalMine, slvl CrystalMine, slvl DeuteriumSynthesizer, slvl SolarP lant”

The definition is split into four parts:

1. Rule 1-9, basic tasks. Increase the resources owned with production, increase the
levels of the buildings and research if needed, lower the timers.

2. Rule 10-20, building assembly line. Start building actions if they are in waiting
mode and the neccesary resources are gathered. Rule 20 removes waiting mode if
needed.

3. Rule 21-31, research assembly line. Idem. Rule 31 removes waiting mode if needed.
4. Rule 32-41, shipyard assembly line. Idem. Rule 41 removes waiting mode if needed.

Note that variables res metal, res crystal and res deuterium can be substituted more
then once: in rules 1-3 and potentially in 10-15, 21-26 or 32-37. However, state s′

contains only the latest substitution.
The no op action has the same function in the Ogame MDP: it advances simulated

time in the model by one second. If an assembly line has finished waiting for resources,
actions are automatically applied. This is done in rules 10-19, 21-30 and 32-40, using the
boolean values b1, b2 and b3. In addition, waiting mode is removed from the assembly
lines if needed, in rules 20, 31 and 41, with boolean values b4, b5 and b6. Normal waiting
mode is removed from an assembly line if it starts an action. The waiting-for-nothing
mode is removed if another assembly line starts or completes an action.

If both assembly lines have finished waiting for resources at the exact same simu-
lated second, they cannot start at the same time, even if there are enough resources for
both. This is possible in toy MDP version 2, but omitted here because of complexity
and the fact that this only happens on very rare occasion (or maybe even never). We
will, however, implement it in the simulator.

Also note that the model currently does not use the storage capacity function, to
determine if our storage is full of resources. If storage warehouses/tanks are full, there
can be no production. Adding this to the no op definition means one more rule for every
rule which substitutes a res resource variable, to check whether the storage is full. This
amounts to twelve rules extra. To avoid making the no op action even more complex,
we will omit this here. It will, however, be implemented in the simulator.

2.3.4. Transition function

Identical to the toy MDP: see Section 2.1.3.

23

2. Modelling the problem

(s, no op)→ s′ [res metal← sres metal + prod metal(prod levels)]
2 [res crystal← sres crystal + prod crystal(prod levels)]
3 [res deuterium← sres deuterium + prod deuterium(prod levels)]
4 [lvl saction building ← slvl action building + 1] ⇐⇒ stimer building = 1
5 [lvl saction research ← slvl action research + 1] ⇐⇒ stimer research = 1
6 [lvl saction shipyard ← slvl action shipyard + 1] ⇐⇒ stimer shipyard = 1
7 [timer building← stimer building − 1] ⇐⇒ stimer building > 0
8 [timer research← stimer research − 1] ⇐⇒ stimer research > 0
9 [timer shipyard← stimer shipyard − 1] ⇐⇒ stimer shipyard > 0

10 [res metal← sres metal + prod metal(prod levels) −
11 cost metal(saction building, slvl action building + 1)] ⇐⇒ b1
12 [res crystal← sres crystal + prod crystal(prod levels) −
13 cost crystal(saction building, slvl action building + 1)] ⇐⇒ b1
14 [res deuterium← sres deuterium + prod deuterium(prod levels) −
15 cost deuterium(saction building, slvl action building + 1)] ⇐⇒ b1
16 [timer building← time building(
17 cost metal(saction building, slvl action building + 1),
18 cost crystal(saction building, slvl action building + 1),
19 slvl RoboticsFactory)] ⇐⇒ b1
20 [waiting building← false] ⇐⇒ b4

21 [res metal← sres metal + prod metal(prod levels) −
22 cost metal(saction research, slvl action research + 1)] ⇐⇒ b2
23 [res crystal← sres crystal + prod crystal(prod levels) −
24 cost crystal(saction research, slvl action research + 1)] ⇐⇒ b2
25 [res deuterium← sres deuterium + prod deuterium(prod levels) −
26 cost deuterium(saction research, slvl action research + 1)] ⇐⇒ b2
27 [timer research← time research(
28 cost metal(saction research, slvl action research + 1),
29 cost crystal(saction research, slvl action research + 1),
30 slvl ResearchLab)] ⇐⇒ b2
31 [waiting research← false] ⇐⇒ b5

32 [res metal← sres metal + prod metal(prod levels) −
33 cost metal(saction shipyard)] ⇐⇒ b3
34 [res crystal← sres crystal + prod crystal(prod levels) −
35 cost crystal(saction shipyard)] ⇐⇒ b3
36 [res deuterium← sres deuterium + prod deuterium(prod levels)
37 cost deuterium(saction shipyard)] ⇐⇒ b3
38 [timer shipyard← time shipyard(cost metal(saction shipyard),
39 cost crystal(saction shipyard),
40 slvl Shipyard)] ⇐⇒ b3
41 [waiting shipyard← false] ⇐⇒ b6

Figure 2.3.: The effect of the no op action

24

2. Modelling the problem

2.3.5. Reward function

Our goal state, as mentioned in Section 1.2.1, is owning one Colony Ship:
sg =< , , , , , , , , , , , , , , , 1, , , , , , , , , >

R(s) =

{
1, 000, 000− x if s is a goal state
−x otherwise

Where x is the number of seconds passed since the previous (parent) state.

To get an indication on how long it takes to get to a decent goal state, we followed a
simple and static policy on the simulator, which will be introduced in the next section.
When following this policy to the goal state, it takes 837,629 simulated seconds. Figure
2.4 shows this. We give our agent -1 reward each second. In the end, we want him to
get an accumulative small positive reward for finding a good transition path. For this
reason, we choose 1,000,000 as the reward for reaching the goal state.

Figure 2.4.: Sample goal state produced by a simple policy

2.4. Research product one

We now have a fully defined MDP for Ogame. Research question one, “Is there a model
of Ogame, which we can use in reinforcement learning?”, can now be answered with yes,
by providing this model.

25

3. Building the environment

Now that we have an MDP for both the toy problem (toy MDP v2) and the Ogame
problem, we want to represent them in a programming language. By doing this, we
created the environment shown in Figure 1.2. Consequently, we can let an agent learn
within that environment. We will call this piece of software a simulator.

Let us first determine what the agent needs from the environment, by recalling
Section 1.4.2. The agent needs to know:

• What the current game state is. Thus it needs a state signal from the environment.
• To pick actions, it needs to know what the available actions are for the current

state. Thus it needs a signal that gives him As.
• What the reward for reaching a state is. Thus it needs a reward signal from the

environment.

The agent needs to be able to:

• Perform actions in As. Thus it needs a method to execute actions and change the
environment.

To let the environment meet these requirements, the simulator needs to implement
the following methods (for a class-based programming language):

• GetStateSignal()
• GetPossibleActions()
• GetReward()
• DoAction(Action a)

Because the learning process for this problem is episodic, we also have to implement the
following methods:

• IsTerminal(), a method to check whether the current environment state is a goal
state.
• Reset(), a method to reset the simulator to s0.

With these methods the agent can learn episode after episode.
In this thesis we will describe how we implemented the simulator for both the toy

MDP version 2 and the Ogame MDP. The implementation is done in the C# program-
ming language. Testing reinforcement learning on the toy MDP can give us invaluable
insight for the bigger Ogame problem. In the next sections we will discuss all the
classes coded for the Ogame simulator and highlight some interesting code snippets.
Afterwards, we will show some tweaks to the simulator’s computing time. Because it
is redundant, code for the toy simulator will not be discussed. A link to the complete
source code for the Ogame simulator can be found in Appendix D. It has significant
internal documentation, to make it easier to jump into.

26

3. Building the environment

3.1. State class

This class implements the state variables we used in the model, which can be copied
one-on-one to the simulator. The constructor of this class sets all these fields to their
zero value, according to the starting state we defined in the model. Besides these fields,
there are some extra fields for internal use in the simulator. These are for example for
calculating the time differences between states for the GetReward() method.

The State class also includes the IsTerminal() method:

public bool IsTerminal ()
{

return Leve lAct ions [(int) Action . ActionNames . ColonyShip] >= 1 ;
}

It returns true if the environment is in a goal state and false otherwise.
Because Ogame is a game with no end, the state space is also infinitely large.

Learning with an infinite state space is hard when working with goal states, because it
might take a very long time to reach the goal state, depending on the action selection
method. Some learning algorithms will not work if the state space is infinite. To combat
this we created a new IsTerminal() method that implements a ceiling on the state space:

public bool IsTerminalWithTimeLimit ()
{

return Leve lAct ions [(int) Action . ActionNames . ColonyShip] >= 1 | |
TimeCurrent >= TimeLimit ;

}

The variable TimeLimit in the current implementation is set to 50,000,000 seconds.
Recall that the example transition path in the Ogame model only takes 837,629 simulated
seconds. Setting the TimeLimit that high makes sure that there is plenty of time to find
a goal state. If the goal state is not reached within this bound, the agent simply does
not receive the big positive reward for the goal state.

3.2. Action class

The action class implements some preconditions for actions, which we did not include
in the model. We mentioned these earlier:

• An action that requires deuterium, while deuterium production is zero, cannot be
available.
• Actions that require more resources than we can store in our storage tanks, cannot

be available.

These two preconditions are implemented in the following two code snippets of the
AreRequirementsMet(State s) method:

i f (OgameFormulas . ResourceProduction (2 , State) == 0 .0 &&
RequiresDeuterium (State))

return fa lse ;

i f (OgameFormulas . ResourceCost (0 , ActionName ,
State . Leve lAct ions [(int) ActionName] + 1)
> OgameFormulas . StorageCapacity (0 , State))

return fa lse ; //Return f a l s e i f we do not have enough metal capac i t y

27

3. Building the environment

Besides implementing these two features, which are not in the model, it also implements
the Ogame technology requirements, for example:

case ActionNames . ColonyShip :
return State . Leve lAct ions [(int) ActionNames . Shipyard] >= 4 &&
State . Leve lAct ions [(int) ActionNames . ImpulseDrive] >= 3 ;

It returns false if the ColonyShip cannot be built yet, due to lack of research.
The IsAvailable(State s) method determines if a certain action is available in

state s. It combines the AreRequirementsMet(State s) method and the rest of the
preconditions in the model. When checking for example if MetalMine is available, it
uses the following code:

bool NoOpAddition = true ;
return NoOpAddition && State . TimerBuilding == 0 &&

! State . Wait ingBui ld ing && AreRequirementsMet (State) ;

Recall the preconditions in the model:

(MetalMine) ∈ Abuildings ⇐⇒ stimer building = 0 ∧ ¬swaiting building

The source code looks almost identical to the model. The NoOpAddition variable is
used to determine the availability of the no-wait actions.

