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Abstract

Every year, the patent filing rates at the different patent offices around the world increase, and
the patent examiners are struggling to catch up. As such, reliably categorizing patents is to aid
the examination process of rising economic importance.

This paper investigates whether capturing multiword expressions (specifically: institutionalized
phrases) is an important factor for improving automated patent pre-classification. To do so
we describe a novel text representation based on filtering by combinations of Part-of-Speech
tags: typed skipgrams. We then compare the performance of different text representations
(unigrams, bigrams, skipgrams, typed skipgrams and unigrams in combination with any of the
other) when classifying a subset of the CLEF-IP 2010 corpus. We examine if there is a link
between classification accuracy and ability to capture multiword expressions. We furthermore
carry out additional experiments and analyses to investigate the influence of specific combinations
of Parts-of-Speech on the overall result.

We find that typed skipgrams in combination with unigrams perform significantly better
(difference in F1 value: 0.7%) than the unigrams+bigrams baseline. We also find that typed
skipgrams succeed in capturing multiword expressions and that typed skipgrams consisting of
noun-noun and noun-adjective combinations are the most important factor for the overall success.
Finally, we conclude that capturing multiword expressions is the crucial mechanism behind the
improvement in classification scores.

This research provides a potential means to further the state-of-the-art in patent classification
when combined with additional optimizations. They also give directions for future research,
highlighting typed skipgrams and filtering for multiword expressions as viable paths. Finally, we
expect our results to generalize to every kind of text in which multiword expressions play an
important role. Examples are scientific abstracts and, more generally, technical texts.



Chapter 1

Introduction

The aim of the presented research is to gain insight into what kind of (textual) information is
needed to improve the quality of automated text classification, especially for technical texts such
as patent abstracts.

Automated text classification is a supervised learning task in which a set of documents has to
be classified in predefined categories. One of the most distinct advantages of a classified corpus
is that documents are easier to find. This is of paramount importance for everyone handling
large amounts of texts, even more so if they have to do deliver to according to some content-
dependent criteria. Examples are libraries, web search engines such as Google, encyclopedias
such as Wikipedia or patent offices.

Focusing on that last example, it can be observed that patent filing rates increase on a yearly
basis, bringing patent offices to the edge of their capacities (Benzineb and Guyot, 2010). The
relevance of good automated text classification becomes apparent when considering the typical
workflow of a patent office: On arrival, a patent is automatically pre-classified into two or three
of the higher, more general categories of the International Patent Classification Hierarchy1.

Let us take an invention of new type of birdcage as an example; The corresponding patent
application might be pre-classified as belonging to “Section A — Human Necessities, Subsection
Agriculture”.2 The patent is then forwarded to the departments specialized in those domains.
After inspection by a member of this department, the patent might be sent back because the
pre-classification has been erroneous. If the pre-classification has been fitting, the patent will
be manually classified into one or more of the more specialized sub-classes of the hierarchy, say
“A01K Animal Housing [..]; Care Of Birds [..]” and forwarded to experts on this narrower field.
Depending on the size of the patent office, this procedure might be repeated here, until the patent
arrives at an expert for the lowest level in the hierarchy: “A01K 31/00 Housing Birds”. At this
level, the specialist in charge of this document might still decide that another person is better
suited to handle this application or that other specialists might also be interested and redirect or
forward the application accordingly.

From this example it should become clear that this process might be improved significantly
if the pre-classification can be more precise and if it can be carried out on a lower level of the
hierarchy, leaving out intermediate manual classification steps. Improvements to this process
can save time and money in all patent offices using such a classification hierarchy. Seeing that

1The International Patent Classification (IPC) hierarchy is a taxonomy structured into (from more general
to more specific) sections, classes, subclasses groups and subgroups. In its latest edition, the IPC contains eight
sections, ca. 120 classes, ca. 630 subclasses and approximately 69,000 groups.

2Pre-classification is mostly carried out on the “class” level. “Section” has been here for the sake of demonstration.
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the IPC is part of the Strasbourg Agreement - which has 61 contracting parties including most
European states, China, the United States of America and the Russian Federation - it is safe to
assume that this holds for most of the world’s patent offices.

In a broader context, improved classification will help people to find relevant texts, be they
books in a large library or scientific texts in a search engine, more easily.

1.1 Document Representations

The standard text representation used in text classification is the bag-of-words representation,
which, in its most inclusive form, consists of all of the words contained in the text. Prior work
has focused on improving text classification by expanding this representation with additional
information, often in the form of statistical or linguistical phrases (Koster and Beney, 2009).

On the standard test set used to evaluate new ideas for text classification, the Reuters-21578
set of newswire texts, phrases were found to be more representative but suffer from sparseness,
which leads to little overall impact (Caropreso et al., 2001). The best performance for such texts
is still achieved by using the bag-of-words representation (Bekkerman and Allan, 2003).

This changes when inspecting different kinds of texts: Ozgür and Güngör (2009) show
significant improvements when using phrases as index terms for the classification of scientific
abstracts. D’hondt et al. (2012) investigated different text representations for patent classification
and compared the performance of a text classification system when using words and words
combined with either bigrams (being an example of statistical phrases) or linguistic phrases as
index terms for patent abstracts. Their unexpected result was that words and bigrams taken
together give the best performance. A possible explanation is that bigrams best capture multiword
expressions3 such as machine learning or liquid nitrogen.

We expect these expressions to be very representative for the different classes due to the
specific language use in patents, which is a very technical domain, using many domain-specific
terms. Furthermore, patents are written to be as generic as possible to extent the scope of any
claims made. To this end, an applicant will obfuscate the description of the invention and its
parts. For example, a hose might instead be referred to as a watering device.

1.2 Hypothesis, Predictions and Method

The starting point of this paper is: Verifying that better capturing of multiword expressions
actually is the reason behind the good performance when representing text as words with bigrams.
Generalizing from this, we formulate our hypothesis as follows:

“Multiword expressions are the most informative phrasal features for text classification in the
patent domain”.

If we assume this hypothesis to be correct then a text representation also capturing multiword
expressions standing one or more words apart should do even better. This is due to the fact that
such expressions might be split by function words; consider for example divide and conquer.

To test this theory, we shall examine the performance of skipgrams (with a maximum of two
skips and always consisting of two words) as terms for patent abstract classification. Thinking
further, we expect the performance to increase even more due to heightened relevance of terms if
we filter these skipgrams lexically so that only those most likely to actually capture a multiword

3While “multiword expression” may also refer to complete phrases, such as “biting the bullet” we use this term
for a compound of two words, normally both found within one noun phrase, denoting one combined concept. Two
examples are given above.
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expression remain. Because the filtering is based on the linguistic types of the constituent words
(as determined by a Part-of-Speech tagger) we call this variant typed skipgrams.

Should the above predictions prove correct, we will analyse the document profiles as well as
the penetration levels and conduct a series of leave-one-out classification experiments4, which
will give us insight into which information captured by the different text representations is most
valuable and how they contribute to the classification results.

4Leave-one-out in this case means: for every subtype of typed skipgrams (e. g. noun-noun or noun-verb)
conduct a classification experiment in which this class is not present.
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Chapter 2

Background

In this section we will summarize the work done on the central concepts of the work presented
in this paper, namely: the following topics will be dealt with below: text representations in
classification (Section 2.1), feature selection (Section 2.2), patent classification (Section 2.3) and,
finally, multiword expressions (Section 2.4).

Due to the similarity in topic, we shall generally follow the outline of the background section
as found in D’hondt et al. (2012).

2.1 Text Representations in Classification

2.1.1 Text Classification

Before inspecting text representations, an introduction to text classification in general is advisable.
Text classification is a supervised learning problem. First, a classification algorithm (in this paper:
Winnow) is given labelled examples. For patent application abstracts, this would mean: the
abstract and the document’s class labels. The new type of birdcage from the introduction would
thus be labelled with “A01” when operating on the “class” level of the IPC hierarchy.

From this training data, the classifier builds a model. Forms such a model might take are
decision trees or decision boundaries of some sorts. Winnow constructs a hyperplane to linearly
discriminate the data in an n-dimensional feature space.

After training, the classifier then is given previously unseen and unlabelled examples, for
which a label has to be predicted. When evaluating the classifier accuracy, these unseen examples
typically come from the so-called test set. The test set is a part of the pre-labelled data, but not
used for training. As the labels are known, predicted and actual labelling can be compared to
measure the accuracy.

There are 121 classes in the CLEF-IP 2010 corpus. As such, we are dealing with multiclass
classification. As an abstract typically has two to three labels, it is also an example of multi-label
classification.

2.1.2 Text Representations

In designing a classification experiment, an important decision concerns the form in which the
data is presented to the classification algorithm. When using text classification, the input has
to be transformed into vectors in feature space: feature vectors. This is done by choosing a
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text representation, implicitly defining the feature space (though it may be modified by feature
selection, see Section 2.2 below).

We discriminate between two groups of features: unigrams and phrases1 which can be
linguistical (i.e. constructed using linguistically motivated choices) or statistical (i.e. constructed
without any linguistic knowledge).

Phrases in general were found to suffer too much from data sparseness. Classification
performance might actually deteriorate when using phrases instead of words (Lewis, 1992),
confirmed by Apte et al. (1994). Again, we witness the trade-off between informativeness and
sparseness.

Bekkerman and Allan (2003) on the other hand state that there is new research on this topic
due to the increase in computational power and size of data sets. The former makes improved
linguistic analysis possible, contribution to informativeness. The latter helps to alleviate issues
arising from sparseness, as smaller data sets are more prone to suffer from such problems. Still,
Bekkerman and Allan (2003) also report that positive results seldom are significant improvements.

