Probabilistic causal logic in discrete event training
simulations

by
Joost Kraaijeveld

Bachelor Thesis

Department of Computing and Information Sciences
Radboud University Nijmegen

Supervisor: Prof. dr. Peter Lucas

Summer of 2011

Nijmegen The Netherlands

Abstract

This thesis answers the research question whether it is possible to use a first-order prob-
abilistic causal logic as the event handling logic in a discrete event training simulation.
Discrete event simulations are very useful for the training of staff in organisations. Such
simulations require a great resemblance with the environment they simulate. The envir-
onment is dynamic, partially observable, probabilistic and goal or utility driven. Using
first-order probabilistic causal logic as the event handling logic in a discrete event train-
ing simulation can contribute to that resemblance. Based on the OMG MDA framework,
AORSL is a discrete event simulation language that uses agents in its modelling. ICL is
a framework that is capable of modelling agents under uncertainty using logic program-
ming, probability, game and decision theory. It is a high-level language that makes use of
other embedded formalisms. CPL, a first-order probabilistic causal logic, is integrated
and unified with ICL as embedded formalism. AORSL and ICL then are integrated
to create an environment in which discrete event training simulations can be specified.
Through this integration the answer to the research question is affirmative: first-order
probabilistic causal logic can be used as the event handling logic in a discrete event
training simulation.

Contents

[Abstract]
[List of Tables|

[Cist of Figures|
[L._Introduction

2. Training

[3. Simulation and agents|

3.1. Discrete Event Simulationlo

[3.2. Agent systems| .

[3.3. Agent-Oriented-Relationship modelling|.

B.4. AORSL in detaill

[3.4.1. Ontological categories|

[3.4.2. Rule-based

modelling]

(4. Probabilistic Logic|

|4.1.1. First-order

logic|

4.1.2. Probability|

4.1.3. Causality]|

|4.1.4. First-order

logic, probability and causality|.

]/ P O

4.5. Comparison| . . .

|4.5.1. Comparison of ICL. and CPL as specification language|

|4.5.2. Comparison of PHA and CPL as embedded formalism|

14.5.3. Conclusion|

vii

11
12
16
16
17
18
19
19
20

21
22
22
25
27
28
28
36
40
47
48
51
51

[5. Integration in AORSL|
b.1. Extending the specification|
[5.1.1. Rule-based modelling and beliefs|

b.2. Extending the translation|
[5.3. Extending the runtime|

0. Conclusion

[A. Example translations|
|IA.1. Original Bayesian networkl
|IA.2. Translation Bayesian network to PHA| .
|A.3. Re-translation ICL to Bayesian network|
|A.4. Translation Bayesian network to CPL| .
|IA.5. Re-translation CPL to Bayesian network|

8. AORSL UML

vi

53
53
53
95
55
56
56

59
61

65
65
65
66
66
67

69

List of Tables

|4.1. The possible worlds for the ICL theory{. 30
|4.2. The utilities for two agent| 32
|4.3. The utilities of the agents in the possible worlds|. 32
4.4, CPT tables for BNl 47
45, CPT tablesfor EBN| o o oo 48

vii

List of Figures

[3.1. Studying systems with simulation|. 10
B.2. AORS metamodel and MOF| 13
3.3, MDA PIM and PSM frameworkl. 14
[3.4. MOF/PIM/PSM/AORSL framework implementation| 15
B5 AORSLto Javal 16
4.1. A taxonomy of first-order probabilistic languages| 21
4.2. A PHA theory as Bayesian network{. 40
4.3. A CPL theory as Bayesian network{ 46
{4.4. CPL theories with multiple rules with the same resulting event| 46
|4.5. CPL theories with multiple literals in the rule bodies|. 47
4.6. CPL theories with multiple atoms in the rule heads|. 47
|A.1. Bayesian network for smoking alarm| 65
[A.2. re-translation from CPL to Bayesian network] 67
IB.1. Entity types|. 70
B2 Ruled. oo 71
[B.3. Agents behaviour|. oo oo 71
(B.4. Environment (causality) rules| 72
BE_Entities o o 73
[B.6. Shared event types (convenience constructs)|. 74

X

1. Introduction

After each incident the Dutch Safety Board appears to draw the inevitable conclusion:
the handling of the incident was not up to standard. Insufficient preparation, insufficient
training, bad decision-making and bad procedures by disaster relief organisation and its
personnel are seen as possible causes. In general there are enough possibilities for the
training and preparation of the lower staff. It varies from regular training to advanced
in-the-loop simulations. For the higher staff however, there are not so many possibilities
for training. And it is on the higher level that most of the shortcomings are present.

For higher staff the emphasis of the training is on procedures and cognitive skills in much
more abstract situations, which is by its nature much more difficult for both the trainees
and trainers. The tasks of higher staff consist mainly of making decisions using domain
dependent rules, influenced by external information. The task environment is very dy-
namic and changes continuously. The uncertainty is very high: not all facts are available
at all times and have to be guessed. Often they change or are even retracted. Often
decisions must be made with incomplete or even erroneous information. New events hap-
pen all the time and whenever a new event happens all the facts have to be (re)checked
and new decisions must be taken. In this process people are dependent on each other for
information and have to work together to achieve their individual or common goals. To
manage the dynamic and complicated environment and to be independent of incidental
decision making elaborate procedures and decision rules are established and must be
adhered to. Often the procedure and rules are “default” procedures and rules, and it is
left to the people to interpret those according to specific circumstances.

Simulation could help with these problems. Simulations can be used to imitate the
task environment an train the people in that simulated task environment. But the
characteristics of the task environment are challenging for the development of training
simulations. If the simulation should imitate the task environment it is logical to model
the simulation in terms of the task characteristics: very dynamic, with uncertainty, with
events, communicative, information driven and centred around procedures and decision
rules. Not every type of simulation is suited for training simulations. Discrete event
simulations appear to be very well suited for this task.

The basic idea of a discrete event simulation is that of an “event pump”, a mechanism
with which events are distributed to rules that handle those events, generating new
events which are distributed to rules and so forth. The rules have the form of “if this
event has happened and the world looks like this, then that action will be taken”. They
contain the logic that drives the simulation. In this thesis the emphasis will be on the
logic that is used to handle the events. There are many types of logic that could be used.

In this thesis I will look into first-order probabilistic causal logics.
The research question in this thesis is:

Is it possible to use a first-order probabilistic causal logic as the event handling logic in
a discrete event training simulation?

This question is studied in the following way. In chapter 2, I introduce the concept
of training and the requirements that training has for a simulation. In chapter 3, a
particular implementation of a discrete event simulation that uses the concept of agents
to model simulations is presented. Chapter 4 introduces a framework that uses first-order
probabilistic logic to model agents in a uncertain world. Two possible logics that could
be embedded in the framework will be discussed and one logic will be chosen. In chapter
5, I will try to integrate the framework with its first-order probabilistic causal logic in
the discrete event simulation implementation. In chapter 6, a conclusion is drawn on the
suitability and possibility of the integration and I will suggest some further research to
enhance the solution. The result of the research underlying this thesis is that it appears
indeed possible to use a first-order probabilistic causal logic as the event handling logic
in a discrete event training simulation.

2. Training

Most people are familiar with the terms education and training. As Romiszowski [24] p.
3] notes

“..training is akin to following a tightly fenced path, in order to reach a
predetermined goal at the end of it. Education is to wander freely in the
fields to left and right of this path — preferably with a map. ”

The line between training and education it not always clear or relevant. Most training
will lead to some unplanned learning (education) and most education will involve almost
always some goal-oriented teaching (training). In an organisational setting, training is
about the job or task performance in the current job, education is about preparation for
job or task performance in possible future jobs.

In this thesis I will only look at training that is aimed at improving the performance
of individuals and groups in their current job in an organisational setting. A job is a
collections of tasks that are performed by a single person. A task is a responsibility
to achieve a goal by performing activities within a (predefined) period of time. In the
remainder of the thesis I will only speak of task(s) and not of jobs.

Before looking at the nature of the tasks there are a few characteristics of the task
environment that are important with regards to the training of the higher staff. The
scope of the tasks is that of disaster relief. Disasters do not happen often but if they
happen they have a great impact on society and the people involved. The environment
in which a disaster happens is large and complex. Many people, materials and complex
natural phenomena are involved. The financial and human costs involved are high. The
tasks of higher staff, decision making under difficult circumstances, are critical in disaster
relief. There is no time for learning or trial and error during task performance. This
means that the workers should always be capable of performing their tasks. And, if
the environment changes, the workers should remain capable of performing their task.
Hence, training for higher staff is of utmost importance, both in preparation for a job
and during the job performance itself. If the task performance is critical, then so is
training.

When designing and implementing task-centred training, the intuition is that the task
characteristics define the underlying knowledge and skills that a person should have to
perform the task. A further intuition is that the characteristics of the knowledge and
skills define the instructional design.

The tasks of the higher staff consist mainly of making decisions using domain dependent
rules and influenced by external information. The task environment is very dynamic
and changes continuously. The uncertainty about the facts in the environment is very
high: not all facts are available at all times and they have to be guessed. They often
change or are even retracted. Often decisions must be made with incomplete or even
erroneous information. New events happen all the time and whenever a new event
happens all the facts have be (re)checked and new decisions must be taken. In this
process people are dependent on each other for information and have to work together
to achieve their individual or common goals. To manage the dynamic and complicated
environment and to be independent of incidental decision-making elaborate procedures
and decision rules are established and must be adhered to. Often the procedures and
rules are “default” procedures and rules and it is left to the people to interpret according
to specific circumstances.

To summarise the characteristics of the tasks:

e The environment is complicated in terms of people, materials and natural phenom-
ena.

e The whole environment changes often and is dynamic.

e The environment changes continuously.

e Not all facts are known, implying a partially observable world.

e Facts are observed with noise and can be retracted, making the world non-monotone.
e The unknown facts have to be guessed, making the facts probabilistic.

e Events happen all the time in a sequential fashion.

e People are dependent on each other and have to work together.

e Extensive procedures and rules are used.

e Procedures and rules must be adapted to situations, procedures, concepts, prin-
ciples.

e Actions do not always have the expected effect and are thus uncertain and prob-
abilistic.

When designing training for tasks, it is important to look at the type of task. More in
particular, it is important to look at the required knowledge and skills for the perform-
ance of the task. Romiszowski [24] describes a taxonomy for the training environment.
The main categories in Romiszowski’s taxonomy are knowledge and skills. Each main
category has subcategories of its own.

Knowledge is divided into:
e Facts: details concerning concrete events, situations, people or matters.
e Procedures: assignments that consist of a step plan.

e Concepts: definitions of abstract matters or grouping of perceptible objects or
matters.

e Principles: rules or patterns.

These categories of knowledge yield a gliding scale of difficulty. Each category is more
difficult to understand, apply and transfer than its predecessor.

Skills are divided into:
e Cognitive skills: decision-making, problem-solving, logical thinking.
e Psycho-motor skills: physical action, perceptual acuity.
e Reactive skills: dealing with oneself, attitudes, feelings, habits, self-control
e Interactive skills: dealing with others.

Romiszowski states that a person can perform these skills in a reproductive and in a
productive manner. Reproductive means applying procedures or algorithms, productive
means applying principles and strategies. Performing on a productive level is more
difficult than on a reproductive level.

In every instructional system all elements of Romiszowski’s taxonomy are present but
their importance in that system varies.

As can be seen in the characterisation, the tasks of higher staff demand a lot of both
knowledge and skills. The tasks consist mainly of making decisions using procedures
and rules in a dynamic, communicative and eventful environment. Almost all elements
of both the knowledge and skill taxonomies are present. All elements of the knowledge
taxonomy are important and required in the task environment. They are all extensively
used during the task performance. Especially because there is often a lack of objective
facts during the actual performing of the task the actual application of procedures, con-
cepts and principles is important. From the skills, the cognitive and interactive skills are
especially important. In some circumstances, the reactive skills are important, especially
when the staff has to perform under pressure. Psycho-motor skills are mostly irrelev-
ant because the core activities are concerned with decision making and not performing
complex motor tasks.

The effectiveness of an instructional system is determined by transfer and retention.
Patrick [I6] mentions that from research is known that both transfer and retention are
difficult in general and for cognitive procedural skills in particular.

Transfer is the ability of persons to effectively apply the knowledge and skills they
have learned in one situation to another situation, which could be e.g. another training
situation or a job performance situation. The intuition is that the transfer depends on
how much two tasks are the same. But as Patrick [16], p. 91] notes:

“unfortunately, there is considerable evidence that positive transfer does not
always occur between tasks, even when, from an ‘identical elements’ per-
spective, it might be expected tot do so. ”

Especially

“lack of positive transfer has been found primarily between cognitive tasks
involving the transfer of both specific and general problem-solving methods
and cognitive tasks involving the transfer of factual knowledge between two

situations”.. .. “Learning, thinking and problem-solving skills which have been
trained and are expected to generalise in a range of situations, often fail to
do so, ”

even if the situations or problems are isomorph and differ only very slightly. This lack
of transfer is even greater if the task is discrete, e.g. when it consists of a sequence of
small steps. There appear to be two main reasons why this happens. Both reasons have
repercussions for the training. First, it appears to be difficult for the trainees to see that
the training situation and the transfer situation are actually isomorphic and therefore
the trainees are not triggered to use the correct procedure. Second, in addition to the
previous point, it appears to be that the application of knowledge and skills is highly
context sensitive. This means that in a training situation one must take good care of
both isomorphism and context sensitivity.

Retention is the ability of persons to remember how to effectively apply the know-
ledge and skills they have learned. While psycho-motor skills, e.g. riding a bicycle, are
remembered even after many years of not using them, cognitive procedural skills are for-
gotten fairly quickly, especially if unused. In general, the level of retention is positively
related to the level of learning at the end of the training. The retention also gets worse
if the knowledge is not used after the training. This means that during the training the
number of training session or exercises is relevant, the more the better. In the period
after the training the amount of retraining or exercises and the interval between those
are important, especially if the tasks are not done regularly which is typically the case
in disaster relief.

The transfer requirements of isomorphism and context sensitivity dictate that the train-
ing environment must bear great resemblance with the task environment. The retention
requirements dictate frequent exercises, both during and after training. Because the
training of higher staff is critical for the task performance, special attention should be
given to these requirements when designing the instructional systems

Isomorphism and context sensitivity, as required by transfer, are costly and difficult to
realise. The task environment is large and complex. It involves many people, materials
and complex natural phenomena with high costs attached. Often it is even not possible
to create a a training environment that resembles the real task environment because it
is too dangerous or socially unacceptable. Frequent exercises, as required by retention,
are often not possible because the resources that are needed for the exercises are not
available, apart from the costs. A simulation could be the solution for such training
environment. In general, a simulation is an imitation of a real system and has all the
key characteristic of that system. Therefore, a simulation of the task environment that

takes in account all the requirements can be a solution for all these requirements. In a
simulation the environment of a trainee is simulated which is less costly or dangerous
than using the real environment H Because a simulation does not use any of the real
world resources in the environment, it is not dependent on the availability of those
resources.

One of the requirements of the simulation is that the simulated persons or actors should
behave in the simulation just as in the real world. They should use the same knowledge
(facts, procedures, concepts and principles) and skills (cognitive and interactive) as the
persons in the real world. One can use knowledge systems to implement the behaviour
of the actors. Knowledge systems are systems that are able to solve problems in a
particular domain using knowledge about the domain and goals given by the domain.
Whenever an event happens in the simulated world and the simulated actor needs to
react on that event, the knowledge system of that actor is used to determine its response.
Early incarnations of knowledge systems consisted of rule bases with “if some condition
then some action”type of rules. The main inference methods were forward and back-
ward chaining. Modern knowledge systems use more sophisticated logical methods as
abduction and functional or causal models of behaviour. They also use probabilistic and
decision theoretic methods to reason with uncertainty and make decisions on actions
given goals.

In chapter 3, I will look into a specific implementation of a discrete event simulation
that uses the concept of agents with rules bases to model and implement simulations.

1T do not take into account the cost for creating the simulation that can be substantial.

