
Model-based Testing with a B Model of the
EMV Standard

Roberto Alves de Almeida Junior
Scholarship student of CAPES - Proc. N 8772-11-8

CAPES Foundation, Ministry of Education of Brazil, Braśılia/DF
roberto2aj@hotmail.com

s4202872

Supervisor: Prof. Erik Poll

July 3, 2012

ABSTRACT

EMV is a global standard created by Europay, Visa and Mastercard for
credit and debit payment cards based on chip card technology. As of 2008,
there were more than 730 million EMV-compliant payment cards in use
worldwide[EMV12].

The standard is public domain and is described in four books, spanning
around 750 pages: [EMV08a][EMV08b][EMV08c] [EMV08d]. The abstrac-
tion level of those books is at the level of bytes, making this standard quite
hard to understand to the human reader. One way to make it more compre-
hensible would be through the use of models, however there are no models
describing the standard in a high enough level of detail to be used extensively.

In this thesis I present the results of my experiences at trying to create
models of the EMV standard using B-Method, a formal method developed
by Jean Raymond Abrial and test said models using JTorX.

After providing a background on EMV, B-Method and JTorX, this thesis
will describe how to use JTorX to do model-based testing on B models and
will also describe the different models created as well as the design decisions
behind them.

CONTENTS

1. Introduction . 5
1.1 Problem Overview . 5
1.2 Research Questions . 5

1.2.1 Research Main Questions 5
1.2.2 Sub-questions . 6

1.3 Structure . 6

2. EMV . 8
2.1 Origin and Goals . 8
2.2 Specification . 8

3. B Method . 10
3.1 B Method Overview . 10
3.2 B Notation . 10

3.2.1 Basic B Machine Structure 10
3.3 ProB . 11

4. JTorX . 12
4.1 Overview . 12

5. Linking B and JTorX . 13

6. First Model . 14
6.1 First Model Overview . 14

7. Subsequent models . 20
7.1 Second Model - Exposing the Structure of the APDU’s 21

7.1.1 Inconsistency . 24
7.2 Third Model - Exposing the Structure of the Data Field of the

Card . 25

8. Future Works . 28

Contents 3

9. Conclusions . 29

Bibliography . 29

Appendix 32

A. B Code of the First Model . 33

B. B Code of the First Model . 36

List of Acronyms and Abbreviations 39

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Prof. Erik Poll, who was my
research supervisor for this thesis, advising me through this whole semester.
I would also like to give special thanks to Prof. Anamaria Martins Moreira
for giving me the opportunity to do this research.

I would like to thank both the staff of the Radboud University Nijmegen
and the staff of the UFRN (Universidade Federal do Rio Grande do Norte).

I would also like to thank CAPES (Coordenação de Aperfeiçoamento de
Pessoas do Nı́vel Superior) for funding my studies here in Nijmegen.

And finally, I would like to thank my family and my friends for their
support.

1. INTRODUCTION

This chapter presents an overview of the problem under study, the questions
which this research hopes to answer and this chapter will also explain the
structure of this thesis.

1.1 Problem Overview

EMV is a global standard created by Europay, Visa and Mastercard for
credit and debit payment cards based on chip card technology. As of 2008,
there were more than 730 million EMV-compliant payment cards in use
worldwide[EMV12].

The standard is public domain and is described in four books, spanning
around 750 pages: [EMV08a][EMV08b][EMV08c] [EMV08d]. The abstrac-
tion level of those books is at the level of bytes, making this standard quite
hard to understand to the human reader. One way to make it more compre-
hensible would be through the use of models. However there are no models
describing the standard in a high enough level of detail to be used extensively.

For my bachelor thesis I plan on making a model of the EMV standard
using B-Method, a formal method developed by Jean Raymond Abrial, and
try to use this model for model-based testing.

In model based testing, an implementation is tested against a formal
model that describes the behavior of the implementation. The tool used for
testing will be JTorX.

1.2 Research Questions

While creating and testing the models of the EMV standard, we hope to
answer several questions related to B-method, EMV and JTorX.

1.2.1 Research Main Questions

Here are the main questions this thesis hopes to answer. They are the most
important questions and will guide the way the research is done as well as
tell how successful the research was.

1. Introduction 6

• Is B suitable to make a model of the EMV standard?

• Can we use such a model for model-based testing with JTorX?

• How low in abstraction level can this model be?

• How useful can the model be?

• Can we make a model so low level in abstraction that it can be used
for testing with a smart card and/or a terminal?

1.2.2 Sub-questions

Here are the sub-questions this thesis hopes to answer. Those questions are
not as important as the main questions, however are questions which we hope
to answer during the research.

• Is it possible to make a B model of both the card and the terminal in
the EMV standard?

• Given the fact that EMV is a standard that leaves several options open
to those who will implement it, is it possible to make ‘parametric’
models of EMV in B?

• Usually the development of software starts with a description of the
software with a high level of abstraction and then as the description
is refined more details are inserted into it. However the description
we have has a really low level of abstraction, meaning we will have to
develop the model in a ‘opposite way’. Is B suitable to develop software
in this ‘opposite way’?