Let us briefly inspect the different representations we are going to use one by one:

Unigrams have been established as the standard text representation, helped by the fact that
they work very well for the standard text corpora used in testing, such as Reuters-21578. Using
unigrams as the text representation means that every one word of the text becomes one feature
for the classifier. One might note that any order among words and thus information conveyed
through this order is lost. Variation is possible by choosing to include/exclude function words in
a stop word list, or by filtering based on other criteria.

Bigrams are phrases constructed from two words from the text. The important characteristic
is that those words have to appear sequentially. As such, bigrams are statistical phrases. Bigrams
and unigrams generalize to n-grams: sequences of n words from the text.

Skipgrams are more verbosely specified as n-k-skipgrams, meaning a sequence of n words
from the text (n-gram), but allowing up to a maximum of k skipped words in-between the chosen
ones. skipgrams, by virtue of their definition, are statistical phrases. Higher values for n or k lead
to greater problems resulting from sparseness - a great number of options for the construction of
phrases leads to many of them being present only once or maybe a few times across the whole
corpus (Guthrie et al., 2006). When later in the text we use “skipgrams” we typically refer to
2-2-skipgrams, deviations from this will be made explicit.

Typed skipgrams form a subset of skipgrams, filtered according to Part-of-Speech tags. As
such, they are a form of feature selection and could have also been listed in Section 2.2 below.
Information about the tags is not given as input to the classifier. As far as we know, this is
a novel representation. Employing Part-of-Speech information for text classification however
has been done before, see for example Feldman et al. (2009). Other usages involve the study of
phraseology, which also considers multiword expressions, see Pinna and Brett (2009).

For our main experiment we have allowed phrases involving combinations of nouns, adjectives
and verbs (the precise filtering rules and examples can be seen in Section 3.2.3). This leads to all
phrases containing function words to be filtered out. As we are using linguistic knowledge (in the
form of PoS tags), typed skipgrams can be considered linguistic phrases, although of a rather
weak kind.

Typed skipgrams are related to dependency triples (Koster and Beney, 2009), which consist
of two words, chosen intra-sententially, and their syntactical connection with each other, e.g. the
one being the object to the other. They thus capture and encode head-modifier pairs - many of

1“Phrase” here means “an indexing term that corresponds to the presence of two or more single word indexing
terms” (Lewis, 1992). As such, it does not necessarily correspond to the definition of phrase as used in the study
of syntax. In the remainder of the text, “phrase” will refer normally refer the indexing-term usage. Exceptions,
such as in “X is a noun phrase” should be clear by context.
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which are also present as (typed) skipgrams. Additionally, many institutionalized phrases are
noun-phrases and, thus, are captured by head-modifier pairs. But in contrast to dependency
triples, the relation between the constituent words of typed skipgrams is not computed, and thus
no explicit factor in constructing them. The linguistical information that actually is used is not
explicitly integrated in into the (typed) skipgrams.

Other variants of filtered skipgrams have been tried. Consider for example Orthogonal Sparse
bigrams, described in Siefkes et al. (2004). They have been designed to capture the same
information as provided by sparse binary polynomial hashing (loc. cit. page five) but to be more
space-efficient. By remembering how many words have been skipped and selecting OSBs cleverly,
all of the original features can be reconstructed as linear combinations of the new features.

OSBs are, in contrast to typed skipgrams, purely statistical phrases. Siefkes et al. (2004) have
applied them to spam filtering, also using the Winnow algorithm. While at first the application of
a variant of filtered skipgrams to a text classification problem makes that project appear similar
to the work described here, there are important differences:

1. OSBs are quite different in aim and characteristics to typed skipgrams.

2. The textual domains differ in nature: as Goldstein and Sabin (2006) have shown verbs are
important when classifying email, whereas we are primarily interested in combinations of
nouns with either nouns or adjectives.

3. Patent classification at the IPC “class” level is, at this moment, considerably harder than
spam classification. A good indicator for this is the number of classes: two for spam filtering
(spam versus no spam), 121 for patent classification. As such, simply by guessing one
achieves, on average, 50% for the former and about 6% for the latter. Furthermore, while
there are differences in data sets, goals etc. it may be noted that the baseline for patent
classification is considerably lower than for spam filtering (74.79 versus 98.88), again hinting
at the greater difficulty of our classification task.

2.2 Feature Selection

Feature selection is a kind of dimensionality reduction and thus an alternative to, e.g., feature
extraction. It is used for purposes as removing irrelevant features, removing noisy features,
dispelling the curse of dimensionality or speeding up tasks such as classification or regression
analysis.

In addition to the feature selection present in typed skipgrams other ways of feature selection
regarding phrases have been researched.

In what follows, results refer to the Reuters-21578 data set, unless otherwise mentioned. As
such, there is an inherent difference between the use of language used in our work (patents, long
and complicated sentences, obfuscation, domain-specific vocabulary) and most of the papers cited
below (newspaper articles, aiming for clarity and understandability).

Caropreso et al. (2001) show that many bigram features are more important than unigrams
features. Nevertheless, when the unigram/bigram ratio for a fixed number of features is changed
in favor of bigrams, classification accuracy decreases.

Braga et al. (2009) use the Multinomial Naive Bayes classification algorithms in two different
setups to combine unigrams and bigrams: a) two classifiers, one using unigrams and the other
using bigrams. Their label rankings are then combined in a later step; b) one classifier using
both unigrams and bigrams as a feature for the same classifier. They find that there is nearly no
difference. The bigram-only classifier generally assigns the same labels with a lower confidence
- when combined with the unigrams-only classifier they simply affirm each other. The authors
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suggest to combine unigrams only with those bigrams that, in that domain, are more meaningful
together than apart.

It is especially that last part that makes this research important to our work. It can be seen
as a description of institutionalized phrases (and thus: multiword expressions, for specifics see
Section 2.4 below). It must be noted, that the authors did not have institutionalized phrases
explicitly in mind. Nevertheless, their usage of a different name for the same phenomenon does
not diminish the relevance of their work.

Our research might be seen as implementing Braga et al. (2009)’s advice: combining unigrams
with institutionalized phrases. The important differences are, that we are explicitly looking for
such phrases and thus have adopted our terms to capture them. Such adaptions include, for
example, the abandonment of bigrams in favour of skipgrams and typed skipgrams.

Tan et al. (2002) describe a procedure to select those highly representative and meaningful
bigrams, based on Mutual Information scores. Scores of the words in a bigram compared to the
unigrams class models were compared. The top two percent of those bigrams were selected. This
resulted in an significant increase over the unigrams baseline. Bekkerman and Allan (2003) note,
that this baseline was not state-of-the-art.

The filtering employed by Tan et al. (2002) can be said to again implicitly aim for institution-
alized phrases. Again it has not been explicitly set into this context by the authors. Their results
are promising, but seeing that they used the Reuters-21578 and the Yahoo Science corpora (the
latter consisting of science-related web sites) generalization to the patent domain must be tested.
Furthermore, they have not inspected the interaction between such special bigrams and unigrams
in combined representations. As we shall see later, it is this interaction that is important to the
performance of typed skipgrams. Finally, their terms, while sharing some intention, significantly
differ from the ones employed here.

More research has been conducted using similar selection criteria: Crawford et al. (2004)
classified emails using the filtering devised by Tan et al. (2002). The unigram baseline could not
be improved.

As stated above, the reason might be sought in the different use of language in emails -
capturing multiword expressions in general and using bigrams in particular is not as important
as it is for patent pre-classification.

In contrast to the research described above, we shall thus employ a term selection technique
specifically designed to choose multiword expressions, on a corpus for which they are important.

2.3 Patent Classification

Patent classification has to deal with some special complexities and requirements with respect
to text classification in general. Great interest in improving patent classification for practical
applications has spawned research specializing in this domain.

2.3.1 Complexities

Some of those complexities are:
First, multiple temporal variants of the same document may be present. This leads to a

further imbalance of classes, possibly having a small negative effect on classification accuracy
(Kolcz et al., 2003).

Secondly, patents feature a difficult use of language: non-standard terms abound, which
sometimes are invented by the author Atkinson (2008) to make the invention seem more innovative.
Acronyms, terminology and general terms are employed frequently. “General terms” here refers
to expressions as watering device, used instead of hose, to increase coverage of the patent. As
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there is no convention regarding these things acronyms etc. are chosen differently by different
people, which leads to sparseness issues being more severe.

Thirdly, patents usually have more than one IPC code. As it is unspecified which part of a
document leads to it being labelled with which code training gets more difficult. Furthermore,
multi-class classification in itself often is problematic due to classification algorithms being only
applicable to two-class problems. Earlier approaches to handle this include selecting only one
class per document (Fall et al., 2003) or adjusting the algorithm to multi-class training (Koster
et al., 2003). The work presented in this paper uses a third approach: the classification algorithm
(here: Winnow) still is a mono-classifier. For every of the 121 classes one such mono-classifier is
trained (see Section 3.5 for more detail).

Finally, patent classification has to deal with a very diverse domain, covering all possible
technical areas.

2.3.2 Earlier Work in Patent Classification

Work on patent classification is plentiful. In what follows, we try to give a concise overview,
focusing on research close to this project. A complete overview of the work done in patent
classification up to 2002 can be found in Fall and Benzineb (2002), while Benzineb and Guyot
(2010) offer a general introduction to this topic. The historical beginning is normally given with
Larkey (1999) who was the first to develop a fully automated patent classification system but did
not report results on overall accuracy.