3. Simulation and agents

Historically, simulations are used to study systems. Simulations are imitations of some
real system. They simulate the operation of a model of that system. Such a model
usually consists of a mathematical or logical description (or both) of the system, the
components of the system, the relation of the components and the way they interact.
Typically, simulations can be be classified along three different dimensions [11]:

e Static versus dynamic. A static simulation model is a representation of the system
at a certain moment in time, or a representation in which time does not play a
role. A dynamic simulation model is a model in which time does play a role: it
describes the system in time.

e Deterministic versus probabilistic. Simulation models that do not have any random
variables and where the algorithms “behave predictably” are called deterministic.
Simulation models that contain random variables or uses algorithms that “behave
unpredictable” are called probabilistic.

e Continuous versus discrete. A continuous simulation model is a model in which
the state variables change continuously with respect to time. A discrete model is
a model in which the state variables change atomically at specific points in time.
Between state transitions nothing (relevant) happens.

As with almost all classifications, no simulation exactly fits one classification. Almost
all simulations contain elements of all categories.

If one looks at the description of the task environment and the simulation classification
it is clear that a simulation that resembles the task environment should be dynamic
and probabilistic. Although the task environment is both continuous and discrete, the
tasks themselves are more discrete than continuous: people react on events by making
decisions. Therefore the emphasis will be on dynamic probabilistic discrete simulation
models. Such simulations are called discrete event simulations.

3.1. Discrete Event Simulation

A Discrete Event Simulation (DES) is a simulation in which the state of a model changes
with discrete steps and where nothing happens between the steps. The discrete steps
can be driven by the time, i.e. every certain time interval a “time-has-changed” event is
generated and the model updates itself. The discrete steps can also be determined by the

Experiment
with the
actual system

10

Experiment
with a model
of the system

e

AW

Physical
model

Mathematical

model

e

Analitical
model

Simulation

model

Static vs Dynamic

Continuous vs Discrete

Deterministic vs Stochastic

Figure 3.1.: Studying systems with simulation

activities in the model, i.e. whenever a start or end of an activity occurs a “something-
happened” event is generated and the model updates itself. In this thesis only the latter
type of simulation is considered.

The high-level description of a DES implementation is rather straightforward. Every
state change in the simulation is translated by the DES into an event. The event is sent
to the event queue. As long as the event queue is not empty or until a “stop simulation”-
event is encountered the simulation will take the first event from the event queue and
send it to an event handler which will handle the event appropriately, according to the
logic of that handler. The handling of an event by the handler will often result into one
or more events which in their turn are sent to the event queue and so on.

3.2. Agent systems

The implementation of a DES is not standardised. One of the modern forms of software
engineering is object-oriented software engineering. Among many things, this means in
general that variables and logic are encapsulated in classes and objects. In the task and
training environment several concepts and objects appear: people, rules, facts, events,
procedures an decisions. Part of the classes and objects in the software resemble the
problem domain which facilitates the development of object oriented software. It seems
natural to implement DES in objects oriented systems. It allows for a modelling and
implementation of the domain classes and objects in the DES.

A refinement of object-oriented software engineering is agent-oriented software engineer-
ing. In agent-oriented software engineering some objects in the system, called agents,
are active objects that function continuously and autonomously in an environment in
which other processes take place and other agents exist that interact with each other.
A specific implementation of agent oriented software engineering is the Belief-Desire-
Intention (BDI) software model [22]. It models agents with concepts as “beliefs, desires
and intentions”, terms that suggest almost human traits in agents. They actually refer to
typical technical problems that occur in (multi-)agent systems. Beliefs refer to the fact
that it is possible that an agent has an incomplete view of the environment it operates
in. To make its view complete the agent can use techniques as inference to reason about
the unknown facts. Desires are about objectives an agents wants to accomplish or states
that it would like to reach. Intentions are about finding and executing a plan with which
the agent tries to achieve its desires.

It is easy to see that the classes and objects that refer to people in the task environment
could be implemented in an agent-oriented DES as agents.

Russell and Norvig [25] distinguish different kind of environments in which agents oper-
ate:

e Fully observable vs partially observable

e Deterministic vs stochastic (probabilistic)

11

Episodic vs sequential

Static vs dynamic
e Discrete vs continuous
e Single agent vs multi-agent

The task environment maps nicely to a particular agent environment, making it a natural
candidate for agent-oriented software engineering. A description of the task environment
can be given in terms of agent environment:

Partially observable
Probabilistic

Sequential
e Dynamic

e Discrete and continuous

Multi-agent

Wagner [30] describes an agent-oriented approach to the conceptual modelling of or-
ganisations and organisational information systems, called Agent-Object-Relationship
(AOR) modelling. In AOR modelling an entity is either an agent, an event, an action,
a claim, a commitment, or an ordinary object. Special relationships between agents and
events, actions, claims and commitments supplement the fundamental association, ag-
gregation/composition and generalisation relationship types of Entity-Relationship (ER)
and UML class modelling. Because AOR modelling can be done in UML the modelling
can be highly formalised.

3.3. Agent-Oriented-Relationship modelling

Commonly agent-oriented software engineering and DES are not integrated and are
viewed as two separate fields with different concepts and techniques. Wagner [31] de-
scribes an integration of agent-oriented software engineering and DES. The integration
shows that the AOR metamodel and the metamodel of discrete event simulation can be
combined into a model of agent-based discrete event simulation in a natural way. The in-
tegration is described in the Agent-Object-Relationship Simulation (AORS) metamodel.

The AORS metamodel is an OMG [[]MOF P|model described in UML]| that specifies the
abstract syntax of the AOR simulation language. A MOF model means that a AORS
metamodel implements a OMG MDA [] M3 model. The OMG MDA defines a 4-tier
layered system of models that are capable of describing models.

LObject Management Group, for more info see the OMG’s website at [http://www.omg.org/

2MetaObject Facility, for more info see the OMG’s website at http://www.omg.org/mof/

3Unified Modelling Language, for more info see the OMG’s website at http://www.omg.org/uml

4Model Drive Architecture, for more information on MDA, see [d] for a nice introduction or the official
documentation which can be found at the OMG website at |http://www.omg.org/mda/

12

http://www.omg.org/
http://www.omg.org/mof/
http://www.omg.org/uml
http://www.omg.org/mda/

Layer M3: the meta-metamodel, the language used by MOF to build metamodels,

Layer M2: the metamodel, e.g. the UML metamodel,

Layer M1: The model of the system, typically written in UML,

Layer MO: the instances, the software representation of real world items.

Schematically the relation between the AORS metamodel and the OMG MOF model is
depicted in figure For a more detailed description of the AORS metamodel at the
M2/M3 level in UML see appendix

¢ - ==instance -Of->>-[> MOF Class <} ~<sipstance efz> _ M3: Model of a Model of a Model

UML Attribute

+name: String
A M2: Model of a Model

UML Class

+name: String

<<instance of>>

A
A
ol
>
0
~+
Q
>
o
(0]
o
ey
N4
\%

i
1
L
[!
Iy 1
[!
: I : Event
1 L - - - - +id: String
1 1 M1; Model of a System
1 Agent 4
R +name: String !
1
1
A !
1 ===
1 1
I - = -=-=-=="===-=-®=== 1
1 ! 1
1 !]
1 ! 1
Agent Agent Event
+name: String = Nature +name: String = FireMan +id: String = FireStarted MO: System

Figure 3.2.: AORS metamodel and MOF

Because the languages that are described by a MOF model are well-defined or formal
languages they are suitable for automated interpretation by a computer. The fact that
they are formal languages is used to define model transformations where a source model
is transformed to a target model by automated tools. The most tempting and ambitious

13

model transformation is of course the transformation from specification to running ap-
plication without any manual coding. The OMG has defined the MDA framework that
helps to do that.

Is METALANGUAGE Is
written written
in - o in
~ S~
~ S~
~ ~
A Bl
Transformation
Language 1 P Definition P| Language 2
Is | Is Is
written used I written
in I by in I
\ 4 + \ 4
PIM > Trans%r:lwatlon » psm

Figure 3.3.: MDA PIM and PSM framework

In the MDA framework, an OMG PIM E] language is a platform independent language
that describes a software system that supports some business. It is a MOF-based lan-
guage with a high level of abstraction and is independent of any implementation tech-
nology. An OMG PSM E] language is a platform dependent language that specifies the
implementation constructs that are available in one specific implementation technology.
Most of the time a PSM is an actual programming language which can be interpreted
by an interpreter or compiled into an executable program by a compiler, supported by
a suitable runtime environment if needed. Ideally a PIM and a PSM can be translated
into each other by automated tools. Schematically the whole MDA framework is shown
in figure 3.3

The AORS metamodel is the basis for AOR Simulation Language (AORSL). AORSL
is an extension and refinement of the AORS metamodel with the necessary objects and
classes for a DES implementation. AORSL can be used to describe (discrete event)
simulation models. A simulation model is defined by a space model, a set of entity
types and a set of rules. It defines a simulation scenario, a set of simulation parameters,

5 Platform Independent Model
6 Platform Specific Model

14

and a set of entities defining the initial state of the simulation. AOR simulations may
be implemented in different programming languages, but they must conform to the
AOR simulator architecture and to the AOR simulator execution model as defined in
[31]. A simulation model written in AORSL combined with the simulation model can be
considered a model written in a OMG MDA PIM language. A confirming implementation
of an AOR simulation can be considered a model in a OMG MDA PSM language.
Because both model are formal models it should be possible to provide appropriate tools
that translate the simulation model to a running simulation. Schematically the relation
between the OMG MDA framework and AORSL is shown in figure

MOF
UML
s
written
in
AOR
Simulation PSM languages
Metamodel
'Iq | Java
written PIM language
in | 7
: /
SimAl\J(I)aRtion P Transformation P| JavaScript
Language Definition p Is
| written
| | [
Is Is Is
written | used | written /
in by in |
»
Simulation) .)))
Transformation Simulation Simulation
—P -
I\(IIFt,Jl(:/Ie)I Tool > (PSM) 1 “scenario

Figure 3.4.: MOF/PIM/PSM/AORSL framework implementation

There is a reference implementation available, called AOR-JavaSim, which is a stan-
dalone desktop program written in Java with a graphical user interface. The application
is intended as a universal multi-purpose simulation framework in science, engineering,
education and entertainment and contains several sample simulations. In this imple-
mentations simulation model are describes in XM-file. There is a tool available that uses
XSLT transformations to transform the simulation model into a running simulation.
The simulations are written in the target languages Java or JavaScript. The running

15

simulation written in Java or JavaScript can be considered models in a OMG MDA
PSM language. AOR-JavaSim shows that it possible to create runnable specifications:
specifications that can automatically be transformed into running applications without
manual coding.

AORSL Java Java
(XML) Source code Byte Code

XSLT Compilation

Figure 3.5.: AORSL to Java

3.4. AORSL in detail

In this section I will look in some detail at AORSL. The focus will be on those constructs
and functionality that are relevant for the understanding of the language given the scope
of this thesis, which is the usage of first-order probabilistic logic as the event handling
logic in discrete event training simulations.

3.4.1. Ontological categories

The AORS metamodel is based on ontological principles [7]. On of the aspects of these
ontological principles is the relation between a modelling language and a set of real-world
phenomena in a given domain. The relation can be described by the ontological adequacy
of a given modelling language. The ontological adequacy of a modelling language is
a measure for how close the models produced using a modelling language are to the
situations in reality they are supposed to represent. A high adequacy means that the
models and the domain share many concepts. The AORS metamodel aims to closely
model the domain in terms of that domain. In this case this means that the concepts,
classes and objects of both the DES and agent domain are recognisable modelled in the
AORS metamodel.

The upper level ontological categories of AOR simulation are messages, events and ob-
jects, which include agents, physical objects and physical agents. The task and training
environment contain all these categories in some form. The people must cooperate to
perform their task. This means that people have to communicate and exchange inform-
ation with each other through messages. The events in the task environment map to the
events in AORSL. The people and other active parties in the task environment map to
agents in AORSL. The event type has an elaborate ontology of its own. It has subtypes
as internal events that are those events that happen “in the mind” of the agent. For mod-
elling distorted perceptions, both a perception event type and the corresponding actual
perception event type can be defined and related with each other via actual perception

16

mapping rules. AORSL also supports the notion of both exogenous and endogenous
events, events from outside the system that have effects inside the environment and
events from inside the system. For a full overview see the UML overview in appendix

The entities are grouped together in a simulation scenario. A simulation scenario consists
of a simulation model, an initial state definition and zero or more view definitions. A
simulation model consists of

e an optional space model, if needed for physical object/agents,

e a set of entity types, including different categories of event, message, object and
agent types,

e a set of environment rules, which define causality laws governing the environment
state changes.

An agent type is defined by:
e a set of (objective) properties,
e a set of (subjective) self-belief properties,
e a set of (subjective) belief entity types,

e a set of agent rules, which define the agent’s reactive behaviour in response to
events.

An agent’s property is the same as an attribute in ordinary object orientation. An agent
has objective and absolute knowledge of its own properties. Knowledge of itself are facts
and objective. It is possible that an agent has no definitive knowledge of a property but
that it has some subjective belief of itself, e.g. the position of the agent in terms of its
coordinates. In that case the agent has a subjective self-belief. The knowledge that an
agent has about the rest of the world is described by the set of belief entity types. How
subjective the self-belief properties and belief entity types are is unknown to the agent
in AORSL.

For the usage of a DES in a training simulation all elements except the space model are
relevant as they have a direct mapping to the task and training environment.

3.4.2. Rule-based modelling

There are two kind of rules that are involved in handing the events in an AOR simulation.
Both the behaviour of the environment and the behaviour of agents are modelled using
rules. Environment rules describe the reaction of the environment to actions by agents
and other environment events. Agent rules describe the reaction of agents on events
received.

An environment rule is a 5-tuple (Trigger Evt, VarDecl, Condition, UpdateState, ResultEvt),
where

e TriggerEvt is the type of event that triggers the rule,

17

e VarDecl is a set of variable declarations, such that each variable is bound either
to a specific object or to a set of objects,

e Condition is a logical condition formula, allowing for variables,
e UpdateState specifies an update of the environment state,
e ResultEvt is a list of resulting events, which will be created when the rule is fired,

which can roughly be read as:

on TriggerEvt
for VarDecl do
if Condition then
UPDATE UpdateState
SCHEDULE-EVENT ResultEvt
end if
end for

An agent rule is a 4-tuple (TriggerEvt, Condition, UpdateState, ResultEvt), where
o TriggerEvt is the type of event that triggers the rule,
e Condition is a logical condition formula, allowing for variables,
e UpdateState specifies an update of the environment state,
e ResultEvt is a list of resulting events, which will be created when the rule is fired,

which can roughly be read as:

on TriggerEvt
if Condition then
UPDATE UpdateState
SCHEDULE-EVENT ResultEvt
end if

The basic difference is that an environment rule can be bound to multiple objects but
an agent rule is always bound to one agent. Both rules have an arbitrary logical con-
dition formula to determine if the rule will actually “fire”, i.e. the condition evaluates
to true. This allows for a sophisticated determination of the current state of the world
by the environment or agent. If it fires, it will possibly update arbitrary variables in
the simulation and it will possibly send the resulting events to the simulation engine.
This mechanism makes both the environment and the agents reactive in nature: both
the environment and the agents can be seen as purely simple reflex agents as described
in [25].

3.4.3. Beliefs

As mentioned before, beliefs refer to the fact that it is possible that an agent may have
an incomplete view of the environment it operates in. Most agent worlds are partially
observable. AOR simulation supports the distinction between facts and beliefs, including

18

self-beliefs (the agent’s beliefs about itself). The language supports the notion of facts
and beliefs and allows an implementation to store and retrieve facts or beliefs as a form of
property-values tuple. An agent can always retrieve its belief during its event handling in
the condition part of the rule. Updating its beliefs can be done in the update expression.
Diaconescu and Wagner [4] describe in their article that the W3C Resource Description
Framework (RDF) query language SPARQL E] can be used for expressing queries that
an agent can ask another agent about its beliefs. However, the support is limited. To
make its view complete the agent has to use techniques as inference to reason about
the unknown and uncertain facts. AORSL as a modelling language has no concepts that
actually support inference of unknown or uncertain facts besides the possibility of storing
beliefs and facts. As such there is a limited support for model-based reflex agents [25].

3.4.4. Desires

Desires are about the goals an agent wants to accomplish. Goal-based agents [25] make
a distinction between goal states and non-goal states of their world. Their aim is to
end in a goal state. More advanced agents are utility-based agents [25]. They use the
concept of a utility function which is a function that calculates how desirable a particular
state is and has therefore a more sophisticated idea of goal state. The term the goal is
ambiguous in the context of agents: the goal of a goal-based agent is to end in one of
the goal states whereas the goal of a utility-based agent is to end in a state with the
highest utility. In the remainder of this thesis I will simply refer to the goal of an agent
and make no distinction between the two approaches. AORSL has no concept of either
goal or utility. It is currently not possible to implement goal or utility-based agents in
AORSL.