The following code determines if the no building action is available:

i f (NoOperation)
NoOpAddition = ! (State . WaitingResearch &&

State . ActionResearch == null && State . WaitingShipyard &&
State . ActionShipyard == null) &&

(AreRequirementsMetAtLeastOneResearch (State) | |
AreRequirementsMetAtLeastOneShipyard (State)) &&

! (State . WaitingResearch && State . ActionResearch == null &&
! AreRequirementsMetAtLeastOneShipyard (State)) &&

! (State . WaitingShipyard && State . ActionShipyard == null &&
! AreRequirementsMetAtLeastOneResearch (State)) ;

return NoOpAddition && State . TimerBuilding == 0 &&
! State . Wait ingBui ld ing && AreRequirementsMet (State) ;

Which acts the same as our model:

no building ∈ As ⇐⇒ stimer building = 0 ∧ ¬swaiting building ∧
¬(swaiting research ∧ saction research = null

∧ swaiting shipyard ∧ saction shipyard = null) ∧
¬(Areq researchs = ∅ ∧Areq shipyards = ∅) ∧
¬(swaiting research ∧ saction research = null ∧Areq shipyards = ∅) ∧
¬(swaiting shipyard ∧ saction shipyard = null ∧Areq researchs = ∅)

Note that we will hide the no op action from the agent in the simulator, because
as mentioned earlier: it serves no purpose for the agent.

3.3. OgameFormulas class

This class implements the formula functions defined in Appendix C. It also implements
the peculiar rounding behaviour mentioned in that appendix. This was done by checking
the output of the formulas, under different inputs, and comparing them to the numbers
provided by a test account on Ogame.

28

3. Building the environment

3.4. Simulator class

The simulator class implements the five methods a reinforcement learning algorithm
needs: Reset, GetStateSignal, GetPossibleActions, DoAction and GetReward. The Get-
PossibleActions method basically shifts trough the AllActions list and filters out the
unavailable actions:

public List<Action> GetPoss ib l eAct ions ()
{

return Action . Al lAct ions . Where (a => a . I s A v a i l a b l e (CurrentState))
. ToList () ;

}

The GetReward method implements the reward function:

public int GetReward ()
{

i f (CurrentState . IsTerminal ())
return 1000000 − (CurrentState . TimeCurrent −

CurrentState . TimePrev iousAfters tate) ;
return (CurrentState . TimeCurrent −

CurrentState . TimePrev iousAfters tate) ∗ −1;
}

Which is equivalent to the reward function in our model:

R(s) =

{
1, 000, 000− x if s is a goal state
−x otherwise

Where x is the number of seconds passed since the previous (parent) state.

3.5. UserTerminal class

This class is a simple user terminal, which can be used to play Ogame on the simulator.
It can be used as a visual aid in presentations about this thesis. Figure 3.1 gives a
graphical impression.

3.6. Computation time tweaks

When experimenting with the simulator, it turned out that first few state transitions
are fast, but it quickly became very slow. The no op action, which calls the NextSecond
method in the State class, seemed to be the problem. Actions in Ogame quickly start
to take thousands of seconds and running the no op action thousands of times eats up
a lot of CPU cycles.

The solution to this problem is the following: in the model it is possible to calculate
how long it takes to reach the next afterstate. Using the formula functions in Appendix
C, we can calculate how long actions take. We can also calculate how long waiting
actions take, by using the cost and production functions. With this information we
can implement a new method that jumps forward in time not one, but x seconds. In
effect we remove all the wasted operations of continuously performing the NextSecond
method. To achieve this, three new methods were implemented: TimeUntilNextEvent,
NextAfterstate and NextX.

29

3. Building the environment

Figure 3.1.: A demonstration of the user terminal

TimeUntilNextEvent calculates how many seconds it takes to get to the next event.
An event occurs whenever one of the assembly lines finishes an action or finished waiting
for an action. Under this definition, if the agent is in an afterstate, at least one event will
trigger. TimeUntilNextEvent might return 0, which means several events happened at
the same moment in time. This might occur when several assembly lines finish waiting
at the same moment. We mentioned in the previous chapter the Ogame MDP does not
implement the behaviour to start several actions at the same moment. Using this event
system, we implemented it again.

The NextX method is an improved NextSecond method (and replaces it), which
can jump x seconds, instead of just one. The method only works if x is zero or higher.

The NextAfterstate method combines TimeUntilNextEvent and NextX: it is used

30

3. Building the environment

by the simulator after the DoAction method, to automatically jump to the next after-
state. The method works as follows:

public void NextAfte r s ta te ()
{

int numPossibleActions =
Action . Al lAct ions . Count (a => a . I s A v a i l a b l e (this)) ;

int Time = TimeUntilNextEvent () ;

while (Time == 0 | | numPossibleActions == 0)
{

NextX(Time) ;
numPossibleActions = Action . Al lAct ions .

Count (a => a . I s A v a i l a b l e (this)) ;
Time = TimeUntilNextEvent () ;

}
}

The method comes down to looping NextX(Time) as long as we have no serious action
to choose (corresponds to our afterstates) or there is an event at this moment.

Another computation time tweak that was implemented was reducing the amount
of calls to the ProductionFactor method in the OgameFormulas class. It turned out
this method got called quite often, even though this value does not change in the time
between events. So we opted to save the production factor in a variable in the State
class and only update it in a call to NextX.

The current implementation runs at a speed of around 2000 learning episodes
per hour on one core of an AMD Phenom II X3 720 CPU, running at 2.8 GHz. This
includes the Q-learning algorithm and a neural network with one hidden layer of 102
hidden neurons (see the next chapter).

There probably remain many small or large tweaks to the computation time of
the simulator code, but we simply cannot explore and implement them due to time
constraints.

3.7. A note on Semi Markov Decision Processes

The TimeUntilNextEvent method, introduced in the previous section, looks very similar
to the holding time function in Semi Markov Decision Processes (SMDP). Some of the
earliest research on SMDPs was done by Jewell (1963). A more recent approach can be
found in Chen & Lu (2010). SMDPs are standard MDPs, but with one alteration. In
standard MDPs, when an action is chosen, the transition to a new state is performed
instantaneously. In SMDPs, the transition is not instant, but has a certain holding time.
The holding time is usually calculated with some probability distribution function. After
the holding time passed, the process completes the transition and a new action can be
chosen.

The similarity suggest that in future research, it might be interesting to explore
SMDPs for the PACG problem, where the holding time function could be replaced by
the TimeUntilNextEvent method.

31

3. Building the environment

3.8. Simulator robustness

Due to

• transferring our model to a programming language,

• implementing some behaviour our MDP does not have,

• making a few tweaks to lower the computation time,

• and our model not being proved 100% error free yet,

there is a chance our simulator is not error free. To make sure our model and simulator is
robust, we let a simple agent pick random actions on the simulator, for a certain amount
of time. If no errors, for example deadlocks, show up, then we consider the simulator
error free. For this simulator we implemented the simple agent and let it pick random
actions. Sometimes we stumbled upon a deadlock or an error. These turned out not to
be programming errors, but shortcomings in the Ogame model. For example, we forgot
certain constraints on the no-wait actions. After fixing these errors in the simulator
and retroactively the Ogame model, the agent played the simulator for 16 hours and 20
minutes error free. We now consider the current implementation of the simulator error
free. Note that the random action agent runs a lot faster than 2000 episodes an hour,
due to the absence of Q-learning and the neural network.

3.9. Research product two

We now have a simulator for both the toy and Ogame MDP. Research question two, “Can
we build a piece of software that represents that model, so that we can run reinforcement
learning algorithms on it?”, can now be answered with yes by providing the Ogame
simulator.

32

4. Building the learning agent

Now that we have an Ogame simulator that acts as the environment, we can start
building the learning agent. The agent will use a Q-learning algorithm. Because of
the complexity of the Ogame problem, the learning agent will need some additional
components to learn effectively. This chapter will introduce Q-learning in Section 4.1.
Afterwards, additional components/algorithms are introduced. Section 4.2 shows a sim-
ple exploration policy, while Section 4.3 explains how a large state space can be handled
with generalization functions. Finally, Section 4.4 introduces experience replay, which
can help with the data-inefficiency of Q-learning.

4.1. Q-learning

One of the best known and most used reinforcement learning algorithms is Q-learning,
which was introduced by Watkins (1989). It is designed to find the optimal policy in an
MDP. It does this by learning an action-value function, Q, continuously increasing its
estimate by exploring the MDP. It has some nice advantages. For example, it is proven to
converge to the optimal policy if the value function is implemented in a tabular format:
“We show that Q-learning converges to the optimum action-values with probability 1
so long as all actions are repeatedly sampled in all states and the action-values are
represented discretely” Watkins & Dayan (1992). Q-learning is off-policy, which means
that it is a lot less sensitive to how the environment is explored, as opposed to an
on-policy algorithm, as long as every action is explored a significant amount of times.

Q-learning implements a state-action value function:

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k|st = s, at = a

}

This formula defines the value function: what are the expected rewards when starting in
state s, performing action a, and then continue taking actions according to (exploration)
policy π. It includes the immediate reward of performing action a, but also the values of
possible next state-action pairs. The values of the next state-action pairs are weighted
by a discount factor γ. In other words: if 0 < γ < 1, the rewards in the far future are
discounted more than rewards in the close future. An agent with γ = 0 is called myopic:
it is only interested in immediate rewards. For episodic learning problems, discounting
is not necessary and γ can be set to 1, which means future rewards are fully accounted
for in a state-action value.

Note that for our problem it is not exactly clear how to set our discount factor. In
episodic tasks it can be set to 1, but our learning problem floats in a grey area between
episodic and non-episodic. It can take close to infinity1 steps to reach a terminal state:
the agent can infinitely pick actions that do not “close the gap” to the goal state,

1Note that the Ogame simulator is capped to 50,000,000 simulated seconds, which is still incredibly
long for a learning problem.

33

4. Building the learning agent

depending on the exploration policy. Our best bet is to experiment with γ = 1 and
values very close to 1.

The idea of Q-learning is to start with arbitrarily initialized estimate Q-values. By
experiencing the environment and using our own estimate Q-values, we can continuously
update these estimates, until they eventually approach the true Q-values. The method
of starting with estimates and continuously improving them is called bootstrapping.
The Q-value updates, for a state transition from s to s′ with action a, are done via the
following update rule:

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]

Note that Q-values Q(s, a) where s is a terminal state are initialized and kept at 0.
Otherwise, the non-zero value would constantly be added to Q-values prior to state s.
These prior Q-values then continuously increase in value and this inflation removes our
guarantee at convergence. This effect especially breaks Q-learning in combination with
a generalization function. See the next section for more about generalization.

The pseudo-code for Q-learning can be found in Algorithm 1. The algorithm uses

Algorithm 1 Q-learning, source: Sutton & Barto (1998)[Chapter 6.5]

Initialize Q(s, a) arbitrarily
repeat(for each episode):

Choose a from s using policy derived from Q
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
s← s′;

until s is terminal

a parameter, the learning rate α. The learning rate decides how big the Q-value updates
should be. Note that the agent learns nothing when α = 0. To converge to an optimal
policy, the agent also has to decrease the learning rate appropriately, hitting 0 at the
“sweet spot”. Knowing when to stop learning is hard though, in this thesis we will use
constant α values, for example a = 0.05. Future research could improve upon this.

4.2. Exploration policy

The exploration policy determines the agent’s exploration behaviour. The agent’s goal
is to gather a lot of rewards, to do this, he needs to exploit known good actions. But to
find these good actions, he has to explore. Thus he needs a good balance between these
two aspects.

One of the simplest exploration policies is ε-greedy exploration. The policy gener-
ally follows the value function, which means it will usually pick the action which has the
highest Q-value for state s. With a chance of ε however, it chooses a completely random
action in As. The parameter ε can be altered, to change the agent’s balance between
exploring and exploiting. There are many more exploration methods, for example one
that explores each action in the state space a minimum amount of times.