Koster et al. (2003) used the EPO-alpha corpus, classifying with a combined representation
of unigrams and head-modifier pairs. These pairs were derived from the EP4IR parser. No
improvement on the unigrams baseline could be found, the reason behind this being phrase
sparseness.

Returning to our overview it is noteworthy that since 2009 the CLEF-IP track is organized
by the Information Retrieval Facility (IRF), providing very large real-life patent data sets. The
three best results from CLEF-IP 2010 will be discussed below.

Guyot et al. (2010) were most successful using Balanced Winnow as the classifier and a
combination of unigrams and collocations of variable length as the text representation.

Collocations are groups of words that appear more often together than would be expected by
chance. This definition does resemble the one given above for institutionalized phrases. Given
the accordance regarding data set and classification algorithm, these results seem to be promising
for our own work.

The main difference lies in the focus of the work: we shall try to trace the influence of
multiword expressions (being a superset of the institutionalized phrases), not aim for state-of-
the-art classification scores. As such, we do not include documents other than the English ones
(Guyot et al. (2010) also use German and French ones). Our representations, (typed) skipgrams,
also differ, being constructed explicitly to capture MWEs and typed skipgrams also including
linguistical information in contrast to the purely statistical collocations.

Verberne et al. (2010b) and Beney (2010) used a combined representation of unigrams and
dependency triples, derived from an English and a French parser. They reported a slight increase
in classification accuracy by adding those triples to the unigrams. As with the other research
using dependency triples one may note that these triples are “more syntactical” than typed
skipgrams and may thus lie at another point of the informativeness / sparseness trade-off.

To conclude this overview let us once again return to the research regarding dependency triples.
As a follow-up to the above-mentioned study Koster et al. (2010) investigated the influence of
different syntactic phrases. They report that attributive phrases, i.e. combinations of nouns with
either adjectives or nouns, to be the most important for the patent domain. Small, but significant
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improvements could be achieved by adding triples to unigrams.

The special relevance of this study lies in its insight into the nature of the most valuable
phrases. When comparing with the description of institutionalized phrases given above, we see
that they, too, are expected to be composed mainly of noun-noun or adjective-noun combinations.
Typed skipgrams consisting of such words are thus expected to be the most influential. This
expectation shall be tried in sections 5.1 and 5.2.

These similarities strengthen our claim that typed skipgrams and dependency triples capture
the same meaningful word combinations. We expect typed skipgrams to outperform triples due
to less issues related to sparseness and filtering that better captures multiword expressions, which
we hold to be a decisive factor for classification performance. Performance of triples might also
be impaired by consistent parser errors: terms such as “software engineering conference” and
“software engineering tutorial” might both be analyzed as right-headed, ignoring the compound of
“software engineering”. This leads to inconsistent triples. Consistent errors for Part-of-Speech
tagging, on the other hand, are less likely to be problematic. If certain words are consistently
miss-classified among all classes, this is unlikely to severely impact the classifier.2

2.4 Multiword Expressions

What multiword expressions exactly are and what specific subgroups fall under them still is
subject to ongoing debate. For our work, we will define them to be, very generally, groups of
words which, when together, denote a special meaning. Following the taxonomy laid out by Sag
et al. (2002)3, “special meaning” can refer to two concepts, forming the two great branches of
multiword expressions: lexicalized and institutionalized expressions.

Lexicalized expressions are characterised by having at least partially idiosyncratic meaning or
syntax. The former refers to phrases in which words combine to a new meaning which normally
does not follow from the composition of meanings of the individual words. Examples include “to
kick the bucket” or “to spill the beans”. On the other hand, expressions can be said to have
idiosyncratic syntax when words are combined in otherwise unusual ways to form them. “Long
time no see” or “every which way” constitute examples of this category.

The other great branch is formed by institutionalized phrases. In contrast to the lexicalized
phrases, they are syntactically and semantically compositional but are statistically idiosyncratic.
This means: they are groups of words which could be combined differently in principle but happen
to appear in a specific combination in an unusually high frequency. Examples are “traffic light”
or “turning signal” or “middle management” While “traffic director” or “corner light” might
appear in principle, they are nowhere near as frequent as “traffic light”.

Inside these two main branches the taxonomy continues to refine, reflecting things as variation
in syntactic flexibility. For the work presented here, these distinctions mostly are too fine-grained,
the reader is referred to the paper mentioned above for the details. The complete taxonomy of
multiword expressions can also be found in the appendix, see Figure B.1.

For our research, the focus lies on the second of the main branches: the institutionalized
phrases. The reason for this lies in the language predominant in patent applications, which is
very technical and contains a large amount of domain-specific vocabulary. Specific fields (more
or less sharply represented by the different IPC classes) have their own special terms, examples

2One might discriminate between two cases: a) the PoS tag is wrong, but the same features are generated
because a word that should (not) be filtered still will (not) be filtered. b) the PoS tag is wrong and additional
features are generated or features are lacking because the filtering now also goes wrong. Case b) will be more
problematic but still be consistent among all classes, thus diminishing this error’s impact on classification results.

3A diagram of the complete taxonomy can be found in Figure B.1, on Page 34.

9



including machine learning, liquid nitrogen or divide and conquer. All of these can be seen as
institutionalized phrases.
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Chapter 3

Experimental Setup

In this section we describe the data selection (Section 3.1), the preprocessing applied to this
data (Section 1), including the generation of the various representations. A short description of
the Part-of-Speech tagger is given in Section 3.3. Following this we give short summaries of the
corpus statistics after preprocessing (Section 3.4) and, finally, of the classification framework and
settings (Section 3.5).

In general, we follow the approach described by D’hondt et al. (2012), so as to maintain
comparability and prevent potential new sources of error, such as faulty preprocessing or a wrong
configuration of the classification system, from arising.

3.1 Data Selection

Our experiments were conducted on a subset of the CLEF-IP 20101 corpus, which is a subset of
the MAREC patent collection. It contains 2.6 million patent documents, which pertain to a total
of about 1.3 million individual patents (each patent possibly having multiple patent documents).
The patents included in the corpus have been published between 1985 and 2001.

The documents are encoded in a customized XML format and contain text in English, French
and German and consist of the following patent sections: title, abstract, claims and description.
Furthermore, they also include meta-information, such as inventor, date of application, assignee,
among others. Of all this data, we only use the abstracts for our experiments. The rationale
behind this is that we are trying to investigate into the effect certain text representations (viz.
unigrams, bigrams, skipgrams and their typed variant). Choosing only one (highly informative)
part of the document will not lead to the best classification accuracy compared to other research2,
but, as we are more interested in comparing the different text representations, we focus only on
the relative gains between the representations. As such, this selection will not change our findings
but reduce the amount of data to a more manageable level.

Classification is carried out on the class level in the IPC8 hierarchy. Consequently, only
documents having at least one IPC class in the <classification-ipcr> field have been used. The
selection is further narrowed down by only choosing documents containing an English abstract.
The IPC class has been extracted on the document level. This results in documents being left out
which do not have both an English abstract and an IPC class, although the patent as a whole (to
which this document belongs) may have both.

1Available through the IRF at http://www.ir-facility.org/collection
2Verberne and D’hondt (2011) show that classification accuracy is higher when using description and abstract

instead of only the latter
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Filtering based on these criteria leaves us with 532,264 abstracts, divided into 121 classes.
The majority of these documents have one to three category labels, with an average of 2.12 labels
per document. For classification, these documents have been split in a train set of 425,811 (80%
of the corpus) and a test set of 106,453 (20%) documents, respectively.3

3.2 Data Preprocessing

General preprocessing consisted of the following steps: cleaning up character conversion errors,
removing image references, removing claim references and, finally, splitting up the text into
sentences, employing a list of abbreviations and acronyms that occur frequently in technical
texts. Furthermore, the creation of each of the different text representations also includes
decapitalization, lemmatisation and the removal of all punctuation except for “-”. The latter
steps are not part of the general preprocessing because the Part-Of-Speech Tagger uses this
information as context features for tagging.

Lemmatisation for phrases is carried out by splitting them into their two constituent parts,
lemmatising those and then recombining them. The impact of lemmatisation is outlined in
Section 3.4 and considered in more detail in D’hondt et al. (2012), Section 3.2.4.

The special punctuation rule for “-” is present because the hyphen frequently connects two
words which, together, form one unit of sense (e.g. data-driven, see also the examples below). As
such it is useful to treat the resulting complex as one word. To clarify consider Example 1 below.
A sentence after general preprocessing might look like this:

(1) Performance of data-driven processing can be increased.

3.2.1 Unigrams and Bigrams

To construct unigrams, sentences were split on whitespaces. The resulting words were lemmatized
using the AEGIR lexicon. Bigrams were fashioned likewise. One may note that only intra-
sentential bigrams were created. For our sample sentence the output is given in Table 3.1
below:

Type of Terms Resulting Terms after Preprocessing

Unigrams performance; of; data-driven; processing; can; be; increase
Bigrams performance of; of data-driven; data-driven processing;

processing can; can be; be increase

Table 3.1: unigrams and bigrams, both lemmatized, constructed for the example sentence

60 million unigrams and 58 million bigram tokens have been constructed for the whole corpus.
For a more detailed overview incorporating all of the representations please refer to Table 3.4 on
Page 14 below.

3No cross-validation has been carried out, based on the results of Verberne et al. (2010b), who demonstrated
that for this corpus there is little variance between different train/test splits (with a standard deviation of less
than 0.3%).
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3.2.2 Skipgrams

Skipgrams, too, were constructed only intra-sententially.4 As for the unigrams, sentences were
split on whitespaces. After removing any punctuation, 2-skip-2-grams are created. For every
possible value (here: 2-1-0) for the number of skips, one pass over the data has been carried
out, constructing skipgrams with exactly this number of skips. In other words, the constructed
skipgrams consist of two words (2-grams), with a varying number of gaps between those words
(2-1-0). One may see k-skip-2-grams thus as a form of generalized bigram.

