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Abstract

In this work I address the issue of large scale learning in an online setting.
To tackle it, I introduce a novel algorithm that enables semi-supervised learning
in an online fashion. By combining state-of-the-art online methods such as Pe-
gasos [3] with the multi-view co-regularization framework, I achieve significantly
better performance on regression and binary classification tasks. This shows that
incorporation of unlabeled data is still practical even in large scale and online set-
tings. Evaluation is done on several publicly available datasets from the UCI and
LibSVM repositories. To evaluate results in a practical setting, I also consider a
difficult natural language set from the BioInfer corpus [18]. In this setting the intro-
duced algorithm outperforms current state-of-the-art methods for online learning.
The main contents of this work will also be presented at the conference Discovery
Science 2012 and contained in Lectures of Computer Science [21].
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1 Introduction - The large scale challenge

The field of knowledge discovery, also referred to as Machine Learning, is based around
modeling of problems by computers in an autonomous manner. In most cases these
models are not tangible or clear for humans to understand, but have a more abstract
representation. By defining algorithms that are able to generalize problems through trial
and error, models are created through the notion of learning. As with humans, different
flavors of learning exist and different philosophies on how to approach the ‘material’ do
too. Methods that learn based on problem instances labeled with its solution belong to
the domain of supervised methods while those that do not exclusively are non-supervised
or semi-supervised. Most common learning tasks for computers are binary classification
and regression. Binary classification tasks are Yes/No decisions: “does this blood sample
contain a tolerable amount of substance X?”. Regression tasks are similar, but the answer
required is continuous instead of discrete. “What is the age of this animal, based on its
physical appearance?”. As becomes clear from the nature of these examples, one would
want that methods are domain adaptable to provide solutions for a class of relevant
problems instead of just one specific problem.

Over the last decades we have seen that as technology improves and data storage becomes
cheaper, the amount of data generated also increases. Data on which statistics can be
applied to discover underlying mechanisms and distributions - to discover knowledge -
and to gain understanding of e.g. genetic diseases, consumer behavior or celestial bodies.
As acquiring data becomes cheaper, one can assume all this data can be exploited to the
fullest and so the amount of knowledge discovered should also increase. Consequently,
this demands more from contemporary methods. More constrained is the case in which
knowledge needs to be available in real-time, e.g. robotics or rocket science. To allow
for functioning in the real world, algorithms become increasingly complex and additional
sensory data is required to cope with agent or environment interactions. Naturally, the
same argument applies for user agents in the world wide web.

This calls for methods that are able to process large bodies of information linearly or even
sub-linearly in the amount of data available and can operate in a real-time environment.
Online meaning that the model state is updatable as new information becomes available.
In recent years, several different methods have been proposed that are able to process large
bodies of information and are able to operate in a real-time environment, such as [1–5] or
see [6] for an overview. All these methods are used in a supervised setting. Supervised
meaning that each problem instance is paired with its correct answer, or label. However
other sources of data are available as well, including unlabeled information. We want
methods to be better, so we feed them as much data as possible. Algorithms capable
of handling labeled as well as unlabeled problem instances belong to the field of semi-
supervised methods. One of the semi-supervised methods we will look into more closely
is the co-regularization framework proposed in [7]. It allows for unlabeled data as well as
multiple representations of the same data to be added to the model.

It seems tempting to believe that inclusion of unlabeled data leads to performance synergy.
It has been shown that a co-regression setting is beneficial for small datasets while remain-
ing domain adaptable [8]. The downside is that these methods fail as data size increases.
In this work I propose a novel online co-regularized learning method for solving large
scale classification and regression problems. The goal of this work is to show that large
scale problems also benefit from the inclusion of unlabeled data and that co-regression

3



functions in an online setting.

In the following section some background theory on relevant methods is explained. The
next chapter explains the novel co-regularized algorithm with a short discussion. Then
the algorithm is evaluated in a practical setting and finally results are discussed.

2 Background

2.1 Learning models

In practice, which model and learning process to choose is not always clear and largely
depends on various properties of the problem at hand. Intuitively we want a black box
that takes in data and gives us back a prediction and also how confident this prediction is.
It helps to approach the situation from a more formal perspective. A supervised learning
setting can be described as follows.

