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Abstract

Time-memory trade-off (TMTO) attacks are used to speed up the brute-
forcing of encrypted data. Attempts have been made to formally compare
four TMTO methods (Hellman, distinguished points, rainbow tables and
Kraken), but not all factors could have been included in these comparisons.
Chain merges for instance, are suspected to have a significant influence on
the percentage of the search space that is covered by a TMTO method.
However, it is hard to formally reason about when chain merges might occur.
This bachelor thesis aims to gather more empirical data on how the TMTO
methods perform compared to each other, mainly with respect to chain
merges. It turns out that chain merges indeed have a significant impact.
Also, with respect to chain merges, the Kraken method currently performs
best.
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Chapter 1

Introduction

During the 26th Chaos Communication Congress in 2009, Karsten Nohl re-
vealed a new approach to cracking the A5/1 cipher that is used in GSM. The
approach is used by a piece of software called Kraken. Usually, brute-forcing
an encryption costs a lot of time as the entire key space has to be explored.
Time-memory trade-off (TMTO) methods have been introduced to acceler-
ate this process. Nohl’s new approach made it possible to break the GSM
encryption in minutes using nothing but ordinarily available hardware [15].
The approach uses a combination of two TMTO methods: distinguished
points [6] and rainbow tables [17]. This combination is said to be more ef-
ficient [15, 16]. However, there are reasons to doubt this statement. That
is why I am going to measure how efficient the combination actually is,
in comparison to the well-established methods, namely Hellman’s method,
distinguished points and rainbow tables.

Kraken makes it possible for everyone to brute-force the A5/1 cipher
with ordinary hardware. However, the statement that its resulting TMTO
tables are more efficient than the ones from other methods is a bold one, as
no proof is being given. It is also hard to formally disprove the statement,
because it is difficult to formally compare some aspects of the methods. It
might even be impossible for some aspects, as little progress has been made
with the older methods over the past decades. It has been some years and
it is still not completely clear as to which method performs best in practice.
It is actually an unknown problem, which makes it interesting for research.
My measurements will only give an indication for a certain set of ciphers and
boundary conditions, but it might end up in an extra argument in favour of
some method.
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Chapter 2

Theoretical framework

To address the question mentioned above, a bit of theory is required be-
fore doing research. First the different categories of cipher algorithms are
explained, then brute-forcing and time-memory trade-offs to optimize the
brute-forcing, and finally it will be discussed how to measure and compare
the efficiency of different TMTO methods.

2.1 Cipher algorithms and hash functions

First of all, hash functions will be discussed and then ciphers. A cipher
is an algorithm for performing encryption and/or decryption. There are
thousands of different ciphers that can be categorized as shown in Figure
2.1. The two main cipher categories of importance that will be discussed are
block ciphers and stream ciphers, where special attention is given to AES
and A5/1. In section 2.2.5, it is explained how the kind of cipher influences
the use of time-memory trade-off attacks.

2.1.1 Hash functions

A hash function is a function H : D → {0, 1}N that takes data with an
arbitrary length and returns a fixed-size bit string, the hash, such that a
change to the input will most likely change the hash value. Cryptographic
hash functions can be used to for instance verify the integrity of files or
messages, or to verify passwords. A useful cryptographic hash function
satisfies some important properties [20].

• Preimage resistancy: when given a hash value H(m) = h, it is infeasi-
ble to find its preimage m. In other words, it is hard to find an inverse
H−1 such that H−1(h) = m.

• Second-preimage resistancy: when given an input m1, it is infeasible
to find a second input m2 such that m1 6= m2 ∧H(m1) = H(m2).
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Figure 2.1: Cipher taxonomy [13]

• Collision resistancy: it is infeasible to find two input messages m1 and
m2 such that m1 6= m2 ∧H(m1) = H(m2).

• A final practical property is that it is easy (i.e. fast) to calculate the
hash value of a given input message.

Popular hash functions are for instance MD5 [19] and the functions in
the SHA family [8].

2.1.2 Block ciphers

A block cipher is an algorithm that operates on a fixed-length input with a
constant transformation that is specified by a symmetric key. Usually, the
input, key and output all have the same fixed length, although this is not
strictly necessary. Graphically, a block cipher looks as shown in Figure 2.2,
where K denotes the key, I the input and O the output.

K

��
I // BC // O

Figure 2.2: Block cipher schema

A larger input message is split in blocks of the required length. The last
block is usually padded if it does not meet the required length yet. Each
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block is transformed as determined by the key and the cipher algorithm
and the resulting ouput blocks are put together again to form the output
message. There are a few methods, called modes of operation, on how to
handle these multi-block messages.

AES

The Advanced Encryption Standard (AES) is a widely used block cipher.
Originally, it was called Rijndael [5] and it was submitted for a NIST contest
to supersede the Data Encryption Standard (DES). There are a couple of
variants on Rijndael, each with a different key size. AES uses the 128-bit
block size version. The Rijndael algorithm repeats a certain cycle a number
of times. Each round consists out of four operations, except for the first and
the last round. These operations are SubBytes (non-linear substitution),
ShiftRows (transposition), MixColumns (mixing) and AddRoundKey (XOR
state with round key).

2.1.3 Stream ciphers

Stream ciphers are more suitable for variable-length input messages. Using
a key K, a stream cipher algorithm generates a keystream of the same length
as the input message I. They are then combined (in practice: XORed) to
deliver the output message O. Graphically, the situation looks as shown in
Figure 2.3.

K

��
SC

��
I // ⊗ // O

Figure 2.3: Stream cipher schema

A5/1

One of the most widely deployed stream ciphers in the world is the A5/1
cipher that is used in GSM (Globale System for Mobile communication).
Initially = it was kept a secret, but reverse engineering has revealed how the
encryption works [3]. A5/1 uses three unequally sized linear feedback shift
registers (LFSRs) which contain 64 bits in total to generate the keystream.
The internal state is initially set with a 64-bit private session key and a
publicly known 22-bit frame number. The registers are clocked irregularly
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through a majority function over three clock bits, as shown in orange in
Figure 2.4.

Figure 2.4: A5/1 stream cipher [14]

2.2 Brute-forcing and TMTOs

Assume an attacker tries to crack an encrypted message m′. His goal is to
compute the m for which f(m) = m′, where f can be an (unsalted) hash
function, a block cipher or a stream cipher. In the case of a hash function,
m represents the plaintext input. With a block cipher, m usually represents
the key and f is applied to a chosen-plaintext input. Finally in the case
of a stream cipher, m represents the key that determined the internal state
of a cipher f that generated a keystream that was XORed with a chosen
plaintext. Even though the attacker knows f , a good cryptosystem should
not make it possible to directly compute the preimage. For simplicity, only
the word ’key’ is used when referring to m from now on.

One thing the attacker can always do is to start brute-forcing: trying
out all possible m and see if applying f results in m′. Brute-forcing an
encryption can be time-consuming though. For an n-bit key cryptosystem,
there are typically N = 2n possible keys. When N is sufficiently large, it
becomes infeasible to try all possibilities.

By being smart, it is possible to greatly reduce the time spent on cracking
for repeated attacks. For instance, it is possible to precompute the encryp-
tion results of all N possible keys and to store these in a table as tuples
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< m, f(m) >. This is also called the offline phase of the attack. Now when
one wants to crack an encrypted message, during the so-called online phase,
you only have to look it up in your table and you find the key. The downside
is that this method requires an enormous amount of memory space and it
takes a long time to create the tables.

Something in between would be nice. A time-memory trade-off is where
we can speed up an algorithm at the cost of more memory and vice versa.

2.2.1 Hellman

In 1980, Hellman introduced his probabilistic TMTO attack that can brute-
force any cryptosystem with N possible keys in on average N2/3 operations
and N2/3 words of memory, after a precompution that requires N operations
[9]. This is accomplished by computing m × t matrices as shown below, m
iterative chains of length t, where it is only necessary to store the first and
last point of each chain in a table with tuples < x, f t

i (x) >. Usually, m and
t are chosen such that mt2 = N , as Hellman did in his article. However, a
m× t matrix satisfying mt2 = N only covers 1/t-th of the search space N .
That is why a of these matrices are computed, each occupying a different
part of the search space. Each of these matrices uses a slightly different fi,
defined as fi = hi ◦ f , where hi is a simple output modification that differs
for each i. A typical example is hi(x) = x ⊕ i. The goal of using different
functions fi is to reduce the amount of duplicate chains between tables.

x0 → fi(x0) → fi(fi(x0)) → · · · → f t
i (x0)

x1 → fi(x1) → fi(fi(x1)) → · · · → f t
i (x1)

x2 → fi(x2) → fi(fi(x2)) → · · · → f t
i (x2)

...
...

...
. . .

