A2AN,
Yerre™

Q

MiNe©

RADBOUD UNIVERSITY NIJMEGEN

BACHELOR THESIS

Model Checking
Tamper-Evident Pairing

Author: Supervisors:
Manu DRIJVERS Marko VAN EEKELEN
(3040429) Rody KERSTEN

June 25, 2012

Abstract

Easily pairing wireless devices in a secure way has many real-life appli-
cations, such as in wireless sensor networks. The Wi-Fi Alliance designed
the Wi-Fi Protected Setup to provide standard ways to easily pair wireless
devices. Push button configuration is part of this standard and allows two
devices to be paired by simply pressing a button on each device. However,
this method is vulnerable to man-in-the-middle attacks. Tamper-evident
pairing is a wireless pairing protocol that aims to solve the man-in-the-
middle vulnerability of push button configuration, but only an informal
proof of security is provided. In this thesis model checking in UPPAAL is
used to analyze the security of tamper-evident pairing. We conclude that
our model is secure, but future work is required to gain more certainty
about the security of tamper-evident pairing.

Contents

3.3 Push button configuration|
3.4 Tamper-evident pairing|

13.4.2 Tamper-evident announcement|

13.4.3 Bit-balancing algorithm)| .
18.4.4 Using TEAs|.

4.3 UPPAAL components|
4.4 Coftee machine example|

[0.2.3 Registrar]

5.2.4 versaryl

[6 Model checking|
[6.1 TEA model checking results| . . .

[6.17.1 odel checking parameters
6.1.2 esults without adversary|
6.1.3 Results with adversary|. .
6.2 TEP model checking results| . . .
I(i.;i E&ﬂl!l;ili‘lll Szi If:ﬁlll‘ﬁl

[T _Conclusionl|
[B_References|

[Appendix A TEA modell

[Appendix B TEP model

27

29

42

1 Introduction

More and more devices are capable of communicating over wireless networks.
To securely connect these devices, pairing protocols are developed. Not all of
these devices have a display or keyboard, so the Wi-Fi Alliance designed push
button configuration (PBC) as part of their Wi-Fi Protected Setup standard.
Using PBC, one can pair two devices by pressing a button on each device.
Unfortunately, this method is not secure, as it is vulnerable to man-in-the-
middle attacks. Tamper-evident pairing (TEP) is based on this method, and
introduces a new primitive, the tamper-evident announcement (TEA). TEP
claims to have solved this issue, but only provides an informal proof. This
raises the research question: Is tamper-evident pairing vulnerable to man-in-
the-middle attacks?
To answer this question we have to answer the following subquestions:

1. (a) How can a tamper-evident announcement be modeled?

(b) How can an attacker be integrated in the model of a tamper-evident
announcement?

2. (a) How can tamper-evident pairing be modeled?

(b) How can an attacker be integrated in the model of tamper-evident
pairing?

3. How can the results of model checking be interpreted?

1.1 Methods

There are multiple approaches to analyze security protocols. The two general
ways are model checking and theorem proving. In model checking, a property
is checked for a finite number of states, where in theorem proving, all possible
states are considered. UPPAAL [3] is an example of a tool for model checking.
Prototype Verification System [15] is an example of a theorem prover. A special
form of theorem proving is type checking. The spi calculus is the pi calculus
extended with types for security properties [I]. ProVerif [12] is a type checker
that can type check spi calculus, to check security properties. In some theo-
rem provers, like ProVerif, protocols are considered on a high abstraction level.
Tamper-evident pairing must be checked on a lower abstraction level because
it dictates implementation decisions. Other theorem provers might be suitable,
but constructing such a proof requires a lot of effort and time. Model checking
is less time consuming and more fit for the scope of this thesis. UPPAAL is de-
signed to model timed systems, and timing is a very important aspect of TEP.
It has also been shown that UPPAAL can be used to analyze security protocols
[]. Therefore UppPAAL will be used to analyze TEP.

First the tamper-evident announcement will be modeled in UpPAAL. This
models the transmission of a single TEA. The desired properties of a TEA are
translated to UPPAAL queries, and these queries are tested on the model. If some
query does not hold, TEP is broken. If all desired properties of a TEA hold,
TEP will be modeled. This will be a separate model using just the results of the
TEA modeling, to make sure that this model will be computationally tractable.
The model will contain a state in which a succesful man-in-the-middle attack

has been performed. If this state is reachable, an attack will be found by tracing
the steps it took to get there. Otherwise, it is likely that there is no attack, but
a formal proof is required to be sure.

1.2 Motivation

Model checking cannot provide a formal proof of security, but it may find vul-
nerabilities if they exist. If no vulnerabilities will be found, then attempting
to formally prove the security will be the next step. The intention is that this
proof will also be constructed within the Go-Green project . The results
of this thesis will therefore support a formal proof.

Proving that TEP is secure would be useful for many real life scenarios.
TEP could replace PBC as standard push button wireless pairing mechanism
to provide better security. A wireless pairing mechanism is needed for medical
devices [16][9], where security is of vital importance. Another application of a
secure pairing mechanism is the Go-Green project.

1.2.1 Go-Green project

The Go-Green project is a collaboration among a number of companies and
universities, including Delft University of Technology, University of Twente and
Radboud University. The goal of this project is to make

“[...] an intelligent energy-aware system that learns people’s behav-
ior, understands their needs, provides reliable feedback in terms of
best practices for energy use and distribution, intelligently harvests
energy from various sources, and allows people to be in control.”
[18]

To achieve this goal, the project aims to develop a system that gathers data
with sensors throughout the house. This data is processed by a smart system
and combined with external data such as the weather forecast. The system will
help the user control the energy consumption based on this information and
user feedback.

This system depends on sensors that can send their data securely, as privacy
sensitive data may be sent. To connect all these sensors, a simple and secure
way to connect devices is required. If TEP is proven secure, then this may be
used as pairing mechanism. I will only consider the security of TEP, the other
privacy and security aspects of this project are not in my scope.

2 Related work

Wi-Fi protected setup has been analyzed a lot. Viehbock found an attack on
the PIN authentication [20]. The PIN consist of eight digits, but the last one
is a checksum digit. A brute-force attack would require at most 107 attempts.
Viehbock discovered that from the registrar’s response to a connection attempt
can be derived whether there was a mistake in the first or second half of the
PIN. This enables an attacker to first brute-force the first half, and then the
second half. The first half has 10* options, the second half 103. Using this
information, a brute-force attack only requires 10* 4+ 103 = 11000 attempts
instead of 107 = 10000000 and is feasible.

Corin et al. [4] demonstrated how UPPAAL can be used to verify security
protocols in a real time setting. This is fundamentally different than the trandi-
tional security in which time is not considered. A Dolov-Yao [7] style intruder is
modeled, but it became more powerful than a Dolov-Yao attacker by modeling
it as a timed automaton, because it is now aware of time. Time also introduces
new possibilities for security protocols, because sending a message at a specific
moment instead of some other moment carries information. Corin et al. de-
scribed this as a preliminary idea, but the on-off slots in a TEA are using a
similar principle.

Kuo et al. [I1I] analyzed bluetooth simple pairing and the WPS protocols.
They conclude that an attack on PBC is very likely to succeed, since they do not
make use of an out-of-band channel and use unauthenticated Diffie-Hellman.