3.4.5. Intentions

Intentions are about finding and executing a plan. A plan is a sequence of actions that
an agent can perform and that, ideally, result in the accomplishment of the desires or
goals. The current version of AORSL does not have the concept of a plan. But adding a
minimal extension to AORSL, it is possible to model business processes as described by
Wagner, Nicolae and Werner in [32]. The main idea is to define an activity as a complex
event having a “start event” and an “end event” caused by a start action and an end
action. A nice feature is that they also show how to use this extension in combination
with the OMG’s BPMNEL According to the authors a full simulation model can be
specified by combining an UML class model with a BPMN process model.

However, BPMN has some limitations. BPMN has no support for probabilistic processes
except for the duration of activities. Also, the sequential, flowchart-like modelling nature

7 for more info see the W3C website at http://www.w3.org/2001 /sw/wiki/SPARQL
8Business Process Modeling Notation, for more info see the OMG website at
http: /www.omg.org/spec/ BPMN/

19

http://www.w3.org/2001/sw/wiki/SPARQL
http://www.omg.org/BPMN/

of BPMN is not always compatible with the event driven nature of DES where events
do not necessarily follow the flowchart because it is very dynamic. BPMN is rather
static as a modelling language: one specifies all possible processes beforehand and no
run time building of the flowchart or planning is done. AORSL’s concept of causality
has some limits. In general causality means that some events cause other events. The
only cause-effect relation that can be described is that of a single event and its resulting
events. Multiple events that result in a common effect cannot be modelled. This actually
means that there is no support for (probabilistic) planning of actions based on the state
of the past, current and future states of the world. For utility-based agents planning is
important. If an agent cannot plan its actions beyond the first action, it is easy to find
a local utility maximum and not finding a global maximum or better local maxima.

3.5. Extending AORSL

Clearly that the task environment has some characteristics that make reasoning about
the state and the consequences of actions difficult. The environment is dynamic, par-
tial and noisy observable, probabilistic and goal or utility driven. People handle these
circumstances naturally. Computer programs do not have a natural feeling for hand-
ling uncertainty, probability, causality, non-monotonicity and planning, which are the
more technical terms for the task environment characteristics. Computers use special
logic to handle this. Uncertainty can be handled by probabilistic logic. Probabilistic
logic is an extension of classical logic where a truth value is true or false, with a certain
probability. Causality can be handled by causal logic. In causal logic a relationship is
established between two events where one event is the consequence of the other even.
The latter is said to be the cause of the former. The non-monotonicity can be handled
by non-monotonic logic. Non-monotonic logic allows for defeasible inference which al-
lows for inferring conclusions that can be retracted by new information that is added to
the available knowledge. AORSL does not support non-monotonic probabilistic causal
logics.

If AORSL is to support training simulations then a solution for these problems is needed.
One of the solutions is adding a causal probabilistic first-order logic. In the next chapter,
I will look at another agent-based modelling environment that is based on probabilistic
first-order logic, Independent Choice Logic (ICL) from Poole [20]. I will look at ICL
with the purpose to embed it into AORSL, extending the possibilities of AORSL with
first-order probabilistic causal logics.

20

4. Probabilistic Logic

In this chapter I will look into first-order languages that support probability and caus-
ality. Milch and Russell [I5] give an overview of first-order probabilistic languages in
a taxonomy as shown in figure The languages of interest are languages that use
relational structures (causality) and conditional probability distributions (probability).
ICL (Independent Choice Logic), PHA (Probabilistic Horn Abduction) and LPAD (Lo-
gic Programs with Annotated Disjunctions) are such languages in the taxonomy. In
this chapter I will look at three implementations of probabilistic logic, Poole’s ICL [20],
Poole’s PHA [I8] and Vennekens’ CP-Logic (CPL)[28], the successor of LPAD [29].

Figure 4.1.: A taxonomy of first-order probabilistic languages

Although Poole’s ICL [20)] is listed as a first-order probabilistic language, it is in fact
more than that. It uses elements from several techniques to create a framework that can
be used to represent a specification or model for multiple agents that make observations
and decisions in a stateful and uncertain world. Given the fact that OARSL is an agent
oriented simulation language, embedding the ICL framework appears appealing. ICL is
a high-level abstract language specification without a concrete syntax and makes use of
other embedded formalisms for more detailed modelling and concrete syntax. ICL acts
in this context as specification language for the embedded formalism: ICL is used for
specification and the embedded formalism is used for the implementation. Poole shows
embeddings for three embeddings in his article: influence diagrams, Markow decision
problems and a strategic form of games.

The most natural embedding however is that of probabilistic Horn abduction (PHA)
[18], which is the precursor and a restricted form of ICL itself. It also is the basis of
aforementioned influence diagram embedding. PHA is a simple first-order probabilistic

21

logic language that uses Horn-clauses with probabilities. It can represent the same prob-
abilistic knowledge that can be represented in a Bayesian networks PHA into Bayesian
networks and vice versa.

Another possible embedding is that of CPL [28], which, like PHA, is another simple first-
order probabilistic causal logic language. It uses logic to describe probabilistic causal
laws which are causal relations between events. Where PHA is a restricted form of
ICL, CPL can be considered a superset of ICL, allowing for a less restricted syntax for
specifying probability and adding the notion of probabilistic causal processes or state
transitions. therefore it may not only be possible to use CPL as embedded formalism
but also to extend the possibilities of ICL as specification language. It is possible to
translate CPL into Bayesian networks and vice versa.

I will not look at a specific monotonic logic. Non-monotonic logics as default reasoning
or abductive reasoning use standard values for true and false as truth values in the logical
formulae. Probabilistic logics assign the truth values real valued probability values, which
can be interpreted as true or false using some threshold values. The addition of evidence
leads to adjustment of the probabilities, introducing non-monotonicity. Probabilistic
logics therefore support a certain form of non-monotonicity, although McCarthy [12]
shows that probabilistic logics cannot cover all instances of non-monotonic logic. For
this thesis the support of non-monotonicity by probabilistic logic is sufficient.

4.1. Preliminaries

Before looking into ICL, PHA and CPL, I will briefly recapitulate some elements of
first-order logic, probability theory and the concept of causality. Just as with AORSL,
the focus will be on on those elements that are relevant for the understanding of the lan-
guages, given the scope of this thesis. In this recapitulation I assume that the reader has
knowledge about the aforementioned subjects on the level of an undergraduate computer
sciencdﬂﬂ If one is confident enough this section can safely be skipped.

4.1.1. First-order logic

An object is a thing. A domain is a set of individual objects. The domain of discourse is
the set of domains of interest. The domain of discourse is often abbreviated to domain.

A constant is a specific object of some domain. Constant are customary represented by
lowercase letters or lower (camel) case words. If letters are used it is customary to use
letters from the beginning of the alphabet.

A wariable is an unspecified member of some domain of objects or class of objects.
Variables are customary represented by lowercase letters from the end of the alphabet.

IFor more information on first-order logic, see [3], the primary source for this section, or [§]
2For more information on Bayesian networks, see [10]

22

A function assigns a combination of objects of some domains to a member of some
domain. It expresses dependencies between the argument terms. Function symbols are
customary represented by lowercase letters or lower (camel) case words. If letters are
used it is customary to use letters from the middle of the alphabet.

A predicate maps a combination of objects from some domains to a truth value. They
can be viewed as a function with the range true, false. Predicate symbols are customary
represented by uppercase letters or upper (camel) case words.

If a function or predicate has arguments, they are given between parentheses and sep-
arated by commas. The arity of a function or predicate is the number of arguments of
the function or predicate. A function with an arity of 0 is the same as a constant. A
predicate with an arity of 0 is called an (atomic) proposition.

A first-order language consists of
e a set of constants;

e a set of variables;

a set of functions and associated arities;

a set of predicates and associated arities.
A term is defined as

1. A constant is a term.

2. A variable is a term.

3. If f is a function symbol and fy, ..., t, are terms, then the function f(ti,...,t,) is
a term.

An atom is a predicate with arity 0 or a predicate of the form P(ty,...,t,), where P is
a predicate symbol and ty,...,t, are terms.

There are two quantifiers: the universal quantifier V and the existential quantifier 4. If
X is a variable, then Vx is read as “for all x” and Jdx is read as “there exists an x”.

The logical connectives which are the same as in propositional logic: —, A, V, =, <.

A well-formed first-order formula or sentence is defined as:
1. The constant truth values true and false are formulae.
2. A single predicate with its arguments is a formula, also called an atomic formula.
3. If ¢ is a formula, then —¢ is also a formula.
4. If ¢ and ¥ are formulae, then ¢ V¢, ¢ A, ¢ — P and ¢ <> ¢ are also formulae.
5. If x is a logic variable and ¢ is a formula, then Vx¢ and Jx¢ are formulae.

A clause is a specific type of formula and is either an atom or has the form & — B where
« is a literal or a conjunction of literals and B is an atom. « is called the body of the
clause and B is the head of the clause. A clause of the form « — B is called a rule. A
clause is a formula or sentence that consists of a finite disjunction of literals, where a
literal is an atom (positive literal) or a negation of an atom (negative literal) because

23

a rule can be re-written as —a V B or not body V head. A specific type of clause is the
Horn clause. A Horn clause is a clause that contains at most one positive literal. A
Horn clause with exactly one positive literal is a definite clause. An other specific type
of clause is the empty clause, which is a clause with null literals. It is often denoted as
0.

A logical theory is a conjunction of formulae. A collection of formulae separated by
commas is interpreted as a conjunction of formulae. A (logic) program is a set of clauses.
Because every formula can be rewritten as a set of clauses in Conjunctive Normal Form
(CNF) (see [3]), every logical theory can be considered a logical program.

A ground term, atom or clause is one that does not contain any variables. A ground
instance of a clause c is a clause obtained by uniformly replacing ground terms for the
variables in ¢.A theory of which all clauses are grounded is called a grounded theory.

In first-order logic, a formula has no meaning of itself, it is a meaningless symbolic
formula. To determine the meaning or truth value of formulae, one has to connect the
symbols with objects in the domain of discourse. An interpretation is a mapping from
the symbols of a first-order language to their meaning, possibly in the real world. An
assignment or valuation is assigning every variable in the first-order language a specific
value in the domain. Given an interpretation and a valuation one can determine the
truth value of a formula. If an interpretation assigns the value true to a formula or
theory, the interpretation is called a model of that formula or theory.

The Herbrand universe of a first-order language is the set of all ground terms. It is
enumerable, and infinite if a function with an arity greater than 0 exists. The Herbrand
universe Uy for the set of clauses S is given by:

e All constants which occur in S are in Ug.

e If no constant appears in S, a single constant with an arbitrary name, e.g. a, is to
be assumed in Ugy.

e For every n-ary function symbol f in S, and for every t1,--- ,t, € Uy, f(t1, -, tn)
is in Upy.

The Herbrand base of a first-order language is the set of all ground atoms that can be
formed from predicate symbols in the original set of clauses and terms in its Herbrand
universe. It is the set of all possible ground goals that the theory can represent. Like
the Herbrand universe, it is enumerable, and infinite if the Herbrand universe is infinite
and there is a predicate symbol with an arity greater than 0. The Herbrand basis for a
set of clauses S and the Herbrand universe Uy is given by:

e The set of ground atoms P(t4,...,t,), where P is a n-ary predicate symbol from S
and t1,...,t, € Ugy.

A Herbrand interpretation is an interpretation in which all constants and function sym-
bols are assigned a very simple meaning. Every constant is interpreted as itself, and
every function symbol is interpreted as the function that applies it. Every grounded
predicate is assigned a truth value, specifying the predicate to be true or false. If a
Herbrand interpretation is true, it is called a Herbrand model.

24

4.1.2. Probability

In real life things can be uncertain. Probability is a method to quantify uncertainty.
Intuitively probability has something to do with the approximate number of times some-
thing is the case and the approximate number of times that that something is not the
case, together forming the approximate total number of cases. Surprisingly enough, there
is no definitive definition of probability. There are at least two approaches of probability:

e Physical of frequency probability. Frequency probabilities are about probabilities
in the context of experiments that are random and well-defined. The probability
of a random event denotes the relative frequency of occurrence of the outcome of
an experiment, if the experiment is repeated many times or even indefinitely.

e Evidential or Bayesian probability. Bayesian probabilities are about measuring the
state of knowledge or degree of belief in a statement about facts in the world, given
any available evidence.

As mentioned in and agents operate in a partially observable and probabil-
istic environment and have believes about the world. The Bayesian interpretation of
probability correspondents closely with the notion of probability as measurement for
uncertainty that is used in an agent-oriented environment. Therefor, in this thesis the
Bayesian approach is used.

More formally the intuition of probability is described as follows. A probability space is
a triplet (), F,P) where

e () is the sample space, also called universe of discourse U, that it is the (arbitrary)
set of all possible outcomes.

o F C 29 a set of subsets of Q called events, such that @ € F, and F is closed
under complement, i.e. if f € F then also (QO\ f) € F, and countable union, i.e.
if fi...fn € F then also (Unfy) € F;

e Pisa function P : F — [0,1], called probability measure, such that)_ P(f) = 1.0.
feF

Given a probability space (Q), F, P), the function P should obey the so-called Kolmogorov
axioms:

e P(O) =1.
e For all events E € F: P(E) > 0.
e For all events E,F € F: it ENF = @ then P(EUF) = P(E) 4+ P(F) > 0.

In addition to the probability space and the Kolmogorov axioms, several other concepts
are introduced. Conditional probability is the probability that a certain event occurs,
given the fact that some other event occurred. Conditional probability is defined as:

P(XNY
Definition 4.1. P(X|Y) = (P(;))

25

Independence or marginal independence says that two events are independent of each
other: the probability that one event occurs is not connected to the occurrence of the
other event. Independence is defined as:

Definition 4.2. X 1L Y = P(X|Y) = P(X)

Conditional independence is a generalisation of independence and is defined as:

Definition 4.3. X 1L Y|Z = P(X|Y, Z) = P(X|Z)

Based on the definition of conditional probability the Bayes’ theorem is defined as ﬁ
P(E|H)P(H)

Theorem 4.1. P(H|E) = B(E)

where

o H represents a hypothesis
e E represents the (observed) evidence

e P(H) is the prior probability of H that was inferred before evidence became avail-
able.

e P(E|H) is called the conditional probability of seeing the evidence E if the hy-
pothesis H happens to be true. It is also called a likelihood function when it is
considered as a function of H for fized E.

e P(E) is called the marginal probability of E: the a priori probability of witnessing
the evidence E given all hypotheses. It can be calculated as the sum of the product
of all probabilities of any complete set of mutually exclusive hypotheses and corres-
ponding conditional probabilities:

P(E) = Y P(E[H;)P(H;)

e P(H|E) is called the posterior probability of H given E and is the new estimate of

the probability that the hypothesis H is true after the evidence E became available.

A collection of conditionally dependent variables and their probabilities can be describes
by a Bayesian or belief network A Bayesian or belief network is a graphical probabil-
istic model that represents random variables and their conditional dependencies. The
graphical model is a directed acyclic graph (DAG). The nodes or vertices of the DAG
represent the random variables, the edges or arcs represent the conditional dependencies
between the variables. More formally a Bayesian network is defined by:

e a directed acyclic graph G = (V, E);
e a set of random variables X = (X;)ycy indexed by V

e the joint probability distribution P(X) can be written as the product of the in-
dividual density functions, conditional on their parent variables, or factorises ac-

cording to:
P(x) = H P(xv|xparent(v))
veV
3 This follows from P(X|Y) = % and P(Y|X) = P(;/(;)X) and P(XNY)=P(YNX)

26

When reasoning over the world, the Bayesian network can also be used by Bayesian
inference which can be used to reason about the world, especially in the context of
appearing evidence. Whenever evidence appears, e.g. by making observations in the real
world, this evidence is applied to the state of the variable in the model. Then the state
change is propagated throughout the network and a new probabilities are calculated.
Depending on the size and structure of the network, the recalculations can be a costly
operation. As mentioned in the definition, the probabilities originally encoded in the
model are known as prior probabilities, because they are known before any evidence is
known about the situation. The probabilities computed after evidence is entered are
known as posterior probabilities, because they reflect the levels of belief computed in
light of the new evidence.