34

4. Building the learning agent

4.3. The value function and generalization

When the state space of a learning problem is large, the value function cannot be imple-
mented in a tabular format. The table grows too big to fit in a computer’s memory. The
value function can however be approximated with generalization functions, for example
artificial neural networks. Another advantage is that generalization functions can group
similar states and actions together in the value function. This effect can be beneficial
for the learning process.

The downside is that when using a generalization function, we have lost our guar-
antee at convergence. With Q-learning we are learning from estimates. If the initial
estimate is bad, the following estimate might be bad too. When using generalization
this can lead to very bad estimates or even divergence. This makes finding the right
parameters, for learning successfully, harder.

When implementing Q-learning with a tabular Q-value representation, it worked
for the toy MDP, but not for the Ogame MDP. It turns out that the state space is too
large. When capped to 50,000,000 simulated seconds, it does not fit, by large, in the
memory of a conventional desktop computer (4GB). Because of this we have to resort
to approximating the value function using a generalization function.

4.3.1. Artificial neural networks

Our choice is to use artificial neural networks (ANN) in combination with a backpropa-
gation learning algorithm. They are easy to use and many implementations can be found
on the internet. In this thesis we use the NeuronDotNet 3.0 library1. Neural networks
are quite simple at the core and if they work, they are a fast learning tool (depending
on the amount of neurons). Unfortunately, if they do not work or not well, it is hard to
reason about them, due to their nature.

An ANN consists of units (neurons) connected by directed links, Russel & Norvig
(2003)[Chapter 20.5]. If a neuron gets activated, it propagates its activation through its
output links. Links also have a weight associated with them, which alters the strength
and/or the sign of the connection. The input value of a neuron is calculated by summing
the weighted values of the input links. Formally, for links from neurons j with activation
aj to neurons i:

ini =

n∑
j=1

Wj,iaj

This input value is then given to an activation function (g), which then determines if
the neuron is “active” (near +1) or “inactive” (near 0):

ai = g(ini) = g

 n∑
j=1

Wj,iaj

A feed forward ANN structures its neurons in three types of layers: one input,

one output and zero or more hidden layers. Each neuron in a single layer is usually
connected via a link to every neuron in the next layer: a one-to-many connection. If
we pretend the ANN is a simple function, the input layer usually has one input neuron

1The library can be found at http://sourceforge.net/projects/neurondotnet/

35

4. Building the learning agent

for every parameter the function takes. An ANN usually has one output neuron, which
represents the output of the function. Note that if an ANN uses zero hidden layers and
one output neuron, it becomes a linear function. For most purposes one hidden layer
performs best, so we will consider only one hidden layer.

An ANN can learn by using a backpropagation algorithm. When given an input
and a corresponding output, the algorithm can run the input trough the network and
then calculate the error between the output of the network and what the output should
be. Formally, with input x, network nW with weights W and true output y:

Err = y − nW (x)

Then the weights of the links in the network can be updated, starting with the links to
the hidden neurons to the output neuron:

Wj,i ←Wj,i + α ∗ aj ∗ Err ∗ g′(ini)

Where g′ is the derivative of g. Afterwards, the error is backpropagated through the
links of the input neurons to the hidden neurons, because they are also responsible for a
fraction of Err. The weight of the link between the hidden neurons and output neuron
decides their contribution to the error:

Wk,j ←Wk,j + α ∗ ak ∗ g′(inj) ∗
∑
i

Wj,i ∗ Err ∗ g′(ini)

The backpropagation algorithm can also be extended to more than one output neuron
and more than one hidden layer.

The weights in the network can be initialized in any way the user wants. For our
problem we will initialize the weights with a normalized random function.

An ANN as value function generalization can be implemented in two ways. We
can create one network, give it a state action pair (s, a) and then the value that it should
learn for that pair. The other way is creating multiple networks: one for each action. We
then give the network, corresponding to action a, the state s and the value that it should
learn for that state. Since neural networks use neuron inputs, both ways introduce a new
parameter: a mapping function from state signal to neuron inputs. The former method
also needs a mapping from actions to neuron inputs. For our implementation we will
use the latter method, with multiple networks. We reason that with multiple networks,
specialized in one action, we will have an easier time finding the right mapping function.

The disadvantage, when choosing the multiple network method, is that we lose
generalization over state-action pairs. For example: the network might learn that a
certain group of actions is good for a certain group of states. This is impossible in the
multiple network method, because they can only learn if a group of states is good for
their particular action.

With both methods however, the mapping function largely decides how well the
network will generalize the value function and therefore how well our algorithm will
learn.

Q-learning with artificial neural networks

Note that the Q-learning algorithm changes slightly when used with an ANN. Recall the
Q-update rule:

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]

36

4. Building the learning agent

This update rule assumed we used a tabular format to save the Q-values. Since we are
now using an ANN with backpropagation, we have a new update target. The update
rule for Q-learning with an ANN is:

Q(s, a)←BP (α) r + γmaxa′Q(s′, a′)

In this update rule we are telling the network to update its estimate of Q(s, a) using the
reward and previous estimate. The update is done by the backpropagation algorithm
under learning rate α.

Mapping states to input neurons

As mentioned earlier, the way in which we present an ANN our state information largely
decides how well our algorithm will learn. Unfortunately designing a good mapping
requires extensive knowledge of how an ANN reacts to different input structures and
also a lot of time to experiment with different mappings, we claim to have neither of
them. Nevertheless, we can make a mapping inspired on other scientific literature.

A very successful Q-learning algorithm with an ANN is TD-Gammon of Tesauro
(1994), mentioned in the introduction of this thesis. Inspired by this algorithm, we came
up a mapping function, which can be found in Figure 4.1.

Figure 4.1.: State information to neuron inputs mapping function

For every action in the model, except no op, we create a few inputs to represent
how high the level of the corresponding building or research is in the state. Through
experience with Ogame, we know that while reaching for the goal state with a reasonable
policy, no action should become above level 19 (which includes a lot of wiggle room).
We will add nineteen inputs to represent this. For example if we have an action of level
0, we have nineteen times a 0 as input. If we have an action of level 1, we have a 1
as input, followed by eighteen times a 0. Besides that we will add two inputs, which
represent if the current action is being executed (1 or 0) or if the action is in waiting
mode(1 or 0).

This neuron input structure captures almost all the state variables, the only vari-
ables not encoded are the resources and timers. These variables are left out, because
they are not necessary for the agent: the agent has access to wait actions, making the
resources variables unnecessary, and timers are trivialized due to the afterstate system.

Note: the toy model simulator uses the same mapping structure, except it uses
only three inputs for the levels of the actions.

37

4. Building the learning agent

4.4. Experience replay

When using Q-learning in combination with neural networks, the networks tend to need
a lot of updates to learn. Besides that, according to Adam et al. (2012), Q-learning is
data inefficient: “classical Q-learning and SARSA algorithms, which are indeed compu-
tationally efficient, but are data inefficient: They use every sample once, to incrementally
improve the solution, after which they discard the sample”.

For every learning update we want to do, we have to make calls to the simulator.
Our simulator is not optimized for speed yet, which makes the data inefficiency even
worse. It takes relatively more time to run the simulator, than the learning algorithm.
This is where experience replay comes into play. Experience replay (ER) stores the expe-
rience samples we gain by choosing actions and then repeatedly presents this experience
to the learning algorithm. “This increases data efficiency, while exploiting the compu-
tational efficiency of the underlying algorithm.” Adam et al. (2012). The experience
replay algorithm has many parameters that can be altered:

• The number of experience samples stored.
• Replaying experience samples can be done randomly, temporal or backwards tem-

poral.
• The number of replays can change, in other words, one experience sample can be

replayed ten or maybe a thirty times.

The original experience replay was introduced by Lin (1992), which used backwards
temporal ER. One of his observations was: “Experience replay can be more effective in
propagating credit/blame if a sequence of experiences is replayed in temporally backward
order.” This method seems the most promising for the Ogame problem, because the big
reward is given at the end of an episode. The specifics of a good ER method for the
Ogame problem would be:

• Backwards temporal.
• For every episode played on the simulator, we will replay the whole episode R

amount of times. R is a new parameter for the learning algorithm, which can alter
the success of the learning agent.
• After every episode the experience database is cleared.

4.5. Research product three

We have implemented the above mentioned algorithms and additional components (Q-
learning, ANN, mapping function) for both simulators. Note that ER has only been
implemented for the toy simulator so far. The learning algorithm for the Ogame simu-
lator is included in the source code in Appendix D.

We can now answer research question three, “Can we implement Q-learning in
such a way that it can learn a policy for playing Ogame?”, by providing this algorithm
stack. Though, learning any policy is a trivial task: if we initialize our implementation
with an ANN with random weights, we have a first estimate of the Q-value function and
already “learned” a policy (see Section 1.4.2). The next chapter will focus on finding
good policies, which is all besides trivial.

38

5. Experiments and results

The remainder of this thesis will try to find an answer to the main research question:
“Can reinforcement learning find a good policy for playing Ogame?” First we will define
what a good policy is in Section 5.1. We will continue with several experiments, trying
to learn a good or even optimal policy, on the toy and Ogame simulator in Section 5.2
and Section 5.3 respectively.

5.1. Defining a good policy

Recall from Section 2.3.5 that a transition path from start to goal state, using a simple
action selection policy, takes 837,629 seconds. We will define that a learned policy is
good, if following that policy from a start state leads to a goal state in 837,629 seconds
or less.

Note that this is already a pretty strict definition of a good policy: the learning
agent should be at least as good as a human that made up a simple policy, even though
we have no idea yet how our algorithm performs and we know that Q-learning with an
ANN is not guaranteed to converge.

5.2. Toy MDP experiments

To get insight in how reinforcement learning behaves with simple PACG problems, with
respect to different parameters, we will start with some experiments on the toy MDP.

5.2.1. Value iteration experiment

Recall that if we follow the optimal policy for the toy model, we have a transition path
that takes 34 simulated seconds. Before we start with reinforcement learning, we will
first implement an algorithm called value iteration. It is an algorithm that calculates
an optimal policy for a finite MDP, given a maximum error value and discount rate,
by calculating the values of all the states. For more information, see Russel & Norvig
(2003)[Chapter 17.2].

While reinforcement learning learns a value function, value iteration calculates it
by brute force. With this algorithm we can check if it is possible to find the 34 second
policy under different discount rate values. In effect, it gives us an idea in what range
our discount rate parameter should be when learning.

Since the value iteration algorithm requires a finite MDP, we capped the state
space to 100 seconds for this experiment. This is more than enough to reach the goal
state, but also small enough for the value function to be saved in tabular format. We set
the maximum error for the calculations to a significantly low value: 0.001. The graph
in Figure 5.1 contains the result for this experiment.

39

5. Experiments and results

Figure 5.1.: Optimal policy / discount rate, calculated with value iteration and 0.001
maximum error

Note that we can draw a rough trend line over this graph, in the form of a parabola.
The discount rate determines the horizon of the agent: how much it values future re-
wards. The parabola shows the horizon’s influence on the agent. With a short horizon
the agent comes up with a decent 38 second policy. When we let it consider long term
rewards a bit more, the resulting policy becomes worse. Eventually when the agent
values long term rewards enough, the result is better and better. The parabola form is
interesting: we expected some sort of linear decrease, from bad to better policy.