For sentences shorter than four or three words it is impossible to generate skipgrams with two
skips or one skip respectively. The remaining skipgrams with less gaps were still constructed. After
construction, the skipgrams underwent the same lemmatisation as the bigrams. Furthermore, no
information about what words have been skipped or how many of them have been skipped is
encoded in the resulting skipgrams.

Let us inspect our example. It should also clarify why the hyphen has not been filtered out:
“data-driven” would have been split despite it being one connected word. The generated skipgrams
are5:

Performance of data-driven processing can be increased

Figure 3.1: Creation of skipgrams.

The loosely dotted arrows above the text in Figure 3.1 depict the construction of the skipgrams
containing two gaps. During the second iteration skipgrams with one skip are added, shown as
dotted arrows below the text. Finally, bigrams, being skipgrams with zero skips, are constructed
as indicated by the smaller solid arrows above the text. See Table 3.2 below for the resulting
preprocessed data:

# Skips Resulting Terms after Preprocessing

2 skips performance processing; of can; data-driven be; process-
ing increase

1 skip performance data-driven; of processing; data-driven can;
processing be; can increase

0 skips same as bigrams

Table 3.2: Lemmatized skipgrams created for the example sentence

About 168 million tokens have been created for the whole corpus. Again, more details can be

4The reasons for this are a) that we wish to maintain compatibility to bigrams and b) that our subject of
interest, the multiword expression, are found inside the confinements of one sentence.

5Please note that the dot, “.”, is not included for reasons of convenience and ease of display. In the actual
algorithm it is considered as an individual element and filtered out.
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found in Table 3.4 below.

3.2.3 Typed Skipgrams

The typed skipgrams were created as follows: We first ran an in-house Part-of- Speech tagger,
developed at the Linguistics Department (see Halteren (2000); also see Section 3.3 immediately
below), on the preprocessed sentences. The tagger was trained on the annotated subset of the
British National Corpus and uses the CLAWS-6 tag set6. From these tagged sentences we then
created typed skipgrams, using the algorithm described above.

To ease later filtering, the detailed CLAW6 tag set has been mapped to a more basic set of PoS
tags (see Section B.1 on page 33). Most important for this work is the fact that all noun-related
tags (N∗) were mapped to N , all verb-related tags (V ∗) to V and adjectives (JJ) to A. For our
main experiment, type information was purely used as a filter criterion and not given as input to
anything else. Consider the example sentence, annotated with the mapped tagger output, found
in Example 2 below. The example follows the syntax: Tag1 :Word1 Tag2 :Word2 etc.

(2) N :Performance PREP :of A:data-driven N :processing V :can V :be
V :increased UNK :.

As can be seen in Example 2, every word (and token of punctuation except for “-”) has been
assigned a tag. After removing tagged punctuation the same (decapitalized) skipgrams as above
are generated, but only for pairs of words that are assigned tags matching a pre-defined filter.

Assume that, for example, we only allowed the following type combination: type1=N ,
type2=N . Only one skipgram would be created, viz. performance processing. Other combinations
are textually too far apart or do not pass the type filter.

Note that the tag filter is directed: AV is not the same thing as V A. The actual filter we
have used is partly derived from our hypothesis: as we are looking for multiword expressions
and, more specifically, for institutionalized phrases, we allow type combinations (NN , NA, AN)
which typically indicate such phrases.

For the sake of avoiding confirmation bias, we have also allowed combinations involving the V
type. As a consequence, typed skipgrams now form the subset of skipgrams in which no phrases
involving function words are contained. We shall show in Section 5.2 that this extension is not
needed to significantly outperform the unigrams+bigrams baseline, although it does increase
classification scores.

Please see Table 3.3 below for a list of allowed combinations, illustrated by example. For those
combinations intended to capture multiword expressions, the respective example has been set in
boldface. Please note that the examples are lemmatized, which explains the otherwise unexpected
forms of the verbs. After filtering according to these criteria, 45 million tokens remained.

3.3 Part-of-Speech Tagger

For Part-of-Speech tagging we have used an in-house developed tagger, see Halteren (2000). To
determine the PoS tag for a word it uses both knowledge about word frequencies and machine
learning techniques. Furthermore, it is highly customizable, which has been the primary reason
to select it for this task.

For this experiment, we have adapted it to use word frequency information about the patent
domain, taken from the AEGIR lexicon. For our task this is rather valuable, as patents feature a
very distinct use of language.

6http://ucrel.lancs.ac.uk/claws6tags.html
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Tag 1 Tag 2 Example Expression

N N machine learning
N V catheter comprise
N A mother superior
V N use medicament
A N transverse wave
V A work fast
A V liquid spill

Table 3.3: Allowed combinations of tags and examples of corresponding expressions

There are, however, two caveats. First, we have not retrained it on a patent corpus. This
means that it is still trained on the label distributions that are typical of the original training
texts, the British National Corpus. Second, due to constraints of time, we have not tested its
accuracy on this new corpus. As errors in tagging propagate to typed skipgram filtering, they
might influence classification scores and, probably, change the semantics of captured phrases. If a
noun is not classified as a noun, we might not be able to correctly find multiword expressions. We
have tried to account for this in the discussion by manual inspection of the results, see Section 5.

3.4 After-Preprocessing Corpus Statistics

A summary of the statistics for the different representations after preprocessing is given in
Table 3.4 below. The following values are given per representation:

1. The number of tokens which is the number of instances in the corpus. When considering an
example corpus only consisting of the tokens A, B and, again, B, the token count would
amount to three.

2. The number of types, which is: the number of unique terms in the corpus. For the A, B, B
example this would amount to two.

3. The token/type ratio, which gives an indication of the spread of the data. If it is high it
means that there are many duplicate tokens. In general, this is desirable because types
being instantiated by a very small amount of tokens tend to be insignificant to the classifier.
As such, a low token/type ratio indicates a potential data sparseness problem.

4. The number of hapaxes, i.e. unique tokens (or, put differently: types instantiated only
by one token). A high number of hapaxes is generally undesirable for the same reasons a
low token/type ratio is (see above). Such terms will also most likely be removed by the
classifier, as something which occurs only once in the corpus is of no use when trying to
identify classes of documents.

Unless mentioned otherwise, the numbers given include lemmatisation. To display its impact, we
have included the data for non-lemmatised skipgrams. As one can see, lemmatisation decreases the
number of types for skipgrams ca. 3,000,000, thereby increasing the token/type ratio. Furthermore,
a reduction of the number of hapaxes by approximately 23% can be noted. A more detailed
account for unigrams and bigrams can be found in D’hondt et al. (2012), Section 3.2.4.

The impact of filtering by types can be seen when comparing skipgrams and typed skipgrams
(both lemmatised). The amount of data is reduced by nearly 75 %. This has an unexpected effect:
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Representation #Tokens #Types #Tokens/#Types #Hapaxes

Uni 60,065,858 419,171 143.30 215,448
Bi 57,499,818 4,226,210 13.61 2,124,847
Skip (non-lem) 168,845,555 14,829,363 11.39 7,541,208
Skip 168,808,226 11,794,377 14.31 5,842,074
Tskip 45,913,342 6,959,461 6.60 3,467,690

Table 3.4: Corpus statistics for various representations.

the token/type ratio is reduced to less than half of its previous value. This is caused by filtering
out phrases containing function words. As function words appear frequently, types containing
them tend to be instantiated by many tokens.

This decrease in token/type ratio illustrates the fundamental informativeness/sparseness
trade-off. As we select more informative phrases through linguistic filtering they are at risk of
having less impact due to resulting sparseness. The impact on classification accuracy requires an
analysis in greater detail, see Section 4.2 below.

3.5 Classification Experiments

Classification was done using the Linguistic Classification System (LCS, cf. Koster et al. (2003)).
Within this framework one may select a classifier form the following set: Naive Bayes, Balanced
Winnow. Earlier work (Verberne et al., 2010b) has shown SVM Light and Balanced Winnow to
lie on an equal level, both outperforming Naive Bayes. Of those two, Balanced Winnow offers the
higher speed. Again following D’hondt et al. (2012) we therefore choose to use Balanced Winnow.

We also use the same LCS configuration, viz.:

1. Global Term Selection: minimal document frequency = 2, minimal term frequency = 3

2. Local Term Selection: Simple Chi Square (Galavotti et al., 2000), selecting the 10,000 most
representative term per class.

3. After local term selection all of the remaining terms are combined into one vocabulary
which is then used as a starting point for training the individual classes, i.e. aggregation of
term vocabularies

4. Term Strength Calculation: LTC algorithm

5. Training Method: Ensemble learning based one-versus-rest binary classifiers. This means
that there is not one classifier assigning all the class labels, but every class has its own
binary classifier. Each of these classifiers independently assigns a score to every given
document, representing the confidence that this document belongs to that class. To each
document is assigned at least one and at most four of these class labels (if the classifier
confidence score is greater than the threshold of 1.0).

6. Winnow Configuration: α = 1.02, β = 0.98, θ+ = 2.0θ− = 0.5, with a maximum of 10
training iterations. This setting has also been used in Koster et al. (2010).
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Chapter 4

Results and Initial Analysis

The results of our classification experiments are depicted in Table 4.1 (micro-averaged). In
addition to the measure value, the confidence ranges at a 95% confidence level have been given.
The best results per representation and measure have been set in boldface. The macro-averaged
results fall within too large confidence intervals to draw any significant conclusions. For the sake
of completeness they can be found in the appendix, Section A.1.