...

xm → fi(xm) → fi(fi(xm)) → · · · → f t
i (xm)

The online phase consists of the attacker iterating fi for at most t times
over his ciphertext, where he each time checks if the result occurs in the
table. If it matches f t

i (xj), the attacker can iterate fi over xj until he finds
his ciphertext. Now he has also computed the preimage of the ciphertext.

2.2.2 Distinguished points

Not much later, Rivest suggested an improvement on Hellman’s method [6].
It aims to decrease the number of disk memory accesses required and there-
fore speeds up the brute-forcing, as disk memory access is usually way more
time expensive than computing fi. This is done by defining an end point DP
as a point that satisfies a certain special property, like the first k bits being
zero. Now a key has to be looked up in disk memory only if it possesses this
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property. The downside is that chains now have a variable length, which
makes it hard to make predictions on how much of the keyspace is covered.

Again, a matrices are computed and a function fi = hi ◦ f is used to
iterate over the variable-length chains. The endpoints have a prefix of k bits
being zero, which does not have to be stored.

x0 → · · · → fp
i (x0) = DP0

x1 → · · · → · · · → · · · → f q
i (x1) = DP1

x2 → · · · → · · · → f r
i (x2) = DP2

...
. . .

xm → · · · → f∗i (xm) = DPm

Because it might take a while (or even forever in the case of cycles) before
reaching a distinguished point, a constant tmax is defined as the maximum
chain length. If a chain reaches tmax before reaching a distinguished point,
the chain is thrown away.

2.2.3 Rainbow tables

For a long time, Rivest’s method has been the only improvement to Hell-
man’s TMTO attack. Further work mainly concentrated on optimizing pa-
rameters, such as [12]. It was not until 2003 that a new improvement to the
algorithm was found by Oechslin, called rainbow tables [17]. A downside of
Hellman’s algorithm was that collisions within a table resulted in merging
of chains. More about that will be said in section 2.3.1. Oechslin combats
this by adding an output modification to each step in the chain, instead of
just reapplying a cipher function. In this way, each ‘column’ applies its own
fi. Now, a collision does not result in the merging of chains anymore, unless
the collision occurs in the same column. This should prevent a large part of
the chain merges.

This time, only one big m× t matrix is computed, as it is not necessary
to compute a different matrices. Again, only the first and last point of each
chain have to be stored.

x0 → f0(x0) → f1(f0(x0)) → · · · → ft(ft−1(· · · f0(x0) · · · ))
x1 → f0(x1) → f1(f0(x1)) → · · · → ft(ft−1(· · · f0(x1) · · · ))
x2 → f0(x2) → f1(f0(x2)) → · · · → ft(ft−1(· · · f0(x2) · · · ))
...

...
...

. . .
...

xm → f0(xm) → f1(f0(xm)) → · · · → ft(ft−1(· · · f0(xm) · · · ))
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2.2.4 Kraken

The methods mentioned above can also be applied to stream ciphers [11].
However to brute-force a stream cipher with a larger key size such as A5/1,
lots of further optimizations were required to make this attainable. As said
before, Nohl announced that it was more efficient to combine distinguished
points and rainbow tables [16] and this was then implemented in the tool
called Kraken. An output modification and the cipher function (so together
fi) would be iterated over a start point x0 until (tmax or) a distinguished
point DP00 was reached, where the first k bits are zero. Then this would
be repeated s times with other output modifications, until the end of the
chain, DP0s. A single chain now consists of s distinguished point chains.

x0 → f0(x0) →∗ DP00 → f1(DP00) →∗ · · · → fs(· · · ) = DP0s

x1 → f0(x1) →∗ DP10 → f1(DP10) →∗ · · · → fs(· · · ) = DP1s

x2 → f0(x2) →∗ DP20 → f1(DP20) →∗ · · · → fs(· · · ) = DP2s
...

...
...

...
. . .

...

xm → f0(xm) →∗ DPm0 → f1(DPm0) →∗ · · · → fs(· · · ) = DPms

2.2.5 TMTO on different cipher categories

In general, all TMTO methods can be applied to all aforementioned cate-
gories of ciphers. In the following paragraphs, the differences between these
applications will be explained in a bit more detail.

Hash functions

When f is some kind of cryptographic hash function, the tables can be used
to greatly speed up the search for the preimage x of a hash value f(x).
As x’s, one chooses all possible plaintexts. A disadvantage here is that
hash functions accept an input of arbitrary length. Apart from that, the
application of a TMTO attack is self-explanatory.

Block ciphers

Now f is not only dependent on an input x, but also on a certain key K.
One of these parameters has to be filled in in order to carry out a TMTO
attack. Usually it is more interesting to find K, because then all others
parts that were encrypted with the same key can also be decrypted. To do
this, one can perform a so-called chosen-plaintext attack, where the attacker
already knows the input – perhaps he could enter it somewhere by him- or
herself – and the corresponding output. Then a TMTO method can be used
to find K.
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Stream ciphers

For stream ciphers, the inputs and outputs are more or less the same as with
block ciphers. A chosen-plaintext attack can be carried out in order to apply
a TMTO method to find K. Or actually, to find the internal state of the
cipher which leads to an initialization vector or key. Furthermore, stream
ciphers have an extra property that makes TMTO attacks even more useful.
When reversing a hash function or block cipher, separate tables have to be
created for every part of known plaintext. However when reversing stream
ciphers, generic TMTO tables can be used for all pieces of known keystream.
So if there are D pieces of known keystream, then the attacker only has to
compute a/D tables instead of a to approximate the same probability on
success. For a hash function or block cipher, obviously D = 1.

2.3 Efficiency

All TMTO methods mentioned earlier have been compared formally in for
instance [1, 2, 7, 10, 21]. Some properties are easier to compare than others.
Table 2.1 summarizes the comparisons that have been made. All symbols
correspond to the symbols that have been used before. tavg is the average
actual chain length, somewhere between 1 and tmax. A rough estimate is
tavg = tmax/2.

Hellman DP Rainbow Kraken

Precomputed ma-
trix dimensions

a of m× t a of m× tavg m′ × t a of m× stavg

Memory used to
store the table(s)

2ma 2ma 2m′ 2ma

Number of com-
putations of fi

taD tavgaD
t(t+1)

2 D s(s+1)
2 tavgaD

Number of table
seeks

taD aD tD saD

Table 2.1: Formal comparison of TMTO methods [21]

Note the use of m′ for rainbow tables instead of m. This is because for
fair comparisons, one has to use m′ = ma. When applying this, mt2 = N
and the attackers want to cover approximately the entire search space N ,
table 2.1 transforms to table 2.2.

2.3.1 Chain merges and duplicate points

Table 2.2 gives a nice overview on how the different TMTO methods would
perform compared to each other. However, not all factors that play a role are
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Hellman DP Rainbow Kraken

Precomputed ma-
trix dimensions

a of m× t a of m× tavg mt× t a of m× stavg

Memory used to
store the table(s)

2mt/D 2mtavg/D 2mt/D 2mtavg/sD

Number of com-
putations of fi

t2 t2avg
t(t+1)

2 D s+1
2 t2avg

Number of table
seeks

t2 tavg tD tavg

Table 2.2: Formal comparison of TMTO methods satisfying mt2 = N [21]

included in the calculations. As has been mentioned before briefly, duplicate
points and chain merges influence the coverage of the precomputed matrices
and thus the performance of the different methods. A chain merge is when
the iteration of fi over two duplicate points in the matrix means that all
other subsequent points in the chain are also the same, until at least one of
the chains ends. Chain merges are caused by for instance cipher collisions
and this strongly depends on the specific cipher topology, which is often
unknown or hard to formally reason with. The merges create an overlap in
the precomputed matrix, which means that less (unique) points are covered
in the TMTO table, thereby influencing the performance of the used method.
Of course also the amount of precomputation that is required is influenced
by the number of chain merges.

Hellman

When enough chains have been computed using Hellman’s method, a new
chain will eventually cover parts of the search space that were already cov-
ered in an earlier chain. Duplicate points in different chains will always
cause a chain merge, if it were not for the output modifications. In fact,
this was the whole reason for introducing a tables instead of 1 and applying
fi instead of just f . With these modifications, a pair of duplicate points do
not have to cause a chain merge if the points reside in different tables. Of
course chain merges are still possible within a single table. The appearance
of duplicate points is also where the rule of thumb mt2 = N comes from.
Hellman has computed a lower bound on the number of unique points that
are added when computing a new chain, for the case where mt2 = N is
satisfied [9].

Theorem 1. Within a single Hellman TMTO table that is computed by
a random function fi and that satisfies mt2 = N , each chain contains on
average at least 3/4-th points that are unique up to that point.
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The corresponding proof is found in [9].