From this experiment we can conclude that the learning agent has to be very
interested in long term rewards. A discount rate of 0.97 or higher is needed to learn
the optimal policy. In the Ogame MDP it takes far longer to find the goal state, so the
agent might have to be even more “farsighted”.

5.2.2. TD(0)-learning versus Q-learning experiment

As a second experiment we wanted to check if Q-learning is indeed a good choice for our
problem. To this end we implemented both TD(0)-learning and Q-learning in a tabular
format. TD(0)-learning is an on-policy learning algorithm which learns V-values instead
of Q-values. While Q-learning learns the values of a state-action pair, TD(0)-learning
learns the values of states, by combining the values for all the actions that are possible
in that state. This makes TD(0)-learning on-policy, because the way we explore affects
the V-value we learn. A second difference is that for TD(0)-learning we need to know
the transition function, while Q-learning also works if we do not know it. We decided
to run a learning test, to compare the two algorithms, with the following parameters:

• Learning rate α = 0.05
• Discount rate γ = 0.97
• ε-greedy exploration rate = 0.1
• Number of learning episodes: 10,000

Since we now introduce randomness, due to ε-greedy exploration, we will run these tests
ten times for both algorithms. The graph in Figure 5.2 contains the results.

40

5. Experiments and results

Figure 5.2.: TD(0)-learning versus Q-learning, toy MDP. α = 0.05, γ = 0.97, ε = 0.1 and
10,000 learning cycles.

Q-learning performs consistent by producing 38 second policies. TD(0)-learning
produces a mean 41.7 second policy, with a standard deviation of around 1.35. The
consistent and inconsistent performances are due to on-policy or off-policy learning.
TD(0)-learning could possibly perform better with a different exploration function. For
our problem, we will stick to Q-learning, since it seems to produce better and more
consistent policies with ε-greedy exploration.

Note that in these tests neither of the two algorithms produced the 34 second
policy. This is most likely caused due to the constant 0.1 ε-greedy exploration. If there
is a constant chance of performing random actions and the learning rate is not reduced to
0, the Q-values will never converge to their true values. The next section is an attempt
to find the optimal policy.

5.2.3. Learning the optimal policy with tabular Q-learning

As mentioned, Q-learning is guaranteed to converge when implemented in a tabular form
and α is reduced appropriately. We want to find an optimal policy, to confirm that there
is not something wrong with our MDP. It is hard to hit the sweet spot when reducing
α, because it has to become 0 the moment when the optimal policy is learned. For the
toy MDP we know this policy is the 34 seconds policy. For the Ogame MDP, and PACG
problems in general, we do not know the optimal policy: we are trying to learn it.

Because of this, we will try to find the optimal policy while leaving α constant.
We might not converge to the true Q-values, but we might come close enough that our
learned Q-values produce the optimal policy. Since the constant random exploration is
the most likely cause of not finding the optimal policy, we will try a custom exploration
policy.

41

5. Experiments and results

Logarithmic ε-greedy exploration policy

First we will try ε-greedy exploration, but instead of a constant ε, we will use a slowly
decreasing one. We want ε to decrease as a function of the episode number, as shown in
Figure 5.3.

The used logarithmic function is:

ε = 1/(1 +
e

x
0.09N

50
)

Where x is the current episode number, N is the total number of episodes and e is
Euler’s number.

Figure 5.3.: ε as a function of x/N in percents

Using this logarithmic function, the agent will start the learning process with a lot
of exploring. Gradually the exploration becomes less and exploitation increases. When
ε approaches 0, the agent almost exclusively exploits. When exploiting, the estimates
of the exploited Q-values should become better and better estimates. Eventually, the
estimated Q-values should come very close to the true Q-values. We then ran some tests
with the following parameters:

• Learning rate α = 0.05
• Discount rate γ = 0.97
• Logarithmic ε-greedy exploration as defined above.
• Number of learning episodes: 350,000

It turns out that the Q-learning algorithm almost always learns the optimal policy with
these parameters, which can be seen in Figure 5.4. In 100 tests, Q-learning learned the
optimal policy 96 times. The 4 times it did not, it came very close by producing a 35
second policy. When increasing the number of learning episodes to 500,000, we give
the algorithm even more exploration and exploitation time. Suddenly the algorithm
consistently1 learns the optimal policy, as can be seen in Figure 5.5.

1Learning the optimal policy consistently is interpreted as learning it 100 times out of 100 tests.

42

5. Experiments and results

Figure 5.4.: 100 learned policies with logarithmic ε-greedy exploration, Q-learning,
toy MDP. α = 0.05, γ = 0.97 and 350,000 learning episodes.

Figure 5.5.: 100 learned policies with logarithmic ε-greedy exploration, Q-learning,
toy MDP. α = 0.05, γ = 0.97 and 500,000 learning episodes.

43

5. Experiments and results

Apparently, the PACG problem needs a lot of early exploration plus a lot of late
exploitation, when using ε-greedy exploration. This sounds logical when going to a more
abstract level: the agent needs to discover how the assembly lines work together and
how to exploit them as best as he can. From these experiments we can also observe that
a simple PACG problem, like the toy MDP, needs a large amount of learning episodes
to learn the optimal policy with logarithmic ε-greedy exploration. The observation that
500,000 learning episodes are needed to learn the optimal policy consistently is alarming.

Random exploration policy

Besides logarithmic ε-greedy exploration we want to try a completely random exploration
policy. This policy simply picks a random action in As every time. When exploring every
state-action pair infinitely many times, the estimated Q-values start to approach the true
Q-values, even if the learning rate is not decreased to 0. Because we have to visit every
state-action pair a lot of times, we can expect to need even more learning episodes to
find the optimal policy.

Under the same parameters as in the last section it turns out we need about
1,000,000 learning episodes to consistently learn the optimal policy, which the graph in
Figure 5.6 shows.

Figure 5.6.: 100 learned policies with random exploration, Q-learning, toy MDP.
α = 0.05, γ = 0.97 and 1,000,000 learning episodes.

Conclusion: Q-learning solves simple PACG problems

The toy problem is a very simple PACG problem. By modelling it as an MDP and
subsequently learning the optimal policy with Q-learning, we can conclude the following:
Q-learning can learn the optimal policy for some simple PACG problems.

44

5. Experiments and results

5.2.4. Full learning algorithm on toy simulator

The full learning algorithm stack (Q-learning, ANNs, ER), as shown in Chapter 4, is
meant for more complex PACG problems. To get some insight in how it works with a
simple PACG, we will test it on the toy MDP.

When experimenting with the full algorithm, the parameters we can consider are:

• Learning rate α
• Discount rate γ
• Exploration policy
• Number of neurons in the hidden layer Nh

• Number of experience replays per learning episode R
• Number of learning episodes E
• Mapping function of state signal to neuron inputs

The range of possible combinations of parameters is huge, asking for a lot of experiments.
On top of that, neural networks introduce another level of randomness, besides explo-
ration, due to random initialized weights. Unfortunately, performing tests with the full
algorithm stack is time consuming: running 10,000 learning episodes, with a hidden layer
of 6 neurons, takes about 15 seconds computing time on the previous mentioned system
specifications. Increasing the number of hidden neurons or learning episodes takes even
more computing time. Due to time constrains we cannot fully research each of these
parameters and their combined interactions. Instead, we will pick a base parameter set-
ting and explore the various parameters from there on. Some of these base parameters
were determined in previous sections, some were determined in pilot experiments.

Base parameter settings

The base parameter settings we will use are:

• Learning rate α = 0.05
• Discount rate γ = 0.97
• ε-greedy exploration rate, ε = 0.1
• Number of hidden neurons Nh = 6
• Number of experience replays R = 1
• Number of learning episodes E = 50,000
• Mapping function as defined in Section 4.3.1

We tested our learning algorithm 100 times with these settings and Figure 5.7 shows the
resulting learned policies.

The base parameter settings seem to produce mostly mediocre policies of 40 or
41 seconds. It turns out the algorithm learned the optimal policy once. The chance of
learning this policy might even be lower than 1%, if the number of tests is increased.

The following sections will show for every parameter how it influences the learning
agent.

45

5. Experiments and results

Figure 5.7.: 100 learned policies trough full learning algorithm stack, toy MDP. Base
parameter settings.

Learning rate α

When working with neural networks, it is best to keep α low. The learning rate deter-
mines how large the learning updates are. When it is high and the ANN is given an
update value, the network makes a big step towards that update value. If the next up-
date value is a completely different value for a similar state, the error value (calculated
by the backpropagation algorithm) is big. The next update is even bigger due to this
large error value. If this process goes on, an oscillating behaviour can emerge and the
Q-values will diverge, never reaching any meaningful values. To avoid this, the learning
rate is best kept low. Another solution is adding momentum to the backpropagation
algorithm, which reduces oscillation by considering previous changes in weights during
updates, but this is outside the scope of this thesis.

Keeping the learning rate low assumes that the number of learning episodes is
high. If it is low, maybe due to limited computation time, it is possible that a higher
learning rate is beneficial: a lucky exploration of good actions is learned faster, though
it has to avoid oscillating to do so. The next experiment used the base parameters, but
with α = 0.1 and the results can be found in Figure 5.8.

Our expectations are quite visible: a few lucky explorations let the agent learn the
34 and 35 second policies. A few unlucky explorations also made the agent learn policies
in the 45 to 50 seconds range.

Note that the agent also learned policies of 126 and 130 seconds, which are products
of oscillation. In the toy simulator the state space is limited to 100 simulated seconds.
In effect, any state after 100 seconds is considered terminal. When following a policy
that has not reached a goal state in time, it is cut short after the first transition that
crosses the 100 second line. The 130 second policy is the result of constantly choosing
two actions: MetalMine and no wait research. The Q-values for these actions (if not all)
have diverged, creating a policy which constantly picks these actions.

Compared to the base test, the doubled learning rate resulted in a few better
policies, but more worse ones. In addition, it even failed 6 out of 100 times due to
oscillation.

46

5. Experiments and results

Figure 5.8.: 100 learned policies, full algorithm, toy MDP. Base parameter settings,
α = 0.1. Note that the policies above 100 seconds are products of
oscillation.

Figure 5.9.: 100 learned policies, full algorithm, toy MDP. Base parameter settings,
α = 0.01

47

5. Experiments and results

For the next experiment we lowered the learning rate to α = 0.01, which resulted
in Figure 5.9.

Compared to the base test, lowering the learning rate resulted in a better perform-
ing agent. The agent learns more good policies in the 34 to 36 second range and never
learns really bad policies. Oscillation is completely avoided. The smaller but steady
Q-value updates seem to work well with neural networks.

On a final note: learning rate and number of learning episodes tend to go hand
in hand. A low learning rate is beneficial to avoid oscillating. Recall that when α =
0, the agent learns nothing. When lowering the learning rate and thus learning slower,
the number of learning episodes should generally be increased, because more learning is
needed. This falls in line with common knowledge that neural networks require lots of
learning episodes.