Terms % Precision % Recall % F1

Unigrams 76.82 ± 0.17 66.51 ± 0.19 71.29 ± 0.19

Bigrams 79.31 ± 0.17 67.54 ± 0.19 72.95 ± 0.18

Uni+Bi 79.37 ± 0.17 70.72 ± 0.19 74.79 ± 0.18

Skipgrams 79.34 ± 0.17 69.06 ± 0.19 73.84 ± 0.18

Uni+Skip 79.30 ± 0.17 71.14 ± 0.19 75.00 ± 0.18

Typed Skipgrams 79.69 ± 0.17 67.03 ± 0.19 72.81 ± 0.18

Uni+TSkip 80.17 ± 0.16 71.33 ± 0.19 75.49 ± 0.18

Table 4.1: Classification scores, micro-averaged

4.1 Measures and Averaging Methods

Let us first briefly introduce the measures used. Using the terminology from the pattern matching
literature, all of the measures can be defined in terms of true positives (instances of a class which
have been correctly labelled as such), false positives (an instance which has been wrongly labelled
as belonging to class x) and, mutatis mutandis, true and false negatives.

Precision is defined as:
true positives

true positives + false positives

If the classifier picks x instances as belonging to class y this is the fraction of instances which
actually do belong to this class. In information retrieval terminology: what fraction of returned
documents is relevant?

Recall is defined as:
true positives

true positives + false negatives
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If there are x instances of a class, what fraction of these did the classifier classify correctly? Or,
again, rephrased: what fraction of relevant documents has been returned?

The F1 value is the harmonic mean between precision and recall. For the variables x1 , ..., xn
it is defined as:

n
1
x1

+ ...+ 1
xn

The harmonic mean tends towards the lowest value given. Large outliers have less effect than for
the geometric mean, but many small outliers tend to aggravate.

Precision, Recall and F1 have been averaged in two ways. The micro-average is an average
over every class instance in the test set (of which there are 226071 (one for every class label /
document combination)). As such, classes having many documents will have greater influence on
this average.

Macro-average, on the other hand, is an average over every class, of which there are 121. This
lends an equal weight to every class, independent of its size.

As a direct consequence of its definition, scores resulting from the latter averaging method
have a much wider confidence interval. When looking at Table A.1 in Section A.1 one can see
that these intervals actually are so wide that none of the results is significantly different from any
other (which would, here, require a difference of ca. 18%, no combination of values lies this far
apart). As such, we will only consider micro-averaged results in the discussion below.

4.2 Initial Analysis

First, we were able to reproduce the results of D’hondt et al. (2012) which showed that combined
representations outperform unigrams. When bigrams, skipgrams or typed skipgrams are com-
bined with unigrams, classification scores always increase with respect to the solitary unigrams
classification.

Secondly, it may be observed that all (isolated) phrases yield better scores than unigrams.
This is noteworthy insofar as it contrasts earlier findings in the literature, see for example Lewis
(1992). Also see Koster and Beney (2009), who state that “It is a disappointing fact that over
the years no classification experiment using any sort of linguistical phrases has shown a marked
improvement over the use of single keywords, at least for English.”. Here one may note that only
the typed skipgrams can be considered to be weakly linguistical phrases. The reason for this
deviation from earlier results might be found in the different language use in patents. Technical
terms and domain-specific vocabulary are more prevalent than in, for example, newswire texts
and they are better captured by phrases than by words alone. Domain-specific vocabulary can be
seen to, for most parts, fall under the institutionalized phrases subset of multiword expressions.
As such, success of phrasal representations provides first support for our hypothesis, which tried
to explain the good performance of words + bigrams by their ability to capture such MWEs.

Thirdly, while unigrams and typed skipgrams perform better than unigrams combined with
skipgrams, skipgrams on their own yield better recall and F1 scores than pure typed skipgrams.
It may also be observed, that typed skipgrams still provide a higher precision. Several reasons
might explain this behaviour. Typed skipgrams have a much lower token/type ratio (14.31 versus
6.60) and a vastly lower number of tokens in general (168 million vs 45 million, confer Table 3.4
on Page 13) and thus suffer from data sparseness problems, causing a lower recall. On the other
hand, they also are highly informative, meaning that if a document fits their model, the labelling
is likely to be correct.

Fourthly, even when ignoring the reasons behind the low recall and high precision of typed
skipgrams, we can see that they combine with unigrams very well. The information that the two
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different representations provide seems to complement each other, yielding the highest scores
across all representations.

Fifthly, finally and most importantly (and implicitly mentioned before), unigrams + typed
skipgrams significantly outperform the unigrams + bigrams baseline1. Unigrams + typed
skipgrams also significantly outperform unigrams + skipgrams. The latter performs better than
unigrams + bigrams, but not significantly.

We thus see that these results are as predicted by our hypothesis: The combined results of
unigrams + x increase with an increasing ability of x to capture multiword expressions.

One might raise the objection that unigrams+skipgrams only work (slightly) better due to
an increased number in tokens. That this is not the case is made clear by unigrams+typed
skipgrams outperforming both other combined representations significantly. As has been remarked
before, the typed skipgrams form a small subset (ca. 45 million tokens vs ca. 168 million) of the
skipgrams. If thus better results for unigrams+skipgram were to be explained by a higher token
count alone then lowering this count below the level of bigrams (ca. 57 million) should not result
in an increased performance.

1This baseline is slightly higher than in D’hondt et al. (2012) due to improvements made to the preprocessing
step.
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Chapter 5

Discussion

In the last section we have found evidence supporting our initial hypothesis1 Yet, what we have
actually found out is the following: typed skipgrams and words taken together are good features.
As of now, we have assumed this to be the case because the typed skipgrams capture multiword
expressions. Other observations (see above) make this assumption appear plausible, but fail to
completely remove reasonable doubt.

In what follows, we aim to give a further analysis of the results and thereby find further
evidence that our hypothesis is true. The central question we pose is this: Can the improvement in
performance of typed skipgrams + words be traced back to the influence of multiword expressions?
If we find this to be the case, we will inquire further into the nature of the multiword expressions
which proved useful to the classification task. To this end, we shall proceed as follows:

1. We shall conduct a series of leave-one-out experiments, inspecting the influence of specific
subtypes of typed skipgrams, see Section 5.1.

2. We will perform an additional run, combining the two most informative subtypes of typed
skipgrams with unigrams, in Section 5.2.

3. The ten most influential terms for one class will be compared among different representations
in Section 5.3.

4. In Section 5.4, the 100 most influential typed skipgrams for that same class will be manually
annotated.

5. Penetration values among different representations and ranks will be compared in Section 5.5.

5.1 Leave-One-Out Experiment

To examine the influence of various subtypes of typed skipgrams we have conducted a series of
leave-one-out experiments. For each iteration, we have chosen a pair of tags originally allowed
(cf. Table 3.3 on Page 13), filtered it out (symmetrically, so if we filter a N-A combination we
also filter A-N) and re-run the classification. Please note, that we did not so in a cumulative
manner. Rather, every iteration of this experiment stands on its own, meaning, that each time
we filtered out only one combination and did not also filter out the ones from previous iterations.
The results are shown in Table 5.1 (micro-averaged).

1Viz.:“Multiword expressions are the most informative phrasal features for text classification in the patent
domain”.
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Again, as with the results of the main experiment described in Section 4.2, the macro-averaged
results prove not to be significantly different from one another. Consequently, no conclusions will
be drawn from their differences. They are listed in Section A.2.

The tables are formatted in the following way: the first row gives our typed skipgrams baseline.
The following rows give, per representation and measure, the difference, compared to the baseline,
followed by the actual result in parentheses. Furthermore, the confidence interval range at 95%
confidence is given. Per representation and measure the value deviating the most from our
baseline is set in boldface.

Terms % Precision % Recall % F1

Tskipgrams baseline 79.69 ± 0.17 67.03 ± 0.19 72.81 ± 0.18

tskip noNN -1.93 (77.76) ± 0.17 -4.12 (62.91) ± 0.20 -3.26 (69.55) ± 0.19

tskip noNA -1.12 (78.57) ± 0.17 -2.75 (64.28) ± 0.20 -2.10 (70.71) ± 0.19

tskip noNV -0.75 (78.94) ± 0.17 -2.14 (64.89) ± 0.20 -1.58 (71.23) ± 0.19

tskip noVA -0.07 (79.62) ± 0.17 -0.23 (66.80) ± 0.19 -0.16 (72.65) ± 0.18

Table 5.1: Micro-averaged classification scores for the leave-one-out experiment for typed skipgrams

The biggest drops in classification accuracy, compared to the typed skipgram baseline found in
Table 4.1 on Page 15 above, can be witnessed when leaving out noun noun-tagged (NN) typed
skipgrams, noun-adjective (NA), noun-verb (NV) and verb-adjective (VA), respectively.

For now, let us call the group of typed skipgrams indicated by the (unordered) tag combination
of V A the VA subtype of typed skipgrams (and the same, mutatis mutandis, for other subtypes).
When considering F1 scores, the VA subtype is significantly less important than any of the other
ones, whereas the NN subtype is significantly more important than the rest. The difference
between the NA and NV subtypes is not significant.

We explain these findings by the NN subtype of typed skipgrams holding the most valuable
information, followed by NA. NV also has descriptive value, its impact seems to be a consequence
of the high token count for this subtype. VA simply does not appear often enough to have much
influence. To provide support for this reasoning it is necessary to also consider the frequency of
the different subtypes, as depicted in Table 5.2.