Distinguished points

Just as with Hellman’s method, the distinguished points method also com-
putes a tables and uses fi in order to reduce the number of chain merges.
Again, they can only occur within the same table. The distinguished point
method has the advantage that it is very easy to spot chain merges, because
a merge will cause the endpoints of the two chains to be exactly the same.
One only has to look at the endpoints. It is also possible to eventually re-
move the shortest of these two chains (because it covers the smallest part of
the search space) and to compute a new one.

Rainbow tables

Both Hellman’s method and distinguished points may have chain merges
within the same table. The rainbow table method was invented to circum-
vent this problem by using the different ‘colours’ for each ‘column’. A pair
of duplicate points will now only cause a chain merge if they reside in the
same column. Because this is a lot less likely, it is no longer necessary to
precompute multiple tables. This method is suspected to have fewer chain
merges than the two above.

Kraken

The Kraken method combines the distinguished points and the rainbow ta-
ble method. It also combines their behaviour regarding chain merges. Chain
merges are easy to spot, because only the endpoints have to be taken into
account. They also only occur within the same table and when duplicate
points reside in the same rainbow ‘colour’. However, the reason for sus-
pecting that the Kraken method might actually perform worse with respect
to chain merges, is that the distinguished points property makes it more
likely for duplicate points to occur within the same ‘colour’. When more
iterations are carried out before reaching a distinguished point, more points
are covered and thus the chance on duplicate points increases. Duplicate
points within two subchains in the same ‘colour’ will cause the correspond-
ing distinguished endpoints to be equivalent, which causes a chain merge. It
is unclear if and how this outweighs the advantages of the Kraken method.
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Chapter 3

Empirical comparison of
TMTO methods

The goal is to measure how the different TMTO methods perform compared
to each other on a chosen-plaintext attack, specifically with respect to the
number of chain merges. In order to carry out this research, the four afore-
mentioned TMTO methods were implemented and used on a small 16-bit
variant of the block cipher AES [4, 18]. The fact that it is a very small
cipher makes it easier to experiment with. One can now simply count the
number of chain merges after precomputation and the resulting table can
be stored in RAM.

3.1 Programming environment

Everything was implemented in C++, a personal preference, and compiled
with the MinGW suite. Of course any programming language and plat-
form can be chosen as long as it has sufficient memory. The program has
a modular set-up, where each TMTO method consists of two functions
(precompute table and count chain merges) in a separate source code
file. The whole program includes running these two functions and printing
some statistics, and usually terminates in under 100 milliseconds.

3.2 Point coverage

For this 16-bit cipher, N = 216. A simple chosen plaintext attack for a
block cipher means that D = 1. About N (not necessarily unique) points
are covered in the precomputation, in order to make a clean comparison of
the four TMTO methods. For the Hellman method for instance, this means
that mta = N . A few possible combinations for m, t, a (and s) are tried
with each TMTO method.
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The exact number of computed points (Ncomputed), the number of unique
points (Nunique) and the number of chain merges are measured by counting
them. In this case, being a unique points means being unique among all
points that have been computed so far within a single execution of the
program. For two duplicate points, the first appearance does count as a
unique point, but the second does not. The number of unique points does
not necessarily say anything about the number of chain merges, because a
pair of duplicate points do not have to cause a chain merge if, for instance,
they subsequently use a different fi. However, it it still an interesting number
to keep track of. The number of chain merges is measured as a ratio with
respect to the total number of chains (ma for Hellman’s method). Again,
the first appearance of a partly duplicate chain does not count as a merge,
but the second does. A chain that merges in itself (i.e. contains a cycle) is
also counted as a merge.

3.3 Other parameters

There are a few other parameters that have to be chosen. One of them being
the output modification hi in order to construct fi = hi ◦ f . hi(x) = x ⊕ i
is being applied to each byte of the ciphertext. This hi has to be different
for each table and/or column, which in practice means that a (Hellman,
distinguished points), t (rainbow tables) or as (Kraken) may not supersede
28. For a 16-bit cipher, this seems acceptable.

Also, a choice has to been made regarding how to mark a distinguished
point. For the measurements, k ranges around n/4. This means that the
expected tavg ≈ 2n/4 = 24 when n = 16. This is an acceptable value for
comparisons with the other methods.
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Chapter 4

Results and analysis

The experimental results will be presented per TMTO method. Conclusions
will be drawn in the form of a series of conjectures. Everything in this
chapter, including the aforementioned conjectures, only applies to the 16-
bit AES-like cipher that has been used and can not trivially be generalized.

4.1 Hellman

a m t Ncomputed Nunique Chain merge ratio

23 23 210 216 7349 64/64 = 1

23 27 26 216 25009 841/1024 ≈ 0.821

23 210 23 216 38919 2937/8192 ≈ 0.359

24 28 24 216 38226 1457/4096 ≈ 0.356

25 26 25 216 37886 719/2048 ≈ 0.351

26 23 27 216 35549 265/512 ≈ 0.518

26 24 26 216 37632 362/1024 ≈ 0.354

27 22 27 216 38476 167/512 ≈ 0.326

27 26 23 216 41417 270/8192 ≈ 0.033

27 27 22 216 42237 293/16384 ≈ 0.018

Table 4.1: Experimental results Hellman’s method

First of all, there is no important reason for choosing powers of 2 as
values of the parameters. It’s just that it’s easy to calculate with.

Second, it is interesting to see how the configurations with mt2 = N
performed compared to the other settings. The mt2 = N tests all performed
about equally well. The other tests ended up with completely different
results, where mainly the final two tests, with mt2 < N , scored really good.
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Conjecture 2. mt2 = N is not the most efficient relation with respect to
storage of unique points and chain merges.

The major downside is that these mt2 < N cases require far more mem-
ory (2ma) to store the tables. Taking that into account, the cases with
a relatively low value for mt performed best. This makes sense for chain
merges, because they can only occur within the same table. If that table is
small, one can expect a low amount of chain merges. This means that the
output modifications are of significant importance.

When looking at tests with the same number of output modification
classes (i.e. having the same a), it can easily be seen that it is better to have
a high m compared to t. Increasing t seems to linearly increase the chain
merge ratio. This is an interesting property, though again, this increases
memory usage.

4.2 Distinguished points

a m tmax k Ncomputed Nunique Chain merge ratio

24 136 27 5 65563 31033 856/2176 ≈ 0.393

24 184 26 5 65632 33260 1166/2944 ≈ 0.396

24 263 27 4 65550 34968 1133/4208 ≈ 0.269

24 291 25 5 65557 33905 1847/4656 ≈ 0.397

24 351 25 4 65481 36484 1542/5776 ≈ 0.267

25 94 26 5 65519 36398 826/3008 ≈ 0.275

25 145 25 5 65737 37175 1179/4640 ≈ 0.254

26 46 26 5 66224 38801 484/2944 ≈ 0.164

26 69 26 4 65536 39386 440/4416 ≈ 0.100

26 72 25 5 65147 38490 746/4608 ≈ 0.162

26 123 24 5 65335 37814 1191/7872 ≈ 0.151

26 137 24 4 65401 39587 763/8768 ≈ 0.087

Table 4.2: Experimental results distinguished points

With distinguished points, an extra variable k is available to tune with.
Again the test cases with a high value for a perform really good and within
the same a, it is better to have a high m compared to t.

When taking memory usage into account, tests with a low value for
mt scored better with respect to chain merges compared to tests with an
approximately equal value for 2ma. The reason is of course the same as
with Hellman’s method.
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When k increases by 1, the expected chain length before reaching a
distinguished point multiplies with a factor 2. However, when tmax is not
increased by the same factor, more chains will never reach a distinguished
point and will be thrown away. This increases the time that is required for
computation and thus makes the configuration less efficient in that sense.
Increasing k is also accompanied by a lower m in order to compute approx-
imately the same number of points.

Conjecture 3. Take k′ = k + l, then t′max should be t′max = 2ltmax.

It is somewhat hard to compare, but it seems that the distinguished point
method performs about equally well as Hellman’s method with respect to
unique points and chain merges for tests where 2ma is about equal. This
is expected, because the only differences between the two methods do not
influence the way points are computed.

Conjecture 4. The distinguished point method performs equally well as
Hellman’s method with respect to unique points and chain merges.

4.3 Rainbow tables

m t Ncomputed Nunique Chain merge ratio

26 210 216 29532 25/64 ≈ 0.391

27 29 216 33011 46/128 ≈ 0.359

28 28 216 35710 90/256 ≈ 0.352

29 27 216 35940 178/512 ≈ 0.348

210 26 216 36294 358/1024 ≈ 0.350

211 25 216 36522 728/2048 ≈ 0.356

212 24 216 37272 1449/4096 ≈ 0.354

213 23 216 38132 3022/8192 ≈ 0.369

Table 4.3: Experimental results rainbow tables

All the points for which m > t naturally also yield mt2 = N , if one
substitutes m with ma for fair comparisons. One can then always find a
value for a such that a = t, because m > t. From mta = N , it follows
that mt2 = N . These configurations perform approximately equally well.
They are also comparable to the Hellman mt2 = N cases. A lower t means
more unique points – which makes sense – and oddly enough also more chain
merges – which is strange –, and it costs more memory usage due to a higher
m.
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However, below a certain threshold (around m = t) a higher value for t
will mean a higher chance on eventually causing a merge with some other
chain and this correlation starts to show up.

