Solving 3-SAT

RADBOUD UNIVERSITY NIJMEGEN

BACHELOR THESIS

s s
< (Y

S -

=, 1

V
(o) %9)
MINeS

Author: Superuvisors:
Peter MAANDAG Henk BARENDREGT
s3047121 Alexandra SILVA

July 2, 2012

Contents

1 Introduction
1.1 Problem context
1.2 Research questions

2 What is 3-SAT?

21

Definitions .

2.2 3-SAT solving paradigms

3 The Davis, Logemann and Loveland algorithm

3.1 The Davis-Putnam algorithm
3.1.1 Description
3.1.2 Examples

3.1.3 Complexity
3.2 The Davis, Logemann and Loveland algorithm
3.2.1 Description
3.22 Clause Learning o
3.2.3 Heuristics
3.2.4 Variable State Independent Decaying Sum (VSIDS)
3.2.5 MOMs heuristics
3.2.6 Complexity
4 Binary Decision Diagrams
4.1 Description
4.2 Solving 3-SAT with BDDs
4.3 Optimization
4.4 Complexity

5 On solving 3-SAT using set theory

5.1 Definition
5.1.1 Defining valuations
5.1.2 Defining Clauses
5.1.3 Simplifying sets
5.1.4 Defining clauses in simpler set notation

5.2 Deciding Satisfiability 0oL
5.2.1 An algorithm to count shared elements of clauses
5.2.2 Complexityo
5.2.3 Properties of 3-SAT formulas

5.3 BDDs versus adapted set-theory

6 Conclusion

Bibliography

19
19
19
21
22

23
23
23
24
25
27
27
28
29
31
31

32

34

1 Introduction

1.1 Problem context

Many problems in daily life, science, and technology can be translated into
a mathematical form. In the process of solving these problems, computers
can be of great help. But in order to make this possible one needs to find
algorithms to solve these mathematical problems. In some cases, such as the
halting problem, it is proven that there simply do not exist any algorithmic
solutions. In other cases, such as the Towers of Hanoi, there are only inef-
ficient algorithms, making the problem essentially exponential. In the most
relevant cases there are efficient (polynomial) solutions, for example for the
sorting of a list or searching in an ordered list.

However, there is a mathematical problem lying on the borderline that
is the main subject of this thesis: Satisfiability-Solving (SAT-solving). It is
not known whether there exists an efficient algorithm for this problem. Also
there is no proof that the problem is essentially exponential.

The question whether there exists an efficient algorithm for SAT-solving
is considered one of the most important problems in computer science and
has been widely studied.[1, 6, 4] This is because SAT-solving algorithms are
the only known algorithms that solve several applications in Artificial Intelli-
gence, computational security, software verification and many more.[1] Thus
with these algorithms an entire class of believed to be very hard problems
(NP-Complete problems) can be solved. Hardware verification is maybe the
prime example that uses satisfaction technologies at an industrial scale. A
constraint satisfaction problem (CSP) that describes properties of the hard-
ware can be formulated and written as a SAT instance to test for hardware
validity. For this reason, many companies are performing intensive Research
and Development on satisfiability algorithms.[19]

There are many different algorithms found in the literature, of which all
are known to have a worst-case exponential runtime complexity. As of today
it remains unknown whether there exist polynomial time algorithms for this
problem. Because of its many possible applications the problem is considered
very important and a one million dollar prize will be awarded to the person
who can settle its algorithmic complexity.[5]

1.2 Research questions

After describing the 3-SAT problem, I will approach it from various perspec-
tives and discuss several algorithms that solve it. Two of them are found
in the literature and one is introduced by myself. The complexities of these
algorithms will be compared. During the thesis the following research ques-
tions will be in mind.

1. What is 3-SAT?

2. How do the important state of the art algorithms to solve 3-SAT work?
(Davis, Logemann and Loveland, BDDs)
(a) What is their description?
(b) What is their complexity?

3. How can 3-SAT be solved in a different way?
(a) What is the description of a new algorithm?

(b) What is the complexity of this algorithm?

c) How does it compare against other algorithms in terms of com-
How does it inst other algorithms in t f
plexity?

2 What is 3-SAT?

In this section I will introduce the main concepts used in this thesis.
First, the definitions of SAT and k-CNF will be given, and after this 3-SAT
is explained.

2.1 Definitions

Propositional satisfiability (SAT) is the problem of deciding whether it is
possible for a given propositional Boolean formula ¢ to evaluate to true. A
formal definition of the concepts involved is as follows.

(Formula) = (Literal)
| = (Formula)
| (Formula) V (Formula)
| (Formula) N\ (Formula)
| ((Formula))
(Literal) = (Variable) | =(Variable)
(Variable) — = (Digit)
(Digit) = [0—9]"
A propositional formula ¢ is composed of variables, denoted by xg, ..., x,_1

for any n € N. These variables can be given any value from the set {0, 1},
representing false and true respectively. A variable is called a free variable
if it has not yet been assigned a truth value. Furthermore a propositional
Boolean formula can contain the Boolean connectives A (AND, conjunction),
V (OR, disjunction), = (NOT, negation) and it can also contain parentheses
to indicate priority. A function that maps each variable to a value € {0,1}
is called a wvaluation. The formula is said to be satisfiable if there exists a
valuation v such that the entire formula evaluates to true. The formula is
unsatisfiable if such a valuation does not exist.

Every propositional formula can be written in conjunctive normal form (CNF).
The formal definition is as follows.

(Clause) := (Literal) | (Literal) V (Clause)
(CNF) = (Clause) | ({Clause)) N (CNF)

A propositional formula is said to be in CNF if it is a conjuntion of one
or more clauses. A clause is a disjuction of one or more literals | € L, the
set of all literals. Each element [€ L is either a variable x or its negation
—z. An example of a propositional formula ¢ in CNF form is the following.

¢ = (r1 V) A (—x1 Va3) A (mxe V —xs)

A CNF-formula of which each clause contains at most & different literals is
said to be a k-CNF formula. E.g. the above formula is a 2-CNF formula.

3-SAT is the short notation for 3-CNF satisfiability. The 3-SAT problem
asks whether there is a valuation for a 3-CNF formula that evaluates the
formula to true, i.e. it asks if a given 3-CNF formula is satisfiable.

2.2 3-SAT solving paradigms

The problem of SAT-solving can be approached in various ways. One can
think about the problem from the perspective of the variables. This leads to
search-algorithms that try to find correct variable instantiations, such as the
Davis-Logemann-Loveland (DLL) algorithm|[2, 3|, which will be extensively
described in this thesis. Another way is to think about the problem from
the perspective of the constraints and derive a solution set from the clauses,
which can be done by constructing Binary Decision Diagrams (BDDs).[23, 24|
These are studied and explained in the second part of the thesis. Finally, one
can look at the complete formula that describes the SAT instance and try
to prove the property of satisfiability from it. In the last part of the thesis
I will attempt to do this by translating the problem to set theory and prove
that the resulting solution set for a given instance is either empty or must
contain elements.

3 The Davis, Logemann and Loveland algo-
rithm

The simplest but also the most time consuming idea to solve a 3-SAT problem
is to try every possible valuation until a satisfying one is found or there are
no more valuations. This approach is called brute-force solving and is guar-
anteed to find a solution. It is also guaranteed to have a very slow run-time
performance, because in the worst case each valuation of the 2™ possibilities
has to be tested. But what if one can search through this exponential space
of valuations faster?