Tag #Occurrences % of the whole corpus

VA/AV 4,692,536 2.78
NA/AN 12,794,063 7.58
NV/VN 14,111,043 8.36
NN 14,315,700 8.48

Table 5.2: Distribution of subtypes of typed skipgrams, absolute and relative to the whole corpus

As is evident, the VA subtype comprises a relatively few features, so that their removal does not
impact classification greatly.

NN does have the highest token count but is closely (difference: ca 200.000 tokens) followed
by NV. As such, the great difference in impact can not be explained by the difference in number.
The same seems to be true when comparing NN and NA, but the case is less clear here.

Another point of interest is the significant difference between NA and NV. Whereas NV has a
higher token count, NA has the higher impact. We thus conclude that NA terms seem to be more
informative than NV terms, as they yield a greater change of scores while having less tokens.
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This conclusion is supported by our findings of the manual inspection of the ten most important
terms per representation, described in Section 5.3. We see, that many of the influential NV terms
are formed by combining high-weight unigrams with auxiliary verbs, such as “be” or “have”.

How does this relate to our hypothesis? Let us revisit what we are looking for: we are hoping
to see that the subtypes of typed skipgrams with the highest influence are also the subtypes most
likely to contain multiword expressions. As we are looking for terms akin to “green IT” (NA)
or “software engineering” (NN) we expect the NN and NA subtypes to have the greatest impact.
Since this is exactly what we observe this lends further support to our hypothesis.

5.2 Leave-Two-In Experiment

By conduction the leave-one-out experiment, see Section 5.1 above, we have found typed skipgrams
being constructed from pairs of words tagged noun-noun (NN subtype) or noun-adjective (or
adjective-noun) (NA class) to have the greatest impact on typed skipgram performance.

In this experiment we only allow those two subtypes of typed skipgrams. We compare the
performance of this subset of typed skipgrams, on its own and in combination with unigrams,
to earlier results. We hope to find that this new variant still significantly outperforms the
unigrams+bigrams baseline.

The micro-averaged performance of this subtype of typed skipgrams has been depicted in
Table A.3. The new representation has been labelled with “onlyNNNA”, some previous results
have been included for ease of comparison. As before, the macro-averaged results can be found in
the appendix, in this case in Section A.3.

Terms % Precision % Recall % F1

UniBi 79.37 ± 0.17 70.72 ± 0.19 74.79 ± 0.18

UniSkip 79.30 ± 0.17 71.14 ± 0.19 75.00 ± 0.18

UniTskip 80.17 ± 0.16 71.33 ± 0.19 75.49 ± 0.18

uni+tskip onlyNNNA 79.88 ± 0.17 71.06 ± 0.19 75.21 ± 0.18

Skip 79.34 ± 0.17 69.06 ± 0.19 73.84 ± 0.18

Tskip 79.69 ± 0.17 67.03 ± 0.19 72.81 ± 0.18

tskip onlyNNNA 78.86 ± 0.17 64.82 ± 0.20 71.16 ± 0.19

Table 5.3: Classification scores for the leave-two-in experiment, micro-averaged

When considering typed skipgrams restricted to the NN/NA subtypes (we shall call them minimal
typed skipgrams, or m-t-skipgrams, for now) we can see that they perform worse than the less
restricted typed skipgrams we have used before. While scores for all measures decline significantly
it is noteworthy that the loss in recall (2.21) is much higher than the loss in precision (0.81). We
thus see, that the NN/NA subtypes are the main factor behind the overall precision of typed
skipgrams. The greater loss of recall might be caused by NV and VA being important subtypes
for this, the loss of ca 19 million (out of ca 46 million) tokens or, most likely, a combination
thereof.

If we assume NN/NA to capture multiword expressions (and this is supported by our later
manual analysis in sections 5.3 and 5.4) we may draw the conclusion that multiword expressions
have high discriminatory power and lead to high precision scores when using them as features.

If we turn our attention to m-t-skipgrams combined with unigrams we see that they perform
better than skipgrams+unigrams, but worse than regular typed skipgrams+unigrams. The
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differences between the classification scores of the unigrams+m-t-skipgrams and the two other
representations are not significant.

The loss in recall (0.27) and precision (0.29), compared to regular typed skipgrams+unigrams,
is much smaller than when contrasting our two versions of typed skipgrams without unigrams.
As we have seen before in Section 4.2 typed skipgrams seem to combine very well with unigrams,
complementing each other. This also seems to hold for m-t-skipgrams. Especially the loss in
recall is made less severe by combining with unigrams.

When relating these findings to our hypothesis the main observation is that the unigrams
+ bigrams baseline is significantly outperformed by unigrams + m-t-skipgrams. This indicates
that NN/NA are the important subtypes of typed skipgrams. As these subtypes are also the
ones capturing multiword expressions we again find support for our initial hypothesis: multiword
expressions being captured by bigrams was the mechanism underlying the success of unigrams +
bigrams.

We have furthermore shown that a possible alternative interpretation of our results, viz.:
“unigrams + typed skipgrams work better than unigrams + skipgrams only due to functions words
being filtered out”, can not be upheld. Were this the case then leaving out noun verb or verb
adjective combinations should have a more severe impact. As this is not the case we conclude
that the improvement in scores actually is in the phrases better capturing multiword expressions
(although this does happen by filtering out skipgrams containing function words).

Finally, we see that while the initial number of tokens for m-t-skipgrams (26 million) is
far lower than the one for bigrams (50 m.) the results are better nonetheless. Furthermore,
comparison to typed skipgrams (45 m. initial features) yields comparable performance. This
leads to the conclusion that the filtering was strict, but no significant amount of useful features
has been discarded by accident.

5.3 Manual Analysis of Most Influential Terms Across Rep-
resentations

In this section per representation the ten terms given most positive weight by the classifier2 for
the A61 class, the largest class in the corpus, are shown, see Table 5.4. Our aim is to illustrate
the differences in terms chosen by the classifier and to start a first investigation into why these
terms are chosen, how much overlap there is and whether multiword expressions play a role. This
is not a large-scale, automatized analysis and findings thus cannot hold up against the same
standard of validity as in the previous sections. Nevertheless, there is value in an illustrative
example to understand what happens in the classifier.

Before the observations of this experiment are summarized, a short reiteration might be helpful.
We are especially interested in the institutionalized phrases subclass of multiword expressions
(examples: traffic light, greedy search, . . . ; cf. Section 2.4). By merit of their definition whether a
specific combination of two words is such a phrase is relative to the chosen corpus. This is the
basis on which we have decided whether to label a phrase as multiword expression in the analysis
below.

One could argue that, as we are looking for phrases characteristic for individual and largely
disjoint classes each such class constitutes a frame of reference against which institutionalized-ness

2“Weight” here means “weight assigned by the Balanced Winnow classifier”. Balanced Winnow gives two
weights to a term, thus keeping two hyperplanes in the feature space, separating the target class from everything
else. One of these hyperplanes works as in Perceptron or Support Vector Machine algorithms, the other one is a
negative boundary: words are given more negative weight if they are more important for not being in the target
class. When ordering terms by weight for our further experiments and analyses we have only taken into account
the positive weights of the terms.
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Uni Bi Skip TSkip

dental a catheter an implantable catheter be
orthopedic an implantable a catheter dental comprise
implantable a dental a surgical catheter have
catheter a surgical an orthopedic absorbent article
endoscope the catheter a dental prosthesis be
prosthesis an endoscope an endoscope cosmetic composition
prosthetic for dental the catheter surgical instrument
denture an orthopedic absorbent article dental material
surgical absorbent article for dental prosthesis have
suture a wheelchair a wheelchair prosthesis comprise

Table 5.4: Top ten highest weighted terms, according to Winnow weight, of the A61 class per
representation.

must be measured.
Regarding unigrams we can see that all terms are content words, divided equally between

nouns and adjectives.
Regarding bigrams it can be stated that they are generally constructed from content words

(here: adjectives and nouns, let us call this the semantically heavy part), prefixed by functions
words (mainly articles, we shall refer to it as the semantically light part). The only exception in
this top en is “absorbent article” which is a meaningful multiword expression.

As has also been observed in D’hondt et al. (2012), the heavy parts of the individual bigrams
mainly stem from the high-ranking unigrams: when excluding “absorbent article” eight out of
nine bigrams have one of the important unigrams as heavy part. When looking at the inverse
relation we see that six out of ten unigrams appear as heavy part of one of the most influential
bigrams.

One might think that this relation (bigrams stemming from high-ranking unigrams versus
high-ranking unigrams appearing in bigrams) should be symmetric because every unigram should
only appear once in the unigram list and once in the bigram list. That this is not the case is
explained by the fact that one heavy part of the bigrams (possibly being one of those unigrams)
may be connected to different light parts. Only this combination as a whole has to be unique.

A possible explanation for those characteristics of bigrams is that their importance is mainly
derived from important unigrams. The high weighing of combinations of unigrams and articles is
due to high frequency thereof: articles in general appear very often, even more so when inspecting
the direct vicinity of adjectives and nouns.

The fact that one multiword expression is among those ten phrases is consistent with the
observation that unigrams+bigrams perform significantly better than unigrams alone. If this
sample is indicative for the rest of the terms it would fit well into our hypothesis.

Regarding skipgrams it is the case their sample of phrases is a permutation of the bigrams.
This indicates that skipgrams with zero skips (which are identical to the bigrams) feature higher
in the class profiles and are more readily selected by the classifier. As classification results differ
for skipgrams and bigrams it is likely that more divergence will be found when increasing the
sample size.