• How can we translate a B model to a format that can be used as input
to JTorX?

• JTorX, the tool which will be used for testing, was developed so that
not only specialists could use it, but students too. Is this true? Is
JTorX useful for both specialists and students or just for specialists?

1.3 Structure

This thesis is organized in the following way. Chapters 2, 3 and 4 will present
a background for this thesis, such as concepts related to EMV (Chapter 2),
the B-Method (Chapter 3) and JTorX (Chapter 4). Chapter 5 will present

1. Introduction 7

how we linked the models in B to JTorX. Chapter 6 will present the first
B model. Chapter 7 will present some possible ideas for refinements of the
first model. Chapter 8 will present some ideas for future works. Chapter 9
will present some final thoughts regarding the research done. The appendix
presents the code in B for the first model of the card and for the first model
of the terminal.

2. EMV

This chapter presents a background on the EMV standard, describing its
origins, its goals and describing briefly some of its features. More details will
be given on Chapter 7 Subsequent Models.

2.1 Origin and Goals

The EMV is a standard for integrated circuit card for payment systems,
named after Europay, MasterCard and Visa, the organizations which cre-
ated this standard in a conjoint effort during mid-90’s. EMV has two main
objectives:

• Improve security, reducing the possibility of fraud.

• Increase interoperability between banks in different countries so that
one card can be used in several countries with no problem of compati-
bility.

The standard is public, available on http://www.emvco.com/specifications.

aspx. Today, more than 36 percent of total cards and 65 percent of total
terminals deployed are based on the EMV standard[EMV11].

2.2 Specification

The EMV standard is specified in four books [EMV08a], [EMV08b], [EMV08c],
and [EMV08d], each book describing different aspects of the standard.

The first book is about the physical and logical characteristics of both
the card and the terminal.

The second book is about the security characteristics of the standard.
The third book specifies the structures of the messages traded between

the card and the terminal as well as how the general application works.
The fourth book has information about the requirements for devices to

be able to communicate with EMC cards.
As of now, the second book was the most relevant for creating the models.

2. EMV 9

Fig. 2.1: Global EMV Adoption Rates by Region Status September 2010.
[EMV11]

3. B METHOD

This chapter presents the B Method, a formal method for software develop-
ment which was used in this research. First we start with an overview of the
B Method, followed by a description of the B Notation and other features of
B Method. After that, this chapter will give some background on ProB, the
chosen tool for this project.

3.1 B Method Overview

B is a formal method development process language used to specify a soft-
ware. The objective of B Method is to create highly reliable, portable and
maintainable software which correctness can be verified with respect to its
functional specification. The system is specified in model of high level of
abstraction, then is refined again and again into models with lower level of
abstraction until the model can be translated directly into executable code
[ALN+91] [Cle12].

3.2 B Notation

This section will describe the basics of B Notation, the language used to
specify and model software in B Method.

3.2.1 Basic B Machine Structure

In B the basic building component of a specification is the abstract machine.
Here we have the basic structure of an abstract machine in B.

Listing 3.1: B Machine Structure

1 MACHINE ...

2 VARIABLES ...

3 INVARIANT ...

4 INITIALISATION ...

5 OPERATIONS ...

6 END

3. B Method 11

The abstract machines in B have 6 important key words:

• Machine - it is the declaration of the machine

• Variables - here we name the variables of the machine. The set of values
of these variables define the state of the abstract machine.

• Invariant - here we define properties which must be true independent
of the state of the machine.

• Initialisation - here we define the initial values for the variables, thus,
the initial state of the machine.

• Operations - here we define the operations of the machine. An opera-
tion has pre-conditions and post-conditions. A pre-condition is a con-
dition that must be true for the operation to be used. A post-condition
is a condition that must hold true at the end of the execution of the
operation.

3.3 ProB

ProB is the chosen tool to work with for making the B models. It is a tool
for animation and model checking for B Method that supports automatic
refinement between specifications. It was created by Michael Leuschel and
Michael Butler [LB08]. It was chosen due to its capability to generate an
LTS (Labeled Transition System) directly from the model. ProB uses them
to create the animations. The LTS’s generated by ProB are in the Graphviz
format (.gv, .dot) and are written in dot language, which is a language for
graph description.

Initially, another tool, namely AtelierB, was chosen to be used in this
research, however this capability to generate LTS automatically proved to be
useful as we can use those LTS generated automatically by ProB as an input
for JTorX.

4. JTORX

This chapter presents some concepts related to JTorX, a tool for model-
driven testing which uses Labeled Transition Systems (LTS) as input. This
tool was used to test the B models developed during our research.

4.1 Overview

JTorX is free open-source tool for model-based testing developed by Axel Be-
lifante in 2010 and is available under the BSD license. It can be downloaded
at https://fmt.ewi.utwente.nl/redmine/projects/jtorx/files .