Discount rate γ

Recall from Section 4.1 that we want to test γ = 1. A Q-value should then take into
account all the possible future rewards, undiscounted. This could be beneficial for the
toy and Ogame problem, because the big reward is given at the end. A decent goal state
can be reached in 837,629 simulated seconds. While there are fewer transitions, we can
imagine that it is high. When discounting the big reward every transition, even with
a discount rate of 0.97 it becomes unnoticeable in the Q-values for the states early in
the transition path. For example with a γ = 0.97 and a big reward is reached after 100
transitions, it is counted for 0.97100 ≈ 0.048, which is very low for an estimate based
learning method. The following test used the base parameters, but with γ = 1, and the
result can be found in Figure 5.10.

Figure 5.10.: 100 learned policies, full algorithm, toy MDP. Base parameter settings,
γ = 1

Compared to the base test, the frequency distribution of learned policies is almost
identical. Using γ = 1, the agent learned less good policies, but also less bad policies.
This could also be caused by the randomness of exploration and the relatively small
experiment pool of 100 tests.

48

5. Experiments and results

In the Ogame MDP, the goal state, on average, is several times farther from the
starting state. These results suggest that it is a good idea to use γ = 1 on the Ogame
MDP. In the worst case, results do not change much. In the best case it could help
learning greatly, by fully counting the big reward at the end in the early Q-values.

Exploration policy

Section 5.2.3 suggested that, for PACG problems, ε-greedy exploration is inferior to
logarithmic ε-greedy exploration. In the next experiment we used the base parameters,
but changed the exploration policy to the logarithmic ε-greedy method. The result is
shown in the graph in Figure 5.11.

Figure 5.11.: 100 learned policies, full algorithm, toy MDP. Base parameter settings,
logarithmic ε-greedy exploration. Note that the policies above 100 seconds
are products of oscillation.

This exploration method resulted in a much larger frequency spread than the base
test. It spread evenly to better and worse policies. Note that three times the networks
failed and oscillated. This oscillation and the even spread is possibly caused by the large
amount of random exploration at the start, because we are showing the neural networks
completely different experience samples in rapid succession.

Since this exploration method, with tabular Q-learning, seemed to work better
with an increased number of learning episodes, we ran an additional experiment with
100,000 episodes. This is double the amount of the base experiment. Figure 5.12 is the
result.

From the figure we can conclude that doubling the number of learning episodes
means worse performance. The algorithm failed seven times by oscillating, while the
frequency spread is almost even. In the previous experiment we speculated that the
failures are caused by the high exploration at the start of the learning process. When
increasing the number of learning episodes, we also increase the number of these com-
pletely random experience samples given to the neural networks. This could possibly
increase the chance of oscillation and explain the increase in failures.

49

5. Experiments and results

Figure 5.12.: 100 learned policies, full algorithm, toy MDP. Base parameter settings,
logarithmic ε-greedy exploration, 100,000 learning episodes. Note that the
policies above 100 seconds are products of oscillation.

To confirm our suspicion, we ran another test, but this time changing the upper
limit of the logarithmic function, that determines ε, to 0.1 instead of 1. The greatly
reduced initial exploring should prevent oscillating. However, we should still get the
logarithmic ε-greedy exploration’s advantage of better convergence. The result of this
experiment is found in Figure 5.13.

Figure 5.13.: 100 learned policies, full algorithm, toy MDP. Base parameter settings,
logarithmic ε-greedy exploration with 0.1 upper limit.

Changing the upper limit of ε to 0.1 results in a more stable agent. Oscillation fail-
ures are absent, confirming the suspicion that they are caused by very high exploration.
The frequency distribution is quite similar to the base experiment. Unfortunately, the
agent also lost the good policies it found by the high exploration.

In the end, the change to a logarithmic function for ε does not seem a great

50

5. Experiments and results

improvement. However, Section 5.2.3 suggests that this exploration policy performs
better when coupled with a higher number of learning episodes. This will be explored
further later in this section.

Other parameters

The remaining parameters to be experimented with are:

• Number of neurons in the hidden layer Nh

• Mapping function of state signal to neuron inputs
• Number of experience replays per learning episode R
• Number of learning episodes E

Due to time constraints, we cannot include these experiments in this thesis. This is
unfortunate, because changing the amount of hidden neurons or the mapping function
can have a large impact on learning.

From experiments in the previous sections we can however speculate that for con-
sistently learning the optimal policy in the toy MDP, with the full algorithm, the number
of learning episodes E has to be in the range of 50,000 to 1,000,000. For reference: Q-
learning needed 500,000 episodes to do this. ANN Q-learning might need less due to
generalization, but it might also need more episodes due to ANNs tendency to need
lots of updates. For the Ogame MDP, this range probably has to be multiplied with a
number around ten to cope with the increased complexity.

The number of experience replays parameter R does not have to be considered
for the agent’s performance: increasing it has a similar effect as increasing the number
of learning episodes. Both methods generate more experience samples, and they do so
in a different way. Increasing E does generate “new” samples, but since the MDP is
deterministic and the reward function is constant, these new samples are always from
the same set of experience samples. The increasing R method simple takes a subset
of these samples and duplicates them. In the end, both methods are fishing in the
same experience sample pool. Thus, when enough episodes are played, the effect of
increasing either parameter is the same. However, computation time of both methods
might differ. This depends on the computation time of the simulator and experience
replays. Increasing the number of replays is preferred with a relatively slow simulator.

Consistently learning the optimal policy with tabular Q-learning

In the previous experiments we have seen that the full algorithm stack occasionally pro-
duces the optimal policy for the toy MDP. This suggests that there is a set of parameters
which lets the algorithm consistently learn the optimal policy. We hope to find this pa-
rameter set by combining the insights of the previous sections. Based on the previous
experiments, we will try the following parameter set:

• Learning rate α = 0.01
• Discount rate γ = 1
• Logarithmic ε-greedy exploration rate with an upper limit to ε of 0.3
• Number of learning episodes E = 500,000
• The other parameters are equal to the base experiment.

These settings resulted in the graph in Figure 5.14.

51

5. Experiments and results

Figure 5.14.: 100 learned policies, full algorithm, toy MDP. Base parameter settings,
logarithmic ε-greedy exploration with 0.1 upper limit, α = 0.01, γ = 1 and
500,000 learning episodes.

These results show the best agent until now. In 25 out of 100 tests, or 25%, it
learned the optimal policy. This is a vast improvement over all the previous experiments.
It strongly suggests that a certain parameter set can lead to an agent that learns the
optimal policy in all (or nearly all) of the learning tests. However, finding this optimal
parameter set is very time consuming, especially when the number of learning episodes
are increased. Future reasearch could focus on finding these parameter sets.

5.3. Ogame MDP experiments

We have shown that the ANN, Q-learning and ER algorithm stack, meant for complex
PACG problems, works on simple PACG problems. Next, we want to know if it also
works with the more complex PACG problems, like our Ogame problem.

In Section 3.6 it was mentioned that the Ogame simulator, in combination with
the full algorithm stack, runs at 2,000 learning episodes per hour. This is too slow to
conduct extensive experiments, especially when millions of learning episodes are needed.
The computation time of the simulator and/or learning algorithm has to be decreased
before research is possible. This is not possible in the limited time frame of this thesis,
but future research could focus on this.

We speculate that it is possible to find good policies for the Ogame MDP, using
the proposed algorithm stack. There are many possible parameter configurations. In
the previous sections we have determined possible values for several parameters:

• Learning rate should be low: α = 0.01.
• Discount rate should be γ = 1.
• Logarithmic ε-greedy exploration with some low upper limit to ε, to avoid oscilla-

tion.
• Number of learning episodes E should be in the range of 500,000 to 10,000,000,

also depending on the exploration policy.

52

5. Experiments and results

If alternating these parameters does not provide satisfying results, the other parameters,
like the mapping function, could also be altered.

Another interesting suggestion would be to use a custom exploration policy that
uses information that we know of the Ogame problem. We have shown a simple transition
path in the Ogame MDP, which was used to define a good policy. This transition path
was made by following some simple rules, for example:

• If the production factor is lower then 1, build a SolarPlant.
• If the MetalMine level is equal to the CrystalMine level, build MetalMine.
• If the Crystalmine level is equal to the DeuteriumSynthesizer level, build Crys-

talMine.
• Build DeuteriumSyntesizer.
• Etcetera. . .

Following these simple rules from top to bottom at every action selection, it becomes
a policy. This policy could be used as the initial exploration policy. The agent could
explore 1,000 learning episodes with this policy, and then continue with a logarithmic
ε-greedy exploration policy. Using information that we already know of the problem and
giving it to the agent, might drastically improve performance.

53

6. Thesis conclusion

The main research question this thesis wanted to answer is: “Can reinforcement learning
find a good policy for playing Ogame?” We cannot answer with a definite yes or no. We
can however say that it is more than likely.

We have shown that reinforcement learning can consistently learn the optimal pol-
icy for simple PACG problems, like the toy Markov Decision Process (MDP) introduced
in this thesis. We also introduced a Q-learning algorithm with Artificial Neural Net-
works (ANNs) and Experience Replay (ER), meant for more complex PACG problems.
Consecutively, we have shown that this algorithm can learn the optimal policy on the
toy MDP. The best performance so far was an experiment that showed that in 25% of
the learning cases, the algorithm learned the optimal policy. Experiment results suggest
that the right parameter set can increase this performance.

Due to the results of the toy MDP, we speculate that it is highly likely to learn
good policies for the Ogame MDP. Unfortunately, due to an inefficient Ogame simulator
and limited time frame, this thesis cannot confirm this yet.

Future research should focus on optimizing the Ogame simulator’s computation
time and searching for a parameter set which produces good policies.

54

Bibliography

Adam, S., Buşoniu, L., Babuška, R., Experience Replay for Real-Time Reinforcement
Learning Control. IEEE Transactions on Systems, Man, and Cybernetics - part C:
Applications and Reviews 42(2), 201–212 (2012)

Bellman, R.: A Markovian Decision Process. Journal of Mathematics and Mechanics
6(4), 679-684 (1957)

Chen, T., Lu, J.: Towards Analysis of Semi-Markov Decision Processes. Artificial In-
telligence and Computational Intelligence 6319, 41–48. Springer, Berlin Heidelberg
(2010)

Jewell, W.S.: Markov-renewal programming I: Formulation, finite returen models;
markov-renewal programming II: infinite return models, example. Operations Research
11, 938-971 (1963)

Lin, L.: Self-Improving Reactive Agents Based on Reinforcement Learning, Planning
and Teaching. Machine Learning 8(3), 293–321 (1992)

Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York (1994)

Russel, S., Norvig, P., Artificial Intelligence: A Modern Approach. Pearson Education,
New Jersey (2003)

Sutton, R.S., Barto, A.G., Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

Tesauro, G. J.: TD-gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation 6(2), 215–219 (1994)

Watkins, C.J.C.H.: Learning from delayed rewards. PhD thesis, Kings College, Cam-
bridge (1989)

Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3/4), 279–292 (1992)

Wiering, M., Otterlo, M. van: Reinforcement Learning, State of the Art. Springer-Verlag,
Berlin Heidelberg (2012)

55

A. Actions in Ogame

The following summarisation of actions in Ogame was compiled by going through all
the actions a player can perform in Ogame. Some actions, that are completely trivial
for reaching the goal state, were left out of this list. An example of a trivial action:
changing a planet name.