Consider a set S = (X, Y ) originating from a set {(xi, yi)}mi=1 of data points where X =
(x1, . . . ,xm)t ∈ Xm and Y = (y1, . . . , ym)t ∈ Rm. Here, X is our set of problem instances
and Y are their corresponding labels. The goal is to identify a function f ∈ H that maps
problem instances to their solution, where H is the function space containing all mappings
from X to Y .

This mapping f is our black box and in practical situations it is hard to find a perfect
mapping due to noise or non-linearity of data. Usually one is also satisfied with results
that have a small deviation from the real value, e.g. wether it rains 1.0mm2 or 1.2 mm2.
A more realistic definition is the minimization of prediction differences through means of
a loss function where large deviations are punished more than smaller ones. We can do
so by defining a loss function L that penalizes prediction deviations.

Also we do not want to overfit on any specific problem instances, i.e. if the model were a
line, we would want it to be smooth and not edged. We can do so by incorporating the
model size as a measure of complexity in our learning problem.

Formally, we can combine the loss function and model complexity in the form of an
objective function

J(f, S) = L(f, S) + λ‖f‖2H. (1)

We see both the loss function and the model size incorporated. The second part is called
a regularization component that prevents over-fitting of the model, in this case by using
the L2 norm in the respective function space. The parameter λ ∈ R+ scales this effect.
Minimizing this expression is an approximation of the ideal problem solution. The type
of loss function used defines the method, i.e. we obtain support vector machines [9]
by choosing a hinge loss function and we obtain regularized least-squares (RLS) [10] by
choosing a squared loss function. It is problem dependent which loss function works best.

In specific function spaces H it is sometimes possible to find a more direct notion of f . See
for instance [?]. However such resulting expressions often contain application of matrix
inverses, which are intractable to compute for larger sets.
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2.2 Online Algorithms

Online algorithms are amongst the most popular approaches for large scale learning. In
real-time systems, it is preferable to process data as soon as it becomes available in order to
update some model state. These methods often have a linear or sub-linear time complexity
in the amount of data points, making them very much fit for large scale learning. Methods
such as Pegasos [3], LaSVM [1] and GURLS [11] have been successfully applied to a
wide range of large scale problems leading to state-of-the-art generalization performance.
Slightly overloading our notation, we reshape equation (1) to an online setting:

J(w, S) =
m∑
i=1

L(xi, yi;w) + λ‖w‖2, (2)

where w is the model parameter to be learned.

A popular approach to tackle large scale problems is by using efficient approximation
techniques such as stochastic gradient descent [6]. It is based on the idea of descending
towards the closest error minimum in the model error landscape. By taking the gradient
towards the model parameters, one approximates the best parameters. What makes this
approach so efficient, is the amount of samples considered in the gradient calculation per
time step. Formally the main part of this procedure is

wt+1 = wt − ηt∇wJ(w, St), (3)

where ηt is a scaling parameter - usually referred to as learning rate - and J is any
objective function to be minimized. St is the subset of samples used at a certain iteration
over which the gradient is taken. In a standard gradient setting |St| = m, where a purely
stochastic setting corresponds to |St| = 1.

Although this speed comes at a price - local minima and parameter approximation - it
has been shown that stochastic gradient descent leads to state-of-the-art generalization
performance [3, 12]. Given very few samples and iterations, the model parameters often
converge very rapidly to an optimal region.

2.3 Co-regression

Intuitively, the most important reason to include other sources of data is because people
want better performance for free. Unlabeled data is cheap and often much easier to
obtain. Opposed to unlabeled data, labeling often requires human annotation, domain
experts and special equipment. This makes labeling time consuming and expensive.

Another class of algorithms that is gaining more attention in recent years is the class of
semi-supervised algorithms. This means that, apart from including labeled data, these
models are also able to incorporate unlabeled data into their learning process. Humans
also apply semi-supervised learning in life. Having seen some of pictures of cars and
trucks it is easy to discern all cars from all trucks, even though one has not seen all
cars and trucks in advance. Without a label, the data structure of a single example still
incorporates some spatial structure when represented in its feature space, e.g. figure 1.
One hopes that similar data points are somehow grouped together.