This is exactly what the conflict-driven, resolution based Davis-Logemann-
Loveland (DLL) algorithm tries to do. It can be implemented and optimized

5

in many different ways and forms the basic framework for many successful
SAT-solving algorithms.[2, 3] Therefore, I will spend a great deal of my thesis
on explaining this algorithm in detail. DLL however has been so extensively
studied and extended that I cannot explain all of its aspects in a limited
amount of time. I will try to explain the major aspects of the framework and
give several examples to illustrate the idea behind them. While the main
idea of DLL is search to find a solution, the roots of the DLL framework
are found in the conflict-driven resolution based Davis-Putnam algorithm,
which later evolved into the DLL framework that is used today. Explaining
the Davis-Putnam algorithm will be the first step to explaining DLL.

3.1 The Davis-Putnam algorithm

The original Davis and Putnam (DP) algorithm for deciding satisfiability of
propositional formulas via a resolution proof dates back to the 1960’s.[8] 2
years after this was published Davis, Logemann and Loveland presented a
modified version of this algorithm,[7] which is now still a widely used algo-
rithm to solve satisfiability. The original DP algorithm uses resolution to
solve the problem, but suffers greatly from exponential memory use, because
this algorithm builds up an exponential set of clauses to verify satisfiability.

3.1.1 Description

The algorithm known as the Davis-Putnam procedure[10, 9] is described in
Algorithm 1. The algorithm works on a propositional formula ¢ which is in
CNF form. The algorithm treats ¢ as a set of clauses that can be manip-
ulated. There are some rules that define the algorithm, which I've denoted
with I, IT and III.

Rule I deals with simplifying the formula or determining satisfiability by
analyzing one-literal clauses. There are three cases to be distinguished.
Case 1: an atomic formula p occurs as a one-literal clause in both positive and
negated form. In this case the resulting formula ¢ is unsatisfiable, because
the empty clause can be deduced by means of resolution.

Case 2: Case 1 does not apply and an atomic formula p occurs as a one-
literal clause. Then all clauses that contain p can be deleted and —p can be
removed from the remaining clauses.

Case 3: Case 1 does not apply and an atomic formula —p occurs as a one-
literal clause. Then all clauses that contain —p can be deleted and p can be
removed from the remaining clauses. In modern literature this rule is now
usually referred to as the Unit Propagation rule.

Rule II deals with redundant clauses. In modern literature this is usually
referred to as the Pure Literal rule and nowadays done as a preprocessing
step for efficiency reasons.[12] If only p or only —p occurs in the formula ¢
then all clauses which contain p or =p may be deleted.

Rule IIT uses the inference rule known as resolution in mathematical
logic. Resolution can be applied to two clauses that have complementary
literals L and L', such that L = —L’'. Via a resolution step the two clauses
can be combined in a single clause, called the resolvent that contains all the
literals without L and L'.

In general this means that (C'V L) A (C"V L') is reduced to (C'V C”), with
C and C’ the remainder of the clause that contains L and L' respectively.
Resolution may be applied at only one complementary literal pair at once
and repeating literals in the result may be removed.

Intuitively, the validity of this rule can be explained by the fact both
clauses that contain C' and C” have to be true in order to satisfy the instance.
If the resolvent is true, then this means that at least C' or C” has to be true,
thus one of the two clauses is satisfied. In either case you can initialize the
variable that belongs to L and L’ in such a way that the other clause is
satisfied as well. Therefore, L and L’ can be eliminated in the resolvent.

Algorithm 1 The Davis-Putnam Procedure

1: procedure DP(¢) > Propositional formula ¢
2 PreProcess(¢) > Translate ¢ to CNF form
3 while true do
4 while true do
5: Remove one-literal clauses > Rule I
6 if consistent(¢) # UNDETERMINED then
7 break
8 end if
9 Remove atomic formula’s p which are only negative or only
positive > Rule II
10: if consistent(¢) # UNDETERMINED then
11: break
12: end if
13: end while
14: Pick a variable x
15: Replace clauses which contain —z and x with the set of clauses
obtained by resolution > Rule 111
16: if consistent(¢) # UNDETERMINED then
17: break
18: end if

19: end while
20: end procedure

21: function CONSISTENT() > CNF formula ¢
22: if empty clause is deduced then
23: return UNSATISFIABLE

24: end if
25: if == () then

26: return SATISFIABLE
27: end if
28: return UNDETERMINED > Further deduction is needed

29: end function

3.1.2 Examples

Next, I will show two examples which illustrate how the algorithm works.
The first example operates on an unsatisfiable formula ¢.

Example 3.1.
Let the following CNF formula ¢ be given.

p=(-aVvbVvd) AN(=bVeVd) ANlaV-cVd) A(aV-bV-d)
AV =cV-d) A(—aVeV—d) A(aVbVe) A(—-aV—bV—ce)

This formula is unsatisfiable. The DP procedure will make the following deductions
to show this.

¢

ﬂ Use De Morgan’s law to separate a and —a
[(bVvd) AeV—d) AN(=bV —c)) V-al A
[(mevd) AN(=bV —=d) AN(bVe)) ValA
(=bVevd) AV eV —d)

ﬂ Rule 11, elimination of a
(bV=cVvd) AN(bVeVvd) AN(=bVeVad)A
(bVeVad) A(=bV —eVd) A(=bV=eV =d)
(=bVevd) AV eV —d)

ﬂ Use De Morgan’s law to separate b and —b

[(mevd) Aevd) A(eV—ad) A(=eV—=d)) Vbl A
[((cV=d) A(=eVd) A(meV—=d) Aevd)) V-l

ﬂ Rule III, elimination of b
(mevd) Aevd) A(eV=d) A(—cV—d)
H Use De Morgan’s law to separate ¢ and —c
[(dA—=d) V—=e] A[(dA—d) V(|
ﬂ Rule 1, elimination of ¢

d N\ =d = inconsistency

Example 3.2.
Let the following CNF' formula ¢ be given.

p=(-aVbVvd) AN(=bVevd) AN(aV-cVd) A(aV—bV—d)
AV =eVad) AN(—aVeV=d) AlaVbVe)

This formula is satisfiable, because it has only seven clauses (later, this will
be proven via Lemma 5.3). The DP procedure will make the following de-
ductions to deduce unsatisfiability.

¢

M Use De Morgan’s law to separate a and —a
[((bVvd) A(eV—d) V-al A
[((mevd) AN(=bV =d) A(bVe) ValA
(=bVevd) AV eV d)

ﬂ Rule III, elimination of a

(bV—-cVvd) ANbVeVvd) AN(=bVeVad)A
(bVev=d) AN(=bVeVvd) ANV eV —d)

ﬂ Use De Morgan’s law to separate b and —b

[(meVvd) A(evd) A(eV—=d) A(=eV—=d)) VoA
[((¢V—=d) A(cVd)) Vb

ﬂ Rule III, elimination of b
(cVvd) A(cV—d)
|| Rute

consistent

3.1.3 Complexity

The fact that this is an exponential algorithm follows directly from the fact
that regular resolution is exponential. This means that this algorithm will
generate an exponential number of clauses and thus is very memory ineffi-
cient. The lower bound complexity of this algorithm has been proven to be
2" for some constant ¢ > 0.[10]

10

3.2 The Davis, Logemann and Loveland algorithm

In 1962 M. Davis, G. Logemann and Donald Loveland introduced an im-
proved version of the DP algorithm which nowadays serves as the most im-
portant framework for many SAT-Solving algorithms.