It is a reimplementation of TorX in Java, making it easier to deploy
on different systems. Contrary to TorX, it has a Graphical User Interface
(GUI) and is supposedly not only easier to use than TorX but also easier
to configure, making it more suitable to be used by students and other non-
specialists [Bel10].

As it was said before, JTorX is a tool for model-based testing, which
means that it tests the system under study based on a model of the system.
For this, JTorX accepts several types of file formats as input, such as Alde-
baran (.aut), GraphML (.graphml), GraphViz (.dot,.gv), Jararaca (.jrrc) and
Symbolic Transition System (.sax), for example[No 12].

5. LINKING B AND JTORX

This chapter will present how we were able to ”link” the B to JTorX so that
we were able to run JTorX on the models we created.

As it was mentioned on Chapter 4, ProB is capable of generating anima-
tions for B models. For this, it uses the dot tool of the Graphviz package.
ProB can export those animations in the Graphviz format (.dot,.gv).

JTorX is able to read files in this format, as long as it can recognize exactly
one starting state in the LTS. This is equivalent, in terms of representation
in Graphviz, to:

• The graph must have an invisible state(also called node).

• There is a transition from this invisible state to the starting state and
said transition cannot have a label.

In case no start state is recognized or multiple starting states are recog-
nized, it will not be possible to use JTorX with the model.

There is another requirement to be able to use JTorX with files in the
Graphviz format. The name of the states cannot appear between quotes.

When generating an animation, ProB automatically adds a ”Root” node
which has a transition from it to the starting state of the model labeled
as ”initialization”. In the file generated all the names of the states appear
between quotes, so, in order to use the LTS generated by ProB with JTorX,
it is necessary to:

• Turn the “Root” state invisible. This can be done by changing the
Style of the node to “invis”.

• Take away the label of the “initialization” transition. This can be done
by changing the label of the transition to ””.

• Take away all the quotes from the names of the states. In this research
this was done manually, but for larger state machines it might be useful
to develop a program to do that automatically.

This is necessary so that JTorX will recognize the state connected to the
Root node as the initial state of the LTS.

6. FIRST MODEL

This chapter presents the first B model made. This chapter describes what
part of the standard we modeled as well as some of design choices made.
The first model represents only the transaction part of an EMV session and
it represents the ADPU’s exchanged between the card and the terminal as
abstract messages.

6.1 First Model Overview

In this model we have tried to represent a transaction in EMV in the most
abstract way possible, so we have abstracted both the card authentication
and the cardholder authentication, as seen in Figure 6.1.

To do this, we used as a basis the Figure 6.2, which represents an EMV
transaction without the authentication procedures. It is important to note
that in the both figures the decision of going either online or offline is rep-
resented in a different way. In Figure 6.1, the decision is represented at a
higher level of abstraction and happens at just one point. In Figure 6.2, the
decision is represented in a lower level of abstraction and can happen at two
points. First the terminal has the opportunity to choose between aborting,
doing the transaction offline or going online. After that, even if the terminal
chose to do the transaction offline, the card can still force the operation to
go online. If the terminal decided to go online, the card cannot force the
terminal to go offline.

The Figure 6.2 we have a flowchart describing the operation for the system
as a whole. For our model we needed instead two flowcharts, one for the card
and one for the terminal. We obtained those by breaking the initial flowchart
manually into two, as shown in Fig 6.3 and Fig 6.4.

In the Figures 6.3 and 6.4, we represented the card and the terminal in
a state diagram similar to UML. For each transition, the figure represents
the input that the card/terminal receives. Some transitions are labeled in
a different way, though. They can show the output that happens during
the transition, which is the case of transition of the card from the state
AACRequested to Finished Aborted. /AAC means that the card receives no
input and sends an AAC as output.

6. First Model 15

Fig. 6.1: Flowchart describing an EMV transaction. The marked part is the part
of the transaction being modeled in the first model.[EMV08c]

6. First Model 16

Fig. 6.2: Flowchart describing in detail an EMV transaction without the authen-
tication procedures. [EMV08c]

6. First Model 17

Fig. 6.3: Card flowchart for an EMV transaction.

6. First Model 18

Fig. 6.4: Terminal flowchart for an EMV transaction.

6. First Model 19

In our model we have abstracted most of the data contained in the mes-
sages exchanged between the card and the terminal. In this first model, the
only possible difference between two messages is the type. The messages we
modeled could be of one of these main types: AC and AC Request. Every
message sent from the card to the terminal is represented as an element of the
AC set and every message sent from the terminal to the card is represented
as and AC Request.

In our model, an AC can be of one of the following types:

• AAC request

• ARQC request

• TC request

In our model, an AC request can be of one of the following types.

• AAC

• ARQC

• TC

Even though they are quite similar and could be represented using the
same type, that would be semantically incorrect as the meaning of AAC
request is different of the AAC itself. The meaning will become more obvious
as the next levels of abstraction are explored.

7. SUBSEQUENT MODELS

This chapter presents some observations on subsequent models, choices made
as well as options for future models.