The next conjecture, Conjecture 5, is quite interesting, as the invention
of rainbow tables was supposed to decrease the appearance of chain merges.

Conjecture 5. When around N points are computed, a rainbow table is not
more efficient than using Hellman’s method with respect to chain merges.

However, rainbow tables still have a small (constant) speed-up in the
online phase.

4.4 Kraken

a m tmax s k Ncomputed Nunique Chain merge ratio

23 258 24 24 5 65555 38907 294/2064 ≈ 0.142

24 129 25 24 5 65081 37866 342/2064 ≈ 0.166

24 130 25 23 5 66065 38192 337/2080 ≈ 0.162

24 132 26 24 5 65448 33977 611/2112 ≈ 0.289

24 150 22 24 6 65396 40393 277/2400 ≈ 0.115

24 181 22 24 5 65844 41177 176/2896 ≈ 0.061

24 258 25 24 4 65446 36644 750/4128 ≈ 0.182

24 289 25 1 5 65554 34167 1784/4624 ≈ 0.386

24 290 2 24 5 65591 40375 436/4640 ≈ 0.094

24 292 23 22 5 65537 39863 607/4672 ≈ 0.130

Table 4.4: Experimental results Kraken

It is interesting to note that when s = 1, the test performs about equally
well as the distinguished point method. This was expected, because the
methods are then theoretically exactly equal. A negligible difference is
caused by the current implementation of the output modification, which
is slightly different for the two methods.

Second, for the bottom three cases where a = 24, k = 5 and m ≈ 290, it
can be seen that is it better to choose a higher s. The suspected reason is
that then simply more different fi’s are used.

When looking at equal memory consumption, again 2ma, having a lower
value for t seems to lower the chain merge ratio.

And the most interesting one:

Conjecture 6. The Kraken method is more efficient compared to Hellman,
distinguished points and rainbow tables with respect to chain merges.
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The Kraken method delivers a chain merge ratio that is approximately
a factor 2 lower than with the other methods. Perhaps this improvement is
simply due to the introduction of an extra parameter s. We’ve seen before
that cases with a low value for mt scored relatively good with respect to chain
merges. Under the assumption that approximately N points are computed,
the introduction of s might make it easier to keep mt relatively low, without
influencing the disk memory consumption: N = mta vs. N = mstavga.

4.5 General results

Chain merges indeed appeared to be of major importance when it comes to
the coverage of a TMTO matrix, with chain merge ratios ranging from 6%
to 40%. A general strategy to minimize this ratio is to minimize the number
of times that the same fi is applied when iterating. Basically there are two
ways of doing so.

Conjecture 7. By decreasing the length of a chain, the chain merge ratio
decreases.

This is really part of the trade-off, for a decrease in required computation
time causes an increase of required memory if one wants to stick to the
same coverage. For instance for Hellman’s method, if mta = N , decreasing
t means that m or a have to be increased, thus also increasing 2ma.

Conjecture 8. By decreasing the number of points that are computed by
the same fi, the chain merge ratio decreases.

Note that this number of points is equal to mtavg for the Kraken method.
Decreasing this value is where the difference can perhaps be made. For in-
stance by including a globally unique chain number in the output modifi-
cation, or setting m = 1, the fi’s become unique for every chain, making it
impossible for a merge to occur. The downside is that this chain number
has to be stored with each chain, as it can not be retrieved once the TMTO
table gets sorted on end points, and that it causes a huge increase of the
time required for the online phase. This example is highly impractical of
course, but it raises a focus point on which future TMTO algorithms could
perhaps improve on the current ones.
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Chapter 5

Conclusion and future work

5.1 Conclusion

This empirical research has had some interesting outcomes. For the 16-bit
AES-like cipher, it turns out that chain merges are of significant impor-
tance, with merge ratios ranging from 6% to 40%. Hellman’s rule of thumb
of mt2 = N does not seem to be the most efficient relation with respect
to storage of unique points and chain merges. Hellman’s method, the dis-
tinguished point method and rainbow tables all perform about equally well
with respect to these chain merges. This is surprising, because rainbow ta-
bles are often said to prevent a big part of the chain merges. The Kraken
method performs better by approximately a factor 2. This is probably due
to the decreased number of points that were computed with the same out-
put modification. The fewer points per fi, the fewer possibilities for a chain
merge to occur.

5.2 Future work

Due to the scope of the project and/or practical limitations, there are a
number of things worth mentioning that might be interesting for further
investigations.

First of all, there are (at least) two papers that each explain a differ-
ent 16-bit version of AES. One of these ([18]) has been used here, but it is
worth verifying whether the results are consistent with the other version. In
a more general sense, it is definitely worth verifying whether the results are
consistent with completely different ciphers and/or different output modifi-
cations. The appearance of duplicate points in TMTO tables is a property
of the specific cipher topology. For practical reasons only one small cipher
has been put to the test, but this does not say anything about other cases.

Second, while running a test using the distinguished point method, it
turned out that tmax had not been implemented yet. The iteration of fi
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caused a lot of relatively short cycles within a chain, some even without a
distinguished point, causing an infinite loop. Of course tmax prevents this
and the chances on cycles are smaller when using a cipher with a longer key
length, but this behaviour might be interesting. Perhaps an fi with lots of
cycles might even be more secure, because it is more ‘resistant’ against a
TMTO attack.

Third, the implementation of cryptographic algorithms is rather hard.
The tiniest mistake is critical and usually there is not a simple way to verify
whether the algorithm actually does what it is supposed to do. It has been
the same here. Although reasonable thinking created the thought that the
code that has been used to perform these measurements is semantically
correct, there are no guarantees. This is why even verification with the
same cipher is desirable.

Fourth, the correlation between the number of unique points and the
number of chain merges has not been made clear yet. It would be interesting
to gather empirical data on the number of duplicate points that are actually
caused by chain merges. I.e. how far within two chains does a merge usually
occur.

Finally, and perhaps the most interesting one, it looks like it might be
possible to improve the TMTO methods by adjusting the output modifica-
tion such that more unique fi’s are used.
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Appendix A

Source code

A.1 common.h

#ifndef COMMONH
#define COMMONH

// genera l i n c l u d e s
#include <c s t r i ng>
#include <c l im i t s>
#include <f stream>
#include <c s t d l i b>
#include <iostream>
#include <vector>

//common s e t t i n g s
//a ( f o r rainbow , a = 1)
#define NUMBEROF TABLES 16
//m
#define TABLE LENGTH 292
// t ( or tmax f o r DP/Kraken )
#define CHAIN LENGTH 8
// s ( used on ly wi th Kraken )
#define NUMBER OF CHAINS 4
//k ( unused wi th Hellman/rainbow , k < CHAR BIT, pow(2 , k ) <= a)
#define DP SIZE 5
// in by t e s (CIPHER SIZE <= s i z e o f ( i n t ) )
#define CIPHER SIZE 2
//method (METHODHELLMAN, METHODDP, METHODKRAKEN, METHODRAINBOW)
#define METHODKRAKEN
// c ipher (CIPHER AES)
#define CIPHER AES
//N
const unsigned int SEARCH SPACE = 1u << CIPHER SIZE∗CHAR BIT;

// t y p e d e f s
typedef unsigned char byte ;
typedef byte TMTOTable [TABLE LENGTH ] [ 2 ] [ CIPHER SIZE ] ;
typedef TMTOTable TMTOTables [NUMBER OF TABLES ] ;
struct NoOfPoints
{

unsigned int t o ta l , unique ;
} ;

// f un c t i o nd e f s
byte ∗ c iphe r ( const byte input [ ] , const unsigned l en ) ;
void nex t p l a i n t e x t ( byte keyword [ ] ) ;
unsigned int c i p h e r t e x t t o u i n t ( const byte [ ] ) ;

// inc l ude l o g i c
#ifde f CIPHER AES
#include ” aes . h”
#endif
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#ifde f METHODHELLMAN
#include ”hellman . h”
#endif
#i fde f METHODDP
#include ”dp . h”
#endif
#i fde f METHODKRAKEN
#include ”kraken . h”
#endif
#i fde f METHODRAINBOW
#include ” rainbow . h”
#endif

#endif

A.2 main.cpp

/∗
∗ TMTO method comparator
∗ by Ko S t o f f e l e n
∗
∗ v1 .0 29−01−2013
∗
∗/

#include ”common . h”