3 Theoretical framework

Firstly the required theoretical concepts will be introduced. We start by describ-
ing Diffie-Hellman key exchange (3.1]) as this is used in PBC and TEP. Then
the attacker model (3.2)) is provided, followed by descriptions of PBC (3.3]) and
TEP (3.4)).

3.1 Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange [5] allows two users to establish a shared key. Both
parties know a non-secret prime p, and a non-secret generator of multiplicative
group of integers modulo p named g. The protocol works as follows:

A — B: g% modp

B — A: ¢”® modp

Where S; is a secret of user i. Now the shared key Kap is ¢°4°2 modp.
A and B can compute this key by raising the received message to the power of
their secret. An eavesdropper must be able to compute the discrete logarithm
to acquire the key. However, we do not know an efficient way to compute the
discrete logarithm, and assume this to be hard [I3]. Therefore we assume that
an eavesdropper cannot efficiently compute the key.

Diffie-Hellman Key Exchange is vulnerable to man-in-the-midle (MITM)
attacks on a wireless medium, because an adversary can hide a message and
send another message instead. An attack would look like this:

A— E: g% modp

E — B: ¢°% modp
B — E: ¢°" modp
E — A: ¢%% modp

Now E shares a key with A and with B. There are authenticated protocols
based on Diffie-Hellman key exchange that do not have this vulnerability, like
station-to-station protocol [6]. However, these protocols require shared keys for
authentication. In push button configuration we are trying to establish a shared
key, so authenticated protocols cannot be used.

3.2 Attacker model

The security of tamper-evident pairing will be analyzed using the attacker model
used by Gollakota et al. [§]. A Dolev-Yao [7] like attacker is used, which is an
attacker that has full control over the medium. This means an attacker can
eavesdrop any message from the medium, transmit with arbitrary power and
thus overpower any message and replace it with his own message. The attacker
used differs from a Dolev-Yao as he cannot remove messages sent by others.
This means the attacker cannot make a busy wireless medium look like an idle
wireless medium.

We assume perfect hash functions, so an attacker cannot efficiently find
collisions or determine the preimage of a hash.

3.3 Push button configuration

To be able to securely add wireless devices to a Wi-Fi network, the Wi-Fi
Alliance introduced the Wi-Fi Protected Setup (WPS) standard [19]. Push
button configuration (PBC) is a part of WPS and lets two devices pair when a
user presses a button on both devices. This is especially useful for small devices
that do not carry the interface to enter a password.

A new device called enrollee wants to enroll on the network. The other
device, called the registrar, can give credentials to join the network. The user
presses the button of both devices within the so-called walk time, which is two
minutes. When the enrollee’s button is pressed, he will actively search for a
registrar for the duration of the walk time. If it finds more than one registrar
an error will occur. Pressing the button of the registrar causes it to first check
how many enrollees tried to connect in the last two minutes (monitor time), if
more than one enrollee tried to connect, an error is given immediately. If not,
it will listen to enrollees trying to connect for the duration of the walk time. If
only one enrollee tried to connect at the end of the walk time, the registrar will
answer according to the registration protocol. A shared key is established using
Diffie-Hellman Key Exchange, and the credentials for the network are sent to
the enrollee. If multiple enrollees tried to connect, an error will be given.

An attacker can perform a man-in-the-middle attack by jamming the en-
rollee’s connection attempt, transmitting his own connection attempt simul-
taneously or sending a connection attempt and continue hogging the medium
afterwards, making it impossible for an enrollee to send his connection request.
The registrar will only notice one connection attempt, and will pair with the
attacker. Then the attacker can impersonate a registrar to the enrollee, so the
attack will not be detected.

3.4 Tamper-evident pairing

Gollakota et al. (2011) modified PBC to prevent MITM attacks. This new pro-
tocol, named tamper-evident pairing or TEP, hopes to provide simple and secure
wireless pairing without the use of out-of-band channels. To achieve this, a new

security primitive has been designed, named a tamper-evident announcement
(TEA).

3.4.1 Out-of-band channel

When an out-of-band channel is used in authentication, a trusted communica-
tion channel other than the channel requiring authentication is used. In internet
banking text messages are often used to send a confirmation code as extra layer
of security. The cellular network is the out-of-band channel in this example.
Other examples of out-of-band channels are audio channels, visual channels,
near field communication, or a USB flash drive that is physically transferred
between devices. Using out-of-band channels can provide more secure authenti-
cation [I0], but also increases device manufacturing costs, since another channel
has to be supported.

10

3.4.2 Tamper-evident announcement

The TEA is a new security primitive. The goal of a TEA message is that an
attacker cannot hide the message, nor can he modify its content. To achieve
this, the fact whether there is energy on the channel at certain moments is used.
The key is that an adversary cannot remove energy from the medium.

Payload CTS_to_SELF ON-OFF slots

110101 01 Time

Figure 1: The format of a TEA [§]

A TEA starts with an exceptionally long packet called the synchronization
packet, followed by the payload packet. After the payload a CTS_TO_SELF
is sent. This is a message defined in the 802.11 specification that informs the
nodes that the sender of the CTS_TO_SELF is about to transmit data, and tells
others to refrain from transmitting. By sending this message, all honest nodes
will remain silent for the duration of the TEA. Then a sequence of equally sized
packets called slots is sent. A slot can either be the transmission of random
data, or completely silent. When you interpret a transmission slot as a 1 bit
and a silent slot as a 0 bit, the slots together must form a hash of the payload.

The synchronization packet attempts to prevent that an attacker can hide the
message by creating a collision, because such a long collision is easily detectable.
This packet also indicates the start of a TEA. This is required since timing is
important when receiving the slots. The hash slots are intended to prevent an
attacker from modifying a message by transmitting simultaneously but with a
higher power. Since an attacker can not remove messages from the medium, he
can not turn a transmission slot into a silent slot. An attacker can still change
the hash by turning a silent slot into a transmission slot by transmitting data
in this time interval. To counter this, Gollakota et al presented a bit-balancing
algorithm that transforms data to have an equal number of zeros and ones. By
using a bit-balanced hash, the attacker can no longer change a silent slot into a
transmission slot, because this destroys the balance and makes the hash invalid.
The CTS_TO_SELF makes sure that no honest node will change a silent slot
into a transmission slot.

In the implementation of TEP proposed in [§], to detect whether a slot was
a transmission slot or a silent slot, the registers ARSK_PROFCNT_CYCLE and
ARS5K_PROFCNT_RXCLR from the ath5k firmware are used. Every clock cy-
cle, ARSK_PROFCNT_CYCLE is incremented. ARG K_PROFCNT_RXCLR is
incremented on a clock cycle if the hardware finds energy during that clock
cycle. A sensing window is an interval in which these two registers are ana-
lyzed. At the start of every sensing window ARSK_PROFCNT_CYCLE and
ARS5K_PROFCNT_RXCLR get reset. At the end of a sensing window,
ﬁggg:ﬁgg?g%;ﬁi%ég is stored. This fraction, called the fractional occu-
pancy, indicates the occupancy of the wireless medium during the sensing win-
dow. Perfect synchronization between sender and receiver is hard to achieve.
If the receiver would use 40 ps sensing windows, a part of the wrong slot may

11

be measured in a sensing window due to non perfect synchronization. To solve
this problem, 20 us sensing windows are used for the 40 us slots. By using 20
us sensing windows, one of the two sensing windows for a slot will be entirely
in that slot. At the end of a TEA, the receiver has two fractional occupancy
values for each slot. Either the even or the odd sensing windows are the ones
entirely in a slot. To determine which ones are, the variance of the fractional
occupancy values is calculated for the even and the odd windows. The sensing
windows that are entirely in one slot have the highest variance, because over-
lapping decreases the variance. Finally the receiver has to determine whether a
slot was a transmission slot or a silent slot given the fractional occupancy. This
is done by simply comparing it to a threshold value. This threshold value is
unspecified by Gallakota et al.