In the improved version of the algorithm rule III was replaced by the
Splitting Rule[7] in order to limit the amount of memory used during run-
time. The Splitting Rule instantiates a variable and then continues to search
for conflicting clauses without applying resolution. In this case there will no
longer be an exponential amount of clauses generated; only clauses that have
been satisfied will be deleted. Depending on the specific implementation of
the DLL algorithm the memory requirements are usually predictable and it
becomes only run-time limited.|[1]

3.2.1 Description

The (basic) DLL algorithm is now used in the following way and can be nicely
described as a recursive function described in Algorithm 2. Just as in the DP
algorithm, ¢ is treated as a set of clauses that can be manipulated. Modern

Algorithm 2 The Davis Logemann Loveland Algorithm (Recursive)

1: function DLL(¢) > CNF formula ¢
2: formulaDeduction() > Rule II (simplify formula / Pure Literals)
3: UnitPropagate() > Rule I
4: if == () then

5: return SATISFIABLE

6: else if empty clause deduced then

7 return UNSATISFIABLE

8 end if

9: Pick an unassigned variable x in ¢ > Splitting Rule
10: x:=0
11: if DLL(¢) then > DLL(¢) == SATISFIABLE
12: return SATISFIABLE
13: end if
14: r:=1 > Implicit backtracking
15: if DLL(¢) then
16: return SATISFIABLE
17: end if

18: return UNSATISFIABLE
19: end function

versions of the DLL algorithm include a lot of additions and modifications.

11

e The simplifying of the formula is now usually done as a preprocessing
step for efficiency reasons.|[12]

e Heuristics for the branching variable are used.[13]

e Backtracking has been replaced by backjumping or non-chronological
backtracking in iterative versions of DLL, so that similar parts of the
same tree are not searched over and over again.[14]

e New clauses can be learned during the search process to increase the
amount of branches that can be cut away from the search tree later.[11]

e Improvements on Boolean Constraint Propagation algorithms are introduced.[11]

e Random restarts of the algorithm that make use of previously learned
information increase the chances of coming to a solution faster.[15]

For these improvements to be efficient and also to allow non-chronological
backtracking the DLL algorithm is usually implemented iteratively. An ex-
ample of an algorithm based on the DLL framework that implements all
these features is the popular zChaff solver algorithm[2], which is described
in Algorithm 3.

DLL uses depth-first search as main tool to find a satisfying assignment
to a problem. At each step, the algorithm picks a variable x and assigns a
value to z. Each assigned variable x also has a decision level associated with
it, which equals the level of the depth first search tree at which the decision
was made. The decision level starts at 1 for the first decision (i.e. at the
root node of the search tree) and is incremented each time a new variable is
instantiated.

After this the formula is simplified in the same way as in the DP algorithm
by using Boolean Constraint Propagation. This is done by the function de-
duce(). If deduce() detects a conflicting clause then the rest of the search tree
does not have to be searched, because the current assignment cannot lead to
a satisfaction of the formula. In this case deduce() will return CONFLICT.
Then a reason for the conflict is found by the function analyzeConflict(). The
reason for the conflict is obtained as a set of variable assignments from which
a clause can be learned, because it implies the current conflict. The solver
can add this clause to its database. This function then also determines the
branching level to backtrack to. Finally the branching level is updated ap-
propriately by the function backTrack(), which undoes variable assignments
and makes sure that the next branch of the search tree is expanded. Back-
tracking to level 0 indicates that a variable is implied by the CNF formula
to be both true and false. Therefore, the formula cannot be satisfiable.

12

Algorithm 3 The zChaff algorithm using the iterative DLL framework

1: function ZCHAFF(¢) > CNF formula ¢
2: Preprocess() > Rule IT (simplify formula / Pure Literals)
3: while there exists a free variable in ¢ do

4: decideNextBranch() > Use advanced heuristics to pick and assign

free variables (Splitting Rule)
5: status = deduce() > Advanced Boolean Constraint Propagation
(Rule I)
6: if status == CONFLICT then
7: blevel = analyzeConflict() > decide backtracking level and
learn conflict clauses
8: if blevel > 0 then
9: backTrack(blevel) > resolve conflict, backtrack non-
chronologically
10: else if blevel == 0 then
11: return UNSATISFIABLE > cannot resolve conflict
12: end if
13: end if
14: runPeriodicFunctions() > periodic jobs such as restarts,
clause deletion etc.

15: end while
16: return SATISFIABLE

17: end function

13

The function runPeriodicFunctions() makes sure that some learned clauses
are deleted again to keep memory requirements in bounds and it can also
decide to restart the searching process. If this happens, then all the initial-
izations of variables are reset and the analysis is restarted, in which some of
the information gained from the previous analysis is included in the new one.
As a result, the solver will not repeat the previous analysis after the restart.
In addition, randomness can be added to make sure that solver chooses a
different path to analyze.

3.2.2 Clause Learning

Recall that using resolution in the DP algorithm was highly memory ineffi-
cient, because exponentially many clauses were generated from a 3-SAT for-
mula ¢. If we think of ¢ as a Boolean function f over variables xg, ..., z, 1,
then we are only interested in clauses that do not change the corresponding
function f. In the case of DP, all the clauses generated through resolution
meet this requirement. During clause learning resolution is still used, but to
keep memory requirements at a minimum, only clauses that help come to a
conclusion about satisfiability faster are learned.[11] In other words: we are
searching for new clauses that could have the potential to significantly reduce
the search space or tend toward a negative conclusion. During this process,
often binary and unary clauses are learned, i.e. clauses with at most two
literals, since they put the most restrictions on the solution set. However,
long clauses can also be considered important.

Various methods for clause learning have been studied. It can be done
as an inefficient preprocessing step, or it can be applied during the solv-
ing process, adding clauses to the formula each time a dead end is found.
The latter is known as conflict-driven clause learning. This technique tries
to resolve clauses at each leaf in the search tree using resolution. At each
conflict, it resolves only those clauses that were involved in BCP along the
path to that leaf. In particular clauses that share literals are evaluated to
minimize the length of the resolvent. Longer clauses can be be learned by
analyzing each conflict assignment. Suppose the conflicting variable instan-
tiation (zg = 0,27 = 1,24 = 1,26 = 0) was encountered. Then a new clause
(xo V mx1 V —x4 V 26) can be deduced from it.

Ultimately, the resulting learned clauses are often used as part of a heuris-
tic in order to reduce the search space. This will be discussed in the next
subsection.

14

3.2.3 Heuristics

It is common in algorithms that use search to try to speed up the process by
predicting results during execution. In many cases these predictions cause
significant performance increases and need for less resources. Such improve-
ment techniques are called heuristics. To give an intuitive idea about what a
heuristic can do to the search process, consider the idea of partial evaluation.

Suppose there is a random 3-SAT problem with n variables for which the
constraint ¢y = (xg # 0 A zy # 0 A xg # 0) holds. If the algorithm comes to
the point where it initializes xq, x1 and x5 to this forbidden combination, it
should know that it doesn’t have to search through all the 273 combinations
of the remaining n—3 free variables, because it can never result in a satisfying
assignment. In this manner, a part of the search tree with 2”3 nodes can be
avoided.