/∗∗
∗ Apply the c ipher to an a r b i t r a r t y−l e n g t h input
∗ Current ly uses 16− b i t AES in ECB mode
∗/

byte ∗ c iphe r ( const byte input [ ] , const unsigned int l en )
{

#i f d e f CIPHER AES
byte cho s en p l a i n t ex t [ CIPHER SIZE ] = {0xC3 , 0xF1 } ;
byte ∗output = new byte [ l en ] ;
for (unsigned int i = 0 ; i < l en ; i += CIPHER SIZE)
{

byte AESkey [ CIPHER SIZE ] ;
memset (AESkey , 0 , CIPHER SIZE) ;
for (unsigned int j = 0 ; j < CIPHER SIZE && i ∗CIPHER SIZE+j < l en ; ++j )

AESkey [ j ] = input [ i ∗CIPHER SIZE+j ] ;
AES( chos en p la in t ex t , AESkey) ;
for (unsigned int j = 0 ; j < CIPHER SIZE && i ∗CIPHER SIZE+j < l en ; ++j )

output [ i ∗CIPHER SIZE+j ] = cho s en p l a i n t ex t [ j ] ;
}
return output ;
#end i f

}

/∗∗
∗ Generate the next p l a i n t e x t by ’ count ing ’
∗ Current ly the f i r s t by t e has to be though t o f as con ta in ing the l e a s t s i g n i f i c a n t b i t s
∗/

void nex t p l a i n t e x t ( byte keyword [ ] )
{

++keyword [ 0 ] ;
for (unsigned int i = 0 ; keyword [ i ] == 0 && i < CIPHER SIZE−1; ++i )

++keyword [ i +1] ;
}

/∗∗
∗ Assumes 0 < CIPHER SIZE <= s i z e o f ( unsigned i n t )
∗/

unsigned int c i p h e r t e x t t o u i n t ( const byte c i ph e r t e x t [ ] )
{

unsigned int r e s u l t = c i phe r t ex t [ 0 ] ;
for (unsigned int i = 1 ; i < CIPHER SIZE ; ++i )
{
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r e s u l t <<= CHAR BIT;
r e s u l t |= c iphe r t e x t [ i ] ;

}
return r e s u l t ;

}

/∗∗
∗ For t e s t i n g purposes
∗/

void w r i t e t a b l e t o f i l e (TMTOTables tab le , const char f i l ename [ ] )
{

std : : o f s tream f i l e ( f i l ename ) ;
i f ( f i l e )
{

f i l e << std : : hex ;
for (unsigned int i = 0 ; i < NUMBEROF TABLES; ++i )

for (unsigned int j = 0 ; j < TABLE LENGTH; ++j )
{

for (unsigned int k = 0 ; k < CIPHER SIZE ; ++k)
f i l e << ’ x ’ << ( int ) t ab l e [ i ] [ j ] [ 0 ] [ k ] ;

f i l e << ’ \ t ’ ;
for (unsigned int k = 0 ; k < CIPHER SIZE ; ++k)

f i l e << ’ x ’ << ( int ) t ab l e [ i ] [ j ] [ 1 ] [ k ] ;
f i l e << std : : endl ;

}
f i l e << std : : dec ;
f i l e . c l o s e ( ) ;

}
}

/∗∗
∗ Main func t i on
∗/

int main ( )
{

TMTOTables t ab l e ;
s td : : cout << ”> Precompute the TMTO tab l e ” << std : : endl ;
const NoOfPoints counter = precompute table ( t ab l e ) ;
s td : : cout << ”< Done with ” << counter . t o t a l << ” po in t s ( ” << counter . unique << ”

unique ) ” << std : : endl ;

// w r i t e t a b l e t o f i l e ( t a b l e , ” t a b l e . t x t ”) ;

std : : cout << ”> Analyze the TMTO tab l e ” << std : : endl ;
unsigned int chain merges = count cha in merges ( t ab l e ) ;
s td : : cout << ”< ” << chain merges << ” chain merges out o f ” << (NUMBER OF TABLES∗

TABLE LENGTH) << ” cha ins ( r a t i o : ” << ( (double ) chain merges /(double ) (
NUMBER OF TABLES∗TABLE LENGTH) ) << ” ) ” << std : : endl ;

s td : : cout << ”> Done ! ” << std : : endl << std : : endl ;

return 0 ;
}

A.3 aes.h

#ifndef AES H
#define AES H

#include ”common . h”

extern void AES( byte [ ] , byte [ ] ) ;

/∗∗
∗ Modular mu l t i p l i c a t i o n t a b l e f o r GF(2ˆ4)
∗/

const byte Mu l t ip l i c a t i onTab l e [ 1 6 ] [ 1 6 ] =
{{( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte )
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0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 , ( byte ) 0x0 } ,
{( byte ) 0x0 , ( byte ) 0x1 , ( byte ) 0x2 , ( byte ) 0x3 , ( byte ) 0x4 , ( byte ) 0x5 , ( byte ) 0x6 , ( byte ) 0x7 , ( byte )

0x8 , ( byte ) 0x9 , ( byte ) 0xA , ( byte ) 0xB , ( byte ) 0xC , ( byte ) 0xD, ( byte ) 0xE , ( byte ) 0xF} ,
{( byte ) 0x0 , ( byte ) 0x2 , ( byte ) 0x4 , ( byte ) 0x6 , ( byte ) 0x8 , ( byte ) 0xA , ( byte ) 0xC , ( byte ) 0xE , ( byte )

0x3 , ( byte ) 0x1 , ( byte ) 0x7 , ( byte ) 0x5 , ( byte ) 0xB , ( byte ) 0x9 , ( byte ) 0xF , ( byte ) 0xD} ,
{( byte ) 0x0 , ( byte ) 0x3 , ( byte ) 0x6 , ( byte ) 0x5 , ( byte ) 0xC , ( byte ) 0xF , ( byte ) 0xA , ( byte ) 0x9 , ( byte )

0xB , ( byte ) 0x8 , ( byte ) 0xD, ( byte ) 0xE , ( byte ) 0x7 , ( byte ) 0x4 , ( byte ) 0x1 , ( byte ) 0x2 } ,
{( byte ) 0x0 , ( byte ) 0x4 , ( byte ) 0x8 , ( byte ) 0xC , ( byte ) 0x3 , ( byte ) 0x7 , ( byte ) 0xB , ( byte ) 0xF , ( byte )

0x6 , ( byte ) 0x2 , ( byte ) 0xE , ( byte ) 0xA , ( byte ) 0x5 , ( byte ) 0x1 , ( byte ) 0xD, ( byte ) 0x9 } ,
{( byte ) 0x0 , ( byte ) 0x5 , ( byte ) 0xA , ( byte ) 0xF , ( byte ) 0x7 , ( byte ) 0x2 , ( byte ) 0xD, ( byte ) 0x8 , ( byte )

0xE , ( byte ) 0xB , ( byte ) 0x4 , ( byte ) 0x1 , ( byte ) 0x9 , ( byte ) 0xC , ( byte ) 0x3 , ( byte ) 0x6 } ,
{( byte ) 0x0 , ( byte ) 0x6 , ( byte ) 0xC , ( byte ) 0xA , ( byte ) 0xB , ( byte ) 0xD, ( byte ) 0x7 , ( byte ) 0x1 , ( byte )

0x5 , ( byte ) 0x3 , ( byte ) 0x9 , ( byte ) 0xF , ( byte ) 0xE , ( byte ) 0x8 , ( byte ) 0x2 , ( byte ) 0x4 } ,
{( byte ) 0x0 , ( byte ) 0x7 , ( byte ) 0xE , ( byte ) 0x9 , ( byte ) 0xF , ( byte ) 0x8 , ( byte ) 0x1 , ( byte ) 0x6 , ( byte )

0xD, ( byte ) 0xA , ( byte ) 0x3 , ( byte ) 0x4 , ( byte ) 0x2 , ( byte ) 0x5 , ( byte ) 0xC , ( byte ) 0xB} ,
{( byte ) 0x0 , ( byte ) 0x8 , ( byte ) 0x3 , ( byte ) 0xB , ( byte ) 0x6 , ( byte ) 0xE , ( byte ) 0x5 , ( byte ) 0xD, ( byte )

0xC , ( byte ) 0x4 , ( byte ) 0xF , ( byte ) 0x7 , ( byte ) 0xA , ( byte ) 0x2 , ( byte ) 0x9 , ( byte ) 0x1 } ,
{( byte ) 0x0 , ( byte ) 0x9 , ( byte ) 0x1 , ( byte ) 0x8 , ( byte ) 0x2 , ( byte ) 0xB , ( byte ) 0x3 , ( byte ) 0xA , ( byte )