3.4.3 Bit-balancing algorithm

This algorithm takes a bit sequence of length N, where N is even, and returns
a bit sequence of length N + 2[log N'|. It checks the difference between zeros
and ones in the input. If this difference is not zero, the first bit is flipped. The
difference is calculated again, and if unequal to zero, the next bit is flipped.
At the ith iteration, the first ¢ bits are flipped. This will be repeated until the
difference is zero.

The difference will always become zero. If initialy the difference is d. d is
even because N is even. Every time you flip a bit, d increases or decreases
2, which means that the difference will remain even. The difference after N
iterations, i.e. all bits flipped, is —d. Zero is even and between d and —d, and
will therefore be reached.

The algorithm returns the input with the first ¢ bits flipped, concatenated
with the binary representation of ¢ in manchester encoding [I7]. Manchester
encoding turns a 0 into 10 and a 1 in 01, so the encoding of i is bit-balanced.
The length of the encoding of ¢ is 2[log N, because the binary representation
of i is [log N'|, and the manchester encoding doubles the length. Now the result
has the same amount of zeros and ones, and its length is N + 2[log N].

3.4.4 Using TEAs

TEP works like PCB, but probe requests and responses are now TEAs con-
taining the Diffie-Hellman public key of the sender. If an enrollee or registrar
receives a tampered message it will continue sending requests or responses, but
after the duration of the walk time it will not pair.

12

4 Uppaal

UPPAAL is a tool developed by Uppsala University and Aalborg University [3].
UPPAAL is used to verify real-time systems by modeling them as networks of
timed automata.

4.1 Timed automata

A timed automaton is a finite automaton extended with a finite set of clock
variables and invariants [2]. All clocks progress synchronously, but each clock
can individually be reset. Transitions can use contraints on clock values, e.g.
transition x can only be used when clock c is greater than five. Invariants can
be added to states. An invariant is a boolean expression on clocks that must
be invariantly true. This makes it possible to reason about systems in which
timing is a crucial aspect.

4.2 Networks of timed automata

UPPAAL models are networks of timed automata. Such a network consists of
multiple timed automata. Bounded discrete variables and synchronization chan-
nels are added to let the timed automata communicate. The variables are part
of the state and can be used in the same way as they are used in programming
languages, and one can write user-defined functions using variables. Transitions
and invariants can now also put contraints on variable values or function results.

Synchronization channels are used to enforce transitions in multiple timed
automata to be enabled at once. A synchronization channel must be declared
first. If an edge is labelled with c!, where c is a synchronization channel, another
edge labelled with c?, both edges are enabled at the same time. The default way
of synchronization is binary synchronization. In binary synchronization, when
there are multiple edges labelled c? one of those is chosen nondeterministically.
In broadcast synchronization, a single c! enables all edges labelled c?.

For individual states it is possible to mark them as urgent. If any of the
timed automata is in an urgent state, time may not progress. States can also
be marked as committed. A committed state freezes time like an urgent state,
but gives edges from this state priority over edges from non-committed states.
If there is an automaton in a committed state, the next transition must involve
an edge from one of the committed states.

4.3 Uppaal components

UPPAAL consists of three major components: the editor, the simulator and the
verifier.

The editor is used to design a model. A model contains templates. Every
template is a timed automaton with it’s own variables and function declara-
tions. An UPPAAL model also contains global declarations, the variables and
user-defined functions are accessible from all templates. In the system declara-
tion, one can define of which templates a system consists. For example, when
modeling a railroad crossing, one might make a crossing template and a train
template, and the system would consist of one instance of the crossing template
and two instances of the train template.

13

The simulator lets one use the model. The user can choose which transitions
take place and analyze the values of the variables in the state. The simulator is
useful to explore the model and check whether it functions as intended. Another
feature of the simulator is stepping through a trace. A trace is a chain of
transitions that the verifier may provide. The simulator can be used to analyze
this trace.

The verifier checks whether a given query holds in the model. Queries use
temporal logic [14]. Queries often look like A[] expression. The A means
the expression must hold for all possible paths in the model. The [] means
that the expression must hold for every single step in the path. Therefore the
combination A[] expression means that expression always holds in the model.
A query may also start with A<>. The A still means that the expression must
hold in all paths, but <> means that expression must eventually hold in a
path, so the combination A<> means that for every path the expression must
eventually be true. Instead of verifying an expression for all paths, one can
whether there exists a path in which a property holds. This can be done using
an E instead of an A. E[] expression means that expression must hold in all states
of some path, and E<> expression means that expression must eventually hold
in some path. The last form or queries is p —-> g, which means that whenever
p holds, q must eventually hold.

When the verifier checks an E[] or E<> query that holds, it will provide
the witnessing trace, and when a A[], --> or A<> query is check that does not
hold, a counter-example trace will be given.

4.4 Coffee machine example
money >= COFFEE_PRICE

enteredMoney
money -= COFFEE_PRICE

-
WantCoffee WaitingForCoffee

coffeeReady?

grabCoffee

GrabCoffee

Figure 2: The User template of the coffee machine example

To make the UPPAAL concepts more clear a coffee maker example model is
provided. The model consists of two templates, called User (figure[2) and Cof-
feeMachine (figure , and models a user that enters money in a coffee machine,

14

enteredMoney?

Engnoey += COFFEE_PRICE, MakingCoffee

O
c <= MAKE_COFFEE_TIME

WaitingForUser O

¢ >= MAKE_COFFEE_TIME
coffeeRead Y

grabCoffee?

MadeCoffee

Figure 3: The CoffeeMachine template of the coffee machine example

waits for his coffee and gets his cup of coffee. After buying a cup of coffee, he
might want another cup of coffee and start over.

The user starts in the state WantCoffee, which is indicated by the second
circle in this state. This state has one outgoing edge, which models the en-
tering of money in the coffee machine. The transition has a guard field with
money >= COFFFE_PRICE, preventing this edge from being taken when the user
doesn’t have enough money. The update field of this transition states money
-= COFFEE_PRICE, which lowers the user’s money with the coffee price, mod-
eling the fact that the user entered the money in the machine. The transi-
tion is synchronized with enteredMoney!. The CoffeeMachine template starts
in state WaitingForUser, and has an outgoing edge with enteredMoney? in
the synchronization field. Now these two transitions can be taken simulta-
neously. The CoffeeMachine transition has money += COFFEE_PRICE, c = O
which increments the machine’s money, and resets a clock variable c. The user
is now in state WaitingForCoffee, with an outgoing edge that synchronizes
on coffeeReady?, modeling the fact that he is waiting for the coffee to be
ready. This transition cannot be taken without the machine being ready, as
this binary synchronization channel needs a coffeeReady! to be enabled. The
CoffeeMachine is now in state MakingCoffee. From this state there is one out-
going edge to MadeCoffee, but this is guarded with ¢ >= MAKE_COFFEE_TIME
which prevents the transition being taken before the time it takes to make coffee
has passed. The state MakingCoffee has an invariant ¢ <= MAKE_COFFEE_TIME
that prevents CoffeeMachine from staying in this state any longer than the time
it takes to make coffee. Without this invariant it could remain in this state
for as long as he wants, and a coffee machine that takes an arbitrary amount
of time to make coffee does not make sense. The invariant combined with the
guard on the transition force the coffee maker to take the transition at exacty
MAKE_COFFEE_TIME. Now we have both coffeeReady! and coffeeReady? so

15

both transitions are taken simultaneously. The user is now in state GrabCoffee
and the machine in state MadeCoffee. Because GrabCoffee is a committed
state, time may not progress and the transitions from this state have priority.
This models the fact that a user would take his coffee from the machine as soon
as it is ready. The transition synchronizes on grabCoffee!. The coffee machine
has a transition with grabCoffee? allowing the two transition to be taken to-
gether. Both templates are back in the intial state. The coffee machine is ready
for another user, and the user might buy another cup of coffee.