Regarding typed skipgrams one can observe that six out of ten are constructed from a noun
or adjective (again: the heavy part) and an auxiliary verb (again: the light part). “Auxiliary” in
a dual sense of the word: these are auxiliary verbs but they also play the same role as the articles
for bigrams and skipgrams. They carry nearly no additional meaning.

24



Subtype #Occurences Fraction #MWEs Fraction Capture Ratio

NN 25 0.25 16 0.41 0.64
NA 30 0.30 23 0.59 0.77
NV 34 0.34 0 0.00 0.00
VA 11 0.11 0 0.00 0.00

Table 5.5: Distribution of tag subtypes and multiword expressions among the best 100 typed
skipgrams

As before, we explain the presence of such heavy/light combinations by their distribution:
auxiliary verbs are frequent and close to every word (at least when allowing skips). As such, they
also are close to the important unigrams. Because function words have been filtered out, they are
the best next candidate.

As far as meaningfulness goes, auxiliary verbs are close to functions words. When filtering all
typed skipgrams involving verbs and combining with unigrams the unigrams+bigrams baseline is
still outperformed significantly, as can be expected from these observations. This is shown in
Section 5.2.

Filtering out only auxiliary verbs (as opposed to all verbs) and seeing, whether scores for
unigrams + typed skipgrams increase might be an interesting experiment. Unfortunately, we
could not include it anymore.

Returning to a more general inspection of the typed skipgrams it can be seen that there are
four phrases which are meaningful combinations of words; three of those seem to be multiword
expressions (they appeared as units in text relating to the medical field, frequency analyses have
not been carried out).

Due to the small sample size, only tentative conclusions can be drawn. It does seem, however,
that the linguistic filtering applied to typed skipgrams does help to promote multiword expressions.
Less ’light’ parts can be found among the sample.

5.4 Manual Annotation of the 100 Most Influential typed
skipgrams

This section describes our findings of a manual annotation of the 100 typed skipgrams given
the most weight by the classifier for the A61 class. We inspected from what combination of
Part-of-Speech tags they were created and, furthermore, which of these combinations best capture
multiword expressions. The results of our annotation are depicted in Table 5.5.

“Subtype” is here used as in Section 5.1 before, meaning: the “NA” subtype consists of the
typed skipgrams constructed from pairs of words tagged either “N” and “A” or “A” and “N”.
This scheme holds,Mutatis mutandis, for all subtypes. To recap Section 3.2.3, the tags N, A and
V try to capture nouns, adjectives and verbs, respectively.

“Capture Ratio” is the number of captured multiword expressions divided by the number of
typed skipgrams for this subtype.

When inspecting the distribution of the different subtypes we see that (in this order) NV,
NA and NN have the highest number of occurrences and VA is left far behind. This does not
reflect the typed skipgram distribution described in Table 7. Although the NN subtype has the
most tokens when considering the whole corpus, and the greatest impact in the leave-one-out
experiments, relatively few NN features are selected as high-impact features by the classifier.
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Before extracting a conclusion, let us first have a look at the distribution of multiword
expressions amongst those subtypes. Two annotators have found 39 and 24 such expressions
respectively3 There are 39 such expressions in total. To determine whether a term is a multi
word expressions we have conducted an Internet search for that term and checked, whether it
appeared as an institutionalized term in the first results. This, admittedly, is a very vague and
non-deterministic method, but is more certain than only using intuition. A thorough analysis
would require statistical comparison of this term to the rest of the class or inspection by an expert
of the relevant domain; both of those could, due do the limited amount of time available, not be
carried out. We see, that only NN and NA capture these multiword expressions.

Again, there is a disagreement between these numbers and the leave-one-out experiment: here
the NA subtype captures more multiword expressions than NN. This disagreement turns out to
be unproblematic as the lower impact in the leave-one-out experiment can also be explained by
the lower token count. One might also take into account the low sample size considered here.

On a greater scale, one can see that NN and NA are still the most important subtypes regarding
multiword expressions (or rather: the only important ones)4. This fits in with earlier observations:
when constructing typed skipgrams using only these two subtypes, the unigrams+bigrams baseline
is still outperformed (cf. Section 5.2. Furthermore, these subtypes were shown to have the biggest
impact on typed skipgrams performance (cf. Section 5.1. As such, these observations again
support our hypothesis that capturing of multiword expressions was the crucial mechanism behind
the success of unigrams+bigrams.

5.5 Penetration of Phrases

Penetration, introduced by Caropreso et al. (2001), measures the relative number of phrases
among the top k terms for a class in the class profile. In general, this value tells us about the
tendency of a classifier to select phrases, instead of words, as features that can discriminate a
certain class against the rest of the corpus.

On a purely technical level this means that, for higher values of penetration, the Winnow
algorithm has given more weight to phrasal terms , compared to unigrams. Winnow is a mistake-
driven classification algorithm: The winnow weights of the features are only updated during
training when a test document is assigned a wrong label or no label. In the latter case the winnow
weights of all the terms that the document shares with positives examples of its class in the
training set are then multiplied by the promotion factor (α), conversely, the weights of all the
terms that the document shares with negative training material are multiplied by the demotion
factor (β). Consequently, high-ranking terms in the class profile are not necessarily the most
representative terms for that specific class but rather are the terms that capture such specific
information to distinguish this class from all others in the corpus.

Higher penetration levels means the classifier has found that more specific, i.e. phrasal terms
distinguish better from other classes then unigrams. The penetration level itself however is a
contestable measure as it is also dependant on the number of types (features) that are offered to
the classifier, i.e. the feature space in which the classifier operates.

Penetration values at different ks for the three biggest classes per representation can be found

3The inter-annotator agreement has been measured using Cohen’s Kappa, yielding 0.746. The scale for Cohen’s
Kappa has two important points: 0, which means that the inter-annotator agreement is as high as one would
expect if all annotators simply guessed. 1, which means that all annotators are in perfect agreement. There is no
established standard on what constitutes a good value. Following the rules of thumb established in Landis and
Koch (1977) and Fleiss et al. (2003, p. 218), 0.746 appears to indicate a high agreement.

4For this specific sample. That this finding generalizes to the whole corpus, especially when focusing on
institutionalized phrases, is indicated by the previous leave-one-out and leave-two-in experiments.
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Class Representation Rank: 20 50 100 1000 10000 100000

A61 Uni+bigrams 0.00 0.04 0.11 0.41 0.70 0.88
Uni+skipgrams 0.00 0.06 0.19 0.54 0.82 0.93
Uni+typed skipgrams 0.00 0.04 0.08 0.32 0.65 0.89

C07 Uni+bigrams 0.05 0.22 0.30 0.53 0.73 0.85
Uni+skipgrams 0.10 0.26 0.35 0.68 0.84 0.93
Uni+typed skipgrams 0.00 0.16 0.21 0.45 0.70 0.86

H04 Uni+bigrams 0.10 0.16 0.24 0.56 0.81 0.90
Uni+skipgrams 0.10 0.24 0.31 0.72 0.89 0.95
Uni+typed skipgrams 0.10 0.12 0.21 0.48 0.80 0.92

Table 5.6: Penetration of phrases for different ranks, phrases and classes

in Table 5.6. A subset of this data, restricted to the A61 class, is visualized in Figure 5.1. It can
be seen that, independent of the class, unigrams+skipgrams has the highest penetration value
(starting from rank 50). It is furthermore the case that unigrams+bigrams show a slightly higher
penetration than unigrams+typed skipgrams.

At first glance, it is surprising that the highest-scoring text representation (unigrams + typed
skipgrams) has the lowest penetration levels. If the typed skipgrams capture the most specific
information of the classes, we would expect them to feature quite high in the class profiles and it
would be evident that they play a large role in the classification process.

The reason for their low penetration levels, compared to skipgrams, might be twofold: On the
one hand skipgrams have a larger feature space with much more phrases compared to unigrams
(28 skipgram terms to each unigram term; and 16 typed skipgram terms to each unigram term,
respectively). Hence, the statistical possibility of selecting a phrasal term as a distinguishable
feature is much higher for skipgrams.

Furthermore, the more specific typed skipgrams are much sparser and, consequently, less likely
to feature a lot in either positive and/or negative training material. Consider, the Token-Type
ratio of typed skipgrams in Table 3.4. On average, there are only 6 occurrences per typed skipgram
term in the entire corpus. From this we can conclude that typed skipgrams will have a limited
impact during training. skipgrams, on the other, hand contain many function words, creating
general terms that can appear in many documents and in many classes. These will therefore
have more impact during training both as positive and negative training material. Analysis in
Section 5.3 showed high-ranking skipgrams are mainly class-specific unigrams combined with
function words, which seems to support the previous claim. While the typed skipgrams may not
feature heavily in the top ranks, penetration at lower levels show that the classifier still selected a
lot of typed skipgrams with smaller winnow weight. It seems that for combined unigram+typed
skipgram classification, most of the work is left to unigrams but the complementary typed
skipgrams fill up the gaps.