4.1.3. Causality

Just as probability, causality is surprisingly difficult to define. However, the problem is
largely technical of nature. For this thesis, an intuitive notion of causality will suffice.
Causality is the relationship between two events where one event is seen as the cause and
the second event the effect. Whenever the cause happens, the effect will follow, while
the reverse is not the case. Causation implies that by varying one factor, another factor
can be made to vary.

Causality can be characterised as transitive, reflexive and anti-symmetric or contra-
position:
If x causes y, or as predicate Causes(x,y), then:

e Transitivity: Vx Vy Vz ((Causes(x,y) A Causes(y,z) — Causes(x,z);

e Reflexivity: Vx Causes(x, x);

e Antisymmetry: Vx Yy ((Causes(x,y) — —Causes(y, x).
If not written as a predicate, but using the logical connective —, x — v:

e Transitivity: {X =Y, Y - Z} = X — Z;

e Reflexivity: E X — X;

e Contraposition (no antisymmetry): {X — Y, =Y} = —=X.
Often, two couples of terms are used to describe causation in more detail. First, the
terms necessary and sufficient causes. These say something about the cause of an effect
if the effect is observerd. If C is a necessary cause of E, then the presence of E necessarily
implies the presence of C. The presence of C, however, does not imply that E will occur.
If C is a sufficient cause of E, then the presence of C necessarily implies the presence of

E. However, another cause Z may alternatively cause E. Thus the presence of E does
not imply the presence of C.

Second the terms strong and weak causality. These say something about an effect if a
cause is observed. Strong causality, C — E, is if C is present than E must also be present.
Weak causality, C Aa — E, is if C is present than E may also be present, depending on
« which may absence.

27

4.1.4. First-order logic, probability and causality

First-order logic, probability and causality can be combined, using a unified notation for
the three concepts.

A logical or or “V” can be considered a probabilistic statement. However, it is not
known what the underlying probability distribution is of such statement. A reasonable
enhancement of the logical or statement would be to encode the underlying probability
distribution in the statement by adding the distribution. One way of doing that is to
annotate the atoms with their probability. A formula of the form “a : p.” then should be
read as “a is true with a probability of p”. This implies that the constituents are assumed
to be independent. This is no problem, because it does not limit the representation of
the world[18].

A statement of the form “(a; : p1) V...V (a, : pn)” should be read as “each a; has a
probability p; and the sum off all probabilities should be 1.0 or less”. If it is less than 1.0
the statement should be read as “and there is an unmentioned a,1 that is responsible
for the remainder up to 1.0”. Note that the logical or, V, here is an exclusive or: just
one a, will be true and the remaining will be false. This allows the modelling of mutual
exclusion of the values of a random variable.

To describe a probabilistic “if-then-else” the implication, —, is used. A formula of the
form (a1 : p1) V...V (ay : pn) < ¢ should be read as “if ¢ is true than one of ay,...,a,
is true with a probability of p,”. A formula of the form “a <— (a1 : p1) V...V (ay : pn)”
should be read as “if one of a4, ...,a, with a probability of p, is true than a is true”.

The same implication notation can be used to describe causality. Analogous to the
probabilistic implication a formula of the form a; V...V a, < ¢ should be read as “if ¢
is true than it causes one of ay, . . ., a, to be true. A formula of the form “a < a1 V...Va,”
should be read as “if one of a1, ...,a, is true than that will cause a to be true”.

The combination of probability and causality then is trivial.

4.2. ICL

Independent Choice Logic (ICL) is a large framework that is capable of modelling agents
under uncertainty. It combines logic programming, probability, game and decision the-
ory. Agents try to accomplish their goals by making choices about the actions to be
performed. The choices are considered independent and have a probability distribution
over each choice outcome. A logic program gives the consequences of the choices, defining
possible worlds based on the choices. Agents make the choices that result in the worlds
that realise their goals as much as possible. In this section I will introduce the most
parts of ICL but I will leave out the specific game related parts about Nash Equilibria
and Pareto optimality. All definitions and examples are directly taken from Poole [20].

Definition 4.4. A base logic is a triple (Lx, ~, Lg) such that Lr and Lo are languages
and P~ is a consequence relation.

28

Lr and Lo are both specified as logical languages. Poole does not specify a concrete
syntax for the languages. For the actual concrete syntax of Lr and Lo the language
of the embedded formalism is used. In his article he assumes a Prolog-like syntax and
other conventions to be able to give explanations and examples . I will do the same, as
Prolog E| is firmly rooted in first-order logic which is a large part of the research in this
thesis. Except when mentioned otherwise, I will forgo the specification nature of £z and
Lo and will use a concrete Prolog-like syntax for the languages as an implementation of
that specification.

Language L r is the language of facts. It is used to specify the rules of the possible world
using some specific ICL rules. In his article, Poole considers a language L£r to consist
of logic programs with a unique stable model and a consequence relation to be truth in
the stable model [6]. This means that if there is a logic program P that P |~ g if g is
true in the unique stable model of P. To ensure that a unique stable model exists the
logic program P is required to be a-cyclic [I]. Recursive definitions are allowed if they
are well-founded. The language supports negation-by-failure.

Language L is the language of queries. Lg is a propositional language which allows for
arbitrary logical connectives. Therefore it has support for the most common connectives
as negation, conjunction, disjunction and implication. The atoms of Lo correspond to
set of ground atoms of L.

Definition 4.5. An independent choice logic theory on base (Lx,~, Lg) is a pair (C, F)
where

1. C, called the choice space, is a set of sets of ground atomic formulae from language
Lz, such that if x1 € C,x2 € C,x1 # x2 then x1Nx2 = {}. An element of C is

called an alternative. An element in an alternative is called an atomic choice.

2. F , called the facts or the rule base, is a set of formulae in L.

An alternative is a set of ground atoms, all sharing the same logical variable. The
logical variable has one of the atoms as its value, i.e. one of the atomic choice of the
alternative is true and its other atomic choices are false. An alternative is in a certain
way comparable to a variable of an enum-type in languages as Java or C++: a variable
with a discrete set of values and at any time the variable has exactly one of those values.
A choice space is a set of alternatives such that none of the alternatives unify with each
other: no two alternatives in a choice space share any atoms. A choice space can be
thought of as the set of all distinct variables in a program.

Definition 4.6. Given an independent choice logic (C, F) a selector function is a map-
ping T : C — UC such that T(x) € x for all x € C. The range of a selector function T ,
written R(T) is the set {T(x) : x € C}. The range of a selector function will be called a
total choice.

4Prolog is an ISO-standardised logic programming language. For more information see the doc-
umentation from the International Organization for Standardization (ISO), ISO/IEC 13211-1:
Information technology - Programming languages - Prolog and ISO/IEC 13211-2 Modules or
http://en.wikipedia.org/wiki/Prolog

29

http://en.wikipedia.org/wiki/Prolog

A selector function is a function that chooses a particular value for each logical variable
from its alternatives, maybe using a probability distribution over the atoms of the al-
ternative. A selector function selects or determines a possible world, a world that could
exists according the possible values of the variables. There are as many selector func-
tions as there are possible worlds. If the Herbrand universe of the logical program is
finite, i.e. there are no function symbols, the number of worlds is the product of the
number of atoms per alternatives and the number of logical variables and constants. If
the Herbrand universe of the logical program is infinite, i.e. there are function symbols,
the number of worlds in infinite.

It is possible to calculate the probability distribution of the worlds and the propositions
that are part of those worlds. The selector function defines the probability of a world
which is the product of the probabilities of the atomic choices of that possible world.
The sum of the probabilities of the possible worlds in which a proposition is true is the
probability of that proposition. If the number of worlds is infinite it is more difficult but
it is still possible to determine the probabilities of worlds. This is however not part of
this thesis. For simplicity I assume that a Herbrand universe is finite.

As an example, take the following ICL theory:
e The choice space C = {{ay,a2,a3},{b1,b2}}

e The facts or rule base F = {¢ <= a1 Aby,c + a3 Aby,d < a1,d < —ay ANby,e
c,e —d}

The ICL theory has two alternatives: {ay,az,a3} and {by,by}. The set {a1,a,a3} are
the atomic choices for the first alternative, {by, by} are the atomic choices for the second
alternative. Further the theory has a number of derived atoms, ¢,d and e, which are
only used in the rule base F.

Given the two alternatives, there are 6 selector functions for the ICL theory that se-
lect one value for each alternative: T (a1, bl), Tz(&ll, l71>, T3(a3, bl), T4(El1, bz), T5(az, bz) and
To(a3,b2). The 6 selector functions define 6 different possible worlds for the given ICL
theory:

We(apy) F @ T2 a3 by -by ¢ d
Wry(apy) F 71 az —as by -by, —-c¢ —d
Wry(asy) = 741 a2 43 by -by —-c¢ d —e
Wry(a) = 41 42 74as -by by —c d —e
Wes(apbp) = 741 42 743 -b; by -—c¢ —d e
Wry(ashy) = 41 a2 43 —by by c —d

Table 4.1.: The possible worlds for the ICL theory

Definition 4.7. A multi-agent independent choice logic theory is a tuple
(C, F,A,controller, Py)

where

30

C is the choice space as defined before,

F are the facts as defined before, and more specific, an a-cyclic logic program such
that no atomic choice unifies with the head of any rule,

e A is a finite set of agents, including a distinguished agent called “nature” or “agent
0}77
e controller is a function from C — A. If controller(x) = a than agent a is said to

control alternative x. If a € A is an agent, the set of alternatives controlled by a
is Ca = {x € C : controller(x) = a}. Note that C = Uze oCqa

o Py is a function UCo — [0,1] such that Vx € Co,) Po(a) = 1.

agx

The facts of an ICL theory introduce two constraints on the Prolog-based language L r.
First, the program must be a-cyclic. This basically means that the program terminates
and has a unique Herbrand model [I]. Second, no atomic choice may unify with the head
of any rule which means that not atom from any rule body may appear in any head of
any rule.

A multi-agent ICL theory also adds the concept of one or more agents. An agent is
something that acts in the world. Poole distinguishes two types of agents. Purposive
agents prefer some states of the world to other states and try to achieve their preferred
worlds. All non-purposive agents together are called “nature”. Agents reason and act
in time. An agent should react to the world. It adapts its actions according to changes
in the world. All alternatives are uniquely controlled by some agent and no two agents
share control over the same alternative. There is one agent, called nature or agent 0
that is always present and the alternatives controlled by that agent have a probability
distribution such that the sum of the probabilities of all elements in an alternative is
1.0. The control over the alternatives by nature is probabilistic. The probability of a
possible world is the product of the probabilities of the choice by nature per rule.

Definition 4.8. Utility is a function from agent and world to a cardinal value which
represents the worth of that world for an agent.

Utility is a way to represent the “happiness” of an agents with regard to a certain world.
An agent will try to maximise its utility by acting in the world.

Definition 4.9. ICL theory (C, F, A, controller, Py) is
e utility consistent for agent a € A where a # 0 if, for each possible world wy,
wy = utility(a, uy) A utility(a, us) implies uy = uy. The theory is utility consistent
if it is utility consistent for all agents (other than nature).
o utility complete for agent a € A where a # 0 if, for each possible world w,, there

is a unique number u such that w, = utility(a,u). The theory is utility complete
if it is utility complete for all agents (other than nature).

31

Poole assumes that all ICL theories are utility consistent and complete, which means
that no agent has two different utility values for the same world and for all agents and
for all worlds the utility value is known. Nature, although it is an agent, has no concept
of utility. This is not surprising as nature is not utility driven: nature does not want
things to happen but just lets them happen.

Below is an example of a set of utility functions for two agents for the example ICL
theory.

utility(agent;,5) <+ —e
utility(agent;,0) < cAe
utility(agent1,9) <+ -—cAe
utility(agenty,7) <« d
utility(agent,,2) <+ —d

Table 4.2.: The utilities for two agent

Given the utility functions for agent; and agent,, the example ICL is both utility con-
sistent and complete for agent; and agent, as can be ssen in the next table. Every agent
has a utility defined in every world as can be seen in the next table.

Weymp) = @ b ¢ d e utility(agenty,0) utility(agents,7)
Wey(appy) F G2 b1 —c —d e utility(agent;,9) utility(agent,,2)
Wey(anp) = a3 b1 —c d —e utility(agenty,5) utility(agents,7)
Wey(apy) FE @1 ba —c d —e utility(agent;,5) utility(agenty,7)
Wey(appy) FE G2 ba —c —d e utility(agent1,9) utility(agent,2)
Wey(aspy) = 3 ba ¢ —d e utility(agent;,0) utility(agent,,2)

Table 4.3.: The utilities of the agents in the possible worlds

Definition 4.10. If (C, F, A, controller, Py) is an ICL theory and a € A,a # 0, then a
strategy for an agent a is a function P, : UC, — [0,1] such that Vx € C, Z P,(x) = 1.0
xSy

Definition 4.11. A pure strategy for agent a is a strateqy for agent a such that the
range of P, is {0,1}

In other words, P, assigns a probability of 1.0 (selects) to one atom for every alternative
that is controlled by agent a and assigns a probability of 0.0 to the other atoms of that
alternative. A pure strategy thus corresponds to a selector function on C, and chooses
an atom or value for each alternative an agent controls. Just like with utility and for
the same reasons, nature has no concept of strategy.

Definition 4.12. A strategy profile is a function from agents other than nature into
strategies for the agents. If o is a strategy profile and a € A,a # 0 than o(a) is a
strategy for agent a. We write o(a) as PJ to emphasise that o induces a probability over
the alternatives controlled by agent a.

32

Definition 4.13. If ICL theory (C,F, A, controller, Py) is utility consistent and com-
plete, and o is a strategy profile, then the expected utility in world w for agent a # 0,
under strategy profile o is

e(a,0) =) p(o,7) xu(t,a)

T
(summing over all selector functions T)
where

u(t,a) = u iff we = utility(a, u)
(this is well defined as the theory is utility consistent and complete),

and the probability of world T given strategy profile o is

p(O’, T) - H Pgmtroller(x)(T(X))
xeC

This definition means that given a strategy profile the probability of the resulting world
and the utility of that world for an agent can be determined. This means that an agent
in ICL is a utility-based agent.

So far the model of ICL was static. ICL also has a dynamic model. Before going
into detail some concepts on the dynamics of the model must be introduced. First the
concept of time is introduced. Time can be both discrete and continuous but Poole
considers in his article only discrete time that is totally ordered and has some metric
over time intervals. Second the concepts of trace and transduction are introduced. A
trace is a function from time into some domain. There are two kind of traces, input
traces and output traces. Input traces are the things that can be observed at a certain
time. Output traces are the choices that are made or actions that are done at a certain
time. A transduction is a function from input traces into output traces such that the
output at some time t,utput depends on the input at some time #j,py and Eiypur < toutput-
In other words, the outputs depend on the previous inputs. The third concept is that
of the state of an agent. The state of an agent is the information that an agent has (or
should have remembered) in order for the output to be a function of the state and the
current inputs. The amount of state is not fixed for all types of agents. Simple reflexive
agents do not maintain state more than their current inputs whereas more sophisticated
model- and utility-based agents may maintain their entire history as state. The three
concepts together result in a chain of agent states that are connected through input and
output traces.

An agent is specified in an so called agent specification module (ASM).
Definition 4.14. An agent specification module for agent a # 0, written ASM,, is a
tuple (Ca, Oq, 1) where

e C, is a set of alternatives controlled by agent a.

e O, the observables, a set of sets of ground atomic formulae.

e 7T, the observable function, is a function 70 : Cq — 29

33

C, are the same alternatives as the alternatives defined by the controller in a multi-
agent ICL theory. The observables are facts or percepts of the world that an agent “can
see”. Elements of O, are called observation alternatives and the elements of observation
alternatives are called atomic observations. The observable function is very much like
the selector function mentioned earlier. Notice that although nature is defined as an
agent that is always present, it has no agent specification module.

The definition of a multi-agent independent choice logic theory is now altered to support

the dynamic nature.

Definition 4.15. A dynamic multi agent independent choice logic theory is a tuple
<-/4/ CO/ ‘T:O/ POI ASM>

where

o A is a finite set of agents, including a distinguished agent called “nature” or “agent
077

Co is the choice space controlled by nature,

Fo nature’s facts, an a-cyclic logic program such that no atomic choice unifies with
the head of any rule,
Py is a function UCy — [0,1] such that Vx € Co Y Po(a) =1,

xex
ASM is a function on A{0} such that ASM, is an agent specification module for
agent a.

such that Fy is a-cyclic with an a-cyclic ordering where Ya € A,Vx € C,,Va € x,VO €
t(x),Va' € O,&/ < a in the a-cyclic ordering. That is, there is an a-cyclic ordering
where the actions are after their corresponding observables.