0x4 , ( byte ) 0xD, ( byte ) 0x5 , ( byte ) 0xC , ( byte ) 0x6 , ( byte ) 0xF , ( byte ) 0x7 , ( byte ) 0xE} ,
{( byte ) 0x0 , ( byte ) 0xA , ( byte ) 0x7 , ( byte ) 0xD, ( byte ) 0xE , ( byte ) 0x4 , ( byte ) 0x9 , ( byte ) 0x3 , ( byte )

0xF , ( byte ) 0x5 , ( byte ) 0x8 , ( byte ) 0x2 , ( byte ) 0x1 , ( byte ) 0xB , ( byte ) 0x6 , ( byte ) 0xC} ,
{( byte ) 0x0 , ( byte ) 0xB , ( byte ) 0x5 , ( byte ) 0xE , ( byte ) 0xA , ( byte ) 0x1 , ( byte ) 0xF , ( byte ) 0x4 , ( byte )

0x7 , ( byte ) 0xC , ( byte ) 0x2 , ( byte ) 0x9 , ( byte ) 0xD, ( byte ) 0x6 , ( byte ) 0x8 , ( byte ) 0x3 } ,
{( byte ) 0x0 , ( byte ) 0xC , ( byte ) 0xB , ( byte ) 0x7 , ( byte ) 0x5 , ( byte ) 0x9 , ( byte ) 0xE , ( byte ) 0x2 , ( byte )

0xA , ( byte ) 0x6 , ( byte ) 0x1 , ( byte ) 0xD, ( byte ) 0xF , ( byte ) 0x3 , ( byte ) 0x4 , ( byte ) 0x8 } ,
{( byte ) 0x0 , ( byte ) 0xD, ( byte ) 0x9 , ( byte ) 0x4 , ( byte ) 0x1 , ( byte ) 0xC , ( byte ) 0x8 , ( byte ) 0x5 , ( byte )

0x2 , ( byte ) 0xF , ( byte ) 0xB , ( byte ) 0x6 , ( byte ) 0x3 , ( byte ) 0xE , ( byte ) 0xA , ( byte ) 0x7 } ,
{( byte ) 0x0 , ( byte ) 0xE , ( byte ) 0xF , ( byte ) 0x1 , ( byte ) 0xD, ( byte ) 0x3 , ( byte ) 0x2 , ( byte ) 0xC , ( byte )

0x9 , ( byte ) 0x7 , ( byte ) 0x6 , ( byte ) 0x8 , ( byte ) 0x4 , ( byte ) 0xA , ( byte ) 0xB , ( byte ) 0x5 } ,
{( byte ) 0x0 , ( byte ) 0xF , ( byte ) 0xD, ( byte ) 0x2 , ( byte ) 0x9 , ( byte ) 0x6 , ( byte ) 0x4 , ( byte ) 0x8 , ( byte )

0x1 , ( byte ) 0xE , ( byte ) 0xC , ( byte ) 0x3 , ( byte ) 0x8 , ( byte ) 0x7 , ( byte ) 0x5 , ( byte ) 0xA}
} ;

#endif

A.4 aes.cpp

#include ” aes . h”
//assume r = 2 , c = 2 , e = 4
// src : h t t p ://www.ma. rhu l . ac . uk/˜ sean/smallAES−f s e05 . pd f
// src : h t t p :// s t a f f . gu i l an . ac . i r / s t a f f / user s / rebrahimi / f c k e d i t o r r e p o / f i l e /mini−aes−spec . pdf

/∗∗
∗ Lookup t a b l e f o r the S−box corresponding to GF(pow (2 ,4) )
∗/

byte SBoxLookup ( const byte data )
{

switch ( data & 0xF)
{

case 0x0 : return ( byte ) 0xE ;
case 0x1 : return ( byte ) 0x4 ;
case 0x2 : return ( byte ) 0xD;
case 0x3 : return ( byte ) 0x1 ;
case 0x4 : return ( byte ) 0x2 ;
case 0x5 : return ( byte ) 0xF ;
case 0x6 : return ( byte ) 0xB ;
case 0x7 : return ( byte ) 0x8 ;
case 0x8 : return ( byte ) 0x3 ;
case 0x9 : return ( byte ) 0xA ;
case 0xA: return ( byte ) 0x6 ;
case 0xB : return ( byte ) 0xC ;
case 0xC : return ( byte ) 0x5 ;
case 0xD: return ( byte ) 0x9 ;
case 0xE : return ( byte ) 0x0 ;
case 0xF : return ( byte ) 0x7 ;
default : s td : : c e r r << ”Error in SBoxLookup with data ” << data << std : : endl ;

}
return −1;
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}

/∗∗
∗ F i r s t o f the sma l l s c a l e round opera t i ons
∗ Apply the S−boxes
∗/

void SubBytes ( byte dataasarray [ ] [ 2 ] )
{

dataasarray [ 0 ] [ 0 ] = SBoxLookup ( dataasarray [ 0 ] [ 0 ] ) ;
dataasarray [ 0 ] [ 1 ] = SBoxLookup ( dataasarray [ 0 ] [ 1 ] ) ;
dataasarray [ 1 ] [ 0 ] = SBoxLookup ( dataasarray [ 1 ] [ 0 ] ) ;
dataasarray [ 1 ] [ 1 ] = SBoxLookup ( dataasarray [ 1 ] [ 1 ] ) ;

}

/∗∗
∗ Second o f the sma l l s c a l e round opera t i ons
∗ Le f t s h i f t row i wi th i p l a c e s
∗/

void ShiftRows ( byte dataasarray [ ] [ 2 ] )
{

const byte h = dataasarray [ 1 ] [ 0 ] ;
dataasarray [ 1 ] [ 0 ] = dataasarray [ 1 ] [ 1 ] ;
dataasarray [ 1 ] [ 1 ] = h ;

}

/∗∗
∗ Third o f the sma l l s c a l e round opera t i ons
∗ Matrix mu l t i p l i c a t i o n wi th [2+1 2 ]
∗ [ 2 2+1]
∗/

void MixColumns ( byte dataasarray [ ] [ 2 ] )
{

byte h = dataasarray [ 0 ] [ 0 ] ;
dataasarray [ 0 ] [ 0 ] = Mul t ip l i c a t i onTab l e [ 3 ] [ dataasarray [ 0 ] [ 0 ] ] ˆ Mu l t ip l i c a t i onTab l e [ 2 ] [

dataasarray [ 1 ] [ 0 ] ] ;
dataasarray [ 1 ] [ 0 ] = Mul t ip l i c a t i onTab l e [ 2 ] [ h ] ˆ Mu l t ip l i c a t i onTab l e [ 3 ] [ dataasarray

[ 1 ] [ 0 ] ] ;
h = dataasarray [ 0 ] [ 1 ] ;
dataasarray [ 0 ] [ 1 ] = Mul t ip l i c a t i onTab l e [ 3 ] [ dataasarray [ 0 ] [ 1 ] ] ˆ Mu l t ip l i c a t i onTab l e [ 2 ] [

dataasarray [ 1 ] [ 1 ] ] ;
dataasarray [ 1 ] [ 1 ] = Mul t ip l i c a t i onTab l e [ 2 ] [ h ] ˆ Mu l t ip l i c a t i onTab l e [ 3 ] [ dataasarray

[ 1 ] [ 1 ] ] ;
}

/∗∗
∗ Fourth o f the sma l l s c a l e round opera t i ons
∗ XOR with key and genera te new round key
∗/

void AddRoundKey( byte dataasarray [ ] [ 2 ] , byte keyasarray [ ] [ 2 ] , const byte round )
{

dataasarray [ 0 ] [ 0 ] ˆ= keyasarray [ 0 ] [ 0 ] ;
dataasarray [ 0 ] [ 1 ] ˆ= keyasarray [ 0 ] [ 1 ] ;
dataasarray [ 1 ] [ 0 ] ˆ= keyasarray [ 1 ] [ 0 ] ;
dataasarray [ 1 ] [ 1 ] ˆ= keyasarray [ 1 ] [ 1 ] ;

byte newkeyasarray [ 2 ] [ 2 ] ;
newkeyasarray [ 0 ] [ 0 ] = keyasarray [ 0 ] [ 0 ] ˆ SBoxLookup ( keyasarray [ 1 ] [ 1 ] ) ˆ round ;
newkeyasarray [ 1 ] [ 0 ] = keyasarray [ 1 ] [ 0 ] ˆ newkeyasarray [ 0 ] [ 0 ] ;
newkeyasarray [ 0 ] [ 1 ] = keyasarray [ 0 ] [ 1 ] ˆ newkeyasarray [ 1 ] [ 0 ] ;
newkeyasarray [ 1 ] [ 1 ] = keyasarray [ 1 ] [ 1 ] ˆ newkeyasarray [ 0 ] [ 1 ] ;

keyasarray [ 0 ] [ 0 ] = newkeyasarray [ 0 ] [ 0 ] ;
keyasarray [ 0 ] [ 1 ] = newkeyasarray [ 0 ] [ 1 ] ;
keyasarray [ 1 ] [ 0 ] = newkeyasarray [ 1 ] [ 0 ] ;
keyasarray [ 1 ] [ 1 ] = newkeyasarray [ 1 ] [ 1 ] ;