In the first model, as it was seen in the previous chapter, the messages
exchanged between the card and the terminal were treated as abstract mes-
sages in which only the type of the request made by the terminal of the type
of the AC in the response of the card was important.

In the second model, we tried expose the structure of the APDU, except
for the data field i.e. we model the class byte, the instruction byte, the p1
byte, the p2 byte, the lc byte and the le byte, though the last three (p2, lc,
le) are not used.

In the third model, we tried to expose the structure of the data field i.e.
implement TLV data objects in the model. It is important to note that here
a lot of fields which did not need implementation at this stage and so they
are not being used. Most of the TLV was implemented in this model.

In the fourth model, we hope to take away most of the non-deterministic
decisions that we had in the previous models and implement them. In the
previous models, as they lacked enough detail to take decisions during some
operations, the decision was left non-deterministic. The objective of the
model is to change that.

In future models, we hope to expand the model to include other parts
of the session besides the transaction and to change the structures used to
represent the APDU’s as arrays of bytes, which would be the most concrete
way of representation.

It is important to note that the fields which are not being used have their
value hard-coded. This was done because otherwise the LTS generated by
ProB would create one state for every possible value of said field, generating
a combinatorial explosion.

It is also important to note that during the research only the first three
models were implemented.

7. Subsequent models 21

Model Messages
First Fully abstract. Only the AC type is represented.
Second Most fields are concrete, except for the data field.
Third R-APDU data field is now concrete.
Fourth C-APDU data field is concrete and behavior is also fully implemented.

Tab. 7.1: Comparison between the different models.

7.1 Second Model - Exposing the Structure of the APDU’s

In the first model, the only APDU’s modeled were those sent/received during
a transaction and they were represented in the most abstract possible way.
All the content of the APDU was abstracted, except for the type, which in
our model was basically the only possible difference between two APDU’s.
The APDU was represented as two sets, one set for the command APDU’s
and one set for the response APDU’s. An APDU, however, is more complex
than just a type, as Figure 7.1 and 7.2 can show.

Fig. 7.1: Format of the Command APDU. [EMV08c]

For the command APDU we have a mandatory header and a conditional
body. The class byte (CLA) and instruction byte (INS) define together the
instruction that is being sent to the card. The P1 byte and P2 byte are the
parameters. Lc is a byte representing the length in bytes of the data field.
Le is a byte representing the expected length of the response.

Fig. 7.2: Format of the Response APDU. [EMV08c]

For the response APDU, besides the data, we have two bytes, SW1 and
SW2, called status word bytes. They denote the processing state of the
command as illustrated in Figure 7.3.

The question now is about the most elegant way of representing this in
B. We have came up with the following options:

7. Subsequent models 22

Fig. 7.3: Meaning of the SW bytes. [EMV08c]

• The first option would be to represent the APDU as an array of bytes
(the B equivalent of byte). This way of representing the APDU is
the closest to its implementation and probably would be the easiest to
implement. It is basically a 1:1 conversion from the specification in the
book to the code. The major problem of this specification is readability.
Once the code is done, it could become really hard to understand it
unless the reader had a very good knowledge of EMV. It is too early
to use a representation with such low level of abstraction. This option
might be useful in a final model, though.

• The second option would be to ’break’ the APDU and represent each
part separately so that we have direct access to each part of the APDU.
This way it would be easier to write preconditions and post-conditions
for each operation and the code for the preconditions and post-conditions
would be less cluttered too. One of the problems with this options is
the fact that the signature for the operations would become big, as
each operation would have several parameters. The major problem of
this option is the impossibility to return APDU’s, since the data is not
grouped. Due to this impossibility, this option is not viable at all.

• The third option would be to represent the APDU in a data structure
(the B equivalent of a data structure). This way the operations would
have only one parameter and the return of data becomes possible too.
The only problem is the fact that the code might become cluttered
while writing preconditions for the operations as we do not have direct
access to each individual part of the APDU, which might make the
code hard to read for those who are not familiar with B.

7. Subsequent models 23

In the end, we opted for the second option for this version of the model. The
structure of the APDU was represented in the following way in the code:

Listing 7.1: Example code from the second model of the card.

1 CLAS_INS = {

2 APPLICATION_BLOCK ,

3 APPLICATION_UNBLOCK ,

4 CARD_BLOCK ,

5 EXTERNAL_AUTHENTICATE ,

6 GENERATE_APPLICATION_CRYPTOGRAM ,

7 GET_CHALLENGE ,

8 GET_DATA ,

9 GET_PROCESSING_OPTIONS ,

10 INTERNAL_AUTHENTICATE ,

11 PIN_CHANGE_OR_UNBLOCK ,

12 READ_RECORD ,

13 SELECT_ ,

14 VERIFY

15 };

16

17 DATA_R = {

18 ARQC ,

19 TC,

20 AAC

21 };

22

23 REQUEST_TYPE = {

24 AAC_REQUEST ,

25 TC_REQUEST ,

26 ARQC_REQUEST ,

27 NO_REQUEST

28 };

29

30 DATA = {data_c} /* Abstract type */

31

32 (...)