The method to incorporate unlabeled information introduced in [7] is known as the co-
regularization framework. This framework is based on the idea of learning two models
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Figure 1: The artificial circles dataset. Even though only a few points from each circle
are labeled, the structure become clear through the use of unlabeled information.

on the same problem and forcing those two to agree on any decisions made. Here the
advantage is you can use different representations, or views, of the same instance. One
for each separate model. A prediction is made by somehow aggregating model results,
possibly with a weighted average.

A classical example of how this arises naturally can be found in the example of ranking
web documents based on a search query. One view contains the bag of keywords found in
the page contents, while the other contains the link structure to other web documents [13].
Both represent the document in some way.

The co-regularized framework can be described formally, similar to how a single supervised
method is defined. Given a set S = (X, Y ) we consider M different hypotheses spaces

H1, . . . , HM or views over unique subsets of features. Say we also have a set S̃ = (X̃)

with unlabeled data points {xm+i}ni=1, X̃ = (xm+1, . . . ,xm+n)t ∈ X n. Intuitively, S̃ can be
used to identify disagreement between models. No labels required. In the co-regularization
setting we would like to identify functions f = (f1, . . . , fM) ∈ H1 × . . .×HM in order to
minimize the objective function

J(f) =
M∑
v=1

L(fv, S) + λ
M∑
v=1

‖fv‖2Hv
+ µ

M∑
v,u=1

LC(fv, fu, S̃), (4)

where λ, µ ∈ R+ are regularization parameters and where LC is the loss function mea-
suring the disagreement between the prediction functions of the views on the unlabeled
data. We obtain equation (1) by choosing M = 1.

Similar to the standard learning problem, co-regularized algorithms are usually not straight-
forwardly applicable to large scale learning tasks where large amounts of unlabeled as well
as labeled data are available for training. Several recently proposed algorithms have com-
plexity that is linear in the number of unlabeled data points and superlinear in the number
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of labeled examples. The method proposed in [8] has cubic runtime complexity due to a
matrix inverse.

In the following section, we will introduce a novel method enabling co-regression in an
online environment. This makes the method linear in feature dimensionality and samples
considered per iteration.

3 Online co-regularized algorithm

It is possible to extend standard online methods with a co-regularization component. In
this section a stochastic gradient algorithm is modified in such manner, so that it can
incorporate unlabeled information too. To do so, the method first has to be converted
to the multi-view perspective. In addition, a co-regularization component that forces
agreement between all pairs of views is necessary. Although the method is similar to
Pegasos [3], LaSVM [1] and GURLS [11], the method introduced here is preferable in
case unlabeled data points are available for learning.

Given this, lets consider (4) in an online setting similar to equation (2).

J(W) =
M∑
v=1

(
1

m

m∑
i=1

L(xvi , yi;w
v) + λv‖wv‖2

)
+
µ

n

M∑
v,u=1
v 6=u

m+n∑
i=m+1

LC(xvi ,x
u
i ;w

v,wu), (5)

Here the first term corresponds to equation (2) in a multi-view setting and the second
term enforces agreement between all pairs of models by punishing disagreement. It could
be the case that one view is naturally more important than others. Because of this,
each view has a separate regularization parameter. Also both terms are divided by the
amount of samples, respectively m and n, summed over. Co-regularization should be a
term that compensates normal predictions. Without averaging, model training would be
done purely by co-regularization for large n. We can approximate the optimal solution
by minimizing (5) using stochastic gradient descent (3).

Consider the setting in which the squared loss function is used for the co-regularization,
predictions are done through a linear model and we remain using the L2 norm for standard
regularization. Linear model means that model predictions are done through the expres-
sion wTx. The choice of squared loss for the co-regularization term is quite natural as it
penalizes the differences of the prediction functions between views. For every iteration t
of the algorithm, we first choose a set At ⊆ S of size k. Similarly we choose Ãt ⊆ S̃ of
size l for each round t on the unlabeled dataset. We then apply the stochastic update on
(5) to get the update rule

wv
t+1 = (1− ηvt λv)wv

t−
ηvt
|At|

∑
(x,y∈At)

∇wL(xv, y;wv
t ) −

4ηvt
µ

|Ãt|

M∑
v,u=1
v 6=u

∑
(x,y∈Ãt)

(
wvT
t xv −wuT

t xu
)
xv. (6)

This may seem a bit daunting, but if we choose At = S and Ãt = S̃ on each round t we
obtain the normal full gradient projection method. At the other extreme, if we choose
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At to contain a single randomly selected example, we recover a variant of the stochastic
gradient method. In general, we allow At to be a set of k and Ãt to be a set of l data
points sampled i.i.d. from S and S̃, respectively. It is due to this subsampling that the
update is referred to as stochastic.