}

/∗∗
∗ Implements a 16− b i t AES var i an t
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∗ Assumes l en g t h ( data ) == l en g t h ( key ) == CIPHER SIZE == 2
∗ Converts data / key t emporar i l y to a 2x2 matrix , which makes i t e a s i e r to app ly a l l round

opera t i ons
∗/

void AES( byte data [ ] , byte key [ ] )
{

byte dataasarray [ 2 ] [ 2 ] = {{data [ 0 ] >> 4 , data [ 1 ] >> 4} ,{ data [ 0 ] & 0xF , data [ 1 ] & 0xF}} ;
byte keyasarray [ 2 ] [ 2 ] = {{key [ 0 ] >> 4 , key [ 1 ] >> 4} ,{ key [ 0 ] & 0xF , key [ 1 ] & 0xF}} ;

AddRoundKey( dataasarray , keyasarray , 1) ;
SubBytes ( dataasarray ) ;
ShiftRows ( dataasarray ) ;
MixColumns ( dataasarray ) ;
AddRoundKey( dataasarray , keyasarray , 2) ;
SubBytes ( dataasarray ) ;
ShiftRows ( dataasarray ) ;
AddRoundKey( dataasarray , keyasarray , 3) ;

data [ 0 ] = ( dataasarray [ 0 ] [ 0 ] << 4) | dataasarray [ 1 ] [ 0 ] ;
data [ 1 ] = ( dataasarray [ 0 ] [ 1 ] << 4) | dataasarray [ 1 ] [ 1 ] ;

}

A.5 hellman.h

#ifndef HELLMANH
#define HELLMANH

#include ”common . h”

extern NoOfPoints precompute table (TMTOTables) ;
extern unsigned int count cha in merges ( const TMTOTables) ;

#endif

A.6 hellman.cpp

#include ”hellman . h”

#ifde f METHODHELLMAN

/∗∗
∗ Precompute a Hellman TMTO t a b l e by s t a r t i n g at p l a i n t e x t 0x0000
∗ Return s t r u c t o f t o t a l number o f v i s i s t e d po in t s and number o f unique v i s i t e d po in t s
∗/

NoOfPoints precompute table (TMTOTables t ab l e )
{

NoOfPoints counter = {0 , 0} ;
bool checkarray [SEARCH SPACE ] ;
memset ( checkarray , false , SEARCH SPACE) ;
byte p l a i n t e x t [ CIPHER SIZE ] ;
byte c iphered [ CIPHER SIZE ] ;
memset ( p l a in t ex t , 0 , CIPHER SIZE) ;
for (unsigned int i = 0 ; i < NUMBER OF TABLES; ++i )

for (unsigned int j = 0 ; j < TABLE LENGTH; ++j )
{

// s t a r t wi th new p l a i n t e x t
memcpy( c iphered , p l a in t ex t , CIPHER SIZE) ;
for (unsigned int k = 0 ; k < CHAIN LENGTH; ++k)
{

// inc rea se po in t counters
++counter . t o t a l ;
unsigned int index = c i p h e r t e x t t o u i n t ( c iphered ) ;
i f ( ! checkarray [ index ] )
{

checkarray [ index ] = true ;
++counter . unique ;

}
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// i t e r a t e and app ly the output mod i f i ca t i on
memcpy( c iphered , c iphe r ( c iphered , CIPHER SIZE) , CIPHER SIZE) ;
for (unsigned int l = 0 ; l < CIPHER SIZE ; ++l )

c iphered [ l ] ˆ= ( byte ) i ;
}

// s t o r e beg in and endpo in t s
memcpy( tab l e [ i ] [ j ] [ 0 ] , p l a in t ex t , CIPHER SIZE) ;
memcpy( t ab l e [ i ] [ j ] [ 1 ] , c iphered , CIPHER SIZE) ;

n ex t p l a i n t e x t ( p l a i n t e x t ) ;
}

return counter ;
}

/∗∗
∗ Return the number o f chain merges
∗ Two dup l i c a t e po in t s w i th in the same t a b l e cause a chain merge
∗/

unsigned int count cha in merges ( const TMTOTables t ab l e )
{

unsigned int counter = 0 ;
bool checkarray [SEARCH SPACE ] ;
for (unsigned int i = 0 ; i < NUMBER OF TABLES; ++i )
{

memset ( checkarray , false , SEARCH SPACE) ;
for (unsigned int j = 0 ; j < TABLE LENGTH; ++j )
{

byte tmp [CIPHER SIZE ] ;
memcpy(tmp , t ab l e [ i ] [ j ] [ 0 ] , CIPHER SIZE) ;
unsigned int index = c i p h e r t e x t t o u i n t (tmp) ;
for (unsigned int k = 0 ; k < CHAIN LENGTH && ! checkarray [ index ] ; ++k)
{

checkarray [ index ] = true ;

memcpy(tmp , c iphe r (tmp , CIPHER SIZE) , CIPHER SIZE) ;
for (unsigned int l = 0 ; l < CIPHER SIZE ; ++l )

tmp [ l ] ˆ= ( byte ) i ;

index = c i p h e r t e x t t o u i n t (tmp) ;
}
i f ( checkarray [ index ] )

++counter ;
}

}
return counter ;

}

#endif

A.7 dp.h

#ifndef DP H
#define DP H

#include ”common . h”

extern NoOfPoints precompute table (TMTOTables) ;
extern unsigned int count cha in merges ( const TMTOTables) ;

#endif

A.8 dp.cpp

#include ”dp . h”

#ifde f METHODDP
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/∗∗
∗ Precompute a d i s t i n g u i s h e d po in t s TMTO t a b l e by s t a r t i n g at p l a i n t e x t 0x0000
∗ Return s t r u c t o f t o t a l number o f v i s i s t e d po in t s and number o f unique v i s i t e d po in t s
∗/

NoOfPoints precompute table (TMTOTables t ab l e )
{

NoOfPoints counter = {0 , 0} ;
bool checkarray [SEARCH SPACE ] ;
memset ( checkarray , false , SEARCH SPACE) ;
byte p l a i n t e x t [ CIPHER SIZE ] ;
byte c iphered [ CIPHER SIZE ] ;
memset ( p l a in t ex t , 0 , CIPHER SIZE) ;
std : : vector<unsigned int> check indexarray ;
for (unsigned int i = 0 ; i < NUMBER OF TABLES; ++i )

for (unsigned int j = 0 ; j < TABLE LENGTH; ++j )
{

// s t a r t wi th new p l a i n t e x t
memcpy( c iphered , p l a in t ex t , CIPHER SIZE) ;
check indexarray . c l e a r ( ) ;
check indexarray . push back ( c i p h e r t e x t t o u i n t ( c iphered ) ) ;
for (unsigned int k = 0 ; c iphered [ 0 ] >> (CHAR BIT − DP SIZE) != ( byte ) 0x0 && k <

CHAIN LENGTH; ++k)
{

// i t e r a t e and app ly the output mod i f i ca t i on
memcpy( c iphered , c iphe r ( c iphered , CIPHER SIZE) , CIPHER SIZE) ;
for (unsigned int l = 0 ; l < CIPHER SIZE ; ++l )

c iphered [ l ] ˆ= ( byte ) i ;

// temporar i l y s t o r e po in t counters
check indexarray . push back ( c i p h e r t e x t t o u i n t ( c iphered ) ) ;

}

// s t o r e beg in and endpo in t s i f l oop a c t u a l l y ended in DP
i f ( c iphered [ 0 ] >> (CHAR BIT − DP SIZE) == ( byte ) 0x0 )
{

memcpy( tab l e [ i ] [ j ] [ 0 ] , p l a in t ex t , CIPHER SIZE) ;
memcpy( t ab l e [ i ] [ j ] [ 1 ] , c iphered , CIPHER SIZE) ;

// only then inc rea se po in t counters
for (unsigned int k = 0 ; k < check indexarray . s i z e ( ) ; ++k)
{

++counter . t o t a l ;
i f ( ! checkarray [ check indexarray [ k ] ] )
{

checkarray [ check indexarray [ k ] ] = true ;
++counter . unique ;