The above definition says that in a dynamic ICL theory agents can always look at
observables before making choices about the variables they control (actions). Nature
controls the chances which determine the actual outcome of those choices (actions).
Which observable can be seen by which agent is determined by a choice function. If
multiple agents can look at the same set of choice variables the function is called non-
exclusive, otherwise it is called ezclusive. If every choice variable can be seen by some
agent the function is called covering. A dynamic ICL theory is observation consistent
if the choice function ensures that every agent only has its own choice variables as
observables. The dynamic ICL theory is observation complete if the choice function
ensures that an agent can see all possible values for its observables. Theories are required
to be observation consistent but not observation complete. This means that an agent
always can see the observables the agent knows of but that there may unknown choice
variable it is not aware of.

Just as in a static ICL theory an agent will use a strategy to determine what the agent will
do but in a dynamic ICL theory the agent can use what it has observed and remembered.
A strategy is a program of the form “if observed state of the world is like this than my
actions will be these so that my utility is as high as possible”. More formally:

34

Definition 4.16. If (C,, O,, 71,) is an agent specification module for agent a € A, then
a pure strategy for agent a is a logic program JF, such that

o F, is a-cyclic with an a-cyclic ordering such that, for every x € Ca, every element
of each element of 1,(x) is before every element of x.

e For every x € C, , and for every selection function Tr(x) O1 7t(x), there is a unique
w € x that is true in the unique stable model of Fo U R(Tr(y))-

e The heads of rules in F, only unify with either local atoms (that do not unify with
atoms in the agent specification module of any other agent or in Fy) or members
of choice alternatives in X,.

e For each x € C, , the only formulae that can appear in the bodies of rules in F, to
prove an element of x are:

— elements of members of (x),
— local atoms,

— atoms whose definition do not depend on the choices of other agents (and
formulae built from these).

This means three things. First, agents can observe all their observables before making a
decision. Second, the decision or logical program specifies what the agent will do. Third,
the decisions can only involve variables the agent has knowledge off or can compute and
will only be about the alternatives the agent actually controls.

Given the pure strategy for each agent, the pure strategy profile is defined, analogous
again with the static ICL theory.

Definition 4.17. Given a dynamic ICL theory, a (pure) strategy profile is a selection
of one (pure) strategy for each agent (other than nature). Thus a strategy profile is a
logic program F = Ugzec 4 F, that specifies what each agent will attempt to do.

There are two (equivalent) ways to define the semantics.

One is it to have a possible world for each selection of an element from each alternative
controlled by nature, and to have F specify what is true in each world. In this case,
the probability of a world is independent of the strategy, but a strategy profile specifies
what is true in each world.

The second is to have a possible world for each selection of one element from each
alternative. In this case, what is true in a world does not depend on the strategy profile
chosen, but it depends on the probability of a world. The second has many possible
worlds with zero probability that were not created in the first scenario.

Poole only defines the first method formally.

Definition 4.18. If dynamic ICL theory (A, Co, Fo, Po, ASM) is utility complete, and
F is a pure strategy profile, then the expected utility in world wr of strategy profile F
for agent a is

35

€(a,F) = Zp(r) x u(t,a,F)

(summing over all selector functions T on Cy)

where

u(t,a,F) =u if R(T) UF p utility(a,u)
(this is well defined as the theory is utility complete)

and the probability of world T is

p(t) =T Po(r(x))

X€Co

Like in static ICL, this definition also means that given a strategy profile the probability
of the resulting world and the utility of that world for an agent can be determined.

A pure strategy profile is based on one specific pure strategy per agent. However,
multiple pure strategies per agent are possible. Hence it is possible to define a probability
distribution over multiple pure strategies per agent. This of course leads to probabilistic
strategy profiles and expected utilities. The formal definitions are in Poole [20] and are
not repeated here.

ICL is a large framework that is created to model agents and their behaviour using
probability. ICL has four basic concepts: enum-like variables, the possibility to choose a
value for a variable in a possible world, probability distributions over the values and the
resulting worlds and utilities that result from the resulting worlds. It also introduces facts
and relations between the facts about the variables by providing a Prolog-based language.
With these constructs ICL can be used to express other formalisms which are needed to
implement suitable semantics. Poole describes implementations of several formalisms:
PHA, influence diagrams (whose formalism is largely based on PHA), Markov decision
problems (MDPs) and strategic form of games. First, I will look into Poole’s PHA theory,
which is in fact the first and best described formalism that is used in combination with
ICL. Second, I will look into Vennekens’ CPL. At the end of this chapter I will compare
both theories in relation to ICL and each other.

4.3. PHA

Probabilistic Horn abduction (PHA) is a framework that combines Horn clauses with
probabilities and hypotheses. Poole used a simplified form of an implementation of
default and abductive reasoning, Theorist [I7], with the addition of probabilities to
develop PHA. It is a Prolog-based logical language and is in essence a restricted form
of ICL. It has only choices by nature, has no negation as failure and has restrictions on
the rules. PHA provides probabilities over possible worlds. A system specified in PHA
is easily translated into a Bayesian network and vice versa. All definitions are directly
taken from Poole [18].

PHA uses two syntactical constructs, the definite clause, as described in and the
disjoint declaration.

36

Definition 4.19. A disjoint declaration is of the form disjoint([a; : p1,...,an : Pn]).
where the a; are atoms, and the p; are real numbers 0 < p; <1 such that p1+...+py =
1. Any variable appearing in one a; must appear in all of the a; (i.e., the a; share the
same variables). The a; will be referred to as hypotheses or assumables.

The atoms h; in this definition correspond to atoms in some definitive clause. This means
that a definite clause of the form a < a; A ... A a,. together with the complimentary
disjoint declaration in the form of disjoint([ay : p1,...,an : pu]) should be read as that
if one of the hypothesis a; A ... A a, with a probability distribution of a; : p1,...,a, : pn
is true, then deterministic and definitely a is true. Although not mentioned in this
definition, it is not allowed for a hypothesis to appear in any head of a clause.

Definition 4.20. A probabilistic Horn abduction (PHA) theory is a collection of def-
inite clauses and disjoint declarations such that if a ground atom a is an instance of a
hypothesis in one disjoint declaration, then it is not an instance of another hypothesis in
any of the disjoint declarations.

There may be equal or more definite clauses than disjoint declarations in a theory but
not less. Note that the collection of definite clauses together form an ordinary Prolog
program. All Prolog constructs, including functions, are allowed. In this thesis I will only
consider simple logical programs with a finite Herbrand universe. The most important
consequence of this is that the number of possible worlds is finite. This simplifies the
explanation of PHA but it is not a restriction on PHA itself. If function symbols are
used in a logical program the Herbrand universe is infinite and therefore the number of
possible worlds is infinite. The general idea is to define a measure over sets of possible
world as is described by Poole[19]. An other possibility is to limit the nesting level of
functions. This is in general no problem as the probability of a world decreases with
each nesting and eventually approaches 0.

An example of a PHA theory as described above:
disjoint([A(yes) : 0.3, A(no) : 0.7]).

disjoint([B(yes) : 0.7, B(no) : 0.3]).

C+ AANBACACyp(C,A,B).

disjoint([Cap(yes, yes,yes) : 0.2, Cap(no,yes,yes) : 0.8]).
disjoint([Cap(yes, no,yes) : 0.1, Cap(no, no, yes) : 0.9]).
disjoint([Cap(yes, yes, no) : 0.5,Cap(no,yes, no) : 0.5]).
disjoint([Cap(yes, no,no) : 0.75,Cp(no, no,no) : 0.25]).
D + CAD¢(D,C).

disjoint([Dc(yes, yes) : 0.36, Dc(no, yes) : 0.64]).
disjoint([Dc(yes, no) : 0.82, Dc(no,no) : 0.18]).

Given a PHA theory T, some more terms are introduced.

o Fr the facts, is the set of definite clauses in T, together with the clauses of the
form false <— h; A\ hj where h; and h; both appear in the same disjoint declaration
in T, and i # j. Let F} be the set of ground instances of elements of Fr.

37

e Hrp the hypotheses, the set of h; that appears in some disjoint declaration in T.
Let H} be the set of ground instances of elements of Hr.

e Prisa function H} — [0,1]. P(h}) = p; where k! is a ground instance of hypothesis
hi, and h; : p; is in a disjoint declaration in T. P(h}) will be the prior probability
of K.

In the remainder of this thesis the subscript T will be omitted if T is understood from
the context.

The above definition of a PHA theory corresponds closely with an ICL theory: the
collection of definite clauses with the ICL facts, the disjoint declarations with the ICL
choice space and its probability distributions.

The semantics of a PHA theory comes from the two primary ideas on which the theory
is founded, abduction and probability. Both abduction and probability require certain
assumptions on the syntax, world and probability that introduce some restrictions in
PHA. Because the basic reason for the restrictions comes from the wish to be able to
calculate the probabilities of explanations in a system, I will shortly introduce abduc-
tion before going into the assumptions and the restrictions on the rules that follow from
those. Abduction is a kind of logical inference that tries to explain one ore more ob-
servations by finding a reason: given evidence, the observation(s), and a number of
explanations, the reasons for the observation(s), one infers the reason that best explains
the observation(s)P}

Definition 4.21. An abductive scheme is a pair (F, H) where

e F is a set of Horn clauses. Variables in F are implicitly universally quantifies. Let
F’ be the set of ground instances of elements of F.

e H is the set of (possible open) atoms called the assumables or “possible hypotheses”.
Let H' be the set of ground instances of elements of H.
Definition 4.22. If ¢ is a closed formula, an explanation of g from (F,H) is a set D
of elements of H' such that
e FUD =g, and
e FUD W~ false.

The first condition says that D is sufficient to imply g: it is possible to prove g from
FUD. It is possible that multiple sets of D can be found that imply g. The second
condition says that D is possible: it can not be the case that F U D is inconsistent.

Definition 4.23. A minimal explanation of g is an explanation of g such that no strict
subset is an explanation of §

5 For a more elaborate treatment of abduction see The Stanford Encyclopedia of Philosophy (Spring
2011 Edition)

38

http://plato.stanford.edu/entries/abduction/
http://plato.stanford.edu/entries/abduction/

If there are multiple sets of D, the smallest D is a minimal explanation. The smallest D
is the intersection of all Ds. It is possible to have multiple minimal explanations if the
union two sets of D is empty.

To be able to calculate the probability of explanations Poole has to introduce some as-
sumptions about the knowledge base. The assumptions can be grouped into syntactical,
world and probabilistic assumptions.

The syntactical assumptions are:
e There are no rules in F whose head unifies with a member of H,

e If F/ is the set of ground instances of elements of F, it is possible to assign a natural
number to every ground atom such that for every rule in F’ the atoms in the body
of the rule ate strictly less than the atom in the head.

The first assumption says that rules may not imply a hypothesis that is used in another
rule, i.e. a hypothesis that appears in the body of some rule may not appear as the head
of another rule. Hypotheses may not be chained through rules. The second assumption
means that the logical program must be a-cyclic and that all recursion must be well-
defined.

The world assumptions are:
e The rules in F’ for every ground non-hypothesis represented atom are covering,
e The bodies in the rules in F/ for an atom are mutually exclusive.

The first assumption means that there are no missing atoms in the set of hypothesis in
the body of a rule: all hypothesis are known. The second assumption states that no
body may be re-used in any rule. Combined with the first syntactical assumption this
means that there is global and complete knowledge on the possible causes for a effect
and that this is stated in one rule.

The probabilistic assumptions are:

e Ground instances of hypotheses are consistent (with Fr) are probabilistically inde-
pendent.

This assumption states that the rules are probabilistic independent. This assumption is
not enforced in the world model and therefore it is the responsibility of the developer of
a PHA theory.

Using these assumptions Poole concludes the following probabilities for explanations.

If D= {hy,..., h,} is a minimal explanation then the probability of that explanation is
n
P(e)=P(hiA...Nhy) = HP(hi)
i=1

If expl(g,T) is the set of minimal explanations of conjunctions of atoms ¢ from PHA
theory T than the probability of that set of explanations is

P(g) =P V oe]l= Y Pl

eicexpl(g,T) ei€expl(g,T)

39

These calculations can be generalised for every combination of hypothesis, whether that
combination is an explanation or not. Such generalisation can be used to translate
Bayesian networks into PHA theories and vice versa. The translation of a Bayesian
network to a PHA theory is as follows. We have a random variable a with the variables
by,...,b, as its parents. The value of the random variable a is represented as as the
proposition a(v). This variable and its parents can be translated in to the following
PHA rule: a(v) < bi(v1) A... Aby(vy) ANc_a(v,vy,...,0,) where c_a(v,vy,...,0,) is a
possible hypothesis.

This states the hypothesis that variable a has value V because all the parent variables b;
have the value v;. The probability of this hypothesis than is P(a = v|by = v1 A...Ab, =
vy). The probability of 4 = V in general then is P(a = V|by = Vi A...Ab, = V,).
This can be translated into a disjoint declaration of the form disjoint([c,(v1,v1,...,0n) :
P1,---rCa(Un, 01, ., 0n) t Pu))

The reverse translation is also possible. To translate a PHA theory into a Bayesian
network, one grounds the theory, substituting ground terms for the free variables. The
ground atoms than are the nodes of the Bayesian network. All rules are arcs in the
network where the atoms in the bodies of the rules that imply an atom a become the
parents of that atom a. The CPT of a node follows from the disjoint declaration of the
body atoms.

A translation of the PHA theory of the the previous example would give the following
Bayesian network as in figure 4.2

Figure 4.2.: A PHA theory as Bayesian network

In appendix [A] section a more elaborate example is given of a translation of Bayes
to PHA and vice versa.

4.4. CP-Logic

CP-logic (CPL) is a logical language for specifying probabilistic causal laws. Its starting
point is that causality has an inherent dynamic aspect that translates into events and

40

that one event leads to (causes) another event or events. It extends the notion of Shafer’s
event trees [26] with a logical language. Using the event tree representation probabilities
over possible worlds are specified. LPAD, the precursor of CPL, is used by Meert [13]
to show that a system specified in CPL is easily translated into a Bayesian network and
vice versa. All definitions are directly taken from Vennekens [28].

ICL has just one syntactical construct, the causal probabilistic law or rule.

Definition 4.24. A causal probabilistic law, or CP-law, or rule is of the form
Vax(hycag) V..oV (hy o) < ¢

where

e li; are atoms, such that the universally quantified tuple of variables x contains all
free variables in ¢ and h;.

n

o allaj € (0,1] and) _a; <1,
i=1

e ¢ is a first-order formula.

The set of (h; : «;) is called the head of a rule and ¢ is called the body of a rule. If the
head contains only one atom h : 1 the probability may be omitted. A rule should be read
as “for all x, if the body of a rule (¢) “fires”, that is, the body is “true”, then an event is
caused whose effect is that at most one of the atoms of the head ((hy : a1) ...V (hy @ ay))
becomes true, where the probability of atom h; becoming true is «;.” A rule can be
thought of as a probabilistic causal law and can be read as “the body causes one of
the possible effects” or in traditional backward Prolog style “possible effects <— cause”.
The use of the term “event” differs from its standard use in probability theory, where it
denotes a set of possible outcomes of an experiment. Shafer uses the term Humean event
for an event that causes a transition between states and the term a Demoivrian for a a
set of possible outcomes [26]. In CPL “event” means the occurrence of something that
causes a transition from one state to the next, a Humean event.

All first-order formulae are allowed for ¢, including functions. Just as with PHA, and for
the same reasons, I will consider only grounded formulae with a finite Herbrand universe.
Riguzzi and Swift have described the semantics of LPADs with function symbols [23].
They follow the approach used by Poole as described in [19].

Definition 4.25. A CP-Logic theory consists of a finite set of causal probabilistic laws.

PHA introduced some (syntactical) restrictions on the rules of a theory. A CPL theory
has almost no restrictions. More in particular, it explicitly allows that multiple rules
attribute to the same result. A CPL theory is a multi-set of rules. Both body and head
can appear multiple times in a CPL theory. CPL also supports negation. Atoms that
are part of the head of a rule can also be part of the body of another rule. Under certain
circumstances recursion is allowed (see later in this chapter).

An example of a CPL theory as described above:
(A:0.3).

41

B:0.7).
C:03) +

(
(
(C:07)
(

D:04) %C.