A system is composed using two users and a single coffee machine. The
system declarations look like:

Userl = User();

User2 = User();

CoffeeMachinel = CofffeeMachine();
system Userl, User2, CoffeeMachinel;

One might want to verify the fact that the total amount of money in the
system remains the same, i.e. no money appears or disappears. This can be
checked using the query

A[] Userl.money+User2.money+CoffeeMachinel.money ==

2%USER_INITIAL_MONEY + MACHINE_INITIAL_MONEY

where USER_INITIAL _MONEY is the amount of money each user initially has, and
MACHINE_INITIAL_MONEY is the amount of money initially in the machine. This
query checks whether for all reachable states the total amount of money is equal
to the initial amount of money in the system. The UPPAAL verifier responds
with property is satisfied, indicating that this property holds.

16

5 Modeling

Two models have been designed, one for TEA and one for TEP. In the TEP
model we assume that TEAs work as intended. This split has been made to
decrease the model checking complexity. The TEA model is described in section
(.1} the TEP model in section [5.2}

5.1 TEA model

The TEA model consists of four templates, each of which is described in it’s
own section.

5.1.1 Sender

One of the templates of the TEA model is the sender. To send a TEA, the sender
must know a payload, must be able to calculate the hash of this payload and be
able to bit-balance this hash. The payload could be chosen nondeterministically,
but this increases the possibilities and model checking time a lot. Therefore the
payload must be given. Calculating the hash and the bit-balanced hash are tasks
that the sender and receiver do by themselves, and timing and communication
do not matter. In UPPAAL, this can be modeled as a user-defined function.
Because we assume a perfect hash function and we are not looking for an attack
using colissions is implementing a hash function not required. The bit-balancing
is required, and is therefore implemented, see appendix

The sender starts by determining the payload, the hash and the balanced
hash. Then the syncpacket is sent, this is modeled using a broadcast chan-
nel. After the synchronization packet the sender sends his payload. Then the
SendingHash state is reached in which the balanced hash will be sent using the
slots. A counter keeps track of how many slots have been sent. The invariant
on the state SendingHash combined with the clock guards on the transitions
to TransmissionSlot and SilentSlot force the sender to send or remain silent at
fixed times.

5.1.2 WirelessMedium

A sender or adversary can send data by using the synchronization channel send.
The data is passed using a global variable called dataToSend. The sender stores
his payload on this variable and calls send!. The medium will reset his clock.
Firstly the adversary may edit the data, as this is part of the attacker model.
The possibly edited data is now stored on the global variable dataInAir, and
the broadcast channel transmit is used. Now everyone listening to the transmit
channel know that data is sent, and this data can be retrieved from the variable
dataToSend. Boolean variable mediumBusy is set to true, indicating that the
wireless medium is currently transmitting. It will remain in state busy for the
time it takes to send the data. After that it returns to the idle state and
mediumBusy is set to false.

5.1.3 Adversary

As described in the attacker model section, an adversary can change the con-
tent of any message. This is modeled using a synchronization channel named

17

captureEffect. When the wireless medium receives a message to send, it lets
the adversary change the message contents. According to the attacker model,
the content can be changed to any value. This would dramatically increase the
number of possible transitions and the model checking complexity. Therefore
the adversary is limited to changing the contents to a predefined value or not
changing it at all. If the adversary is able to replace message contents with any
value then model checking would find attacks using a hash collision. Since a
perfect hash function is assumed, these attacks are not considered. Therefore
limiting the adversary to a predefined value does not prevent attacks.

The adversary can also transmit data. By enabling the adversary to transmit
for any given moment checking the model is not computationally tractable. To
counter this problem, the adversary may only transmit when the medium is
idle. Since the receiver only checks whether the medium is busy or idle and
does not consider the data that are transmitted is there no difference between
two nodes transmitting simultaneously and a single node transmitting. Using
this limitation the adversary has still too many options for the model to be
computationally tractable. To limit the options even further the adversary can
choose between predefined time frames for every slot. For example, the possible
time frames can be chosen as (0,0), (0,20), (20,40), (0, 40) where the first first
element of a tuple denotes the time to start transmitting in a slot and the second
element the time to stop transmitting, the adversary can respectivly choose to
not transmit at all, transmit during the first half of a 40 us slot, transmit during
the second half of a 40 us slot or transmit during the entire slot. By varying the
number of allowed time frames the right number of possibilities can be found,
i.e. the highest number for which the model is still computationally tractable.

The adversary has a boolean variable tampered that is set to true whenever
he performed any tampering, i.e. editing payload and transmitting data during
silent slots. This is not modeling any behaviour, it is just useful for model
checking as will become clear in section [6.1

5.1.4 Receiver

The receiver will wait for a synchronization packet, which is modeled as a broad-
cast channel. The sender starts by sending the payload, which is stored by the
receiver. Then the slots are analyzed. It uses 20 us sensing windows, in which
it repeatedly checks whether the medium is busy or idle. The frequency of this
polling can be configured. At the end of a sensing window, the fractional occu-
pancy must be stored. An approximation is required because UPPAAL does not
support float variables. To make an approximation, the numerator is multiplied
by a constant factor ¢. Then a user-defined function that provides rounded
integer division is used. So instead of storing the fractional occupancy, we
store round(c - fractionaloccupancy). After the TEA, the variance of the even
and odd fractional occupancies are calculated using a user-defined function and
compared. The factor ¢ does not have to be removed, because

Var(c-X) = - Var(X)
and thus for ¢ > 0

Var(c- Even) < Var(c-0dd) < Var(Even) < Var(Odd)

18

A boolean array is derived from the fraction occupancies with the highest
variance by checking if round(c - fractionaloccupancy) > 0.5 - ¢, and this array
is compared to the balanced hash of the received payload. If equal, the receiver
will reach state Valid, indicating the received TEA is valid. If unequal, the
receiver will go to state Tampered, indicating that the received TEA has been
tampered with.

5.2 TEP model

The TEP model consists of four templates: a user pressing the buttons, an
enrollee, a registrar and an adversary. Each template will be described individ-
ually in the following sections. In this section we assume that TEAs work as
intended.

5.2.1 User

The user may start by pressing the enrollee or the registrar button. Within the
walk time the button of the other device is pressed. The buttons are modeled
as synchronization channels.