In the above expression no loss function has been specified yet, leaving this to be a general
method. For regression problems, the squared loss function is often used.

Lsquared(p, y) =
1

2
· (p− y)2,

where p is the model prediction and y the correct label. When derived with respect to
the predicted value, this becomes

∇pLsquared(p, y) = (p− y).

The derivative is taken with respect to p. In the objective function, we consider the
derivative with respect to w. To make this work, one has to apply the chain rule. In the
case of a linear model, this leads to an additional multiplication with x.

By substituting the squared loss derivative into the second term of equation (6), we obtain
the update rule for the online co-regularized algorithm with the squared loss function.

The hinge loss is usually considered as more appropriate for classification problems, al-
though it has been demonstrated that squared loss often leads to similar performance [14]
[15]. When used on classification labels y ∈ {−1, 1}, the hinge loss function is of the form

Lhinge(p, y) = max(0, 1− yp),

where p is the model prediction and y the correct label. Since this function is not dif-
ferentiable, an approximation of it, a so-called subgradient, is used when optimizing the
corresponding model function.

∇pLhinge(p, y) =

{
−y, if p > 0

0 else

We can enforce this condition in (6) by defining a set A+ holding examples for which wv

obtains a non-zero loss, that is A+ = {(xv, y) ∈ At : y(wvTxv) < 1}. Then by substituting
the hinge loss derivative into the second term of equation (6), we obtain the update rule
for the online co-regularized algorithm with the hinge loss function.

Illustrated in algorithm 1 is the Online Co-regularization Algorithm for classification using
the hinge loss function. Predictions are done by computing the mean prediction value of
all views.

3.1 Discussion

An important part of operationalizing this algorithm is parameter determination. With
only two views, we already have 3 parameters to optimize: regularization parameters λ
for each view and µ. If you regard meta parameters k and l as tunable, there are already
5 different parameters to tune. When also setting a learning parameter offset η0 for each
view, even more parameters come into play. By having so many parameters, without
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Algorithm 1 Online co-regularized algorithm (OCA-k-l)

Require: Datasets S and S̃, regularization parameters λ, batch sizes k and l, number of
views M , co-regularization parameter µ.

Ensure: wv = 0
1: for t = 1, 2, . . . , N do
2: Choose At ⊆ S, where |At| = k and Ãt ⊆ S̃, where |Ãt| = l
3: Set A+

t = {(xv, y) ∈ At : y(wvTxv) < 1}
4: Set ηvt = 1

λt

5: wv
t+1 ← (1− ηvt λ)wv

t − ηvt
∑

(x,y∈A+
t ) yx

v

6: −4ηvt
µ
l

∑M
v,u=1
v 6=u

∑
(x,y∈Ãt)

(
wvT
t xv −wuT

t xu
)
xv

7: Output wv
N+1

independency assumptions, finding the optimal parameter pair suffers from the curse of
dimensionality.

To work with a high amount of parameters, one could assume simplified dependencies
between views or parameters. When applying a grid search, we found it to be beneficial
to pick small values for co-regularization parameter µ (< 1), possibly constraining its
grid. Finding appropriate values for k and l can also be done through a simple grid
search with a rough grid. This only leaves the different λ and µ to search for. If one
assumes independency between λ and µ, searching for different regularization parameters
λ can be done in O(gM) steps, where g is the grid size for each λ and M is the number
of views.

Although the proposed algorithm is presented with the hinge loss function, the extension
to logarithmic, ε-intensive, pairwise, and several others are relatively straightforward. In
the above formulation we considered a version of the algorithm that makes use of randomly
sampled subsets At and Ãt at every iteration. Flexibility to vary the sizes of these sets
at every time step can be beneficial in some circumstances, for example when prediction
functions in multiple views start to diverge significantly one can consider increasing the
number of unlabeled data points in the co-regularized term.