The semantics of a CPL theory are based on the Shafer’s event of probability trees.
Event trees are a trees built from all (logical) possible paths that can be formed from
all events. A path is formed by the order of firing of the events. The order of firing
is specified by the rules. Events are synchronised by the rules: all events in the body
should happen before an event in the head of a rule. Because events in the body of one
rule can also be part of the head of other rules chains of events can happen. Meert lists
the principles that govern the firing of rules [13]:

e The principle of universal causation states that an endogenous property can only

be true if it has been caused by some event, i.e., all changes to the endogenous
state of the domain must happen as the consequence of an event.

The principle of sufficient causation states that if an event has a cause, then it
must eventually occur.

The principle of independent causation states that every event affects the state
of the world in a probabilistic independent way, i.e., knowing the outcome of one
event does not give any information about the outcome of a different event. This
principle ensures the modularity and robustness of the representation.

The principle of temporal precedence states that, whenever a property ¢ might
cause an event F, then the part of the process that is involved in determining
the truth of ¢ happens before the event E itself can happen. This principle is
motivated by the fundamental property of the physical world that a cause must
always preceed its effects. This principle ensures that cyclic causal processes in a
CP-theory happen in a consistent way.

For a formal treatment of how Vennekens builds a tree using these concepts see his article

[28

]. Assuming that the CP-events have been grounded and that the Herbrand universe

is finite, Meert [13] describes the algorithm to build a probability tree as follows:

42

1. Start with a root L, with Pr(L) =1 and an interpretation Z(L) = {@} (the set

of events that have happened).

2. Associate with the current node n a CP-event e from the CP-events that fulfils the

following properties:
e The ground CP-event e is not yet associated with another node.
e The ground CP-event e has at least one atom in head(e) that is not in Z(n).
e All the literals in body(e) are true given the current interpretation Z(n).

e For all negative literals in body(e), all CP-events with those literals in the
head are associated with a node on the path to the root or their body cannot
become true in the current or a future state. In other words, the precondition
is in its final state, it is not only true at this point but is guaranteed to

remain true in all potential future states. This step ensures that cyclic causal
processes are handled consistently. We first need to apply all possible causes
for something to happen before concluding something is not caused.

3. For every (h; : «;) in head(e), create a child node ¢; with Z(c¢;) = Z(n) U h; and
Pr(c;) = Pr(n)w;.

4. Go to step 2 for every child node. If no event is found in step 2, stop.

This builds an event tree that represents all possible final states that are described by
the CPL theory and the event paths that lead to those states, including a probability
distribution over the states and a probability for an event path.

In a CPL theory there are two sorts of events: exogenous and endogenous events. The
former are events that are introduced in the head of an empty rule, i.e. a rule without a
body. The latter are events that are introduced in the head of a rule. Every exogenous
event can be seen as the start of a chain or tree of rules. Exogenous events are events
that happen outside the system but that have their effect inside the system. They are
the start of a sequence of endogenous events, the events in the system. If a CPL theory
has only one exogenous event then it can be represented a a tree. If a CPL theory has
more than one exogenous event it can be represented either as a tree or a multi-root
graph. The tree is build by chaining the individual trees of the exogenous events one by
one. This is the representation Vennekens uses in his article. The multi-root graph is
built by taking each of the trees with an exogenous event as root and create the graph,
where two or more trees are joined by the rules that have events from those trees in the
body of a rule. The result is a kind of flowchart that represents the possible chain of
events. I will look into this representation in a later chapter of this thesis.

Vennekens calls the tree of events a probabilistic X-process. Every path from the root of
such tree to an event somewhere in tree is called an execution model. It does not exactly
mean that the events will exactly happen in the order of the given path but it will adhere
to the principles of firing of rules. Because of the principle of independent causation,
every path with exactly the same events and that adheres to the principles of firing of
rules will have the same probability, irrespective of the exact order of the events.

Vennekens also shows that some more complex processes can be modelled in CPL. It
is possible to use negation. It is also possible to use temporal rules in a CPL theory,
although under specific circumstances it is up to the designer of the CPL theory to
design his theory in such a way that the intended causal processes satisfy the temporal
precedence assumption.

Vennekens shows that it possible to translate a Bayesian network into a CPL theory.
He notices however, that a CPL theory is more expressive than a Bayesian network.
In particular, a CPL theory allows for multiple independent causes for the same effect.
A CPL theory also supports first-order logic representation of causes. It also supports
cyclic causal relation as long as the relation results in a valid execution model. All these
constructs can not be represented in a Bayesian network. The fact that these constructs
cannot be represented has no repercussions for the probability distribution. The extra
constructs are part of the modelling possibilities, not of the probability distribution.

43

Vennekens has defined LPAD, a probabilistic extension of logic programming based on
disjunctive logic programs. LPAD is syntactic identical to ICL but has different se-
mantics.

Definition 4.26. An LPAD is a set of rules of the form:
(hl :0(1). or (h1 :Dcl)...\/(hn Zan) — ¢
where

e li; are ground atoms,

n
o alla; € (0,1] and Y o <1,
i=1

e ¢ is a sentence.

Such LPAD rule can be read as a probability distribution over rule as the conjunction
of programming rules of the form {(h; +— ¢)|1 <i < n}. An instance of an LPAD is a
selection of one head h; for each distinct body ¢. An LPAD is sound if all instances of of
that LPAD have an exact well-founded or a-cyclic model. The set of sound LPADs than
describes all possible worlds over which a probability distribution can be calculated.

Based on the LPAD semantics Meert [13] shows that a CPL theory with well founded
recursion and a finite Herbrand universe can be translated into a Bayesian network via
which he calls an equivalent Bayesian network (EBN) by using the following algorithm.

First, the CPL theory needs to be grounded. From here on, CPL theory refers to the
ground CPL theory. Next, the following three steps construct the EBN of the CPL
theory.

1. For every atom in the CP-theory, a Boolean random variable is created in the
EBN. This is a so-called atom variable and it is represented by an atom node in
the network.

2. For every rule in the CP-theory, a choice variable is created in the EBN. This
variable can take n + 1 values, where n is the number of atoms in the head. It is
represented by a choice node in the network. Note that the choice nodes are un-
observed, they are artificial nodes that do not correspond to atoms in the domain.
These nodes are included instead of the indexed atoms as explained before. When
Ci = j, this means the j-th atom of rule i has been selected. Ci = 0 will be used
to denote that no listed head atom was selected, which may be either because the
rule body is false, or because no atom was selected when the probabilities do not
add up to one.

3. If an atom is in the head of a rule, an edge is created from its corresponding choice
node towards the atom’s node. If a literal is in the body of a rule, an edge is
created from the literal’s atom node towards the rule’s choice node.

For positive body literals, “<—” is used for the edge to the choice node. For negative
body literals, a dashed arrow, “«--", is used. This notation makes distinction possible
between positive and negative body literals in the EBN, and it ensures that there is a

44

one to one mapping between the EBN structure and the CP-theory rules. Both types
of edges are regular BN edges, the difference in meaning between positive and negative
body literals is encoded in the CPT of the choice node.

For the CPTs there are two cases:

1. The CPT of a choice variable. Such a variable can take n 4+ 1 values with n the
number of atoms in the head. The variable takes the value i if the i-th atom from
the head is chosen by the probabilistic process. It takes the value 0 if none of the
head atoms is chosen (this can only happen if the a; do not sum to one). If the
body of the rule is true, then the probability that the variable takes the value i =0
is precisely the causal probability «; given in the head of the rule. The probability
that n it takes the value 0 is equal to 1 —) ; &;. If the body is not true, then the
probability that the choice variable takes the value 0 is 1.0 and all the other values
have probability 0.0. Formally,

Pr(Ci = jlall parents true) = «;, for all j >0
Pr(Ci = Olall parents true) =1—) a;
]
Pr(Ci = O|not allparents true) =1
Pr(Ci = j|not all parents true) =0, for all j > 0

The exact column of the CPT that corresponds to “the body is true” will depend
on which body literals are positive and which are negative (as indicated with “<”
or “¢--"in the EBN).

2. The CPT of an atom variable is structured differently. It essentially represents a
deterministic OR function of the different rules having the atom in the head. More
specifically, if one of the choice variables representing a rule with the given atom
in position i of its head takes the value i, then the atom variable will be true with
probability 1.0. In all other cases it will be false, also with probability 1.0. This is
because the second part of our CP-theory is essentially a standard logic program.
Formally, the CPT can be represented as follows:

Pr(hi = true|all parents false) =0
Pr(hi = true|at least one parent true) =1

The procedure above translates a CPL theory to a specific form of EBN. It is however
possible to translate the same CPL theory to other EBNs without losing any probabilistic
information. Meert [14] introduces what he calls the Bayesian network space. A Bayesian
network space consists of all possible Bayesian networks that can represent the same CPL
theory. All definitions are directly taken from Vennekens [27] and [2§].

A translation of the CPL theory of the previous example would give the following
Bayesian network as in figure

A translation from a CPL theory has at least in three situations a choice of to represent
certain CPL constructs.

e CPL theories with multiple rules with the same resulting event:
Such theories have the form:

45

Figure 4.3.: A CPL theory as Bayesian network

X:1a <y
x:B <4z

The two graphical representations are given in figure 4.4

Figure 4.4.: CPL theories with multiple rules with the same resulting event

e CPL theories with multiple literals in the rule bodies:
Such theories have the form:
X:ia 4w,y
x:B 4z
The two graphical representations are given in figure 4.5

e CPL theories with multiple atoms in the rule heads:
Such theories have the form:

(x:a)V(y:B)V(z:y) .
The two graphical representations are given in figure 4.6
The fact that a choice that is available for the representation of the Bayesian network can

be used to make the translation from CPL theory to Bayesian network more semantics
preserving. In both the second and third case the right representation is closer to the

46

Figure 4.5.: CPL theories with multiple literals in the rule bodies

VAP

Figure 4.6.: CPL theories with multiple atoms in the rule heads

semantics of the theory than the left representation, while the probabilistic information
is the same. In the last case the CPTs of the BN are also much more complicated and
less intuitive than the CPs of the EBN. See table [4.4] and table [4.5 for the CPTs that

belong to figure

X X,y
T | g N T o T, T | TF | F, T | F.F
Y
y T O - F 11—« 7 T 0 0 0 T—a—p
Fl1 1- % F| 1 1 1 1- ﬁ

Table 4.4.: CPT tables for BN

In appendix [A] section a more elaborate example is given of a translation of Bayes
to CPL and vice versa.

4.5. Comparison

ICL is a large framework that encompasses everything that is needed for modelling
multiple agents under uncertainty. An important part of that framework is a combination
of a logical language and probability for which formal semantics are defined. As a
high-level modelling language ICL uses embedded formalisms for implementation related
modelling. As the precursor of ICL, PHA is the most natural embedding. However,
PHA has some restrictions on the syntax and uses some assumptions that limit what
effectively can be said in ICL if one uses PHA as embedded formalism. As another
possible embedding, CPL can be seen as a superset of ICL, allowing for a less restricted
syntax for specifying probability and adding the notion of probabilistic causal processes

47

Cv Cv Cv

a|b|c a|b|c a|b|c a|b|c
[Cv]a B 2] | [T][1 00 pLT]o 10 LT[0 01
F|0o 1 1 Fi1 0 1 Fi1 1 0

Table 4.5.: CPT tables for EBN

or state transitions. The comparison will be twofold. First, ICL and CPL are compared
as high-level specification language. Second PHA and CPL are compared as embedded
formalism. Afterwards a conclusion based on the comparison is drawn.

4.5.1. Comparison of ICL and CPL as specification language

The syntax of CPL E] is arbitrary more natural than the syntax of ICL. The basic model
of ICL with PHA is that the actions of an agent are deterministic and the events are
probabilistic. This is however not the model that is used in a DES. In a DES an agent
reacts on an event depending on the event and the state of the world. Specifying the
reaction on an event is more natural under these circumstances. Most people can also
easier find the possible effects of an event than all possible causes for an event, especially
in the context of the definition of a training DES where the basic question is often “what
should we do if this event happens under these circumstances?”. The locality of the
causality and probability adds to this. As can be seen in the examples in appendix [A]
ICL as a language is also more complex to understand. This is partly because it requires
two separate specifications for an ICL theory that are dependent on each other. It
requires a separate choice space and a separate fact database. The atoms in the choice
space are connected to the rule base: they may only appear in one body of one rule base.
In addition it is not allowed to chain rules in the rule base by using any alternative as
head of a rule.

The syntax of both languages appears to be the opposite of each other: ICL’s syntax has
probabilistic causes or bodies of rules and deterministic effects, CPL has deterministic
causes, i.e. the causing events have definitely happened, and probabilistic effects. Ven-
nekens [27] however shows that each ICL/PHA theory is syntactically also a CPL theory.
It is also possible to translate a-cyclic CPL theories without exogenous events to ICL
theories. It is however not possible to translate cyclic CPL theories or CPL with exo-
genous events to ICL. This means that CPL as a language is more expressive than ICL:
everything than can be expressed in ICL can be expressed in CPL but the reverse is not
true. This is only in in terms of syntax: according to Poole ICL “is a Turing-complete lan-
guage that can represent arbitrary finite probability distributions”[21]. However, there
is one thing that one cannot model: ICL explicitly prohibits that two agent control the
same alternative somehow together. All alternatives are assigned to different agents and

6As mentioned in ICL has no concrete syntax but is a specification of what a logical language
should support. However, in this section for the ease of the comparisson I will use ICL with PHA as
its embedding as if is the concrete language of ICL.

48

no two agents can be assigned the same alternative. This can be modelled in CPL as
can be seen in the shopping example from Meert [I13] where two agents both can buy
spaghetti.

ICL (with PHA as its embedded formalism) requires global knowledge of probability. It
requires the modeller to describe all possible choices and their probability distribution
together with the deterministic effect in one rule/disjoint combination. CPL does not
require global knowledge of probability because a theory is a multiset of rules where
atoms can appear in heads and bodies of multiple rules (not in the same rule of course).
The probability distribution is embedded in the rules themselves. The resulting locality
of probability leads to a greater modularity of the language. Using CPL, it is possible
to develop CPL theories per agent without the need of coordination on the global level.

ICL has, as a probabilistic language, a limited view on causality. There is some form of
causality in dynamic ICL in the sense that input always proceeds output and that the
input trace and state are used to calculate output trace. PHA as embedded formalism
has no concept of causality. CPL has causality as its very starting point, it is a logical
language for representing probabilistic causal laws. However, it is not very difficult to
extend ICL with causality. Finzi and Lukasiewics have described a bidirectional mapping
for ICL and causal models [5]. Also, Vennekens mentions that the equivalence between
CPL and ICL provides a causal interpretation for ICL, although a different one than
Finzi and Lukasiewics.

Both languages use the notion of possible world semantics. The logic determines the
possible states a world can be in, and the probability of a world is the product of all
probabilities as given in either the disjoint declarations or as embedded in the rules.
There is however subtle and related differences in the semantics of the defined world.
First, ICL has its roots in abduction and explains why we are here in this state: it gives
the choices made in the bodies that led to the choice. It has however no concept of the
order of choices in the past nor in the future. It uses a rather static concept of the world.
CPL has its roots in causality and has a dynamic concept of the world. It has both an
explanation for the past in terms of the order of events and a notion of future: just
follow all possible path(s) from the latest event in the multi-root event graph. Second,
CPL has no explicit notion of the value of variables (choices) within the world. It knows
that an event has occurred but it does not know what the underlying cause of the event
is, typically an agent making a choice. The state of the world in CPL is not defined in
terms of variables having a value but in terms of events that have led to the world. It is
possible to connect both semantics by adding some interpretation to the theories. First,
I will create an interpretation of an agent rule for ICL and second, I will do the same
for CPL. I will conclude that it is possible to unify the semantics.

In ICL, a trace is a function from time into some domain. Only discrete and totally
ordered time with some metric over time intervals was considered. ICL allows for all
possible inputs and outputs in a trace at a certain time. I restrict the multiplicity and
allow only one input per input trace and only one output per output trace. Further,
I assume that the values of observables are discrete or discretisable of the input traces

49

and that the choices or actions of the output traces are atomically. Then every trace
can be considered an event that signals the change of either an input or output. Trace
and event can be considered synonymous.