The following sections will explain, for each group of actions, why they are in the
Ogame MDP or left out.

Production setting actions

In Ogame, the player can set the energy production and energy consumption levels of
certain buildings. The setting can be changed from 0% to 100%, with steps of 10%. The
buildings affected are:

• For energy consumption:

– Metal Mine
– Crystal Mine
– Deuterium Synthesizer

• For energy production:

– Solar Plant
– Fusion Reactor
– Solar Satellite

So in total there are six buildings, which can be set to eleven different energy levels.
Six times eleven is thirty-three actions available (if the corresponding building was con-
structed). Besides increasing the number of available actions with large degree, and
therefore exploding the state space, these actions are not really effective. Changing the
energy production from the default 100% to something lower gives a negative effect in
resource production and thus serves no purpose at all. If a human player has no reason
to take these actions at all, why should our agent be bothered with these actions at
all? Changing the energy consumption settings almost always gives a negative effect on
resource production.

The only situation in which this can give a positive effect, is when total energy
production is lower than total energy consumption. This means there is a production
factor lower than 100%, which influences the resource production. By changing the
energy levels of certain resource production buildings, the player can put more energy
into producing one resource, then the others. This effect is really small, but nevertheless
there. If the player builds more energy production facilities, these actions become trivial
again.

We omit these actions in the model, because these actions are almost always trivial
and increase the state space by a significant large amount. Bothering the agent with
these actions will make it very hard to learn.

56

A. Actions in Ogame

Building construction actions

Some of these actions are mandatory to reach the goal state, some will let the agent reach
the goal faster and some are trivial. Table A.1 lists all non-trivial building construction
actions, if they are included or excluded in the Ogame MDP and the reason why.

Building name Included? Reason

Metal Mine Yes Producing more metal can increase speed.
Crystal Mine Yes Producing more crystal can increase speed.
Deuterium Synthesizer Mandatory Deuterium production is needed for research and

Colony Ship.
Solar Plant Mandatory Energy is needed for production, see Deuterium

Synthesizer.
Fusion Reactor No Alternative means to produce energy, but re-

garded by player base as an useless action.
Could be added in future model/research.

Robotics Factory Mandatory Needed to build Shipyard, but also increases
building construction speed.

Nanite Factory No While drastically increasing building construc-
tion speed, it lies far deeper in the state space
then the goal state, thus making this action triv-
ial.

Shipyard Mandatory Needed to build Colony Ship.
Metal Storage Yes Increases the amount of metal that can be

stored. Could potentially increase speed by
opening up new scenarios, while it slightly in-
creases the state space.

Crystal Storage Mandatory Needed to build Colony Ship, also: see Metal
Storage.

Deuterium Tank Yes See Metal Storage.
Research Lab Mandatory Needed to conduct research, see next section.
Terraformer No Even deeper in the state space then Nanite Fac-

tory, while having almost trivial effect.

Table A.1.: Building actions in the Ogame MDP

Besides these actions there are some trivial ones that have no effect on reaching
the goal state:

• Alliance Depot
• Lunar Base
• Sensor Phalanx
• Jump Gate
• Missile Silo

Because these are trivial they will be excluded from the model.

57

A. Actions in Ogame

Research actions

The player can conduct research in the Research Lab. Of these actions, only two are
needed for reaching the goal state:

• Energy Technology
• Impulse Drive

– Needs Energy Technology

These two actions will be added to the MDP. There are several other technologies a
player can research, but they are trivial, and thus not included.

Shipyard actions

The player can build space ships in the Shipyard. Of these actions, only one is needed
for reaching the goal state:

• Colony Ship

– Needs Impulse Drive

This action will be added to the model. There are several other space ships a player can
build, but they are trivial for reaching the goal state.

Other actions

We now have all the non-trivial actions we want for the model. There are several other
categories of actions, but these will not be included. Table A.2 lists all these categories
and why they are excluded of the model.

58

A. Actions in Ogame

Category of actions Reason why they are excluded from the model

Expeditions The player can gain the ability to embark on expeditions.
This usually is usually deeper into the state space then our
goal state. It would also make the model incredibly complex:
the player can send expeditions of ships to every system,
exploding the state space.

Merchant The merchant can be used to trade resources. These actions
require dark matter, which can only be acquired by two
methods. One: spending real life money, unfortunately our
learning agent has no money. Two: performing in game
expeditions, see Expeditions.

Defence Construction Since we omitted other players and our agent is alone, build-
ing defences is useless.

Fleet Since we omitted other players, we cannot engage in fleet
actions.

Galaxy The galaxy page gives a player a view of the systems in the
universe, and who occupies the planets in them. Since there
are no other players, we have no use for these actions.

Alliance Since we omitted other players, there will be no alliances.
Creating an alliance for oneself is trivial for reaching the
goal state.

Recruiting Officers A player can recruit officers, which can give several positive
effects, like increased energy or resource production. These
actions cost dark matter, and are therefore not included.
See Merchant.

Table A.2.: Other, excluded, actions in Ogame

59

A. Actions in Ogame

A.1. List of actions included in the MDP

Summarizing the above sections, the list of all Ogame actions that will be included in
the model is:

Metal Mine, Crystal Mine, Deuterium Synthesizer, Solar Plant,
Robotics Factory, Research Lab, Shipyard,
Crystal Storage, Metal Storage, Deuterium Tank,
Energy Technology, Impulse Drive,
Colony Ship

60

B. Toy model additions

B.1. Functions for toy model actions

level metal production / sec cost in metal build time in seconds

0 1 - -
1 2 4 4
2 3 8 8
3 4 16 16
4 5 32 32
...

...
...

...

Table B.1.: Functions for the MetalMine action

level cost in metal research time in seconds

1 2 2
2 4 4
3 8 8
4 16 16
...

...
...

Table B.2.: Functions for the LaserTechnology action

level cost in metal

1 0
2 0
3 0
...

...

Table B.3.: Functions for the no op action

61

B. Toy model additions

B.2. Transition tables

The following tables contain state transition paths from starting state s0 to goal state
sg, for different versions of the toy MDP. Table B.4 contains the transition path for toy
MDP version 1. Table B.5 adds afterstates to the toy MDP. Finally, table B.6 contains
the optimal transition path for toy MDP version 2. For the sake of layout, the actions
MetalMine and LaserTechnology are shortened to MM and LT. The no wait build and
no wait research actions are shortened to no b and no r. Coloured cells and bold text is
used to show when an action leads to its intended result.

For the transition table B.4 the action selection is: pick the left most action from
As. The action selection in the transition table B.5 is a bit different: at a certain point
we chose no op actions instead of the left most, to make the transitions in this table
equivalent to the transition in table B.5.

Transition table B.4 has 47 transitions. Introducing afterstates for transition table
B.5 reduces this to 18 transitions, following an equivalent transition path.

Table B.6 contains the optimal transition path in toy model version 2, which is
quiet easy to find by hand. The action MetalMine is the only action which can speed
up the process, because it makes resource production higher. To reach the goal state we
only need MetalMine and LaserTechnology both on level 3. Building MetalMine 3 first
(while doing no wait research) and then LaserTechnology 3 gives the highest resource
production and thus the least amount of time wasted. Getting from start to goal state
via the optimal path takes 34 simulated seconds. One can verify this by recalling the
reward function:

• -1 per second

• +50 for reaching the goal

Summing up the rewards (16) and then subtracting this from 50 gives 34 seconds.

62

B. Toy model additions

Table B.4.: State transition table for toy MDP version 1

State transition Available actions in s Reward in s

<0, 0, 0, 0, 0 > no op

(<0, 0, 0, 0, 0 >, no op) → <1, 0, 0, 0, 0 > no op -1

(<1, 0, 0, 0, 0 >, no op) → <2, 0, 0, 0, 0 > LT, no op -1

(<2, 0, 0, 0, 0 >, LT) → <0, 0, 0, 0, 2 > no op 0

(<0, 0, 0, 0, 2 >, no op) → <1, 0, 0, 0, 1 > no op -1

(<1, 0, 0, 0, 1 >, no op) → <2, 0, 1, 0, 0 > no op -1

(<2, 0, 1, 0, 0 >, no op) → <3, 0, 1, 0, 0 > no op -1

(<3, 0, 1, 0, 0 >, no op) → <4, 0, 1, 0, 0 > MM, LT, no op -1

(<4, 0, 1, 0, 0 >, MM) → <0, 0, 1, 4, 0 > no op 0

(<0, 0, 1, 4, 0 >, no op) → <1, 0, 1, 3, 0 > no op -1

(<1, 0, 1, 3, 0 >, no op) → <2, 0, 1, 2, 0 > no op -1

(<2, 0, 1, 2, 0 >, no op) → <3, 0, 1, 1, 0 > no op -1

(<3, 0, 1, 1, 0 >, no op) → <4, 1, 1, 0, 0 > LT, no op -1

(<4, 1, 1, 0, 0 >, LT) → <0, 1, 1, 0, 4 > no op 0

(<0, 1, 1, 0, 4 >, no op) → <2, 1, 1, 0, 3 > no op -1

(<2, 1, 1, 0, 3 >, no op) → <4, 1, 1, 0, 2 > no op -1

(<4, 1, 1, 0, 2 >, no op) → <6, 1, 1, 0, 1 > no op -1

(<6, 1, 1, 0, 1 >, no op) → <8, 1, 2, 0, 0 > MM, LT, no op -1

(<8, 1, 2, 0, 0 >, MM) → <0, 1, 2, 8, 0 > no op 0

(<0, 1, 2, 8, 0 >, no op) → <2, 1, 2, 7, 0 > no op -1

(<2, 1, 2, 7, 0 >, no op) → <4, 1, 2, 6, 0 > no op -1

(<4, 1, 2, 6, 0 >, no op) → <6, 1, 2, 5, 0 > no op -1

(<6, 1, 2, 5, 0 >, no op) → <8, 1, 2, 4, 0 > LT, no op -1

(<8, 1, 2, 4, 0 >, LT) → <0, 1, 2, 4, 8 > no op 0

(<0, 1, 2, 4, 8 >, no op) → <2, 1, 2, 3, 7 > no op -1

(<2, 1, 2, 3, 7 >, no op) → <4, 1, 2, 2, 6 > no op -1

(<4, 1, 2, 2, 6 >, no op) → <6, 1, 2, 1, 5 > no op -1

(<6, 1, 2, 1, 5 >, no op) → <8, 2, 2, 0, 4 > no op -1

(<8, 2, 2, 0, 4 >, no op) → <11, 2, 2, 0, 3 > no op -1

(<11, 2, 2, 0, 3 >, no op) → <14, 2, 2, 0, 2 > no op -1

(<14, 2, 2, 0, 2 >, no op) → <17, 2, 2, 0, 1 > MM, no op -1

(<17, 2, 2, 0, 1 >, MM) → <1, 2, 2, 16, 1 > no op 0

(<1, 2, 2, 16, 1 >, no op) → <4, 2, 3, 15, 0 > no op -1

(<4, 2, 3, 15, 0 >, no op) → <7, 2, 3, 14, 0 > no op -1
...

...
...