Also, use of squared loss is associated with several computation benefits, for example it
allows to precompute the co-regularized term on unlabeled data and efficiently use it in
training, in case of static or low amounts of unlabeled data. We also found the algorithm
to work best in a difficult setting, opposing a completely linearly separable dataset.

When dealing with sparse data, only certain fields in w have to be updated, while regu-
larization operates on every field. By separating these two, we gain some computational
advantage. Concretely, we can represent a weight vector w as a pair (v, a) where v ∈ Rn

is a vector and a is a scalar. The vector w is then defined as w = av. This representation
is then substituted in the algorithm leading to seperate updates for a and v. The update
for v is now sparse and the update for a is just one-dimensional. For numerical stability a
size constraint is imposed on a. Once the size of a reaches a certain threshold, a is normal-
ized with respect to v. One can verify that this decreases the number of computational
steps while remaining equivalent to the original solution.
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4 Empirical evaluation

4.1 Experimental setup

In this section we show results of an implemented version of the newly introduced algo-
rithm and compare it with the closely related multi-view and standard online learner.

To evaluate the performance of the proposed algorithm, we use publicly available datasets
from the UCI repository1 and the LibSVM repository2 that are known to work well with
linear models. To demonstrate the difference on a difficult problem we also use the BioIn-
fer language corpus3 - a real world natural language processing dataset. Typically such
natural language problems are large scale in sample as well as feature size. More specific,
we selected a number of standard regression and classification datasets from the reposi-
tory, namely abalone, cadata, housing, mg, space, svmguide3, germannumer,
australian with the BioInfer corpus in addition.

To simulate a semi-supervised learning setting, we remove part of the labels from each
of the datasets. We use the classical learning setting, where 70% of the data is used
for training and the remaining 30% as testing. 20% of the training data is randomly
selected to be labeled, and the others are used as unlabeled data, plainly by removing
their labels. The used datasets vary in size from several hundred samples to several tens
of thousands and the density varies from sparse to dense. Depending on the learning task,
the performance measure is either AUC for classification or RMSE for regression.

The best known performance measure for classification is accuracy: “how many questions
did I answer correctly?”. Though simple and proven to be successful in some cases, it has
some flaws that other measures do not have. One often uses Area under Curve (AUC) for
binary classification problems. It does not suffer from class distribution bias and choice
of thresholding. Basically, the AUC value is equal to the probability that a classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative
one [16]. As the name suggests, it is calculated by computing the area under the Receiving
Operator Characteristic curve.

The Root Mean Squared Error (RMSE) measure is often used for regression type problems.
It averages the squared differences over all predictions and labels and sequently takes the
square root. This means results

RMSE =

√∑m
i=1 (yi − f(xi))2

m

The datasets are preprocessed by applying a linear scaling to each feature to the interval
[−1, 1]. For regression datasets we also apply a linear scaling on the labels, to the interval
[0, 100]. When interpreting RMSE results, this grants easier interpretation for all sets,
whereas with a non-normalized dataset, RMSE values completely depend on the original
labeling domain. This somewhat normalizes the measure as well, making it easier to see
wether a dataset is ‘hard’ or cross dataset interpretation of methods.

We compare the performance of a two-view online co-regularized algorithm with several

1http://archive.ics.uci.edu/ml/
2http://www.csie.ntu.edu.tw/~cjlin/libsvm/
3Available at www.it.utu.fi/BioInfer
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other methods, namely the baseline - supervised - version of the algorithm, excluding
the co-regularization term. This is in essence equivalent to the Pegasos algorithm [3].
We also compare with the multi-view version of the algorithm by simply excluding the
co-regularization term, termed as Pegasos MV. For classification sets we use the hinge
loss for all methods, denoted by appending HL. For regression sets we do the same with
the squared loss, SL. We compare with several instantiations of the online co-regularized
algorithm, termed as OCA-k-l, using various sizes of unlabeled batch examples. For the
supervised learning algorithms, only the labeled part of dataset is used for training. The
same set is then used for training the co-regularized model, together with the unlabeled
data.