}
}

}
else

−−j ;

n e x t p l a i n t e x t ( p l a i n t e x t ) ;
}

return counter ;
}

/∗∗
∗ Return the number o f chain merges
∗ Two dup l i c a t e endpo in t s w i th in the same t a b l e cause a chain merge
∗/

unsigned int count cha in merges ( const TMTOTables t ab l e )
{

unsigned int counter = 0 ;
bool checkarray [SEARCH SPACE ] ;
for (unsigned int i = 0 ; i < NUMBER OF TABLES; ++i )
{

memset ( checkarray , false , SEARCH SPACE) ;
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for (unsigned int j = 0 ; j < TABLE LENGTH; ++j )
{

const unsigned index = c i p h e r t e x t t o u i n t ( t ab l e [ i ] [ j ] [ 1 ] ) ;
i f ( checkarray [ index ] )

++counter ;
else

checkarray [ index ] = true ;
}

}
return counter ;

}

#endif

A.9 rainbow.h

#ifndef RAINBOWH
#define RAINBOWH

#include ”common . h”
#include <algor ithm>

struct RainbowPoint
{

unsigned int c iphe r t ex t , row ;
} ;

extern NoOfPoints precompute table (TMTOTables) ;
extern unsigned int count cha in merges ( const TMTOTables) ;

#endif

A.10 rainbow.cpp

#include ” rainbow . h”

#ifde f METHODRAINBOW

/∗∗
∗ Precompute a rainbow TMTO t a b l e by s t a r t i n g at p l a i n t e x t 0x0000
∗ Return s t r u c t o f t o t a l number o f v i s i s t e d po in t s and number o f unique v i s i t e d po in t s
∗/

NoOfPoints precompute table (TMTOTables t ab l e )
{

NoOfPoints counter = {0 , 0} ;
bool checkarray [SEARCH SPACE ] ;
memset ( checkarray , false , SEARCH SPACE) ;
byte p l a i n t e x t [ CIPHER SIZE ] ;
byte c iphered [ CIPHER SIZE ] ;
memset ( p l a in t ex t , 0 , CIPHER SIZE) ;
for (unsigned int i = 0 ; i < TABLE LENGTH; ++i )
{

// s t a r t wi th new p l a i n t e x t
memcpy( c iphered , p l a in t ex t , CIPHER SIZE) ;
for (unsigned int j = 0 ; j < CHAIN LENGTH; ++j )
{

// inc rea se po in t counters
++counter . t o t a l ;
unsigned int index = c i p h e r t e x t t o u i n t ( c iphered ) ;
i f ( ! checkarray [ index ] )
{

checkarray [ index ] = true ;
++counter . unique ;

}

// i t e r a t e and app ly the output mod i f i ca t i on
memcpy( c iphered , c iphe r ( c iphered , CIPHER SIZE) , CIPHER SIZE) ;
for (unsigned int k = 0 ; k < CIPHER SIZE ; ++k)
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c iphered [ k ] ˆ= ( byte ) j ;
}

// s t o r e beg in and endpo in t s
memcpy( tab l e [ 0 ] [ i ] [ 0 ] , p l a in t ex t , CIPHER SIZE) ;
memcpy( t ab l e [ 0 ] [ i ] [ 1 ] , c iphered , CIPHER SIZE) ;

n ex t p l a i n t e x t ( p l a i n t e x t ) ;
}
return counter ;

}

/∗∗
∗ Equa l i t y opera tor f o r RainbowPoint type
∗/

bool operator==(const RainbowPoint& a , const RainbowPoint& b)
{

return a . c i ph e r t ex t == b . c i ph e r t ex t && a . row == b . row ;
}

/∗∗
∗ Return the number o f chain merges
∗ Two dup l i c a t e po in t s w i th in the same column cause a chain merge
∗ RainbowPoints are used to a l s o s t o r e the column number
∗/

unsigned int count cha in merges ( const TMTOTables t ab l e )
{

unsigned int counter = 0 ;
std : : vector<RainbowPoint> checkarray ;
for (unsigned int i = 0 ; i < TABLE LENGTH; ++i )
{

byte tmp [CIPHER SIZE ] ;
memcpy(tmp , t ab l e [ 0 ] [ i ] [ 0 ] , CIPHER SIZE) ;
RainbowPoint rp = { c i p h e r t e x t t o u i n t (tmp) , 0} ;
for (unsigned int j = 0 ; j < CHAIN LENGTH && std : : f i nd ( checkarray . begin ( ) , checkarray

. end ( ) , rp ) == checkarray . end ( ) ; ++j )
{

checkarray . push back ( rp ) ;

memcpy(tmp , c iphe r (tmp , CIPHER SIZE) , CIPHER SIZE) ;
for (unsigned int k = 0 ; k < CIPHER SIZE ; ++k)

tmp [ k ] ˆ= ( byte ) j ;

rp . c i ph e r t e x t = c i p h e r t e x t t o u i n t (tmp) ;
rp . row = j ;

}
i f ( std : : f i nd ( checkarray . begin ( ) , checkarray . end ( ) , rp ) != checkarray . end ( ) )

++counter ;
}
return counter ;

}

#endif

A.11 kraken.h

#ifndef KRAKENH
#define KRAKENH

#include ”common . h”

extern NoOfPoints precompute table (TMTOTables) ;
extern unsigned int count cha in merges ( const TMTOTables) ;

#endif
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A.12 kraken.cpp

#include ”kraken . h”

#ifde f METHODKRAKEN

/∗∗
∗ Precompute a Kraken TMTO t a b l e by s t a r t i n g at p l a i n t e x t 0x0000
∗ Return s t r u c t o f t o t a l number o f v i s i s t e d po in t s and number o f unique v i s i t e d po in t s
∗/

NoOfPoints precompute table (TMTOTables t ab l e )
{

NoOfPoints counter = {0 , 0} ;
bool checkarray [SEARCH SPACE ] ;
memset ( checkarray , false , SEARCH SPACE) ;
byte p l a i n t e x t [ CIPHER SIZE ] ;
byte c iphered [ CIPHER SIZE ] ;
memset ( p l a in t ex t , 0 , CIPHER SIZE) ;
std : : vector<unsigned int> check indexarray ;
for (unsigned int i = 0 ; i < NUMBER OF TABLES; ++i )

for (unsigned int j = 0 ; j < TABLE LENGTH; ++j )
{

// s t a r t wi th new p l a i n t e x t
memcpy( c iphered , p l a in t ex t , CIPHER SIZE) ;
check indexarray . c l e a r ( ) ;
check indexarray . push back ( c i p h e r t e x t t o u i n t ( c iphered ) ) ;
for (unsigned int k = 0 ; c iphered [ 0 ] >> (CHAR BIT − DP SIZE) != ( byte ) 0x0 && k <

NUMBER OF CHAINS; ++k)
for (unsigned int l = 0 ; c iphered [ 0 ] >> (CHAR BIT − DP SIZE) != ( byte ) 0x0 &&

l < CHAIN LENGTH; ++l )
{

// i t e r a t e and app ly the output mod i f i ca t i on
memcpy( c iphered , c iphe r ( c iphered , CIPHER SIZE) , CIPHER SIZE) ;
for (unsigned int m = 0 ; m < CIPHER SIZE ; ++m)

c iphered [m] ˆ= ( byte ) ( ( i << 4) | k ) ; //assume a , s <= 16

// temporar i l y s t o r e po in t s because o f counters
check indexarray . push back ( c i p h e r t e x t t o u i n t ( c iphered ) ) ;

}

// s t o r e beg in and endpo in t s i f l oop a c t u a l l y ended in DP
i f ( c iphered [ 0 ] >> (CHAR BIT − DP SIZE) == ( byte ) 0x0 )
{

memcpy( tab l e [ i ] [ j ] [ 0 ] , p l a in t ex t , CIPHER SIZE) ;
memcpy( t ab l e [ i ] [ j ] [ 1 ] , c iphered , CIPHER SIZE) ;

// only then inc rea se po in t counters
for (unsigned int k = 0 ; k < check indexarray . s i z e ( ) ; ++k)
{

++counter . t o t a l ;
i f ( ! checkarray [ check indexarray [ k ] ] )
{

checkarray [ check indexarray [ k ] ] = true ;
++counter . unique ;

}
}

}
else

−−j ;

n e x t p l a i n t e x t ( p l a i n t e x t ) ;
}

return counter ;
}

/∗∗
∗ Return the number o f chain merges
∗ Two dup l i c a t e endpo in t s w i th in the same t a b l e cause a chain merge

36



∗/
unsigned int count cha in merges ( const TMTOTables t ab l e )
{

unsigned int counter = 0 ;
bool checkarray [SEARCH SPACE ] ;
for (unsigned int i = 0 ; i < NUMBER OF TABLES; ++i )
{

memset ( checkarray , false , SEARCH SPACE) ;
for (unsigned int j = 0 ; j < TABLE LENGTH; ++j )
{

const unsigned index = c i p h e r t e x t t o u i n t ( t ab l e [ i ] [ j ] [ 1 ] ) ;
i f ( checkarray [ index ] )

++counter ;
else

checkarray [ index ] = true ;
}

}
return counter ;

}

#endif
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