Within a dynamic multi-agent ICL theory, ICL assigns all alternatives to individual
agents, creating a rule base per agents that describes which agent determines what
alternative. In an ICL theory, agents choose a distinct atom or value for each alternative
that they control per transduction as specified by its strategy. The agent uses observables
and a logic program to determine the strategy. When using PHA as embedded formalism,
the actual effect of the chosen action is determined by nature based on a probability
distribution as defined in a disjoint declaration of the form disjoint(x1: p1,..., Xn : Pu)-
This means that an agent rule base can be described as a set of rules that look like:

Example 4.1. (x1:p1) V...V (Xn: Pn) < ¢ where

e (x1:p1)V...V(Xn:pn) are the atoms and their probability of an alternative c in
C and where the chosen atom is the output trace or event,

e ¢ is an input trace or event,

o < should be read as “execute the strategy logic program and choose one atom of
the alternative using all available knowledge of the world”.

CPL has a global rule base per ICL theory. As CPL places almost no restriction on the
rules, it is trivial to group the rules per agent based on the events on which it is supposed
to react. By doing so, each agent has a rule base that defines its behaviour in terms of
events. CPL uses the concept of Humean events, that which causes a transition between
states to define the rules. An event in a CPL rule is a named label for the change of a
variable. A CPL event can be considered the same as an ICL trace. CPL has no concept
of logical program that is involved by determining the resulting event when a rule is
fired: it defines the resulting event entirely in terms of probability. But a resulting event
has to materialise somehow, as the result of some not described procedure. This means
that an agent rule base in CPL consists out of rules that could actually be read as:

Example 4.2. (x1:p1) V...V (Xn: Pn) < ¢ where

o (x1:p1)V...V(Xn: pn) are the possible resulting events with their probability and
where the chosen event is the output trace or event,

e ¢ is sentence with one or more causing events and where each event is an input
trace.

o < should be read as “execute a logic program and choose an resulting event using
all available knowledge of the world”.

As can be seen in the above rules, the semantic concepts can easily be unified. Given
the rules above, an ICL rule is a subset of CPL rules. They only differ in the number of
causing events. ICL allows one causing event, CPL multiple causing events. For that,
the concept of event had to introduced in ICL and the concept of logical program in
CPL. It has also provides a procedural implementation of transduction using strategies.

50

The last point in the comparisson is about exogenous events, the events that happen
outside the system but that have their effect inside the system. Because ICL has no
native concept of events, it has no notion of exogenous events. CPL has the notion of
exogenous events. If one groups the rules per agent then even two groups of exogenous
events are created. The first group consists of the original exogenous events. The second
group is formed by endogenous events generated by an agent that appear to be exogenous
to a second agent. Exogenous events are a natural way of bootstrapping any sequence
of endogenous events in a system.

4.5.2. Comparison of PHA and CPL as embedded formalism

As embedded formalism PHA and CPL both translate the logic into possible world
semantics with probability distributions over those worlds. In terms of probability dis-
tribution over possible worlds they are for all practical purposes identical. Both can be
translated from and to Bayesian networks. There is a difference between the two lan-
guages in the translation from the theory to Bayesian networks. A round trip translation
for CPL will not always result in the original representation because there are choices in
the translation of the probabilistic causal rules that result in loss of information. This
is not the case for PHA: a round trip translation results in an identical representation.

The strategy and utility parts of ICL depend on the possible world semantics which is
provided by the embedded formalism. Because both PHA and CPL in the end describe
the same probability distribution over the possible worlds choosing for either PHA or
CPL has no influence on the strategy and utility part of ICL.

CPL adds a process semantic to ICL. CPL has two graphical representation of a theory,
a tree or a multi-root graph. In both cases there is the concept of previous and next
(possible) event. Inferences that use the “rules of firing” can be used to reason over the
order of events. Such inference is not possible in CPL combined with PHA.

In practical terms PHA and CPL both use a finite Herbrand universe and grounded
logical theories for the determination of possible worlds and probabilities. This is com-
parable to a OMG MOF layer MO model as described in chapter 3. The theories in their
first-order form with variables corresponds to a OMG MOF layer M1 model. This means
that there is a connection between the OMG MOF model and the Herbrand universe
based logical models.

4.5.3. Conclusion

Using CPL as a probabilistic causal logical language within the ICL framework appears
to be attractive and possible. It gives the modeller of the rule bases an easier to use
language with more flexibility and less restrictions without loss of formal semantics in
the rest of the framework. CPL allows for a more modular rule base development than
ICL with PHA. It allows for multiple agents that cause the same event. Its event-based
nature is a natural fit for DES. The semantics of PHA and ICL are identical and both

o1

resolve to a possible world semantics. CPL supports the more advanced features of utility
and strategy of ICL. The conclusion therefore is that the ICL framework with CPL as
the logical language and embedded formalism offers more functionality and flexibility
than the combination of ICL and PHA.

In the next chapter I will integrate the specification language ICL with CPL and the
specification language OARSL. I will also shortly look at some of the consequences and
possibilities of the runtime support that result from the integration.

52

5. Integration in AORSL

The primary research question of this thesis is whether is it possible to use a first-order
probabilistic causal logic as the event handling logic in a discrete event training sim-
ulation. In chapter 2 and 3 the functional requirements of a discrete event training
simulation have been described. In chapter 4 the ICL framework for modelling multiple
agents under uncertainty was introduced. I have used CPL, a probabilistic causal lan-
guage, to add flexibility, expressivity, modularity and causality to the ICL framework
without loosing the formal semantics of ICL in combination with PHA. In this chapter
I will describe a possible integration of OARSL and the (improved) ICL framework. I
will sketch an integration of AORSL and the improved ICL framework that will keep the
advantages of AORSL and add the advantages of ICL so that the resulting environment
can support training simulations.

The AORS metamodel and AORSL are tied to the OMG MDA framework that tries to
realise runnable specifications. The current implementation fully supports that frame-
work. Any integration with ICL should not break that support. The integration should
therefore be on three levels:

e Specification
e Translation
e Runtime

The primary focus will be on the integration of the specification possibilities of OARSL
and ICL. The translation of a specification (PIM) to an actual running program (PSM)
will be ignored in this thesis. I will only briefly discuss the necessary runtime support
for such program.

5.1. Extending the specification

The specification mainly concerns two separate areas:
e Behaviour of the environment and agents
e Utility per agent

5.1.1. Rule-based modelling and beliefs

The main aspect that is modelled by AORSL is the behaviour of the environment and
agents by using rules. A rule describes how the environment or agent reacts when it

93

receives an event, based on knowledge of the world. An environment rule allows for
binding to specific objects or set of objects. The other elements of the rule is the same
as with an agent rule. This means that the specification of the actual behaviour is
identical for both rules, the environment just adds routing of events.

An AORSL agent rule is a 4-tuple consisting of:

e TriggerEvt is the type of event that triggers the rule,

e Condition is a logical condition formula, allowing for variables,

e UpdateState specifies an update of the environment state,

e ResultEvt is a list of resulting events, which will be created when the rule is fired,
A CPL causal law is described by (x1:p1) V...V (Xn : Pn) < ¢ where

e (x1:p1) V...V (Xn: pn) are the possible resulting events with their probability
and where the chosen event is the output trace or event,

e ¢ is an input trace or event,

e < should be read as “execute a logic program and choose an event using all avail-
able knowledge of the world”.

It is easy to see that these two representations largely coincide. The main difference
is that a AORSL allows for the specification of only one triggering event TriggerEut
while CPL allows for an arbitrary logical sentence ¢ which more specifically can contain
multiple triggering events. The Condition and UpdateState of AORSL is largely the same
as the interpretation of CPLs <—. OARLS’ ResultEvt and CPLs (x1: p1) V...V (Xn :
pn) event list are comparable, with in case of ICL the addition of annotations with
probabilities. A resulting integration could be an AORSL agent rule described by a
4-tuple consisting of

o TriggerEvt is a list of type of events that triggers the rule,
e Logical Program is a logical program that possible updates the environment state,
e UpdateState alist of (environment) variables that may be updated by the Logical Program

e ResultEvt is a list of resulting events annotated with probabilities, which will be
created when the rule is fired.

It depends on the implementation of the specification environment in combination with
the runtime environment whether and how exactly LogicalProgram and UpdateState
should be specified. A smart specification environment could filter out the used variables
in the LogicalProgram and a smart runtime environment could filter out any runtime
changes in a program variable caused by the program. In both cases the modeller is
relieved from the need to specify it explicitly.

Beside the rules, agents have knowledge of facts and beliefs. In AORSL the facts of
an agent are defined by a set of properties, its beliefs by sets of belief-properties and
belief entities. In ICL there is no difference between facts and beliefs. All fact or beliefs,
which correspond to atoms in the rules and logical programs, are believed to be true

o4

with the probability that follow from the rules or observations. Adding the attribute
“probability” to AORSL’s properties, belief-properties and belief entities enhances the
support for “beliefs” greatly, transforming the simple reflex agents from AORSL to model-
based reflex agents

5.1.2. Desires

To support utility-based agents, ICL has the concept of utility. Utility is a function
from agent and state to a cardinal value. Support in AORSL can easily be added by
specifying a class Utility with function getUtility that takes a logical expression that
represents the state of the world for which the utility is requested. Objects of this class
can be added to an agent analogous to objects of the class AgentRule. Adding utility
makes the agents utility-based agents.

5.1.3. Intentions

In ICL, a strategy is a (total) choice for the alternatives of an agent. The purpose of a
strategy is determine the choices that result in the highest utility. The specification does
not mention how the strategy is chosen. During a transduction any number of choices
can be made by an agent, from none to a total choice. The horizon of such a decision
is the immediate next world, as ICL has no concept of planning beyond the current
transduction. Interestingly, the unification of ICL. and CPL transforms the logical the-
ories into a STRIPS-like planning problem [25]. Informally a STRIPS planning problem
is described by an initial state, a set of actions with a description of its preconditions
(what must be established before the action is performed) and postconditions (what is
established after the action is performed) and a specification of the goal states. Omitting
some details, a unified theory can be considered as STRIPS-like planning problem:

e Initial state: the first exogenous event takes the system into its initial state,
o Action: the < of the rules or Logical Program can be considered as an action,

— Precondition: the body of the rule or TriggerEut,

— Postcondition: the head of the rule or ResultEvt including any UpdateState.
e Goal state: the possible world with the highest utility,

However according to Blythe [2], until recently most STRIPS-based classical planning
algorithms focused on planning under rather restrictive assumptions. The most notable
restrictive assumptions are

e The goal of the planner is a logical description of a world state.
e The actions taken by the planner are the only sources of change in the world

e Each action can be deterministically described by the conditions under which it
can be applied and its effects on the world.

95

It is clear that a planner in an AORSL/ICL-based world should relax all three assump-
tions. Agents can have multiple goal states if the utility of different possible worlds are
identical. All the agents in the world make a plan and influence each other. The actions
are not deterministic but probabilistic. In his article Blythe describes four implementa-
tions of planners that all have a different approach for planning under uncertainty. They
all more or less relax the assumptions mentioned before. Each of the planners however
has a different approach and characteristics. Whether one of those planners is suitable
for usage in an agent-based discrete event simulation for training or what the adaptions
to either the planner of AORSL should be is unknown at this moment.

Integrating ICL in AORSL gives the opportunity to implement the concept of intentions.
For a full fledged training simulation planning of the actions of an agent is required.
Determining the required adaptions to OARSL to support planning under uncertainty
is beyond the scope of this thesis.

5.2. Extending the translation

In the current implementation a specification is translated by XSLT transformations.
Because the target environment is not clear (see the next section), it is uncertain what
the functionality of the translation should be. But luckily, XSLT is proven to be Turing
complete [ﬂ Apart from sensible syntax and expressivity, there is no theoretical limit on
what could be achieved with XSLT.

5.3. Extending the runtime

The OMG MDA framework tries to realise runnable specifications. The purpose of the
runtime is to enable a specified simulation to actually run. To a large extend this is a
matter of engineering and as such beyond the scope of this thesis. However, there are a
few problems that I want to address in this section.

Currently Java and JavaScript are used as the PSM language in which the actual sim-
ulation is written. The OMG MDA framework does not mandate any specific PSM
language. In the context of the integration of AORSL and ICL/CPL is may be useful to
rethink the PSM language. OARSL and ICL/CPL use different and largely incompatible
programming paradigms. OARSL uses an object oriented imperative paradigm whereas
ICL/CPL uses a logical declarative paradigm.

One possibility is to use Prolog as the PSM language. Prolog has excellent support
for first-order probabilistic causal logical. There is a Prolog implementation available
for ICL, AlLog2, designed by Pooleﬂ There is excellent support for the calculation of

Lsee http://www.unidex.com /turing /utm.htm|if you really think that XSLT a solution for the proof its
Turing completeness
2see lhttp: //www.cs.ubc.ca/ poole/aibook/code/ailog/ailog2.html for the implementation of AlLog2

56

http://www.unidex.com/turing/utm.htm
http://www.cs.ubc.ca/~poole/aibook/code/ailog/ailog2.html

probabilities in Prolog in the form of ProbLog. There are however also some drawbacks.
AORSL started as a prototype written in Prolog [30] but it was abandoned in favour of
Java. According to Wagner (in private communication) the transition from Prolog to
Java was

“simply because the AORS framework project is a large software engineering
(SE) effort, requiring e.g. the integration of other libraries (such as physics
engines and 3D graphics libraries) and I figured that SE is much better
supported by a standard programming language like Java. ”

In addition, Prolog is a logical programming language with a declarative nature. A DES
is procedural and event driven. Prolog does not have real good support for (imperat-
ive) procedural or event-driven programming although some efforts are made to enhance
the support, e.g. Logtalk which has support for object-oriented and event-driven pro-
gramming. GUI programming with Prolog is not very well developed. Inter process
communication is Prolog is limited to raw socket interfaces. High-level interfaces as
CORBA or DCOM are not available. As a general purpose programming language, Pro-
log does not seem to be an attractive candidate. An additional extra problem is that
there is no (good) mapping of OMG UML to Prolog and vice versa. This would mean
that the OMG MDA framework would be lost.

The other possibility would be to keep using the current choice Java as PSM language.
Java is an excellent general programming language and is used on a wide scale for that.
However, Java does not support directly first-order probabilistic logic as part of the
language. There are also no Java libraries available that support such logic. Fully
implementing the required logic environment in Java as a library is possible. There are
Java Bayesian network libraries available. The calculation of the “a priory” probabilities
is in general not very difficult. Another possibility would be the embedding of a Prolog
engine in Java. Yap, the Prolog on which ProbLog is build, can be embedded in a
Java program using its bi-directional Java interface (Java can call Prolog and vice-
versa). There is one big problem with this solution. It is not possible to have multiple
independent versions of the same (Prolog) database in one (operating system) process.
This a technical problem that the maintainers of Yap (or SWI-Prolog as a possible
replacement for Yap), the Prolog version that ProbLog uses, are unwilling to solve.
There are two different solutions for this problem. The first is a multiple process model
where each agent will run in a separate process and where all communication will be
by TCP/IP sockets, which both Prolog versions supports. This is however not a very
high-level IPC and cannot be compared to CORBA or DCOM. The second solution is
embedding a (lightweight) Prolog engine written in Java. I have not looked in great
detail into such a solution. More specific, I do not know what which embedded Java-
based Prolog engines do or do not support multiple independent version of the same
database.

Both solutions require a large software engineering effort. Not loosing the possibilities
of the OMG MDA framework is very important. The better support for large scale

o7

software engineering in Java is important. Supporting tools like UML editors, IDEs and
additional libraries are more abundant for Java than Prolog. Java programmers and
knowledge are more available and widespread than Prolog programmers and knowledge.
In my opinion, it seems more likely that a Java solution is easier to obtain than a Prolog
solution. However, without further research it is impossible to estimate which solution
requires the larger effort.

In this chapter I tried to integrate AORSL with ICL/CPL. As far as the specification part
of an OMG MDA framework is concerned, the integration results in the transformation of
AORSL from simple reflex agent environment into a full utility-based agent environment
which is required by a training simulation. Integrating planning into AORSL would even
provide more functionality. The problems with extending the translation and runtime
part of an OMG MDA framework are substantial in terms of software engineering effort.

o8

6. Conclusion

Very often the performance of higher staff in organisations during incidents is deemed to
be lacking, caused by insufficient preparation, insufficient training, bad decision-making
and bad procedures. Task training could help to improve the task performance. The
most important characteristics of the task environment are that it is dynamic, partially
observable, probabilistic, event driven and rule-based. For optimal transfer the training
environment should have a great resemblance with the task environment. Discrete event
simulations are dynamic, event driven and rule based. By adding a causal probabilistic
first-order logic, the event handling logic becomes non-monotonic and probabilistic and
support for partial observability is added.