Parameter selection for each model is done by 10-fold cross-validation over the train
partition of the data with a grid of possible parameter tuples. Parameters considered are
the starting values for λ1, λ2 and µ. For the supervised models, parameters to be selected
are the starting learning rate η0 and regularization parameter λ. For the supervised
and semi-supervised multi-view models we consider two views that are constructed via
random partitioning of the data attributes into two unique sets. Such division of the
attributes for constructing multiple views has been previously used in [8]. For the multi-
view model we have to estimate the learning rate η0, as well as the λ1 and λ2 parameters.
The semi-supervised model has an additional parameter µ controlling the influence of the
co-regularization on the views.

4.2 Results

The results of the experiments are included in the Tables 1-8. It can be observed that in
all experiments except the housing dataset, the proposed co-regularized algorithm out-
performs supervised learning methods. The housing dataset is also the smallest dataset
considered in our empirical evaluation. We use a Wilcoxon signed-rank test [17] to es-
timate whether the differences in performance are statistically significant. In all cases
(with the exception of the housing dataset) the OCA leads to statistically significant im-
provement over the standard Pegasos algorithm. Detailed information for each dataset
is reported in the caption of the corresponding table.

Table 1: Results on the Abalone dataset. The OCA-1-5 algorithm outperforms supervised learn-
ing methods. Improvement in performance is statistically significant according to the Wilcoxon
signed rank test. The difference between the co-regularized algorithms OCA-1-1 and OCA-1-5
is also statistically significant.
Abalone CV perf (RMSE) η0 λ1 λ2 µ Test perf (RMSE)
Pegasos SL 14.40 0.5 2.0 n/a n/a 19.46
Pegasos MV SL 11.70 0.5 16.0 0.25 n/a 15.52
OCA-1-1 11.63 0.25 16.0 0.25 0.5 14.23
OCA-1-5 11.73 0.25 16 0.25 0.5 13.50
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Table 2: Results on the Cadata dataset. OCA-1-1 leads to a statistically significant per-
formance improvement compared to supervised Pegasos SL and Pegasos MV SL according
to the Wilcoxon signed rank test. The difference between the co-regularized algorithms
OCA-1-1 and OCA-1-5 is not statistically significant.
Cadata CV perf (RMSE) η0 λ1 λ2 µ Test perf (RMSE)
Pegasos SL 24.45 2.5 8.0 n/a n/a 26.00
Pegasos MV SL 24.29 1.5 16.0 4.0 n/a 27.26
OCA-1-1 23.97 1.5 1.0 16.0 1.5 25.76
OCA-1-5 23.30 1.5 1.0 16.0 1.5 25.80

Table 3: Results on the Housing dataset. Pegasos SL outperforms other methods on the
smallest dataset used in our empirical evaluations.
Housing CV perf (RMSE) η0 λ1 λ2 µ Test perf (RMSE)
Pegasos SL 19.34 0.0625 8.0 n/a n/a 16.34
Pegasos MV SL 17.07 0.01 16.0 64.0 n/a 17.59
OCA-1-1 17.75 0.01 4.0 256 1.5 18.54
OCA-1-5 16.13 0.01 4.0 256 1.5 18.69

Table 4: Results on the MG dataset. OCA-1-1 leads to statistically significant perfor-
mance improvement compared to supervised Pegasos SL according to the Wilcoxon signed
rank test. The differences between the co-regularized algorithms OCA-1-1, OCA-1-5, and
Pegasos MV SL are not statistically significant.
MG CV perf (RMSE) η0 λ1 λ2 µ Test perf(RMSE)
Pegasos SL 45.53 0.125 1.0 n/a n/a 46.71
Pegasos MV SL 45.88 0.125 0.5 0.125 n/a 45.73
OCA-1-1 44.51 1.5 64 32 0.1 45.57
OCA-1-5 44.93 0.125 0.5 0.125 0.01 45.91

Table 5: Results on the Space dataset. OCA-1-1 leads to statistically significant perfor-
mance improvement compared to supervised Pegasos SL and Pegasos MV SL according
to the Wilcoxon signed rank test. The difference between the co-regularized algorithms
OCA-1-1 and OCA-1-5 is not statistically significant.
Space CV perf (RMSE) η0 λ1 λ2 µ Test perf (RMSE)
Pegasos SL 58.32 0.25 0.5 n/a n/a 58.17
Pegasos MV SL 50.42 0.125 1.0 0.125 n/a 51.90
OCA-1-1 41.95 1.0 0.125 0.5 n/a 36.60
OCA-1-5 42.80 0.125 1.0 0.125 0.5 36.84