5.2.2 Enrollee

When the enrollee button is pressed TEA mode will be entered. In TEA mode
the enrollee repeatedly transmits probe requests and listen to probe responses.
These messages are modeled using shared data fields and broadcast channels.
Requests and responses have a boolean field tampered indicating that this mes-
sage has been tampered with. This is accurate since these messages are sent
using TEAs. Whenever a probe response is detected, a user-defined function is
called that handles responses. The registrar Diffie-Hellman key will be stored
and it checks the validity of the message. If the tampered field of this response
is true then a local variable tampered is set to true. After the duration of the
walk time the enrollee will leave TEA mode. If the tampered variable is true,
the enrollee will go to state TAMPERED. Otherwise, he will check the amount of
registrars detected. If exactly one registrar is found, he will move to state PAIR,
indicating that the enrollee is willing to start the WPS registration protocol
using the Diffie-Hellman key of the single registrar he detected. If zero or more
than one registrars were detected, the enrollee will move to states NO_LREGISTRAR
and SESSION_OVERLAP respectively.

5.2.3 Registrar

The registrar always listens to probe requests. Whenever a request is detected,
the Diffie-Hellman key and the time of receiving this key are stored. It also
checks the validity of all requests, and if a request is invalid, a local boolean
tampered is set to true. When the button is pressed, the registrar removes all
requests except the ones that have been received within the monitor time. Then
it enters TEA mode. It continues to listen to probe requests, but now a response
is sent immediately. It will remain in TEA mode for the duraction of the walk
time. After that, if the tampered variable is true, he will enter the TAMPERED
state. Otherwise, he will check the amount of enrollees detected. If a single
enrollee was detected, he will enter the state PAIR, indicating that the registrar

19

is willing to run the WPS registration protocol with the Diffie-Hellman key of
that enrollee. If zero or more than one enrollees were found, the registrar will
move to NO_ENROLLEES and SESSION_OVERLAP respectively.

5.2.4 Adversary

The adversary can edit the payload of probe requests and responses, and he
can impersonate an enrollee or registrar by sending out probe requests and
responses. FEach capability can be turned off by configuring boolean vari-
ables. When the enrollee sends a probe request, the synchronization channel
adversaryProbeRequest is used. This allows the adversary to edit the payload.
Since this models a TEA, whenever the adversary edits the data he must set
the tampered field to true. The adversary now uses the probeRequest syn-
chronization channel to notify the registrars of this probe request. For probe
responses the channel adversaryProbeResponse is used, and after editing the
data the adversary uses the probeResponse channel to notify the enrollees of
the response.

20

6 Model checking

Each model has been checked for desired properties. The model checking results
of the TEA model are presented in section and the TEP model checking
results in section [6.21 The results will be evaluated in [6.3]

6.1 TEA model checking results
The following properties have been checked on the TEA model:
1. The receiver always detects a TEA being sent

2. Without an adversary interfering, the TEA will be delivered correctly

3. Whenever an adversary tampers with the TEA it will be detected by the
receiver

These properties are tested using the following queries:

1. A<> Receiverl.Valid || Receiverl.Tampered
2. (Adversaryl.finished && !Adversaryl.tampered) —— > Receiverl

3. Adversaryl.tampered —— > Receiverl.Tampered

6.1.1 Model checking parameters

The complexity of the model is determined by multiple parameters. The length
of a hash has a huge effect on the model complexity. A hash length of 16 bits
has been chosen to prevent exceeding the memory limitations. The receiver
will poll the medium for energy twice every sensing window, and multiplies the
numerators of the fractional occupancies by 50. A higher polling frequency and
a higher factor would be closer to the reality, but that introduces overflowing
integers.

6.1.2 Results without adversary

In this section the queries are checked with the adversary set to inactive.

.Valid

Query Desired | Result

—— > Receiverl.Valid

A<> Receiverl.Valid | Receiverl.Tampered satisfied | satisfied

(Adversaryl.finished && !Adversaryl.tampered) | satisfied | satisfied

Adversaryl.tampered —— > Receiverl.Tampered | satisfied | satisfied

The results show without an adversary the TEA will be detected and the
TEA will be received correctly. The third query is trivial, since the adversary
is inactive Adversaryl.tampered is always false, and ez falso quodlibet.

21

6.1.3 Results with adversary

Now the queries are verified using an adversary that may edit the content of
messages but may not send its own messages.

Query Desired | Result

A<> Receiverl.Valid | Receiverl.Tampered satisfied | satisfied

(Adversaryl.finished && !Adversaryl.tampered) | satisfied | satisfied
—— > Receiverl.Valid

Adversaryl.tampered —— > Receiverl.Tampered | satisfied | satisfied

The TEA is still detected, and the receiver will detect the tampering.
The queries are also verified using an adversary that may transmit during
silent slots but may not edit the content of other messages.

Query Desired | Result

A<> Receiverl.Valid || Receiverl.Tampered satisfied | satisfied

(Adversaryl.finished && !Adversaryl.tampered) | satisfied | satisfied
—— > Receiverl.Valid

Adversaryl.tampered —— > Receiverl.Tampered satisfied | satisfied

Again, all desired properties hold.
Now the queries will be verified using the full adversary, i.e. the adversary
may edit the content of messages and transmit during silent slots.

Query Desired | Result

A<> Receiverl.Valid | Receiverl.Tampered satisfied | satisfied

(Adversaryl.finished && !Adversaryl.tampered) | satisfied | satisfied
—— > Receiverl.Valid

Adversaryl.tampered —— > Receiverl.Tampered | satisfied | satisfied

The full adversary cannot fool the receiver, any tampering is detected. The
TEA model satisfies all three desired properties.

6.2 TEP model checking results

The TEP model is tested on multiple properties. The first property is: When
there is one enrollee, one registrar and no adversary, they will always pair. In
UPPAAL this translates to

e A<> Enrolleel.PAIR && Enrolleel.registrarId[0] == 13

e A<> Registrarl.PAIR && Registrarl.enrolleeId[0] ==

22

where 13 is the Diffie-Hellman key of the registrar and 5 the Diffie-Hellman
key of the enrollee. These queries are tested with the adversary configured to
do nothing at all.

A<> Enrolleel.PAIR && satisfied | satisfied
Enrolleel.registrarId[0] == 13
A<> Registrarl.PAIR && satisfied | satisfied

Registrarl.enrolleeId[0] == 5

These resulst show that the model operates as expected, in all possible sce-
narios the enrollee and registrar will eventually pair using the correct keys.

Another property that is tested is: An enrollee or registrar will never at-
tempt to pair using the wrong key. This means that an MITM is not possible.
This property can be checked in UPPAAL using the following queries, with the
adversary fully enabled.

e A<> Enrolleel.PAIR imply Enrolleel.registrarId[0] == 13
e A<> Registrarl.PAIR imply Registrarl.enrolleeId[0] == 5

where 13 is the Diffie-Hellman key of the registrar and 5 the Diffie-Hellman
key of the enrollee.

A<> Enrolleel.PAIR imply satisfied | satisfied
Enrolleel.registrarId[0] == 13

A<> Registrarl.PAIR imply satisfied | satisfied
Registrarl.enrolleeId[0] == 5

Both queries are satisfied, so an adversary cannot convince an enrollee or
registrar to pair with it.