The research question of this thesis is:

“Is it possible to use a first-order probabilistic causal logic as the event hand-
ling logic in a discrete event training simulation? ”

In this thesis I have looked at a specific DES implementation, AORSL from Wagner.
OARSL has two important features. Firstly, it is based on the OMG MDA framework
where the goals is to make “runnable specifications” in a formal language. Secondly, it
uses agents in its modelling. OARSL actually achieves the runnable specification goal
for simple reflex agents. However, to be truly useful for training simulations, model
and utility-based agents are required. This means that AORSL as a language must be
extended. This can be done by embedding a first-order probabilistic causal logic.

For this reason I introduced ICL. ICL is a framework that is capable of modelling agents
under uncertainty using logic programming, probability, game and decision theory. It
is able to specify the model- and utility-based agents which are required for training
simulations. By unifying ICL’s logical language with CPL and embedding it in the
framework as the first-order probabilistic causal logic language, ICL is provided with
a more expressive, modular and causal language while keeping the formal semantics of
ICL intact.

In chapter 5 I have integrated ICL/CPL framework in the specification environment
of AORSL. Because CPL can be considered as implementing a superset of the logical
language specification, the main problem is the unification of the semantics of ICL’s
agent rule and CPL’s causal law. By adding the concept of Shafer’s Humean event to
ICL and the concept of logical program to CPL the semantics of both languages can be
unified. The unification also provides for a procedural embedding of transduction using
strategies. Replacing PHA by CPL in ICL does not change the possible world semantics

99

with probabilities over the worlds. It adds the event tree and multi-root graph semantics
of CPL to ICL. By integrating the ICL/CPL unified logic in AORSL rules and properties
the agents in AORSL are transformed from simple reflex agents to model-based reflex
agents. The subsequent integration of ICL’s utility into AORSL makes the agents utility-
based agents. Although not worked out in AORSL, I showed that the unified ICL/CPL
can be seen as STRIPS-like planning problem, which would make the behaviour of agents
even more sophisticated.

Extending the translation and runtime environment by integrating of AORSL and the
ICL/CPL framework proved to be more difficult. The most difficult parts were the
technical difficulties that arise from the use of different programming paradigms for
AORSL and ICL/CPL. AORSL is currently implemented in Java and JavaScript while
ICL/CPL is Prolog-based. Integration of these technologies is not trivial. Without
further research it is impossible to determine which solution should be chosen.

Based on the research in this thesis the answer to the research question is that is in-
deed possible to use a first-order probabilistic causal logic as event handling logic in a
discrete event training simulation. In fact, using such language creates an environment
that almost fulfils all requirements for such training simulation. As far as a specification
language is concerned, further research is needed on the subject of planning under uncer-
tainty. To fully support an OMG MDA framework implementation for a full utility-based
agent environment, even more research will be needed.

60

Bibliography

1]
[2]

[10]
[11]
[12]
[13]

[14]

K. R. Apt and M. Bezem. Acyclic programs. In ICLP, pages 617-633, 1990.

J. Blythe. An overview of planning under uncertainty. In M. J. Wooldridge and
M. Veloso, editors, Artificial Intelligence Today, chapter An overview of planning
under uncertainty, pages 85-110. Springer-Verlag, Berlin, Heidelberg, 1999.

S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.

I. M. Diaconescu and G. Wagner. Agent-based simulations with beliefs and sparql-
based ask-reply communication. In Proceedings of the 10th international conference
on Multi-agent-based simulation, MABS’09, pages 8697, Berlin, Heidelberg, 2010.
Springer-Verlag.

A. Finzi and T. Lukasiewicz. Structure-based causes and explanations in the inde-
pendent choice logic, 2003.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski, Bowen, and Kenneth, editors, Proceedings of International Logic
Programming Conference and Symposium, pages 1070-1080. MIT Press, 1988.

G. Guizzardi. Ontological foundations for structural conceptual models. PhD thesis,
Centre for Telematics and Information Technology, University of Twente, 2005.

J. K. J. L. W. M.-V. J.F.A K. Benthem, H.P. Ditmarsch. Logica voor informatici.
Pearson, 2003.

A. G. Kleppe, J. Warmer, and W. Bast. MDA FEzxplained: The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

K. Korb and A. Nicholson. Bayesian Artificial Intelligence. Chapman and Hall,
2nd edition, 2010.

A. M. Law. Simulation Modeling and Analysis 4th edition. McGraw-Hill Higher
Education, 4rd edition, 2007.

J. McCarthy. Applications of circumscription to formalizing common sense know-
ledge. Artificial Intelligence, 28:89-116, 1986.

W. Meert. Inference and learning for directed probabilistic logic models. PhD thesis,
Katholieke Universiteit Leuven, 2011.

W. Meert, J. Struyf, and H. Blockeel. Learning ground cp-logic theories by lever-
aging bayesian network learning techniques. Fundam. Inf., 89:131-160, January
20009.

61

[15]

22]

23]

62

B. Milch and S. Russell. Inductive logic programming. In S. Muggleton, R. Otero,
and A. Tamaddoni-Nezhad, editors, Inductive Logic Programming, chapter First-
Order Probabilistic Languages: Into the Unknown, pages 10-24. Springer-Verlag,
Berlin, Heidelberg, 2007.

J. Patrick. Training: Research and Practice. Academic Press, 1992.
D. Poole. Representing knowledge for logic-based diagnosis., 1988.

D. Poole. Probabilistic horn abduction and bayesian networks. Artif. Intell., 64:81—
129, November 1993.

D. Poole. Abducing through negation as failure: Stable models within the inde-
pendent choice logic. Journal of Logic Programming, 44:2000, 1995.

D. Poole. The independent choice logic for modelling multiple agents under uncer-
tainty. Artif. Intell., 94:7-56, July 1997.

D. Poole. The independent choice logic and beyond. In L. De Raedt, P. Frasconi,
K. Kersting, and S. Muggleton, editors, Probabilistic inductive logic programming,
chapter The independent choice logic and beyond, pages 222-243. Springer-Verlag,
Berlin, Heidelberg, 2008.

A.S. Rao and M. P. Georgeff. Modeling rational agents within a bdi architecture. In
J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning, pages 473—
484. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA, 1991.

F. Riguzzi and T. Swift. An extended semantics for logic programs with annotated
disjunctions and its efficient implementation. In Proceedings of the 25th Italian
Conference on Computational Logic (CILC2010), Rende, Italy, July 7-9, 2010.,
number 598 in CEUR Workshop Proceedings, Aachen, Germany, 2010. Sun SITE
Central Europe.

A. J. Romiszowski. Designing instructional systems. Kogan Page, New York, 1984.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 2nd edition edition, 2003.

G. Shafer. The art of causal conjecture. MIT ress, 1996.

J. Vennekens. Algebraic and logical study of constructive processes in knowledge
representation. PhD thesis, Informatics Section, Department of Computer Science,
Faculty of Engineering, May 2007. Denecker, Marc and De Schreye, Danny (super-
visors).

J. Vennekens, M. Denecker, and M. Bruynooghe. Cp-logic: A language of causal
probabilistic events and its relation to logic programming. Theory Pract. Log. Pro-
gram., 9:245-308, May 2009.

J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated
disjunctions. In B. Demoen and V. Lifschitz, editors, Logic Programming, 20th
International Conference, ICLP 200/, Saint-Malo, France, September 6-10, 2004,

[30]

[31]

[32]

Proceedings, volume 3132 of Lecture Notes in Computer Science, pages 431-445.
Springer, 2004.

G. Wagner. The agent-object-relationship metamodel: towards a unified view of
state and behavior. Inf. Syst., 28:475-504, July 2003.

G. Wagner. Aor modeling and simulation éAS towards a general architecture for
agent-based discrete event simulation. In In P. Giorgini et al. (Eds.): Agent-
Oriented Information Systems, Springer LNAI 3030, pages 174—-188, 2004.

G. Wagner, O. Nicolae, and J. Werner. Extending discrete event simulation by
adding an activity concept for business process modeling and simulation. In Winter
Simulation Conference, WSC 09, pages 2951-2962. Winter Simulation Conference,
2009.

63

A. Example translations

A.1. Original Bayesian network

(fire) = 0.01

(smoke| fire) = 0.9

(smoke|—fire) = 0.9

(tampering) = 0.02

(alarm|fire N\ tampering) = 0.5
(alarm|fire N —tampering) = 0.99
(alarm|—fire A tampering) = 0.85
(alarm|=fire N =tampering) = 0.0001
(leaving|alarm) = 0.88
(leaving|—alarm) = 0.001
(report|leaving) = 0.75
(report|—leaving) = 0.01

BN -~~~ s~ s~ Ry

Figure A.1.: Bayesian network for smoking alarm

A.2. Translation Bayesian network to PHA

The PHA theory for the Bayesian network:

65

disjoint([fire(yes) : 0.01, fire(no) : 0.99]).

smoke(Sm) < fire(Fi) A c_smoke(Sm, Fi).
disjoint([c_smoke(yes, yes) : 0.9, c_smoke(no, yes) : 0.1]).
disjoint([c_smoke(yes, no) : 0.01, c_smoke(no,no) : 0.99]).
disjoint([tampering(yes) : 0.02, tampering(no) : 0.98]).

alarm(Al) < fire(Sm) A tampering(Ta) A c_alarm(Al, Fi, Ta).
disjoint([c_alarm(yes, yes, yes) : 0.50, c_alarm(yes, yes, yes) : 0.50]).
disjoint([c_alarm(yes, yes, no) : 0.99, c_alarm(no, yes, no) : 0.01]).
disjoint([c_alarm(yes, no,yes) : 0.85,c_alarm(no, no, yes) : 0.15]).
disjoint([c_alarm(yes, no, no) : 0.0001, c_alarm(no,no, no) : 0.9999]).
leaving(Le) < alarm(Al) A c_leaving(Le, Al).
disjoint([c_leaving(yes, yes) : 0.88, c_leaving(no, yes) : 0.12]).
disjoint([c_leaving(yes, no) : 0.001, c_leaving(no, no) : 0.999]).
report(Le) < leavin(Al) A c_report(Le, Al).
disjoint([c_report(yes, yes) : 0.75, c_report(no, yes) : 0.25]).
disjoint([c_report(yes, no) : 0.01, c_report(no, no) : 0.99]).

A.3. Re-translation ICL to Bayesian network

The translation of the ICL theory above back into Bayesian network creates the original
network. This means that the two representation are translatable into each other without
any loss of information.

A.4. Translation Bayesian network to CPL

The CPL theory for the Bayesian network as given in the introduction:

fire : 0.01

tampering : 0.02

alarm : 0.5 < tampering N fire
alarm : 0.85 < tampering N\ —fire
alarm : 0.99 < —tampering A fire
alarm : 0.0001 <— —~tampering N\ —fire
smoke : 0.9 < fire

smoke : 0.01 <— —fire

leaving : 0.88 <— alarm

leaving : 0.001 <— —alarm

report : 0.75 < leaving

report : 0.01 < —leaving

The translation from a Bayesian network to a CPL-theory is straight forward.

66

A.5. Re-translation CPL to Bayesian network

Retranslating the CPL theory into a Bayesian network creates a different network than
the original network because the translation from a CPL theory into a Bayesian network
introduces choice nodes. Figure shows the Bayesian network that results from the
above CPL theory. It is clear that a naive translation of this network will lead to
different CPL theory than the original CPL theory. Whenever a CPL theory-based
Bayesian network is translated back into the original CPL theory the choice nodes should
be eliminated in the translation by putting the choices in the rules of the atoms. The
information necessary for this however is not guaranteed encoded in the Bayesian network

Figure A.2.: re-translation from CPL to Bayesian network

67

B. AORSL UML

69

.|UML::NamedElement

name
qualifiedName

UML::OpaqueExpression

body: String
language: String

UML::MultiplicityElement

Tlower = 1
upper = 1

EntityType

BelieveProperty
/\

SelfBelieveProperty | < -

|0bjectType|

| MessageType

Agen

memorySize: @

= Integer

CausedEventType

EventType

<<invariant>>

{
clas.ods1TypeOf (EntityType)
and
class.believerType->nonEmpty ()
}

<<invariant>>

B
class.believerType = class

|-

| EnvironmentEventType |

ActionEventType

TimeEventType

|ActuaIPerceptionEventType |

T

ExogenousEventType

PhysicalObjectType

| idPerceivable: Boolean = false |

PerceptionEventType

| PhysicalAgentType

e

| autoPerception: Boolean = false |

- AgentRule

| CommunicationRule

70

Figure B.1.: Entity types

PeriodicTimeEventType

periodicity: OpaqueExpression
stopCondition: OpaqueExpression

1
AtomicEventExpr t@—1—
0..1 eventVariable: String 0.1
triggeringEventExpr resultingEventExpr
Rule
name: String
id: String
— resulfingStateChangeExpr
condition
0..1
UML::OpaqueExpression * { ordered }
body: String AtomicStateChangeExprl
language: String

ObjectiveStateChangeExpr | SubjectiveStateChangeExpr

Figure B.2.: Rules

<<invariant>>
m {Triggering events must be internal events or
A potential perception events, and resulting
events must be action events or reminder events}

AgentRule
* {ordered}

resultingSubjectiveStateChangeExpr redefines resultingStateChangeExp

| SubjectiveStateChangeExpr

UML::Slot
1..%

%UpdateActionExprl

Figure B.3.: Agents behaviour

!

71

Rule

name: String << invariant >>
id: String

{triggeringEventExpr.eventType.ocllsKindOf (EnvironmentEventType)
and

resultingEventExpr.eventType.ocllsKindOf (CausedEventType)}

=

I

-

-
— -

|EnvironmentRuIe|— -

resultingObjectStatZChangeExgr redifines resultingStateChangeExpr

* {ordered}
|ObjectiveStateChangeExpr

—1‘|CreateActionExpr DestroyActionExpr

fromEntityId: long
toEntityId: long

UpdateActionExpr 0..1
entityVariable: String

*

PhysicalObjectSpecification |

Figure B.4.: Environment (causality) rules

72

UML::Property M—' BelieveProper‘tyl
T

UML::Slot K]
3

SelfBelieveSlot

I 0bject|<}

beliefEntities
-

Entity

EntityType [* type

|

EnvironmentEvent

cause

occurencelocX: Float
occurencelocY: Float
occurencelocZ: Float

believer

1
| InternalEvent P’IAgentSubjectHAgentObjectM—

A |ActuaIPerceptionEvent|

|TimeEvent|

ExogenousEvent

PerceptionEvent
TAN

Physi]

er

ActualinMessageEvent

perceivedPhysicalObjectType: String
perceivedPhysicalObject: PhysicalObject
perceivedPhysicalObjectIdRef: Integer
distance: Float

perceptionAngle: Float

[PeriodicTi

Event]

reminderfisg

InMessageEvent

Figure B.5.: Entities

PhysicalObject

: Float

: Float

+ Float

m: Float
width: Float
height: Float
depth: Float
vx:

N X

az:

dist(in o:PhysicalObject): Float
getv(): Float
getA(): Float

PhysicalAgentObject

73

EventType

/\
| SharedEventType |
. . SharedExogeneousEventType
—| SharedActionEventType | |SharedMessageEventType I— periodicity
* * stopCondition
*
actorType senderType
perceiverTypes
1..* 1..%
1|AgentType|; .
2~

Figure B.6.: Shared event types (convenience constructs)

74

	Abstract
	List of Tables
	List of Figures
	Introduction
	Training
	Simulation and agents
	Discrete Event Simulation
	Agent systems
	Agent-Oriented-Relationship modelling
	AORSL in detail
	Ontological categories
	Rule-based modelling
	Beliefs
	Desires
	Intentions

	Extending AORSL

	Probabilistic Logic
	Preliminaries
	First-order logic
	Probability
	Causality
	First-order logic, probability and causality

	ICL
	PHA
	CP-Logic
	Comparison
	Comparison of ICL and CPL as specification language
	Comparison of PHA and CPL as embedded formalism
	Conclusion

	Integration in AORSL
	Extending the specification
	Rule-based modelling and beliefs
	Desires
	Intentions

	Extending the translation
	Extending the runtime

	Conclusion
	Bibliography
	Example translations
	Original Bayesian network
	Translation Bayesian network to PHA
	Re-translation ICL to Bayesian network
	Translation Bayesian network to CPL
	Re-translation CPL to Bayesian network

	AORSL UML