33

34 OPERATIONS

35

36 execute(request) =

37 PRE

38 request : struct(

39 clas_ins : CLAS_INS ,

40 par1 : REQUEST_TYPE ,

41 par2 : BYTE ,

42 lc : BYTE ,

43 data: DATA ,

44 le :BYTE)

7. Subsequent models 24

45 & request ’par2 = 0

46 & request ’lc = 0

47 & request ’le = 0

48 & state = BEGIN_TRANSACTION

49 & request ’clas_ins = GENERATE_APPLICATION_CRYPTOGRAM

50 & request ’par1 /= NO_REQUEST

51 (...)

As it can be seen in Listing 7.1, the class and instruction bytes were
represented as being one using the set CLAS INS. This happens because the
meaning of the instruction byte depends on the class byte.

Also, the data in the response APDU is represented as being of the type
of the AC sent during the session. However it holds much more information
than that. The data in the command APDU is represented as an abstract
type in this model. The information held in the data field of the APDU’s is
going to be exposed in the next models.

As of now, the P2 byte in the command APDU and the SW1 and SW2
bytes in the response APDU are not being used. They will be properly
implemented together with a proper implementation of the decision making
process in the session.

Right now the P1 byte is being represented as a set of possible AC request
types, P1 has this meaning only when the command issued by the terminal is
the Generate AC. This means the scope of the model starts to include other
parts of the session besides the transaction, it will be necessary to represent
P1 in another way.

7.1.1 Inconsistency

While analyzing our model one inconsistency was found. As all the results of
operations in B must be the same type, it was necessary to create a ”dummy
AC” for situations in which it can either send a command to request the
AC or finish the program, either successfully or by aborting it. One of the
operations can be seen in Listing 7.2.

Listing 7.2: Example code from the second model of the terminal showing
inconsistency.

1 result <-- TCRequested1(cryptogram) =

2 PRE

3 cryptogram : R_APDU

4 & state = TC_REQUESTED_1

5 THEN

6 IF cryptogram.data = AAC THEN state , result :=

FINISH_ABORTED ,

7. Subsequent models 25

7 rec(clas_ins: GENERATE_APPLICATION_CRYPTOGRAM ,

p1:NO_REQUEST , p2:0, lc:0, data:DATA , le:0)

8 ELSIF cryptogram.data = TC THEN state , result :=

FINISH_SUCCESS ,

9 rec(clas_ins: GENERATE_APPLICATION_CRYPTOGRAM ,

p1:NO_REQUEST , p2:0, lc:0, data:DATA , le:0)

10 ELSIF cryptogram.data = ARQC THEN state , result :=

TC_REQUESTED_2 ,

11 rec(clas_ins: GENERATE_APPLICATION_CRYPTOGRAM , p1:

TC_REQUEST , p2:0, lc:0, data:DATA , le:0)

12 END

13 END;

In the first and second options of the if-then-else the terminal sends an
empty request. In the real system no request is sent. However, as the trans-
action finishes as this message is sent, it might not represent an issue.

7.2 Third Model - Exposing the Structure of the Data Field
of the Card

In the second model we exposed the structure of the APDU except for the
data field. In this mode we are going the expose the structure of the data
field both in the Command APDU and in the Response APDU. However, in
the moment of the creation of the third model, the data field of the Response
APDU is more important for us as it is where the type of the AC is defined
during a transaction whereas the type of the request is defined in the byte
P1 in the Command APDU.

The data field of the R-APDU is a BER-TLV data object. There are two
types of BER-TLV data objects: primitive and constructed. The primitive
BER-TLV is the simplest type, being made of 3 fields: tag (T), length(L) and
value(V). The constructed BER-TLV is similar to the primitive one, having
the same basic structure, except that its value field is composed of one or
more BER-TLV data objects.

Fig. 7.4: Structure of a primitive BER-TLV data object[EMV08c].

It should be noted that, as for the Response APDU for the Generate AC
command, only the primitive BER-TLV is needed, which means that in this
model we implemented only the primitive BER-TLV. If the card responds
with a TC or an ARQC, the response will contain at least the mandatory

7. Subsequent models 26

Fig. 7.5: Structure of a constructed BER-TLV data object[EMV08c].

data elements specified in Tab 7.2. The information about the cryptogram
sent being a TC or an ARQC is inside of the Signed Dynamic Data.

Tag Length Value Presence
’9F27’ 1 Cryptogram Information Data Mandatory
’9F36’ 2 Application Transaction Counter Mandatory
’9F4B’ NIC Signed Dynamic Application Data Mandatory
’9F10’ Var. up to 32 Issuer Application Data Optional

Tab. 7.2: Data Objects Included in Response to GENERATE AC for TC or ARQC
[EMV08b].

If the ICC responds with an ACC, the response will contain at least the
mandatory data elements specified in Tab 7.3 instead.

The Listing 7.3 shows how the structure of the TLV was represented for
both the C-APDU and the R-APDU.

Listing 7.3: Example code with the structure of the TLV data object.