6.3 Evaluation of results

Three desired properties have been checked for the TEA model: A TEA is always
detected, a TEA will be delivered correctly if there is no adversary interfering,
and whenever an adversary tampers with the sending of a TEA the tampering
will be detected. All three properties hold with every configuration of adversary.
The TEP model assumes TEAs to be working as intended. This assumption
is correct since the desired properties hold in the TEA model. Two properties
have been checked for the TEP model: without an adversary the enrollee and
registrar always pair, and an enrollee or registrar will never attempt to pair using
the wrong key. Both properties hold, which means that an adversary cannot
successfully impersonate a registrar to an enrollee or successfully impersonate
an enrollee to a registrar. Therefore MITM attacks are impossible in the model.

The UPPAAL verifier uses a 32-bit application, which can only address 4GiB
of memory due to the 32-bit memory addressing. These results are less valueable
because the TEA model had to be simplified in order to keep the memory
usage under this limit. The attacker cannot transmit whenever he wants, but
only specified timeframes in silent slots. A 64-bit version of UPPAAL is in

23

development but is not stable yet. Due to the lack of float support in UPPAAL
fractional occupancies had to be rounded after multiplying with a factor and
stored as integers. Because there are no unsigned integers or longs, this factor
had to be small to avoid overflowing integers. This makes it impossible to
accurately store fractions.

Another measure to decrease the model complexity is splitting TEP and
TEA model. Protocol composition might bring new vulnerabilities that are not
checked when testing the different components individually.

24

7 Conclusion

Tamper-evident pairing aims to prevent man-in-the-middle attacks by using a
new primitive, the tamper-evident announcement. An attacker must not be able
to hide a TEA, and if an attacker tampers with the TEA, it must be detectable.
An UppPaAL TEA model has been designed to check these properties. All of the
desired properties hold in the model. An UrPPAAL TEP model has been designed
assuming TEAs to be working correctly. The model checking of the TEP model
showed that without an adversary interfering, the enrollee and registrar always
pair. When an adversary interferes with the protocol, the tampering is evident
and the enrollee and registrar cannot be fooled to pair with the adversary. The
results of the TEA model make the assumption in the TEP model valid, and
therefore we can conclude that man-in-the-middle attacks are not possible in
our model.

The TEP model assumes the TEA model checking results are correct, but
the TEA model is simplified to lower the model complexity and memory usage
for model checking. This leaves room for future work. When UPPAAL has a
stable 64-bit version, these models could be configured to be more accurate at
the cost of a higher memory usage. The TEP and TEA model could be merged
to a single model because this might bring new vulnerabilities. Using a model
checker with float support would allow one to accurately store fractions and
create a model that is closer to the reality.

Another possible direction of future work is to formally prove the security
of TEP using a theorem prover. This will be attempted within the Go-Green
project.

25

8

References

Peer-reviewed literature

1]

Martin Abadi and Andrew D. Gordon. A calculus for cryptographic pro-
tocols: The spi calculus. In 4th ACM Conference on Computer and Com-
munications Security, pages 36-47. ACM Press, 1997.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183-235, 1994.

J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal:
a tool suite for automatic verification of real-time systems. Lecture Notes
in Computer Science, 1066:232-243, 1996.

R. Corin, S. Etalle, P. Hartel, and A. Mader. Timed model checking of secu-
rity protocols. Proceedings of the 2004 ACM workshop on Formal methods
m security engineering, pages 23-32, 2004.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, pages 644-654, 1976.

Whitfield Diffie, Paul C. Oorschot, and Michael J. Wiener. Authentication
and authenticated key exchanges. Designs, codes and cryptography, 2:107—
125, 1992.

D. Dolev and A. C. Yao. On the security of public key protocols. In
Proceedings of the 22nd Annual Symposium on Foundations of Computer
Science, SFCS 81, pages 350-357. IEEE Computer Society, 1981.

S. Gollakota, N. Ahmed, N. Zeldovich, and D. Katabi. Secure in-band
wireless pairing. Proceedings of the USENIX conference on Security, 2011.

Tzipora Halevi and Nitesh Saxena. On pairing constrained wireless devices
based on secrecy of auxiliary channels: the case of acoustic eavesdropping.
In Proceedings of the 17th ACM conference on Computer and communica-
tions security, CCS "10, pages 97-108. ACM, 2010.

Ronald Kainda, Ivan Flechais, and A. W. Roscoe. Usability and security
of out-of-band channels in secure device pairing protocols. Proceedings of
the 5th Symposium on Usable Privacy and Security, 2009.

Cynthia Kuo, Jesse Walker, and Adrian Perrig. Low-cost manufacturing,
usability, and security: an analysis of bluetooth simple pairing and wi-fi
protected setup. In Proceedings of the 11th International Conference on
Financial cryptography and 1st International conference on Usable Secu-
rity, FC’07/USEC’07, pages 325-340. Springer-Verlag, 2007.

R Kusters and T Truderung. Using proverif to analyze protocols with diffie-
hellman exponentiation. In 22nd IEEE Computer Security Foundations
Symposium, CSF ’09, pages 157-171. 2009.

K.S. McCurley. The discrete logarithm problem. Cryptology and Compu-
tational Number Theory, pages 49—74, 1990.

27

[14] Mehmet Orgun and Wanli Ma. An overview of temporal and modal logic
programming. In Temporal Logic, volume 827 of Lecture Notes in Computer
Science, pages 445-479. 1994.

[15] S. Owre, J. Rushby, and N. Shankar. Pvs: A prototype verification sys-
tem. In Automated Deduction-CADE-11, volume 607 of Lecture Notes in
Computer Science, pages 748-752. Springer Berlin / Heidelberg, 1992.

[16] Kasper B. Rasmussen, Claude Castelluccia, Thomas Heydt-benjamin, and
Srdjan Capkun. Proximity-based access control for implantable medical
devices. In In CCS, 2009.

[17] Andrew Tanenbaum. Computer Networks. Pearson, fourth edition, 2003.

Non-peer-reviewed literature

[18] Go-green project proposal. http://www.agentschapnl.nl/content/
project-gogreen.

[19] Wi-Fi Alliance. Wi-fi protected setup specification. 2006.

[20] S. Viehbock. Brute forcing wi-fi protected
setup. http://sviehb.wordpress.com/2011/12/27/
wi-fi-protected-setup-pin-brute-force-vulnerability, 2011.

28

http://www.agentschapnl.nl/content/project-gogreen
http://www.agentschapnl.nl/content/project-gogreen
http://sviehb.wordpress.com/2011/12/27/wi-fi-protected-setup-pin-brute-force-vulnerability
http://sviehb.wordpress.com/2011/12/27/wi-fi-protected-setup-pin-brute-force-vulnerability

Appendices

A TEA model
A.1 TEA model global declarations

//Global declarations

const int PAYLOADLENGTH = 16;

const int HASHLENGTH = 16;

const int LOGHASHLENGTH = 4;

const int BALANCEDHASHLENGTH = HASHLENGTH+2*LOGHASHLENGTH+2;
const int SLOT_DATA_LENGTH = 16;

const int SLOT_DURATION = 40;

// adjust the capabilities of the adversary
const bool adversaryEditData = true; // lets the adversary edit data in the air
const bool adversaryTransmit = true; // lets the adversary occupy the medium

//define custom types

typedef bool payload[PAYLOADLENGTH] ;

typedef bool hash[HASHLENGTH] ;

typedef bool balancedHash[BALANCEDHASHLENGTH] ;

broadcast chan syncpacket;

chan send;

broadcast chan transmit;

chan captureEffect;

chan adversarySend;

bool dataToSend[SLOT_DATA_LENGTH] ;
bool dataInAir [SLOT_DATA_LENGTH];

bool mediumBusy;
bool adversaryTransmitting;