(<13, 2, 3, 12, 0 >, no op) → <16, 2, 3, 11, 0 > LT, no op -1

(<16, 2, 3, 11, 0 >, no op) → <19, 2, 3, 10, 0 > LT, no op -1
...

...
...

(<43, 2, 3, 2, 0 >, no op) → <46, 2, 3, 1, 0 > LT, no op -1

(<46, 2, 3, 1, 0 >, no op) → <49, 3, 3, 0, 0 > MM, LT, no op 49

63

B. Toy model additions

Table B.5.: State transition table for toy MDP version 1 with afterstates

State transition Available actions in s Reward in s

<0, 0, 0, 0, 0 > no op

(<0, 0, 0, 0, 0 >, no op) → <2, 0, 0, 0, 0 > LT, no op -2

(<2, 0, 0, 0, 0 >, LT) → <4, 0, 1, 0, 0 > MM, LT, no op -4

(<4, 0, 1, 0, 0 >, MM) → <4, 1, 1, 0, 0 > LT, no op -4

(<4, 1, 1, 0, 0 >, LT) → <8, 1, 2, 0, 0 > MM, LT, no op -4

(<8, 1, 2, 0, 0 >, MM) → <8, 1, 2, 4, 0 > LT, no op -4

(<8, 1, 2, 4, 0 >, LT) → <17, 2, 2, 0, 1 > MM, no op -7

(<17, 2, 2, 0, 1 >, MM) → <16, 2, 3, 11, 0 > LT, no op -5

(<16, 2, 3, 11, 0 >, no op) → <19, 2, 3, 10, 0 > LT, no op -1
...

...
...

(<43, 2, 3, 2, 0 >, no op) → <46, 2, 3, 1, 0 > LT, no op -1

(<46, 2, 3, 1, 0 >, no op) → <49, 3, 3, 0, 0 > MM, LT, no op 49

Table B.6.: State transition table for toy MDP version 2

State transition Available actions in s Reward in s

<0, 0, 0, 0, 0, false, false, null, null > MM, LT,
no b, no r, no op

(<0, 0, 0, 0, 0, false, false, null, null >, MM) → LT, no r, no op 0
<0, 0, 0, 0, 0, true, false, MM, null >

(<0, 0, 0, 0, 0, true, false, MM, null >, no r) → LT, no r, no op -4
<0, 0, 0, 4, 0, false, false, MM, null >

(<0, 0, 0, 4, 0, false, false, MM, null >, no r) → MM, LT, -4
<4, 1, 0, 0, 0, false, false, MM, null > no b, no r, no op

(<4, 1, 0, 0, 0, false, false, MM, null >, MM) → LT, no r, no op 0
<4, 1, 0, 0, 0, true, false, MM, null >

(<4, 1, 0, 0, 0, true, false, MM, null >, no r) → LT, no r, no op -2
<0, 1, 0, 8, 0, false, false, MM, null >

(<0, 1, 0, 8, 0, false, false, MM, null >, no r) → MM, LT, -8
<16, 2, 0, 0, 0, false, false, MM, null > no b, no r, no op

(<16, 2, 0, 0, 0, false, false, MM, null >, MM) → LT, no r, no op 0
<0, 2, 0, 16, 0, false, false, MM, null >

(<0, 2, 0, 16, 0, false, false, MM, null >, LT) → LT, no r, no op -3
<7, 2, 1, 13, 0, false, false, MM, LT >

(<7, 2, 1, 13, 0, false, false, MM, LT >, LT) → LT, no r, no op -4
<15, 2, 2, 9, 0, false, false, MM, LT >

(<15, 2, 2, 9, 0, false, false, MM, LT >, LT) → LT, no r, no op -8
<31, 2, 3, 1, 0, false, false, MM, LT >

(<31, 2, 3, 1, 0, false, false, MM, LT >, no r) → MM, LT, 49
<34, 3, 3, 0, 0, false, false, MM, null > no b, no r, no op

64

B. Toy model additions

B.3. Toy MDP version 2

Notation / function

svariablename Represents the value of the variable variablename in state
s.

(s, a)→ s′[var ← value] A state transition, where action a is executed in state s.
This leads to state s′ where the value of var is replaced with
value. Note: this MDP uses the afterstate transition system
introduced in Section 2.2.1.

pint variablename A type indicator, this variable is a positive integer: 0, 1, 2,
3, . . .

bool variablename A type indicator, this variable is a boolean: true or false.
action variablename A type indicator, this variable is an action a ∈ A. . . .
cost(actionname, level) Returns the cost of the action actionname for the level level.
time(actionname, level) Returns the duration (building or research) time of the ac-

tion actionname for the level level.
prod(actionname, level) Returns the resource production of the building actionname

for the level level.

Table B.7.: Notations and functions for toy MDP version 2

The definition for the cost, time and prod functions can be found this appendix.

B.3.1. States

The set of states S is defined as:

s ∈ S if s = < pint res metal,
pint lvl MetalMine, pint lvl LaserTechnology,
pint timer build, pint timer research,
bool waiting build, bool waiting research,
action action build, action action research >

Table B.8 explains what these variables represent.

Variable name Explanation

res metal The amount of metal resource owned.
lvl MetalMine The current level of the Metal Mine building.
lvl LaserTechnology The current level of the Laser Technology research.
timer build Building time remaining in seconds.
timer research Research time remaining in seconds.
waiting build True if build assembly line is in waiting mode.
waiting research Idem for the research assembly line.
action build The action for which the build assembly line is waiting or performing.
action research Idem for the research assembly line.

Table B.8.: Legend for Toy MDP state variables

65

B. Toy model additions

Using this we can also define the starting state s0, which represents a new Ogame
account:

s0 =< 0, 0, 0, 0, 0, false, false, null, null >

Note: null is the null-value for the action variables.

B.3.2. Actions

The set of actions A is defined as:

A = {MetalMine, LaserTechnology, no wait build, no wait research, no op}

Preconditions

The set of actions As is defined as:

As ⊆ A

MetalMine ∈ As ⇐⇒ stimer build = 0 ∧ ¬swaiting build
LaserTechnology ∈ As ⇐⇒ stimer research = 0 ∧ ¬swaiting research

no wait build ∈ As ⇐⇒ stimer build = 0 ∧ ¬swaiting build ∧
¬(swaiting research ∧ saction research = null)

no wait research ∈ As ⇐⇒ stimer research = 0 ∧ ¬swaiting research ∧
¬(swaiting build ∧ saction build = null)

no op ∈ As

Effects

(s,MetalMine)→

s′ [res metal← sres metal − cost(MetalMine, slvl MetalMine + 1)]

[timer build← time(MetalMine, slvl MetalMine + 1)]

if cost(MetalMine, slvl MetalMine + 1) ≤ sres metal

s′ [action build← MetalMine]

[waiting build← true]

otherwise

(s,LaserTechnology)→

s′ [res metal← sres metal − cost(LaserTechnology, slvl LaserTechnology + 1)]

[timer build← time(LaserTechnology, slvl LaserTechnology + 1)]

if cost(LaserTechnology, slvl LaserTechnology + 1) ≤ sres metal

s′ [action research← LaserTechnology]

[waiting research← true]

otherwise

In other words: if there are enough resources, the actions behave the same way as in toy
MDP version 1. However, if that is not the case, the corresponding assembly line is put
in waiting mode for this action.

66

B. Toy model additions

(s, no wait build)→ s′[action build← null]

[waiting build← true]

(s, no wait research)→ s′[action research← null]

[waiting research← true]

The no-wait actions simply put the assembly lines in waiting-for-nothing mode.
Before we define the no op action, we will create some boolean values. These

booleans increase the readability of the no op definition.

b1 = swaiting build ∧ saction build 6= null ∧
cost(saction build, slvl action build + 1) ≤

sres metal + prod(MetalMine, slvl MetalMine)

b1 is true if the building assembly line can start building after gathering resources for
some action.

b2 = swaiting research ∧ saction research 6= null ∧(
¬b1 ∧ cost(saction research, slvl action research + 1) ≤

sres metal + prod(MetalMine, slvl MetalMine)
∨
b1 ∧ cost(saction research, slvl action research + 1) +

cost(saction build, slvl action build + 1) ≤
sres metal + prod(MetalMine, slvl MetalMine)

)
b2 is true if the research assembly line can start researching after gathering resources
for some action. Note that b2 can be true even if b1 is true, but it will be false if the
building assembly line used up too much resources, so that the research action cannot
start.

b′2 = swaiting research ∧ saction research 6= null ∧ ¬b1
∧cost(saction research, slvl action research + 1) ≤

sres metal + prod(MetalMine, slvl MetalMine))

b′2 is true if the research assembly line can start researching and b1 is false.

b3 = b1 ∨ (swaiting build ∧ saction build = null ∧ (b2 ∨ stimer research = 1))

b4 = b2 ∨ (swaiting research ∧ saction research = null ∧ (b1 ∨ stimer build = 1))

b3 is true if the waiting mode on the building assembly line should be removed. b4 does
the same for the research assembly line.

67

B. Toy model additions

(s, no op)→ s′ [res metal← sres metal + prod(MetalMine, slvl MetalMine)]
2 [lvl MetalMine← slvl MetalMine + 1] ⇐⇒ stimer build = 1
3 [lvl LaserTechnology← slvl LaserTechnology + 1] ⇐⇒ stimer research = 1
4 [timer build← stimer build − 1] ⇐⇒ stimer build > 0
5 [timer research← stimer research − 1] ⇐⇒ stimer research > 0

6 [res metal← sres metal + prod(MetalMine, slvl MetalMine) −
7 cost(saction build, slvl action build + 1)] ⇐⇒ b1
8 [timer build← time(saction build, slvl action build + 1)] ⇐⇒ b1
9 [waiting build← false] ⇐⇒ b3

10 [res metal← sres metal + prod(MetalMine, slvl MetalMine) −
11 cost(saction build, slvl action build + 1) −
12 cost(saction research, slvl action research + 1)] ⇐⇒ b2
13 [res metal← sres metal + prod(MetalMine, slvl MetalMine) −
14 cost(saction research, slvl action research + 1)] ⇐⇒ b′2
15 [timer build← time(saction build, slvl action build + 1)] ⇐⇒ b2
16 [waiting research← false] ⇐⇒ b4

Note that slvl action build is shorthand for slvl <action>, where < action > is substituted
with saction build. This was added to improve readability. The definition is split into
three parts: the first one for basic administrative tasks and the second for the building
assembly line. The last part is for the research assembly line. Also note that the
res metal variable can be substituted more then once: in rules 1, 6, 10 and 13. However,
state s′ contains only the latest substitution.

The no op action still has the same function in this improved MDP: it advances
simulated time in the model by one second. If an assembly line has finished waiting for
resources, actions are automatically applied. This is done in rules 6-8 and 10-15. In
addition, waiting mode is removed from the assembly lines if needed, in rules 9, 16 and
trough boolean b3 and b4. Normal waiting mode is removed if an assembly line starts
an action. The waiting-for-nothing mode is removed if the other assembly line starts or
completes an action.

If both assembly lines have finished waiting for resources at the exact same simu-
lated second, the build assembly line can start his action first. If there are enough re-
sources left, the research assembly line may start his action afterwards. This behaviour
is handled by rules 10-12, 15 and boolean b2.