Many different heuristics have been proposed in the quest for better DLL
based algorithms. I will describe two successful heuristic ideas that are com-
monly used in the DLL algorithm.

3.2.4 Variable State Independent Decaying Sum (VSIDS)

The Variable State Independent Decaying Sum (VSIDS) is a branching heuris-
tic that is used in zChaff to predict which free variable the DLL algorithm
must choose at each step in order to keep the size of the search space minin-
imal. Below is explained how it works.[2, 15, 1]

A counter is assigned to each literal, which records a score. The counters
are initialized to the number of occurrences of a literal in the initial formula.
During the search process, the zChaff SAT-Solver learns new clauses, con-
structed by the function analyzeConflict(), which are added to the clause
database during the search process. When these clauses are added to the
database, the score associated with each literal in the clause is incremented.
When a branching decision is made, the literal with the highest score is
chosen and the variable which belongs to this literal is initialized in a way
such that the literal is satisfied. If there are multiple literals with the same
score the literal is chosen randomly among them. Finally, all the counters
are periodically divided by a constant. This has the effect that VSIDS puts
more weight on the most recently added clauses. In other words, VSIDS is
an attempt to satisfy conflict clauses, but in particular an attempt to satisfy
the most recent clauses. It is considered a quasi-static heuristic, because it
doesn’t depend on the variable state such as MOMs heuristics (discussed in
next subsection), but it still gradually changes as new clauses are added; it
takes search history into account. The following example shows this property.

15

Given the following formula clause database ¢.

¢ = (21 Vay), (21 VxgV xs), (11 VagV 212), (11 V ag V 719), (T2 V T11)

(_|$7 V X3 \Y 119), (_|[L'7 V xTs V _|$9)
Then the initial VSIDS scores are the following:

|
Xy

P T3, 7

_— NN W

L L2, Ty, TR, L9, L9, 7 L10, L11, L12

Suppose that a new clause ¢; = (zg V x19 V 7x12) is added to ¢. The VSIDS
scores of @ Ac; then change to the following. You can see that the new clause
is not necessarily the first one to be satisfied since it does not contain x;.

4: 2,28
2 —x3, Ty

L : 29, x4, 28, 7Ty, Tg, 7 T10, T10, T11, T T12, T12

Below are the results of dividing the counters by two after adding ¢;. You
can see that not much has changed. There are still multiple variables with
score two to choose from.

2 T1,Tg
1:—z7, 3
0: T2, Ty, 7T, X9, L9, 'L10, L10, L11, ' L12, L12
However if we first divide the counters by two (left) and then add the new

clause (right), we see that the new clause is the one to be initialized first.
The scores are floored if the score was one and rounded up otherwise.

3: 3:Ts

221,18 2.1

1: —Xs3, Iy 1: —Xr3, X7, T10, L12

0: wa, x4, 78, 9, Ty, 7T10, T11, T12 0@ Lo, Ty, 2, 7Xg, Tg, 10, T11, T12

16

3.2.5 MOMs heuristics

Predating VSIDS, another branch of popular heuristics, which are easy and
efficient to implement was MOMSs.[16, 17] It is called MOMSs, because these
heuristics prefer the literal having Maximum number of Occurrences in the
Minimum length clauses. This means that only the clauses having minimal
length are considered. The idea behind this approach is that these clauses
can be considered as more crucial, because there are less possibilities to sat-
isfy them. This means that branching on them will maximize the effect of
BCP and increase the possibility of cutting away parts of the search tree or
finding a satisfiable assignment.

An example of a MOMs heuristic function was taken from[18] where f*(1)
is the number of occurrences of an open literal [in the smallest non-satisfied

clauses of a 3-SAT formula ¢.
[f*(z) + f*(=2)] % 28 + f*(z) * f*(—z) for some k € N

Depending on the value that is chosen for k, a higher preference is given
to variables x that occur in a large number of minimum clauses. Also vari-
ables that appear more often in both positive and negative literals are ranked
higher. When the highest ranked variable is found, it is instantiated to true
if the variable appears in more smallest clauses as a positive literal and to
false otherwise.

In the following example there are only few satisfying assignments. In
fact, ¢ can only be satisfied if x1, x5 and x3 are set to 1. However, if a MOMs
heuristic is used in combination with BCP the solution is quickly found.

Given the following clause database.
¢ = (x1VaaVag), (nxy, X9, 23), (1 V 24), (X1 V 12yg), (021 V 22), (22, 23)

Then the MOMs score for each variable can be calculated, using k& = 2.

T2+ 1) % 4+251=14
2:(240)%x442%x0=38
3:(1+0)x4+1x0=4
(1) *d41%1=9

This means that z; is instantiated to 1 since it occurs twice as a positive
literal and once as a negative literal in the smallest clauses. Using BCP, ¢ is
then reduced to (—zo V x3), (z2), (z2 V x3). Since xq is now the only variable

17

occurring in a unary clause it is chosen to be instantiated to 1 in the next
step. Finally, ¢ is reduced to (x3) after applying BCP and the solution is
found in a total of just three steps.

The main disadvantage of this heuristic however is that its effectiveness
highly depends on the shape of the CNF formula: if there are little binary or
unary clauses, such as in the beginning of the search process, the heuristic
provides little guidance for the right choice. And especially in the beginning,
the right variable instantiation can dramatically effect the size of the resulting
search tree. Therefore, most SAT-solving algorithms have turned to other
more successful heuristic ideas.

3.2.6 Complexity

While analyzing the complexity of SAT-solving algorithms, the space of sat-
isfiability problems can be divided into three regions:[20] the so called under-
constrained problems, the critically-constrained problems and the over-con-
strained problems. The under-constrained problems are problems with a
small number of constraints, which appear to be easy, because they gener-
ally have many solutions. Search algorithms such as DLL will have a higher
probability of finding a solution. The over-constrained problems are prob-
lems with a very large number of constraints that also appear to be easy,
because intelligent algorithms, such as DLL will generally be able to cut off
big parts of the search tree to come to a conclusion.

DLL tends to have fast (some times polynomial) performance on SAT
instances of these regions. However, there are also hard problems in be-
tween; problems that have few solutions but lots of partial solutions, on
which DLL has exponential runtime performance. These problems are called
the critically-constrained problems and are instances with a clause to variable
ratio roughly around 4.26.[21] This point is also referred to as the crossover
point. This is where DLL performance is the worst, because it takes longer to
decide whether a part of the search-tree can be cut off and/or only smaller
parts of the search tree can be cut off at the time, yielding only a minor
increase in performance.

18

4 Binary Decision Diagrams

The DLL framework is the most successful and widely used framework to
solve satisfiability, but using DLL is not the only way to solve satisfiability.
Instead of using search to find a satisfying variable assignment, one can also
try to create the set of satisfying assignments by looking at the constraints.
This can be accomplished via the use of Reduced Ordered Binary Decision
Diagrams (ROBDDs), which allows for an efficient representation of Boolean
functions. An algorithm that uses these ROBDDs does not search for a single
satisfying truth assignment, but rather a compact symbolic representation
of the complete set of satisfying truth assignments. Satisfiability is then
determined by checking whether this set is non-empty.[21]

4.1 Description

A BDD represents a formula ¢ (seen as a Boolean function) as a rooted
directed acyclic graph G = (V,T, E). Each non-terminal node or vertex
v; € V is labeled by a variable x and has edges directed towards two successor
nodes, called the then-child and the else-child. In a graphical representation,
the then-child represents x = 1 via an uninterrupted line and the else-child
represents x = 0 via a dotted line. The lines are depicted as undirected for
simplicity, but must always be considered as directed to the next node. Each
terminal node ¢; € T is labeled with 0 or 1 and does not have any children.
For a given assignment of the variables, the value of the function is found
by tracing a path from the root to a terminal vertex following the branches
indicated by the values assigned to the variables.[23]

This means that a BDD can also be seen as a decision tree and therefore

each variable can only occur once in each path. In the next subsection,
examples of BDDs and 3-SAT solving with BDDs will be shown.