1 /* Set TLV_TAG , it represents a tag in a tlv data object.

*/

2 TLV_TAG = {

3 CID_T ,

4 ATC_T ,

5 SDAD_T ,

6 AAC_T ,

7 IAD_T

8 };

9

Tag Length Value Presence
’9F27’ 1 Cryptogram Information Data Mandatory
’9F36’ 2 Application Transaction Counter Mandatory
’9F26’ 8 AAC Mandatory
’9F10’ Var. up to 32 Issuer Application Data Optional

Tab. 7.3: Data Objects Included in Response to GENERATE AC for AAC
[EMV08b].

7. Subsequent models 27

10 /* structure of the response APDU */

11 response : struct(

12 sw1 : BYTE ,

13 sw2 : BYTE ,

14 data : struct (

15 cid : struct (tag : TLV_TAG , length : NAT ,

value : NAT),

16 atc : struct (tag : TLV_TAG , length : NAT ,

value : NAT),

17 sdad_or_aac : struct (tag : TLV_TAG , length : NAT ,

value : AC_TYPE),

18 iad : struct (tag : TLV_TAG , length : NAT ,

value : NAT , null : BOOL)

19)

20)

As the field for the IAD (Issuer Application Data) is optional, we added
a boolean to determine whether it is being used or not.

As it can be seen in the Listing 7.3, there is a TLV called ”ssad or aac”.
It was created in order to have uniformity what is being sent, be it an AAC,
an ARQC or a TC. This structure represents the TLV in the third row of
Tab 7.2 and Tab 7.2, depending on the value of the tag being used. When
the cryptogram being sent is an AAC, the value of the tag ”ssad or aac” is
AAC T (AAC Tag) and the value of the value field is ”AAC”, otherwise the
value of the tag is SSAD T (Signed Dynamic Authentication Data Tag) and
the value of the value field is equal to the name of the cryptogram type being
sent.

As of now, only the following fields are being used in the model:

• The tags.

• The length fields, except for the SDAD.

• The value referred by the ”ssad or aac” tag.

The SSAD, however, holds more data than that in its value field. Such
data will be uncovered in the next models.

8. FUTURE WORKS

This chapter presents the idea of possible future works based on the research
that has been done while doing this thesis.

This work has paved the way on how to make a B model of the EMV
standard and how to test such models using JTorX. A possible continuation
of this work is to refine this model, lowering the abstraction level even more,
adding behavior and adding other parts of the EMV session besides the
transaction.

9. CONCLUSIONS

In the beginning I had big ambitions for this project, as I thought it would
be possible to model the whole standard in high detail and, at the end, have
several models at disposal, however the time was really short for me to be
able to do such a thing. Instead, I think I could pave the way so that such
objectives might be attained in future projects.

I did not find JTorX an easy tool to use. Though the tool does have a
clean interface, the lack of a manual makes it hard to use, unless the user has
either prior knowledge about the theory behind the tool or has someone to
teach him/her how to use the tool. JTorX might be useful in teaching about
model-driven test, but it seems to not be very useful for beginners who are
trying to use the tool without any help.

As for the design choices during the creation of the models, I believe that
I would not start by modeling only the transaction if I was more focused in
testing in the beginning. The main focus was to create models

BIBLIOGRAPHY

[ALN+91] J. Abrial, M. Lee, D. Neilson, P. Scharbach, and I. Srensen. The B-
method. In Sren Prehn and Hans Toetenel, editors, VDM ’91 For-
mal Software Development Methods, volume 552 of Lecture Notes
in Computer Science, pages 398–405. Springer Berlin / Heidelberg,
1991.

[Bel10] Axel Belinfante. JTorX: A Tool for On-Line Model-Driven Test
Derivation and Execution. In Javier Esparza and Rupak Majum-
dar, editors, Tools and Algorithms for the Construction and Analy-
sis of Systems, volume 6015 of Lecture Notes in Computer Science,
pages 266–270. Springer Berlin / Heidelberg, 2010.

[Cle12] ClearSy. Presentation of the B Method.
http://exoplanet.eu/catalog.php, accessed in February 2012.

[EMV08a] EMVCo. EMV– Integrated Circuit Card Specifications for Pay-
ment Systems, Book 1: Application Independent ICC to Terminal
Interface Requirements, 2008.

[EMV08b] EMVCo. EMV– Integrated Circuit Card Specifications for Pay-
ment Systems, Book 2: Security and Key Management, 2008.

[EMV08c] EMVCo. EMV– Integrated Circuit Card Specifications for Pay-
ment Systems, Book 3: Application Specification, 2008.

[EMV08d] EMVCo. EMV– Integrated Circuit Card Specifications for Pay-
ment Systems, Book 4: Cardholder, Attendant, and Acquirer In-
terface Requirements, 2008.

[EMV11] EMVCo. A Guide to EMV, 2011.

[EMV12] EMVCo, LLC. About EMV. http://www.emvco.com/about_emv.
aspx, accessed in February 2012.