B.3.3. Transition function

Identical to the previous MDP:
Pa(s, s

′) = {1 | a ∈ As, (s, a)→ s′}

68

B. Toy model additions

B.3.4. Reward function

Identical to the previous model:
sg =< , 3, 3, , > (where stands for an arbitrary value)

R(s) =

{
50− x if s is a goal state
−x otherwise

Where x is the number of seconds passed since the previous (parent) state.

69

C. Ogame MDP functions

Note that the following functions use formulas from Ogame.1 They might also use the
values from table C.1, which gives the base cost values and the cost increase factor for
actions in Ogame.

Action name base metal base crystal base deuterium cost increase factor (CIF)

MetalMine 60 15 0 1,5
CrystalMine 48 24 0 1,6
DeuteriumSynthesizer 225 75 0 1,5
SolarPlant 75 30 0 1,5
RoboticsFactory 400 120 200 2
CrystalStorage 1000 500 0 2
MetalStorage 1000 0 0 2
DeuteriumTank 1000 1000 0 2
ResearchLab 200 400 200 2
Shipyard 400 200 100 2
EnergyTechnology 0 800 400 2
ImpulseDrive 2000 4000 600 2
ColonyShip 10000 20000 10000 1

Table C.1.: Base cost values and CIF for actions in Ogame 3.0.1

Function
pint cost metal(action a, pint [level]=1)

Description
Returns the metal cost for a certain action.

Parameters

• action a: The action for which we want to know the metal cost.
• pint [level]=1: Optional parameter, represents the level of the action. Default

value is 1.

Output
pint base metal ∗ CIFlevel - 1

Additional notes
This function looks up the base metal value in table C.1

1Which can be found on: http://board.ogame.org/board703-miscellaneous/board156-archive-version-
2-0/board705-help-questions-archive/board631-faq-s-guides/576831-formula-thread-v3/

70

C. Ogame MDP functions

Function
pint cost crystal(action a, pint [level]=1)

Description
Returns the crystal cost for a certain action.

Parameters

• action a: The action for which we want to know the crystal cost.
• pint [level]=1: Optional parameter, represents the level of the action. Default

value is 1.

Output
pint base crystal ∗ CIFlevel - 1

Additional notes
This function looks up the base crystal value in table C.1

Function
pint cost deuterium(action a, pint [level]=1)

Description
Returns the deuterium cost for a certain action.

Parameters

• action a: The action for which we want to know the deuterium cost.
• pint [level]=1: Optional parameter, represents the level of the action. Default

value is 1.

Output
pint base deuterium ∗ CIFlevel - 1

Additional notes
This function looks up the base deuterium value in table C.1

Function
bool prec costs(pint metal, pint crystal, pint deuterium, action a, pint [level]=1)

Description
Returns true if the agent owns the resources to perform action a.

Parameters

• pint metal: The amount of metal owned.
• pint crystal: The amount of crystal owned.
• pint deuterium: The amount of deuterium owned.
• action a: The action for which we want to know if we own the resources.
• pint [level]=1: Optional parameter, represents the level of the action. Default

value is 1.

Output
true if the agent owns enough resources.
false: if the agent does not own enough resources.

Additional notes
This function uses the cost resource functions to determine the output.

71

C. Ogame MDP functions

Function
pint time building(pint metal, pint crystal, pint lvl roboticsfactory)

Description
Returns the duration of a building action in seconds.

Parameters

• pint metal: The metal cost of the action.
• pint crystal: The crystal cost of the action.
• pint lvl roboticsfactory: The current level of the RoboticsFactory building.

Output

pint x =
metal + crystal

2500
∗ 1

lvl roboticsfactory + 1

pint r = x ∗ 3600

if r > 100 then r = r − 90

return r

Function
pint time research(pint metal, pint crystal, pint lvl researchlab)

Description
Returns the duration of a research action in seconds.

Parameters

• pint metal: The metal cost of the action.
• pint crystal: The crystal cost of the action.
• pint lvl researchlab: The current level of the ResearchLab building.

Output

pint x =
metal + crystal

1000
∗ (1 + lvl roboticsfactory)

pint r = x ∗ 3600

return r

Function
pint time shipyard(pint metal, pint crystal, pint lvl shipyard)

Description
Returns the duration of a shipyard action in seconds.

Parameters

• pint metal: The metal cost of the action.
• pint crystal: The crystal cost of the action.
• pint lvl shipyard: The current level of the Shipyard building.

Output

pint x =
metal + crystal

5000
∗ 2

lvl shipyard + 1

pint r = x ∗ 3600

return r

72

C. Ogame MDP functions

Function
double prod factor(pint lvl metalmine, pint lvl crystalmine, pint lvl deuteriumsynthesizer,
pint lvl solarplant)

Description
Returns the production factor, given the parameters. The value is calculated by
comparing energy production and consumption.

Parameters

• pint lvl metalmine: The level of the MetalMine.
• pint lvl crystalmine: The level of the CrystalMine.
• pint lvl deuteriumsynthesizer: The level of the DeuteriumSynthesizer.
• pint lvl solarplant: The level of the SolarPlant.

Output

pint energyproduction = 20 ∗ lvl solarplant ∗ 1.1lvl solarplant

pint energymetal = 10 ∗ lvl metalmine ∗ 1.1lvl metalmine

pint energycrystal = 10 ∗ lvl crystalmine ∗ 1.1lvl crystalmine

pint energydeuterium = 20 ∗ lvl deuteriumsynthesizer ∗ 1.1lvl deuteriumsynthesizer

double r =
energyproduction

energymetal + energycrystal + energydeuterium

if r > 1.0 then r = 1.0

return r

Function
double prod metal(pint lvl metalmine, pint lvl crystalmine, pint lvl deuteriumsynthesizer,
pint lvl solarplant)

Description
Returns the production of the MetalMine in metal per second.

Parameters

• pint lvl metalmine: The level of the MetalMine.
• pint lvl crystalmine: The level of the CrystalMine.
• pint lvl deuteriumsynthesizer: The level of the DeuteriumSynthesizer.
• pint lvl solarplant: The level of the SolarPlant.

Output

pint metalproduction = 30 ∗ lvl metalmine ∗ 1.1lvl metalmine + 30

double r = metalproduction ∗ prod factor(lvl metalmine, lvl crystalmine,

lvl deuteriumsynthesizer, lvl solarplant)/3600

return r

73

C. Ogame MDP functions

Function
double prod crystal(pint lvl metalmine, pint lvl crystalmine, pint lvl deuteriumsynthesizer,
pint lvl solarplant)

Description
Returns the production of the CrystalMine in crystal per second.

Parameters

• pint lvl metalmine: The level of the MetalMine.
• pint lvl crystalmine: The level of the CrystalMine.
• pint lvl deuteriumsynthesizer: The level of the DeuteriumSynthesizer.
• pint lvl solarplant: The level of the SolarPlant.

Output

pint crystalproduction = 20 ∗ lvl crystalmine ∗ 1.1lvl crystalmine + 15

double r = crystalproduction ∗ prod factor(lvl metalmine, lvl crystalmine,

lvl deuteriumsynthesizer, lvl solarplant)/3600

return r

Function
double prod deuterium(pint lvl metalmine, pint lvl crystalmine, pint lvl deuteriumsynthesizer,
pint lvl solarplant)

Description
Returns the production of the DeuteriumSynthesizer in deuterium per second.

Parameters

• pint lvl metalmine: The level of the MetalMine.
• pint lvl crystalmine: The level of the CrystalMine.
• pint lvl deuteriumsynthesizer: The level of the DeuteriumSynthesizer.
• pint lvl solarplant: The level of the SolarPlant.

Output

pint deuteriumproduction = 12.8 ∗ lvl deuteriumsynthesizer ∗ 1.1lvl deuteriumsynthesizer + 15

double r = deuteriumproduction ∗ prod factor(lvl metalmine, lvl crystalmine,

lvl deuteriumsynthesizer, lvl solarplant)/3600

return r

Additional notes
In Ogame, the deuterium production calculation includes the planet’s temperature.
The temperature is a somewhat random value variable that has bounds, depending
on the planet slot. Planet temperature is close to trivial for this research. Because
of this, we calculated the mean temperature of all the possible Homeworld planets
and in effect used 12.8 as base, as opposed to using 10.0 as base and increasing or
decreasing it depending on the temperature.

74

C. Ogame MDP functions

Function
storage capacity(pint level)

Description
Returns the storage capacity for a certain level of a storage warehouse/tank.

Parameters

• pint level: Represents the level of the storage building.

Output

pint r = 12500 ∗ e20∗
level
33

return r

Additional notes
e is Euler’s number

Note that in these definitions we have not spoken about the rounding of numbers.
Ogame has peculiar behaviour considering rounding of numbers, and sometimes behaves
in a way that seems illogical. To avoid making these definitions more complex, we have
omitted this peculiar behaviour. The simulator will implement the correct rounding
behaviour.

75

D. Source code

The source code can be downloaded from Google Drive (without logging in) by going to
the following URL:

https://docs.google.com/open?id=0B8xFlIzMhHcpTkhRbFVsWTZ4dFE

Click on File ->Download to download a .zip package, which includes the project folder
of a Microsoft Visual Studio 2010 project.

If for some reason Google Drive is not available, the package can also be requested
by sending an email to: ivankoster at gmail dot com

To run the source code in Visual Studio 2010, the NeuronDotNet 3.0 library has
to be referenced, which can be found on http://sourceforge.net/projects/neurondotnet/
Referencing in Visual Studio 2010 can be done by right-clicking References ->Add Ref-
erence in the Solution Explorer panel. Open the Browse tab, look for the NeuronDot-
Net.Core.dll file and click OK.

If Visual Studio 2010 is not owned or not wanted, the plain source code can be
found in the .zip package: the .cs files in the OgameReinforcementLearning folder.

76

	Introduction
	Research goal
	Research products
	Motivations for this research

	Short introduction to Ogame
	Limiting the problem: explicit assumptions

	Structure of this thesis
	Theoretical framework
	Short introduction to Markov Decision Processes
	Short introduction to reinforcement learning

	Modelling the problem
	Toy MDP
	States
	Actions
	Transition function
	Reward function
	Transition table

	Improving the toy MDP
	Afterstates
	Starvation and spamming no_op to gain resources
	Toy MDP version 2

	Ogame MDP
	From toy MDP to Ogame MDP
	States
	Actions
	Transition function
	Reward function

	Research product one

	Building the environment
	State class
	Action class
	OgameFormulas class
	Simulator class
	UserTerminal class
	Computation time tweaks
	A note on Semi Markov Decision Processes
	Simulator robustness
	Research product two

	Building the learning agent
	Q-learning
	Exploration policy
	The value function and generalization
	Artificial neural networks

	Experience replay
	Research product three

	Experiments and results
	Defining a good policy
	Toy MDP experiments
	Value iteration experiment
	TD(0)-learning versus Q-learning experiment
	Learning the optimal policy with tabular Q-learning
	Full learning algorithm on toy simulator

	Ogame MDP experiments

	Thesis conclusion
	Bibliography
	Appendices
	Actions in Ogame
	List of actions included in the MDP

	Toy model additions
	Functions for toy model actions
	Transition tables
	Toy MDP version 2
	States
	Actions
	Transition function
	Reward function

	Ogame MDP functions
	Source code