4.2 Solving 3-SAT with BDDs

Let us think of a 3-SAT problem in terms of constraints. Each constraint
tells us which variable assignments are forbidden and implicitly, shows us a
path of variable instantiations that must be followed to make the formula
unsatisfiable. These paths can be written down quite intuitively in a BDD.
By adding all these constraint paths to the BDD you will end up with the
representation of the complete function of which you are checking satisfia-
bility. The process starts with the empty BDD and during construction it
keeps adding clauses until the complete formula is captured. The following
example shows how it’s done.

19

Suppose we have the following formula ¢ = ¢; A co, with clause ¢ =
(xo V —x1 V 29) and ¢ = (g V —xy V —xs).
(In this example I have chosen different variables for ¢l and ¢2 so that I
show an optimization of the resulting BDD in the next section) Then, the
construction of a BDD can begin by adding the constraints one by one. The
construction is started with the empty BDD, which is always true, because
a formula without constraints is always satisfiable.

Figure 1: BDD of the empty formula

Then the clause ¢; is added according to the constraints: the clause would
evaluate to 0 if 2o = 0A z; = 1 Axg = 0. As soon as one of these conditions
doesn’t hold it satisfies the formula. The resulting BDD is shown in Figure
2.

Figure 2: BDD after adding ¢;

After this, the rest of the formula is added to the BDD. This means that
at each node that points to 1, the additional constraints of the next clause
must be added in a similar way as done with ¢; if they haven’t been added
already. It makes no sense to add the additional constraints to nodes that
point to 0, because in that path the formula can only evaluate to 0, because
of the previous constraints. The resulting BDD after adding clause ¢, is
shown in Figure 3.

20

Figure 3: BDD of ¢ =¢; Ay

We can now determine that ¢ is satisfiable because there is a path in the
tree that leads to 1. This BDD however, is not optimal because the same
subgraph with nodes x3, x4, r5 appears three times. In the next section, I
will show how the size of this BDD can be reduced.

4.3 Optimization

When one speaks of BDDs in real world SAT-solving applications, what one
usually means are Reduced Ordered Binary Decision Diagrams (ROBDDS).
A BDD is called reduced if the following two reduction rules have been ap-
plied. The first rule states that any isomorphic subgraphs should be merged.
The second rule states that nodes whose children point to an isomorphic
subgraph should be eliminated. The BDD is ordered if the nodes are ordered
according to some strict ordering xy < ... < x,_1 between each variable.

The reason that one uses ROBDDs is that they have some interesting
properties. ROBDDs do not only provide compact representations of Boolean
expressions, but there are also efficient algorithms for performing logical op-
erations on them. They are all based on the crucial fact that for any function
f : B™ — B there is exactly one ROBDD representing it. This property is
called Canonicity. Canonicity can be guaranteed by applying the two reduc-
tion rules mentioned above, but proving this fact falls out of the scope of this
thesis.

The following example shows how the size of a BDD can be reduced by

21

merging isomorphic subgraphs. In the example shown in Figure 3, adding
the second clause resulted into adding the same subgraph three times. By
adding this graph only once and redirecting the previous nodes to this graph
the size of the BDD can be reduced. The result is shown in Figure 4.

Figure 4: Merged isomorphic subgraphs of Figure 3

This pruning of the decision tree also comes in handy when all branches
of a subgraph point to 0 or 1. Then the entire subgraph can be replaced with
a terminal node 0 or 1 respectively.

4.4 Complexity

In the earlier discussed problem regions of 3-SAT instances, the crossover
point means nothing special for ROBBDs. In fact, in earlier research[21]
it is shown that for clause to variable ratios between 0.5 and 15 the run-
ning time is exponential in both time and space, but this depends on the
algorithm implementation.[25] This is because the running time of ROBDD-
based algorithms is determined mostly by the size of the ROBDDs that are
being constructed. This explains the fact that ROBDDs perform worse in the
under-constrained set of problems, because the solution set can be irregular
and there are exponentially many solutions to capture in an ROBDD. Also in
the critically-constrained problems, ROBDDs could perform exponentially,
because there can be many partial solutions that blow up the size of the
manipulated ROBDD. This leads to the conclusion that ROBDDs perform

22

the best on over-constrained problems, where there are not many solutions
to capture.

It has also been shown that BDDs perform polynomially on certain prob-
lem instances where the performance of DLL is still exponential[24], but for
most instances the opposite is true.

5 On solving 3-SAT using set theory

The DLL algorithm described in section 2 is heavily based on searching for
the right answer. The use of deduction by resolution (standard proofs) in
DLL-based algorithms is limited in order to keep the memory requirements
low. BDDs are tackling the problem from a different view point, building
up the solution set in order to verify satisfiability. An interesting research
question to pose would be: What is needed in existing theories to decide the
unsatisfiability of a given formula by means other than standard resolution?
While most solvers are resolution based to solve this problem in propositional
logic or use exhaustive search to find a solution, I'm going to try to describe
the problem in set theory and will investigate what is needed to decide the
(un)satisfiability of a given SAT formula.

5.1 Definition

To decide satisfiability using set theory we first need to define how clauses
and satisfying variable assignments of a 3-SAT formula are represented as
sets.

5.1.1 Defining valuations

For a 3-SAT instance ¢ with n variables the set V, of possible valuations
(variable assignments) v is determined for which v(¢) evaluates to 1.

Vo= {ve2 |v(e) =1}

Here v is a mapping {zg...z,_1} — {0,1} that instantiates every variable
to 0 or 1. This means that there are a maximum of 2, * 25 % ... %2, * 2,
different valuations that could satisfy ¢. So each function v; can be captured
as a unique number in binary representation, which is captured in the set
2" that denotes n-tuples over a binary alphabet {0, 1}". For simplicity, each
valuation v; is then written in binary notation with n bits. Furthermore, the
mapping is defined such that every bit b; in the binary representation of v;

23

assigns variable x; to the value of b;. In other words, each valuation v; is
denoted by an indexed n-tuple.

Similarly, the complement of V, with possible valuations v for which v(¢)
evaluates to 0 can be determined. This set will be called V_,.

Vs ={ve2|v(p) =0}
Finally, the set of all possible valuations is called V.

V=2

Example 5.1. Given the CNF-formula ¢ = (xoV x1V x2) A (mxoV 21 V —29)
with n = 3, the sets V,, V-4 and V would be the following.

V, = {001,010,011, 100,110,111}
V. = {000,101}
V = {000, 001,010,011, 100, 101,110,111}

Fach element v; € Vy is written in binary notation. The valuation vy = 011
instantiates xo to 0, x; to 1 and x5 to 1 such that v(¢) = 1. Similarly, all
the other elements in Vy also cause v(¢) = 1.