[LB08] Michael Leuschel and Michael Butler. ProB : an automated anal-
ysis toolset for the B method. International Journal on Software
Tools for Technology Transfer (STTT), 10:185–203, 2008.

Bibliography 31

[No 12] No author given. JTorX - a tool for Model-Based Test-
ing. https://fmt.ewi.utwente.nl/redmine/projects/jtorx/wiki/, ac-
cessed in February 2012.

APPENDIX

A. B CODE OF THE FIRST MODEL

Listing A.1: Code of the Card

1 /* CardV1

2 * Author: Roberto

3 * Creation date: dom mar 18 2012

4 */

5 MACHINE

6 CardV1

7 SETS

8 CARD_STATE = {

9 BEGIN_TRANSACTION ,

10 PROCESSING_AAC_REQUEST ,

11 PROCESSING_ARQC_REQUEST ,

12 PROCESSING_TC_REQUEST_1 ,

13 PROCESSING_TC_REQUEST_2 ,

14 WAIT ,

15 FINISH_ABORTED ,

16 FINISH_SUCCESS

17 };

18

19 AC = {

20 ARQC ,

21 TC,

22 AAC

23 };

24

25 REQUEST = {

26 AAC_REQUEST ,

27 TC_REQUEST ,

28 ARQC_REQUEST ,

29 NO_REQUEST

30 }

31

32 VARIABLES

33 state

34

35 INVARIANT

36 state : CARD_STATE

37

A. B Code of the First Model 34

38 INITIALISATION

39 state := BEGIN_TRANSACTION

40

41 OPERATIONS

42

43 execute(request) =

44 PRE

45 request : REQUEST

46 & request /= NO_REQUEST

47 & state = BEGIN_TRANSACTION

48 THEN

49 IF (request = ARQC_REQUEST) THEN

50 state := PROCESSING_ARQC_REQUEST

51 ELSIF (request = TC_REQUEST) THEN

52 state := PROCESSING_TC_REQUEST_1

53 ELSIF (request = AAC_REQUEST) THEN

54 state := PROCESSING_AAC_REQUEST

55 END

56 END;

57

58 cryptogram <-- processAACRequest =

59 PRE

60 state = PROCESSING_AAC_REQUEST

61 THEN

62 state , cryptogram := FINISH_ABORTED , AAC

63 END;

64

65 cryptogram <-- processARQCRequest =

66 PRE

67 state = PROCESSING_ARQC_REQUEST

68 THEN

69 ANY response WHERE response : AC & response /= TC

THEN

70 IF response = AAC THEN

71 state , cryptogram := FINISH_ABORTED , response

72 ELSIF response = ARQC THEN

73 state , cryptogram := WAIT , response

74 END

75 END

76 END;

77

78 cryptogram <-- processTCRequest_1 =

79 PRE

80 state = PROCESSING_TC_REQUEST_1

81 THEN

82 ANY response WHERE response : AC THEN

83 IF response = TC THEN

84 cryptogram , state := response , FINISH_SUCCESS

85 ELSIF response = AAC THEN

A. B Code of the First Model 35

86 cryptogram , state := response , FINISH_ABORTED

87 ELSIF response = ARQC THEN

88 cryptogram , state := response , WAIT

89 END

90 END

91 END;

92

93 wait(request) =

94 PRE

95 request : REQUEST

96 & request = TC_REQUEST

97 & state = WAIT

98 THEN

99 state := PROCESSING_TC_REQUEST_2

100 END;

101

102 cryptogram <-- processTCRequest_2 =

103 PRE

104 state = PROCESSING_TC_REQUEST_2

105 THEN

106 ANY response WHERE response : AC & response /= ARQC

THEN

107 IF response = TC THEN

108 cryptogram , state := response , FINISH_SUCCESS

109 ELSIF response = AAC THEN

110 cryptogram , state := response , FINISH_ABORTED

111 END

112 END

113 END

114

115 END

B. B CODE OF THE FIRST MODEL

Listing B.1: Code of the Terminal

1 /* TerminalV1

2 * Author: Roberto

3 * Creation date: dom mar 18 2012

4 *

5 * This is the first model of the terminal.

6 */

7 MACHINE

8 TerminalV1

9

10 SETS

11 TERMINAL_STATE = {

12 BEGIN_TRANSACTION ,

13 PROCESSING ,

14 AAC_REQUESTED ,

15 ARQC_REQUESTED ,

16 TC_REQUESTED_1 ,

17 TC_REQUESTED_2 ,

18 ONLINE_PROCESSING ,

19 FINISH_SUCCESS ,

20 FINISH_ABORTED

21 };

22

23 AC = {

24 ARQC ,

25 TC,

26 AAC

27 };

28

29 REQUEST = {

30 AAC_REQUEST ,

31 TC_REQUEST ,

32 ARQC_REQUEST ,

33 NO_REQUEST

34 };