This implies that the quality of the phrases must be higher. As such, linguistic filtering from
skipgrams to typed skipgrams appears to be successful. As this filtering happened under the
assumption that phrases should come closer to multiword expressions, we again find support for
our hypothesis.
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Figure 5.1: Penetration of phrases among all classes, ranks and representations. X-Axis: rank.
Y-Axis: Representation and Class. Z-Axis (color): penetration.
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Chapter 6

Conclusions

In this paper we have investigated whether the mechanism behind the success of the uni-
grams+bigrams text representation in D’hondt et al. (2012) is that representation’s capability to
capture multiword expressions, especially the subset called institutionalized phrases. To verify
this hypothesis we have conducted a series of experiments:

Firstly, we have conducted multiple classification experiments on ca. 532.000 patent abstracts,
originating from the CLEF-IP 2010 corpus. These experiments have been carried out on the
“class” level of the IPC hierarchy, consisting of 121 different classes. Each document on average has
2.12 class labels. We thus solving a multi-class, multi-label supervised learning problem. For each
of the following text representations a classification experiment has been carried out: unigrams,
bigrams, skipgrams, typed skipgrams and unigrams in combination with any of the phrase-based
text representations. For typed skipgrams, combinations of words being tagged as noun, adjective
or verb by a Part-of-Speech tagger have been allowed. The rationale behind this was that the
resulting terms would not contain function words, but would still capture multiword expressions
(which we predicted to comprise noun/adjective combinations). Combinations with verbs have
been allowed to evade confirmation bias and to prevent filtering from being too strict. In further
experiments (see below), the influence of the different types of typed skipgrams has been tested.
For all experiments recall, precision and F1-values have been measured an analyzed. In contrast to
earlier results in the literature all phrase-based representations have been observed to outperform
unigrams. We have furthermore found unigrams+typed skipgrams to perform best, followed by
unigrams+skipgrams, both significantly surpassing the unigrams+bigrams baseline. They are
ranked in accordance with their capability to capture multiword expressions, as predicted by our
hypothesis.

Secondly, we have conducted leave-one-out experiment with typed skipgrams, each time
filtering out phrases containing a particular Part-of-Speech combination (e.g. noun-noun or
noun-adjective). By means of this we have gauged the impact of these different subsets of typed
skipgrams. We found, that those constructed from noun-noun and noun-adjective combinations
contribute the most, followed by noun-verb (all of these having significant impact) and, finally,
noun-verb (having nearly no impact at all). The difference in impact could again be traced to the
ability to capture multiword expressions, although the number of tokens also played a significant
role.

Thirdly, we have compared the top ten terms given most weight by the classifier for different
text representations in the class profiles of A61, the largest category in the corpus. It can be
observed, that most of those important unigrams also appear in the important phrases. Overlap
between different phrases was also found to be high: bigrams and skipgrams were a permutation
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of each other. In general, high-ranking unigrams are combined with high-frequency words to
construct high-impact phrases. Often this leads to “meaningless” combinations of unigrams with
articles or (when impossible due to the filtering applied to typed skipgrams) with auxiliary verbs.
Meaningful combinations of two unigrams among the top ten terms can only be found in greater
numbers for typed skipgrams, proving the filtering to be effective.

Finally, we have manually annotated the 100 most influential typed skipgrams. A total of
39 multiword expressions has been found among them, providing evidence for a) the representa-
tion’s capacity of capturing them and b) their influence on the results. All of those multiword
expressions were captured either by noun-noun or adjective-noun combinations. Using only these
combinations for typed skipgrams has been tested. In combination with unigrams results are not
significantly worse than when combining unigrams with more inclusive typed skipgrams, although
the unigrams+bigrams baseline was still outperformed significantly.

In conclusion, our findings are that there is considerable support for our hypothesis which
explains the performance of unigrams+bigrams by their ability to capture multiword expressions.
This hypothesis predicted the success of unigrams+typed skipgrams, which could be verified.
It furthermore predicted the importance of noun-noun and noun-adjective typed skipgrams,
which also could be verified. We expect these results to be generalizable for every sort of text
relying heavily on institutionalized phrases. This means that unigrams + typed skipgrams should
be effective features for such texts. Therefore, this representation might also prove helpful in
classifying texts such as scientific abstracts. When combined with insights regarding parameter
tuning (not covered in this paper) and when used in a more realistic classification setting (where,
for example, also title and the beginning of the description section are being used) this new
representation might help to increase the quality for automated text classification. Finding
further ways of exploiting multiword expressions might also form a viable prospective for research.
One can, for example, think of typed skipgrams consisting of three words, capturing things as
“self-documenting extensible editor”. The crucial aspect will again be to balance informativeness
and sparseness, as Guthrie et al. (2006) have shown this to become a problem for unfiltered
skipgrams involving four words.

There also are important remarks to the work presented here. First, the Part-of-Speech tagger
has not been benchmarked. As decisions made by this component influence which typed skipgram
are created, errors can potentially have a significant effect. Reversely, improving performance of
the tagger might increase performance of the typed skipgrams. Secondly, an automated analysis of
all classprofiles should be conducted. Conclusions about the distribution of multiword expressions
could be verified and the influence of differences in class size could be analyzed. Finally, this
experiment could be re-conducted for different classification algorithms. This would show whether
the success of typed skipgrams depends on characteristics of the Winnow algorithm. Should this
prove to be false, it would allow for a wider application of this new representation. Should it
prove to be true, new insights on the behaviour of this classifier regarding feature selection could
be gained.
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Appendix A

Additional Results

A.1 Main Experiment Macro-Averaged Results

Terms % Precision % Recall % F1

Unigrams 74.05 ± 7.81 50.52 ± 8.91 58.47 ± 8.78

Bigrams 79.28 ± 7.22 49.93 ± 8.91 59.52 ± 8.75

Uni+Bi 78.26 ± 7.35 55.40 ± 8.86 63.51 ± 8.58

Skipgrams 79.45 ± 7.20 52.38 ± 8.90 61.54 ± 8.67

Uni+Skip 78.53 ± 7.32 55.79 ± 8.85 63.84 ± 8.56

Typed Skipgrams 79.97 ± 7.13 48.12 ± 8.90 57.98 ± 8.79

Uni+TSkip 78.30 ± 7.34 56.30 ± 8.84 64.27 ± 8.54

Table A.1: Classification scores, macro-averaged

A.2 Leave-One-Out Experiment Macro-Averaged Results

Terms % Precision % Recall % F1

Tskip baseline 79.97 ± 7.13 48.12 ± 8.90 57.98 ± 8.79

tskip noNN -1.13 (78.84) ± 7.28 -5.21 (42.91) ± 8.82 -4.81 (53.17) ± 8.89

tskip noNA -1.30 (78.67) ± 7.30 -3.29 (44.83) ± 8.86 -2.96 (55.02) ± 8.86

tskip noNV 0.26 (80.23) ± 7.10 -2.85 (45.27) ± 8.87 -2.49 (55.49) ± 8.86

tskip noVA -0.94 (79.03) ± 7.25 -0.19 (47.93) ± 8.90 -0.22 (57.76) ± 8.80

Table A.2: Macro-averaged classification scores for the leave-one-out experiment for typed
skipgrams
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A.3 Leave-Two-In Experiment Macro-Averaged Results

Terms % Precision % Recall % F1

UniBi 79.37 ± 7.21 70.72 ± 8.11 74.79 ± 7.74

UniSkip 79.30 ± 7.22 71.14 ± 8.07 75.00 ± 7.72

UniTskip 80.17 ± 7.10 71.33 ± 8.06 75.49 ± 7.66

UniTskip onlyNNNA 79.88 ± 7.14 71.06 ± 8.08 75.21 ± 7.69

TSkip 79.69 ± 7.17 67.03 ± 8.38 72.81 ± 7.93

TSkip onlyNNNA 78.86 ± 7.28 64.82 ± 8.51 71.16 ± 8.07

Table A.3: Classification scores for the leave-two-in experiment, macro-averaged
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B.1 Mapping Table for Types

Tag Map Tag Map Tag Map Tag Map Tag Map

APPGE D II PREP NP1 N RGR P VHG V
AT D IO PREP NP2 N RGT P VHI V
AT1 D IW PREP NPD1 N RL X VHN V
BCL X JJ A NPD2 N RP X VHZ V
CC X JJR A NPDM1 N RPK X VM V
CCB X JJT A NPDM2 N RR X VMK V
CS X JK A PN P RRQ X VV0 V
CSA X MC Q PN1 P RRQV X VVD V
CSN X MC1 Q PNQO P RRR X VVG V
CST X MC2 Q PNQS P RRT X VVGK V
CSW X MCGE Q PNQV P RT X VVI V
DA D MCMC Q PNX1 P TO X VVN V
DA1 D MD A PPGE P UH X VVNK V
DA2 D MF Q PPH1 P VB0 V VVZ V
DAR D ND1 N PPHO1 P VBDR V XX UNK
DAT D NN N PPHO2 P VBDZ V YBL UNK
DB D NN1 N PPHS1 P VBG V YBR UNK
DB2 D NN2 N PPHS2 P VBI V YCOL UNK
DD D NNA N PPIO1 P VBM V YCOM UNK
DD1 D NNB N PPIO2 P VBN V YDSH UNK
DD2 D NNL1 N PPIS1 P VBR V YEX UNK
DDQ D NNL2 N PPIS2 P VBZ V YLIP UNK
DDQGE D NNO N PPX1 P VD0 V YQUE UNK
DDQV D NNO2 N PPX2 P VDD V YQUO UNK
EX X NNT1 N PPY P VDG V YSCOL UNK
FO X NNT2 N RA X VDI V YSTP UNK
FU X NNU N REX X VDN V ZZ1 UNK
FW X NNU1 N RG X VDZ V ZZ2 UNK
GE X NNU2 N RGQ X VH0 V all other PREP
IF PREP NP N RGQV X VHD V

Table B.1: Mapping table for types. 5x2 columns. As indicated in the last field, every tag not
found in this table has been mapped to PREP
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B.2 Multiword Expression Taxonomy
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Figure B.1: A taxonomy of multiword expressions, extracted from Sag et al. (2002)
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