000 is part of V-4 because the first clause evaluates to 0 and thus v(¢) = 0.
This holds similarly for 101 with respect to the second clause.

5.1.2 Defining Clauses

A clause c is a disjunction of three variables such that ¢ = (z, Vz; V x)) with
h,j,ke{0,....n—1}and h #j, h#k, j # k.
This ¢ is then determined by the set C,. of valuations v such that v(c) = 0.

Cc={ve2"|v(c) =0}

During the thesis I will use the notation C; = C,, for readability.

Example 5.2. Given a clause ¢; = (—xo V 21 V —x9) and n = 4, then ¢; is
represented as a set in the following way.

C; = {1010,1011}

because Yv; € C; : v(c;) = 0.

24

A set that represents a clause cannot efficiently be stored by separately
storing all its elements, because the set becomes exponentially large. Rep-
resenting the set as an abstract formula that defines a clause is also not
practical, because if the set is manipulated then the structure of the formula
may not hold anymore. On top of that there are also many cases to be dis-
tinguished to represent each possible clause. I'll give one example of how a
clause may be represented as an abstract formula. In this case I do not use
binary notation.

Given the following clause ¢; = (l,—2 V l,—1 V 1,,), then ¢; can be repre-
sented as an abstract set as follows.

C; = {basel0(val(l,_o) val(l,_1) val(l,)) + 2" 3k | k € N,0 < k < 2773}

The function basel0 is a mapping {0, 1}* — N, that converts a binary num-
ber to its decimal counterpart. The function val : L. — {0, 1} maps positive
literals to 0 and negative literals to 1.

Example 5.3. Given an arbitrary CNF-formula with n = 6 and the following
clause ¢; = (x3 V —x4 V x5), then the set of valuations for ¢; is:

Ci = {basel0(010) + 203k |0 <k <203} = {2+ 2%k |0 < k < 2%}
= {2,10, 18,26, 34,42, 50, 58}
= {000010,001010,010010,011010, 100010, 101010, 110010, 111010}

In order to represent clauses in a simpler way the definition of sets is
adjusted in the next subsection.
5.1.3 Simplifying sets

In regular sets the elements are unique natural numbers or sequences of bits
b € {0,1}. This poses several problems:

e If there are a lot of elements in a set which cannot be easily enumerated
by some formula, the set becomes exponentially large to store.

e Intersections and unions of several sets can take exponential time and /or
space to compute.

e Complex sets are difficult to read when denoted by several formulas or
consisting of many elements.

25

To tackle some of these problems a bit b can now take one out of three
values € {0,1, X}. Intuitively, the value X is to be treated as: it can be
either 0 or 1. Consider for instance the following equivalent sets.

{X}={0,1}
{1X1} = {10,11}
{XX1}={00,01,10,11}
{1XX,X1X, XX1} = {001,010,011, 100, 101, 110,111}

As a consequence, one element of a set in this X-notation can now rep-
resent an exponential number of elements in normal bit notation. In other
words, some collection of binary numbers can now be stored as sequences
te{0,1, X}

However, using this notation does not reduce the size of all possible sets. For
example, {000,111} cannot be simplified using the X-notation.

Printing all the binary numbers contained in one element can be achieved
with Algorithm 4.

Algorithm 4 Printing a regular set from an element in X notation
1: procedure PRINT ELEMENTS(S) > A binary number in X-notation
2: PrintRecursive(S, |S]) > Enumerate all possible numbers
3: end procedure

4: procedure PRINTRECURSIVE(S, pos)

5 if pos == 0 then > Stop condition
6: print(S)

7 else > Recursively fill in the X’s, starting at the last one
8 pos < pos — 1

9 if getVar(S, pos) == X then

10: setVar(S, pos, 0) > set Spos t0 0
11: printRecursive(.S, pos)

12: setVar (S, pos, 1) > set Spos to 1
13: printRecursive(.S, pos) > Total of 25! recursive calls
14: else > Skip the already assigned bits
15: printRecursive(.S, pos) > total of |S| recursive calls
16: end if

17: end if

18: end procedure

26

Algorithm 4 also proves the O(2/°) worst case complexity of one such
element S, because if S only contains X’s, the second else statement is never
reached and a total of 21! recursive calls is executed.

5.1.4 Defining clauses in simpler set notation

Using the X-notation, a clause can now easily be transformed into a set.

Given a 3-SAT formula with n variables and a clause ¢; that consists of
literals Iy, [; and [, with h,j,k € {0,...,n—1} and h # j, h # k, j # k and
h < j < k the resulting set is:

Ci=A{X,.... X, val(lp), X,... X, val(l;), X,... X, val(ly), X,... X, }
—— ——— —— ———
h X’s j—h—-1X’s k—j—1X’s n—k—1X’s
Recall that the function val : . — {0, 1} maps positive literals to 0 and

negative literals to 1. Note that the resulting set C; now always contains just
one element. A concrete example is shown below.

Example 5.4. A 3-SAT formula with n = 6 and the following clause ¢; =
(x1V —xo V xs) is given. If the theory above is applied then h =1,j = 2 and
k =5. This means there is h =1 X in front, 2—1—1=0 X’s after x;, and
so on. The set that represents this clause is then defined as follows.

C; = {X01X X0}

5.2 Deciding Satisfiability

An arbitrary set C; that belongs to a clause ¢; that is part of a 3-SAT formula
¢ represents some of the forbidden valuations of ¢. The reason for this is that
if any clause that is part of ¢ is unsatisfiable, then ¢ is also unsatisfiable. I.e.
v(¢;) =0 = v(¢) = 0. Using this information, any 3-SAT formula can be
proven (un)satisfiable using sets, as will shown in the next Lemma’s.

Lemma 5.1. A 3-SAT formula ¢ with n variables and m sets of clauses C;
is satisfiable if and only if V\C1 U ...UC,, #

Proof 5.1.

(=) We know that C; U...UC,, represents all valuations v such that v(¢) = 0,
because all such valuations are captured in at least one of the clauses. There-
fore this set must be equal to V4. So any set C; is a subset of V_,.

V =V, U V-, contains all possible valuations, because V-, is defined as the
complement of V.

27

So if ¢ is satisfiable then V, # 0. So there must be at least one valuation
v € V that is not in V_,. Therefore V\Cy U...UC,, # 0

(<) I V\CU...UC, # 0 then there is a valuation v ¢ V-, that therefore
can only be in V4 and thus satisfies ¢. [

Lemma 5.2. A 3-SAT formula ¢ with n variables and m clauses is satisfiable
if and only if V| # [{C1U...UC,,}

Proof 5.2.

(=) Cy U ...UC,, contains at most 2" elements. If ¢ is satisfiable then there
must be an assignment that is not in C;U...UC,,. Therefore |C;U...UC,,| < |V,
thus |V| # |C; U ... UCpl.

(<) If [V] # |CL U ... UCp| then V, # 0, thus |V4| > 0. That means there is
always an element in V, that is not in C; U ... U C,,, and satisfies ¢. 0

While the 3-SAT problem is now translated in set theory, it still remains
exponentially hard to calculate the union of several clauses as will be shown
in the next sections.