35

36 TERMINAL_DECISION = {

37 WILL_REQUEST_AAC ,

B. B Code of the First Model 37

38 WILL_REQUEST_TC ,

39 WILL_REQUEST_ARQC ,

40 NO_DECISION

41 }

42

43 VARIABLES

44 state , previous_decision

45

46 INVARIANT

47 state : TERMINAL_STATE

48 & previous_decision : TERMINAL_DECISION

49

50 INITIALISATION

51 state , previous_decision := BEGIN_TRANSACTION ,

NO_DECISION

52

53 OPERATIONS

54

55 /*This operation represents what happens before the

transaction so that the terminal makes its first

decision */

56 /*It exists so that the value for "previousDecision"

is not hardcoded */

57 pre_execute =

58 PRE

59 previous_decision = NO_DECISION

60 & state = BEGIN_TRANSACTION

61 THEN

62 ANY new_decision WHERE new_decision :

TERMINAL_DECISION & new_decision /=

NO_DECISION THEN

63 state ,previous_decision := PROCESSING ,

new_decision

64 END

65 END;

66

67 result <-- execute =

68 PRE

69 state = PROCESSING

70 & previous_decision /= NO_DECISION

71 THEN

72 IF (previous_decision = WILL_REQUEST_AAC)

THEN state , result := AAC_REQUESTED ,

AAC_REQUEST

73 ELSIF (previous_decision = WILL_REQUEST_TC)

THEN state , result := TC_REQUESTED_1 ,

TC_REQUEST

74 ELSIF (previous_decision = WILL_REQUEST_ARQC) THEN

state , result := ARQC_REQUESTED , ARQC_REQUEST

B. B Code of the First Model 38

75 END

76 END;

77

78 AACRequested(cryptogram) =

79 PRE

80 cryptogram : AC

81 & state = AAC_REQUESTED

82 & cryptogram = AAC

83 THEN

84 state := FINISH_ABORTED

85 END;

86

87 result <-- TCRequested1(cryptogram) =

88 PRE

89 cryptogram : AC

90 & state = TC_REQUESTED_1

91 THEN

92 IF cryptogram = AAC THEN state , result :=

FINISH_ABORTED , NO_REQUEST

93 ELSIF cryptogram = TC THEN state , result :=

FINISH_SUCCESS , NO_REQUEST

94 ELSIF cryptogram = ARQC THEN state , result :=

TC_REQUESTED_2 , TC_REQUEST

95 END

96 END;

97

98 result <-- ARQCRequested(cryptogram) =

99 PRE

100 cryptogram : AC

101 & state = ARQC_REQUESTED

102 & (cryptogram = AAC or cryptogram = ARQC)

103 THEN

104 IF cryptogram = AAC THEN state , result :=

FINISH_ABORTED , NO_REQUEST

105 ELSIF cryptogram = ARQC THEN state , result :=

TC_REQUESTED_2 , TC_REQUEST

106 END

107 END;

108

109 TCRequested2(cryptogram) =

110 PRE

111 cryptogram : AC

112 & state = TC_REQUESTED_2

113 & (cryptogram = AAC or cryptogram = TC)

114 THEN

115 IF cryptogram = AAC THEN state :=

FINISH_ABORTED

116 ELSIF cryptogram = TC THEN state := FINISH_SUCCESS

117 END

B. B Code of the First Model 39

118 END

119

120 END

LIST OF ACRONYMS AND ABBREVIATIONS

AAC Application Authentication Cryptogram
AMN Abstract Machine Notation
APDU Application Protocol Data Unit
ARPC Authorization Response Cryptogram
ARQC Authorization Request Cryptogram
ATM Automated Teller Machine
BER Basic Encoding Reference
CDA Combined Data Authentication
CID Cryptogram Information Data
C-APDU Command APDU
CDOL Card Risk Management Data Object List
CLA Class Byte
CVM Cardholder Verification Method
DDA Dynamic Data Authentication
DES Data Encryption Standard
EMV Europay, Mastercard and Visa
GUI Graphical User Interface
ICC Integrated Circuit Card
INS Instruction Byte
PIN Personal Identification Number
POS Point of Sale
R-APDU Response APDU
RFU Reserved for Future Use
RSA Rivest, Shamir, Adleman Algorithm
SDA Static Data Authentication
TAL Terminal Application Layer
TC Transaction Certificate
TLV Tag Length Value

LIST OF FIGURES

2.1 Global EMV Adoption Rates by Region Status September
2010. [EMV11] . 9

6.1 Flowchart describing an EMV transaction. The marked part is
the part of the transaction being modeled in the first model.[EMV08c] 15

6.2 Flowchart describing in detail an EMV transaction without
the authentication procedures. [EMV08c] 16

6.3 Card flowchart for an EMV transaction. 17
6.4 Terminal flowchart for an EMV transaction. 18

7.1 Format of the Command APDU. [EMV08c] 21
7.2 Format of the Response APDU. [EMV08c] 21
7.3 Meaning of the SW bytes. [EMV08c] 22
7.4 Structure of a primitive BER-TLV data object[EMV08c]. . . . 25
7.5 Structure of a constructed BER-TLV data object[EMV08c]. . 26