// returns true iff the medium is busy
bool isMediumBusy() {
return mediumBusy || adversaryTransmitting;

}

void setDataToSend(bool data[PAYLOADLENGTH]) {
int i;
for(i = 0; i < SLOT_DATA_LENGTH; i++) {
dataToSend[i] = datal[il;
}
}

// calculates the hash of given payload
void getHash(bool p[PAYLOADLENGTH], hash& h) {

29

int i;
for(i = 0; i < HASHLENGTH; i++) {
hl[i] = plil;
}
}

//returns a to the power b
int pow(int a, int b) {
int ret = 1;
for(b;b>0; b--) {
ret = ret * a;
}
return ret;

}

//returns the amount of ones minus the amount of zeros
int [-HASHLENGTH,HASHLENGTH] bitsDifference(hash input)
{
int [~-HASHLENGTH,HASHLENGTH] difference = 0;
int j;
for(j = 0; j < HASHLENGTH; j++) {
if (input [j1) {
difference++;
}
else {
difference--;
}
}
return difference;

}

//concatenates the manchaster encoding of the binary representation of i to resultArray
void intToBoolArray(balancedHash &resultArray, int i) {
int j;
for(j = LOGHASHLENGTH-1; j >= 0; j—-) {
if (i >= pow(2,1)) 1
i=1i-pow(2, j);
resultArray [HASHLENGTH+(LOGHASHLENGTH-1-j)*2] = true;
resultArray [HASHLENGTH+(LOGHASHLENGTH-1-j)*2+1] = false;

}
else {
resultArray [HASHLENGTH+(LOGHASHLENGTH-1-j)*2] = false;
resultArray [HASHLENGTH+ (LOGHASHLENGTH-1-j) *2+1] = true;
}

}

//Balances the number of trues and falses in a bool array by flipping all
//elements before index i
//returns i

30

int balanceBits(hash &input) {
int i = 0;
int d = bitsDifference(input);
while(d !'= 0) {

input[i] = !input[i];

i++;

d = bitsDifference(input);
}
return i;

}

//takes a hash and runs the bit-balancing algorithm.
//the result is stored on result
void bitBalancingAlgorithm(hash &input, balancedHash &result) {
int i, j;
i = balanceBits(input);
//copy hash from input to output
for(j = 0; j < HASHLENGTH; j++) {
result[j] = inputl[j];
}

intToBoolArray(result, i);

31

A.2 TEA model sender template

BalancedState

© -© O
setPayload() setHash(). &'yn_LdeL N
balance() €=
send!
setDataToSend|payload),

slotCounter=0

slotCounter < BALANCEDHASHLENGTH &&
blslotCounter] &&
¢ == (slotCounter+1) * 40

send! Sendin
C)< setRandomDataToSend()

slotCounter < BALANCEDHASHLENGTH &&
Ib[slotCounter] &&

ash .o (slotCounter+

TransmissionS SilentSlot

slotCounter++

slotCounter++ adversarySend!

slotCounter >= BALANCEDHASHLENGTH

éDnne

bool payload[PAYLOADLENGTH] ;
hash h;

balancedHash b;

int slotCounter;

clock c;

void setPayload() {
int i;
for(i = 0; i < PAYLOADLENGTH; i++) {
payload[i] = i%3 == 0;
}

32

void setRandomDataToSend() {
int i;
bool data[PAYLOADLENGTH] ;
for(i = 0; i < SLOT_DATA_LENGTH; i++) {
datal[i] = true;

setDataToSend(data) ;
}

void setHash() {
getHash(payload, h);
}

void balance() {
int i, j;
bitBalancingAlgorithm(h, b);

33

A.3 TEA model wireless medium template

adversaryEditData

adversaryEditData
a0 W i =

datalnAir = dataToSean

send? transmit
mediumClock =0 mediumBusy = true

Ic_I'E r_je’ usy
Or- — mediumClock <= 39

mediumBusy = false

clock mediumClock;

34

A.4 TEA model adversary template

captureEffect?

changeDatai)

captureEffect?
changeDatai)

slotOption = option,
cl =0,

tampered = tampered || option =0

adversarySend?

option : intl0,SLOT _OPTIONS-1]

adversaryTransmit

syncpacket?
© cl=0

ladversaryTransmit
adversarySend?

c2 »= SLOT_DUR

finished

const int SLOT_OPTIONS = 2;
clock ci1;
clock c2;

option : int[0,SLOT_O
adversary Transmit
adversarySend?
slotOption = option
cl =0,

tampered = tampered Y option =0

c1 == stopJam[slotOption]
adversary Transmitting = false

rtJam[slotOption]

c1 == startJam(slotOption]
adversary Transmitting = true

ON * (BALANCEDHASHLENGTH+1)

cl ==y

am([slotOption]

captureEffect?
changeDatai)

int startJam[SLOT_OPTIONS] = {0, 0};
int stopJam[SLOT_OPTIONS] = {0, 39};

int slotOption;

35

bool tampered = false;

void setDataToSend() {
int 1i;
for(i = 0; i < SLOT_DATA_LENGTH; i++) {
dataToSend[i] = true;
}
}

void changeData() {
if (ladversaryEditData) {

return;

}

else {
setDataToSend();
tampered = true;

}

36

A.5 TEA model receiver template

windowMNumber < 2*BALANCEDHASHLENGTH &8
c == (windowMNumber 20 + cycle™0) + 45 &&

isMediumBusyi()
pollResultBusy()

windowNumber < 2*BALAN CEDHASHLENGTH &8

¢ == (windowNumber*20 + cycle®10) + 45 &&
lisMediumBusyi() i A
polResultidle() windowNumber == 3

¥

syncpacket?
c=0

transmit?

payload = datalnAir,
c=0,
windowMNumber=20

er*20 + cycle™10) + 45

checkHash()

"BALANCEDHASHLENGTH

\

y

Walid

clock c;

bool payload[SLOT_DATA_LENGTH];
hash h;

int windowNumber = 0;
balancedHash b;

bool valid;

int rxclr = 0;

37

Tampered

int cycle = 0;

int fractionalOccupancy [2#*BALANCEDHASHLENGTH] ;
const int FRACTIONAL_OCCUPANCY_THRESHOLD = 25;
int varil;

int var2;

// returns round(a/b)
int roundedIntDivision(int a, int b) {
int mod;
int ret = a/b;
mod = alb;
if (2%mod >= b) {
ret++;
}
return ret;

}

void setPollResult(bool result) {
cycle++;
if (result) {
rxclr++;

}

if(cycle == 2) {
//the sensing window is complete, store result
fractionalOccupancy [windowNumber] = roundedIntDivision(50*rxclr, cycle);
windowNumber++;

//reset registers
rxclr = 0;
cycle = 0;

}

void pollResultBusy() {
setPollResult (true);
}

void pollResultIdle() {
setPollResult (false);
}

void setHash() {
bool p[PAYLOADLENGTH] ;
int i;
for(i = 0; i < PAYLOADLENGTH; i++) {
plil = payloadl[i];
}
getHash(p, h);

38

// calculate the average of all even or odd elements
// of the fractionalOccupancy array
int average(bool odd) {
int i;
int sum = O;
for(i = 0; i < BALANCEDHASHLENGTH; i++) {
sum += fractionalOccupancy[2*i+odd];