5.2.1 An algorithm to count shared elements of clauses

To answer the question whether a given 3-SAT formula ¢ is satisfiable ac-
cording to Lemma 5.1 or Lemma 5.2, a procedure must be defined to either
calculate the union of several sets, or to calculate just the number of valua-
tions that are contained in that set. Both methods are non trivial and take
an exponential amount of time or space to compute. In this thesis I will
solely present an algorithm to count valuations in a set of clauses. I've cho-
sen not to generate big solution sets, since that might be too similar to BDDs.

Recall that a clause C; is a set that consists of only one element, but, because
we are using the X-notation contains several valuations. So in a sense, one
element in X-notation is a set in itself on which we can also apply the Union
and Intersection operations with respect to another element. For example, if
we want to determine the shared valuations of two elements, we can calculate
the intersection. This is done by bitwise comparison of each bit b; in both
elements. If one bit equals 0 and the other equals 1, then the intersection of
the two elements is empty (1). If both bits are equal then the resulting bit
in the intersection has the same value too (2,3). If one bit equals X then the
resulting bit in the intersection equals the value of the other bit (2,3).

28

For example:

X00NXX1=10 (1)
X00N 10X = 100 (2)
XX0N X0X = X00 (3)

Determining the amount of valuations in a single element is done as follows.
Let £ be #X in an element x in X-notation. Then, the total number of
valuations that = can contain equals 2¥. For example:

|X00] =2' =2
1000] =2° =1
IXXX|=2°=8

In Algorithm 5 this is what the function numberOfValuations(z) calculates,
where z is an element in X-notation. Algorithm 5 in its entirety calculates
the number of valuations in a set S. It is invoked with the set of clauses
V.4 = Ci U ...UC,, belonging to a CNF-formula ¢ with n variables and
m clauses. Satisfiability of ¢ can then be easily determined by checking if
getNumUnion(V-,) does not equal 2™. If this is the case then ¢ is satisfiable,
because this means that |V_,| < 2", which means that not all valuations
evaluate ¢ to 0. So if all valuations evaluate ¢ to 0, i.e. |V_,| = 2", then ¢
is unsatisfiable.

5.2.2 Complexity

So Algorithm 5 does not solve satisfiability on itself, it is however the answer
to the #3-SAT problem, which is also NP-complete and asks the question
how many satisfying assignments there are for a given 3-SAT instance. This
problem is actually harder than the 3-SAT problem and the best known
algorithm has an O(1.6423") worst case complexity expressed in the number
of variables or O(1.4142™) expressed in the number of clauses.[22]

However, calling getNumUnion() takes an even higher exponential amount
of time. The reason for this is that during every iteration of the main for-
loop, which runs |S| times, the same function is called again recursively with
another set Z, which in its turn also has to run |Z| times. In the worst case,
rules 6-8 could add 7 elements to Z, where i is the number of the current
iteration (starting at 0). Each of these sets Z; that are generated then has a
maximum size of 0,...,|S — 1| respectively. Recursively in their turn, they
can generate even more sets Z'; and this can happen several times depending
on the size of the original set §. To discover the worst case complexity of
the function, consider the following example.

29

Algorithm 5 Calculating the number of valuations in a set

1: function GETNUMUNION(S) > A set of elements in
X-notation

2 count < 0

3 for all e; € S do > Add the number of valuations in each element

4 count <— count + numberOfValuations(e;)

5: IZ++0

6: for alle; | j <ido > Calculate the shared valuations

7 I+ T1TU (ei N €j)

8 end for

9 count <— count— getNumUnion(Z) > Substract the number of

shared valuations (very inefficient)
10: end for
11: return count
12: end function

Suppose that getNumUnion() is called with 4 elements in S. The follow-
ing table then illustrates some worst case statistics.

i | |Zi| | Extra iterations | Total iterations performed
00 0 1=1+4+0
111 1 2=1+1
2|2 3=1+2 4=1+3
313 T=14+24+4 |(8=1+4+7

A value in the Extra iterations column is equal to the sum of all previous Total
iterations performed values. Let’s determine what happens for each iteration
in the for-loop. For simplicity it is assumed that a call to getNumUnion()
with an empty set takes 0 iterations.
For iteration 0 e; has 0 preceding elements, so rules 6-8 can generate no new
set, so there is only 1 iteration performed.
For iteration 1 e; has 1 preceding elements, so rules 6-8 can generate a new
set with 1 element. This newly generated set undergoes the same procedure
up to iteration 0. So a total of 1 + 1 = 2 iterations is performed .
For iteration 2 e; has 2 preceding elements, so rules 6-8 can generate a set with
2 elements. The first element undergoes the same procedure up to iteration
0 and the second element up to iteration 1. So a total of 1 + (1 +2) = 4
iterations are performed.
And finally iteration 3 is performed analogue to the previous ones.

This pattern suggests that the added complexity of this function is O(2/5/),
which is equal to 2 if m is the number of clauses. So this solution is not com-

30

putationally feasible with a high amount of clauses and in fact dramatically
more time consuming than brute-forcing all 2™ possible valuations.

5.2.3 Properties of 3-SAT formulas

There are some general properties that can be deduced from the structure
of any 3-SAT formula. These properties will be described and proven in this
section.

Lemma 5.3. Any arbitrary set C; that represents a clause always contains
exactly 2" valuations if n > 3.

Proof 5.3. C; is always based on three different literals by definition. The
resulting bits that are mapped to these literals in the only element in C; are
always instantiated to either O or 1 by definition. The other n—3 bits can take
any value and thus can be instantiated in 2”3 possible ways. Therefore, the

resulting set contains one element that represents exactly 273 valuations.
O

A direct consequence of Lemma 5.3 is Lemma 5.4.

Lemma 5.4. There are at least 8 clauses needed to make any 3-SAT formula
with at least 3 variables unsatisfiable.

Proof 5.4. Suppose 8 non-overlapping sets are given of which their inter-
section is empty. Then the number of valuations in their union is 8 % 273,
because we know according to Lemma 5.3 that each set contains 273 valu-
ations. Therefore the total amount of valuations is 2% * 2"~3 = 2", which is
equal to the set V), which contains all possible valuations. Therefore all val-
uations are forbidden and the formula is unsatisfiable. This cannot be done
with fewer than 8 sets, because a set always contains exactly 2"~ valuations,
so we would need at least 8. [

5.3 BDDs versus adapted set-theory

BDDs are an efficient way to represent the entire set of valuations, yet the
memory requirements are steep, because some formula’s may still gener-
ate exponential sized diagrams. However, the memory requirements for the
adapted set theory solver are minimal, because it only calculates the number
of elements that are supposed to be in the conflicting set; it is not actually
generated. But this strategy does not come without a price, as the running
time is highly exponential.

31

Closer analysis of these observations brings some further questions to
mind: What if these sets were actually generated? Will the size of these sets
be similar to the size of a BDD? A BDD captures both the satisfying as the
non-satisfying sets in a single diagram, but for the above solver to work, only
one of the two sets has to be constructed. Does this mean that generating
a solution set in X-notation is more efficient? Or is the adapted set theory
just another representation of a BDD in the end?

These are questions that this thesis does not yet answer, but might form
the basis for future research and novel insights in SAT-solving algorithms to
come.

6 Conclusion

There is no doubt that many different ways exist to solve 3-SAT. From search-
ing the space of valuations, to constructing the entire solution set to proving
(un)satisfiability by manipulating the formula; each different type of solver
has its own strengths and weaknesses.

The DP algorithm and BDDs for example have a worst case exponential
memory requirement. In case where the solution set is very small or very
big, BDDs are good to use as the diagrams are structured in such a way that
these sets can be represented efficiently. The DP algorithm is usually more
inefficient, because every resolution step that it takes creates a new lengthy
clause and in many cases, there are exponentially many resolution actions to
take. This is also the reason that this algorithm is not used much in practice
anymore.

Recall that to improve memory requirements DLL was invented. The
memory usage of this algorithm is highly controllable and thus better than
that of BDDs and especially DP. But in terms of run-time performance,
BDDs can be very efficient where DLL is not. For example in those cases
of critically constrained problems - where DLL struggles to find a solution
because there are many partial solutions - the size of a BDD remains small
while it is constructed, resulting in a solution that is quickly found. But also
the opposite scenario can occur. If the solution sets are more equal in size,
or if the solution set of the formula is structured oddly, running DLL might
have a better chance at deciding the instance fast than constructing a BDD.

Last but not least, it would not be wise to use the theory discussed in the
last chapter in practice, since it is exponentially dependent on the number
of clauses. It might have better memory requirements than most algorithms
since the solution sets are not explicitly generated, but the algorithm run-
time becomes intractable very quickly, since almost all formulas have more

32

clauses than variables. As a result, brute-forcing all possible variable combi-
nations would be even faster in many cases.

In the end many real world problem instances can be solved efficiently
enough by at least one of these algorithms, but there always remain some
hard random 3-SAT instances for which every algorithm struggles. Especially
in region around the class of critically constrained problems do solvers and
provers have trouble to stay out of the exponential zone. However the class
of exponential problems continues to become smaller as the algorithms are
optimized and new ideas are invented. Is this really an essential worst case
exponential problem? Only time will tell.

33

References

1]

Lintao Zhang, Searching For Truth: Techniques For Satisfiability of
Boolean Formulas, PhD Thesis, Princeton University, 2003.

[2] Yogesh S. Mahajan, Zhaochui Fu and Sharad Malik, Zchaff2004: An

[9]

Efficient SAT Solver, Lecture Notes in Computer Science, 2005, Volume
3542/2005, 898, DOI: 10.1007/11527695_ 27.

J. M. Howe and A. King, A Pearl on SAT Solving in Prolog, In Functional
and Logic Programming, volume 6009 of Lecture Notes in Computer
Science, pages 165-174, Springer, 2010

Quirin Meyer, Fabian Schnfeld, Marc Stamminger, Rolf Wanka, 3-SAT
on CUDA: Towards a Massively Parallel SAT Solver, Proc. High Perfor-
mance Computing and Simulation Conference (HPSC) ; 2010. pp. 306-
313. [do0i:10.1109/HPCS.2010.5547116]

http://www.claymath.org/millennium/ (2012 Clay Mathematics In-
stitute)

Norbert Manthey, Improving SAT Solvers Using State-of-the-Art Tech-
niques, Thesis, Technische Universitt Dresden (2010)

G. Logemann, M. Davis and D. Loveland. A machine program for theorem
proving Communications of the ACM, pages 394-397, 1962

Philippe Chatalic and Laurent Simon, Davis and Putnam 40 years later:
a first experitmentation, 2000

M. Davis and H. Putnam, A computing procedure for quantification the-
ory, J. ACM 1, pages 201-215, 1960

[10] Zvi Galil, On the complezity of reqular resolution and the Davis-Putnam

procedure, Theoretical Computer Science, Volume 4, Issue 1, Pages 23-46,
February 1977. [doi: 10.1016,/0304-3975(77)90054-8]

[11] Lawrence Ryan, Efficient algorithms for clause-learning SAT solvers, M.

Sc. Thesis, Simon Fraser University, 2004

[12] Robert NieuwenHuis, Albert Oliveras, Technical University of Catalo-

nia, Barcelona, Spain, Cesare Tinelli, The University of lowa, lowa City,
lowa, Solving SAT and SAT Modulo Theories: From an abstract Davis—
Putnam—Logemann—Loveland procedure to DPLL(T), Journal of the
ACM, Volume 53 Issue 6, November 2006, [doi:10.1145/1217856.1217859]

34

[13] Paolo Liberatore, On the complexity of choosing the branching literal in
DPLL, Dipartimento di Informatica e Sistemistica, Universita di Roma
“La Sapienza”, Via Salaria 113, [-00198, Roma, Italy, http://dx.doi.
org/10.1016/350004-3702(99)00097-1

[14] Carsten Sinz, Visualizing SAT Instances and Runs of the DPLL Algo-
rithm, Journal of Automated Reasoning, Volume 39, Number 2, 219-243,
DOI: 10.1007/s10817-007-9074-1

[15] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik, Chaff: engineering an efficient SAT solver., Proceed-
ings of the 38th annual Design Automation Conference (DAC ’01). ACM,
New York, NY, USA, 530-535. DOI: 10.1145/378239.379017

[16] Freeman, J.W. Improvements To Propositional Satisfiability Search Al-
gorithms. Ph.D. Dissertation, Department of Computer and Information
Science, University of Pennsylvania, May 1995.

[17] D. Pretolani. Efficiency and stability of hypergraph SAT algorithms. In
D. S. Johnson and M. Trick, editors, Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge., DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical
Society, 1995.

[18] Joao Marques-Silva, The Impact of Branching Heuristics in Proposi-
tional Satisfiability Algorithms, Lecture Notes in Computer Science, Vol-
ume 1695/1999, 850, 1999. DOI: 10.1007/3-540-48159-1_5

[19] Yehuda Naveh, The Big Deal: Applying Constraint Satisfaction Tech-
nologies Where It Make the Difference In Theory and Applications of
Satisfiability Testing - SAT 2010, Ofer Strichman

[20] James M. Crawford, Larry D. Auton, Experimental results on
the crossover point in random 3-SAT, Artificial Intelligence, Vol-
ume 81, Issues 12, March 1996, Pages 31-57, ISSN 0004-3702,
10.1016,/0004-3702(95)00046-1. (http://www.sciencedirect.com/
science/article/pii/0004370295000461)

[21] Cristian Coarfa, Demetrios D. Demopoulos, Alfonso San Miguel Aguirre,
Devika Subramanian and Moshe Y. Vardi. Random 3-SAT: The Plot
Thickens Principles and Practice of Constraint Programming CP 2000,
Pages 143-159, 2000. Doi: 10.1007/3-540-45349-0 12

35

[22] Junping Zhou, Minghao Yin, Chunguang Zhou, New Worst-Case Up-
per Bound for #2-SAT and #3-SAT with the Number of Clauses as the
Parameter, Proceedings of the Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence (AAAI-10), 2010

[23] A. Mishchenko, An Introduction to Zero-Suppressed Binary Decision
Diagrams. http://www.ee.pdx.edu/~alanmi/research/, 2001.

[24] DoRon B. Motter and Igor L. Markov, A Compressed Breadth-First
Search for Satisfiability, Lecture Notes in Computer Science, 2002, Vol-
ume 2409/2002, 55, DOI: 10.1007/3-540-45643-0_3

[25] Alfonso San Miguel Aguirre and MosheY. Vardi, Random 3-SAT and
BDDs: The Plot Thickens Further, Lecture Notes in Computer Science,
2001, Volume 2239/2001, 121-136, DOI: 10.1007/3-540-45578-7_9

36