}

return roundedIntDivision(sum, BALANCEDHASHLENGTH) ;
¥

// calculate the variance of the even or odd elements
// of the fractionalOccupancy array
int variance(bool odd) {

int i;

int sum = 0;

int average = average(odd);

for(i = 0; i < BALANCEDHASHLENGTH; i++) {
sum += pow(average-fractionalOccupancy[2*i+odd], 2);

¥

return sum;

}

void setBalancedHash() {
int i;
bool odd;
varl = variance(true);
var2 = variance(false);
odd = varl > var2;

for(i = 0; i < BALANCEDHASHLENGTH; i++) {
b[i] = fractionalOccupancy[2*i+odd] >= FRACTIONAL_OCCUPANCY_THRESHOLD;
}
}

void checkHash() {
int 1i;
balancedHash correctHash;
valid = true;

setBalancedHash();

//calculate the correct balanced hash
setHash();

39

bitBalancingAlgorithm(h, correctHash);
//compare the received and correct balanced hash

for(i = 0; valid && i < BALANCEDHASHLENGTH; i++) {
valid = valid && correctHash[i] == bl[i];

40

A.6 TEA model system declarations

Senderl = Sender();

WirelessMediuml = WirelessMedium();
Receiverl = Receiver();

Adversaryl = Adversary(Q);

system Senderl, WirelessMediuml, Receiverl, Adversaryl;

41

B TEP model

B.1 TEP model global declarations

const int WALK_TIME = 120;
const int MONITOR_TIME = 120;
const int MAX_ARRAY_LENGTH = 5;

//synchronization channels
broadcast chan enrolleeButton;
broadcast chan registrarButton;
chan adversaryProbeRequest;
chan adversaryProbeResponse;
broadcast chan probeRequest;
broadcast chan probeResponse;

//probe request data
int requestId;
bool requestTampered;

//probe response data
int responseRegistrarld;
bool responseTampered;

//check whether element is in a with index < length

//returns the index of element in a if index < length
//returns -1 otherwise

int inList(int a[MAX_ARRAY_LENGTH], int length, int element) {

int 1i;
for(i = 0; i < length; i++) {
if(a[i] == element) {
return i;
}
}

return -1;

}

//Remove an element from an array and shift the following
//elements to the left
void removeItemFromArray(int a[MAX_ARRAY_LENGTH], int index, int length) {
int i;
for(i = index; i < length-1; i++) {
al[i] = al[i+1];

3

42

B.2 TEP model user template

registrarButton

enrolleeButtop c<WALK TIME

c=0
registrarButton

enrolleeButton

¢ = WALK_TIME

clock c;

43

B.3 TEP model enrollee template

¢ == loopCounter ™ 10
adversaryProbeRequest
loopCounter++,
requestld = id

probeResponse?
handleProbeResponse()

c <= WALK_TIME &&
¢ <= loopCounter ™ 10

—
=

@ gnrolleeButton?
c=0, <

In_TEA_ Mode
loopCounter =0,
amountOfRegistrars = 0,
tampered = false c == WALK TIME

W

amountOfRegistrars == 0

tampered

TAMPERED SESSION OVERLAP NO_REGISTRAR PAIR

tampered

amount
tampered

amountOf egistrars == 1 &&

tampers

clock c;
int loopCounter;

int registrarId[MAX_ARRAY_LENGTH];
int amountOfRegistrars;
bool tampered;

void handleProbeResponse() {
tampered = tampered || responseTampered;
if (inList(registrarId, amountOfRegistrars, responseRegistrarId) < 0) {
registrarId[amountOfRegistrars] = responseRegistrarld;
amountOfRegistrars++;

44

45

B.4 TEP model registrar template

counter >= 0 &&
enrolleeTime[counter] = MONITOR_TIME
removeltemFromArray(enrolleeld, counter, amountOfEnrollees),
probeReqguest? amountOfEnrollees--,
handleProbeRequest() counter-

counter == 0 &&
enrolleeTime[counter] <= MONITOR_TIME
counter—

registrarButton?

c=0,
counter = amountOfEnrollees-1

amountOfEnrollees ==

counter <@ EHLDHL:;EEWD”EES >0 &&
E%UBFSEWSI‘DIJBRBSPDI‘ISE!
responseReqgistrarld = id
probeReqguest?
handleProbeRequesti()

c == WALK_TIME

In_TEA_ Mode
c == WALK_TIME

adversaryPrgbeRespons

responseRegigtrarld amountOfEnrollees tOfEnmllees == 1 &&

ltampered

ltampered

SESSION_OVERLAP TAMPERED NO_ENROLLEES PAIR

clock c;

int enrolleeId[MAX_ARRAY_LENGTH];

46

clock enrolleeTime [MAX_ARRAY_LENGTH] ;
int amountOfEnrollees;

int counter;

bool mustReply;

bool tampered = false;

void handleProbeRequest() {
int i = inList(enrolleeld, amountOfEnrollees, requestId);

if(i >= 0) {
enrolleeTime[i] = O0;
//mustReply = false;

}

else {
enrolleeld[amountOfEnrollees] = requestId;
enrolleeTime [amountOfEnrollees] = 0;
amountOfEnrollees++;
//mustReply = true;

}

tampered = tampered || requestTampered;

47

B.5 TEP model adversary template

edit_reguests
adversaryProbeRequest?
editRequest(true)

adversaryProbeRequest?

editRequest(false) probeRdga

edit responses
adversaryProbeResponse?
editResponse(true)

impersonate_enrollee probeResponse

probeRequest

requestld = impersonateEnrolleeld,
requestTampered = false adversaryProbeResponse?

editResponse(false)

probeResponse

responseRegistrarld = impersonateRegistrarld,
responseT[am red = false

impersonate reqisfrar

clock c;

//configure the adversary capabilities
const bool impersonate_registrar = true;
const bool impersonate_enrollee = true;
const bool edit_requests = true;

const bool edit_responses = true;

//the diffie-hellman keys used to
//impersonate a registrar and enrollee
const int registrarld = 13;

const int enrolleeld = 5;

void editRequest(bool edit) {
if (edit) {

48

requestId = impersonateEnrolleeld;
I

requestTampered = edit;
3

void editResponse(bool edit) {
if (edit) {
responseRegistrarId = impersonateRegistrarld;

}

responseTampered = edit;

49

B.6 TEP model system declarations

Userl = User();

Enrolleel = Enrollee(5);
Registrarl = Registrar(13);
Adversaryl = Adversary(10, 20);

system Userl, Enrolleel, Registrarl, Adversaryl;

50

	Introduction
	Methods
	Motivation
	Go-Green project

	Related work
	Theoretical framework
	Diffie-Hellman Key Exchange
	Attacker model
	Push button configuration
	Tamper-evident pairing
	Out-of-band channel
	Tamper-evident announcement
	Bit-balancing algorithm
	Using TEAs

	Uppaal
	Timed automata
	Networks of timed automata
	Uppaal components
	Coffee machine example

	Modeling
	TEA model
	Sender
	WirelessMedium
	Adversary
	Receiver

	TEP model
	User
	Enrollee
	Registrar
	Adversary

	Model checking
	TEA model checking results
	Model checking parameters
	Results without adversary
	Results with adversary

	TEP model checking results
	Evaluation of results

	Conclusion
	References
	Appendix TEA model
	Appendix TEP model