4.3 Natural Language parsing

Throughout this experiment, we use the BioInfer corpus [18] which consists of 1100 man-
ually annotated sentences.4 For each sentence, we generate a set of candidate parses with
a link grammar (LG) parser [19]. The LG parser is a full dependency parser based on
a broad-coverage hand-written grammar. It generates all parses allowed by its gram-
mar and applies a set of built-in heuristics to predict goodness of the parses. However,

4Available at www.it.utu.fi/BioInfer
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Table 6: Results on the Germannumer dataset. OCA-1-1 leads to statistically signifi-
cant performance improvement compared to supervised Pegasos HL and Pegasos MV HL
according to the Wilcoxon signed rank test. The difference between the co-regularized
algorithms OCA-1-1 and OCA-1-5 is also statistically significant.
Germannumer CV perf (AUC) η0 λ1 λ2 µ Test perf (AUC)
Pegasos HL 0.72 10 0.03125 n/a n/a 0.74
Pegasos MV HL 0.76 0.75 4 0.125 n/a 0.71
OCA-1-1 0.75 0.125 0.125 0.125 0.01 0.75
OCA-1-5 0.75 0.125 16 0.5 0.2 0.74

Table 7: Results on the Svmguide3 dataset. OCA-1-5 leads to statistically significant
performance improvement compared to supervised Pegasos HL and Pegasos MV HL ac-
cording to the Wilcoxon signed rank test. The difference between the co-regularized
algorithms OCA-1-1 and OCA-1-5 is also statistically significant.
Svmguide3 CV perf (AUC) η0 λ1 λ2 µ Test perf (AUC)
Pegasos HL 0.85 1 0.25 n/a n/a 0.74
Pegasos MV HL 0.83 1.5 0.125 0.125 n/a 0.75
OCA-1-1 0.77 1.5 0.125 0.125 0.05 0.73
OCA-1-5 0.82 0.25 0.0625 0.125 0.01 0.76

Table 8: Results on the Australian dataset. OCA leads to statistically significant perfor-
mance improvement compared to supervised Pegasos HL and Pegasos MV HL according
to the Wilcoxon signed rank test. The difference between the co-regularized algorithms
OCA-1-1 and OCA-1-5 is not statistically significant.

Australian CV perf (AUC) η0 λ1 λ2 µ Test perf (AUC)
Pegasos HL 0.95 0.0625 0.03125 n/a n/a 0.92
Pegasos MV HL 0.95 0.25 0.0625 0.03125 n/a 0.92
OCA-1-1 0.93 0.5 0.0625 0.03125 0.001 0.93
OCA-1-5 0.94 1 0.0625 0.03125 0.001 0.93

the performance of its heuristics has been found to be poor when applied to biomedical
text [20], and hence subsequent selection methods are needed. In our experiment we use
the proposed online co-regularized algorithm instead of the LG parser built-in heuristics
to predict goodness of the generated parse.

Our dataset consists of 3000 parses represented as sparse vectors of dimensionality 201740.
We obtain a scoring for an input by comparing its parse to the hand annotated correct
parse of its sentence. In order to select the parameter values, we divide the dataset into
training 70% and test set 30% (we ensure that the parses that belong to the same sentence
belong to a single set). Also, 20% of the training data are randomly selected to be labeled,
and the rest is used as unlabeled data.

The first dataset is used for parameter estimation and the second one is reserved for the
final validation. The appropriate values of the regularization parameters are determined
by grid search with 10-fold cross-validation on the parameter estimation data.

Finally, the algorithm is trained on the whole training set with the selected parameter
values and tested with the test parses reserved for the final validation. The results of the

13



Table 9: Results on the BioInfer dataset. OCA-1-5 leads to statistically significant perfor-
mance improvement compared to supervised Pegasos SL and Pegasos MV SL according to
Wilcoxon signed rank test. The difference between the co-regularized algorithms OCA-1-1
and OCA-1-5 is not statistically significant.
BioInfer CV perf (RMSE) η0 λ1 λ2 µ Test perf (RMSE)
Pegasos SL 45.36 0.5 32 n/a n/a 63.86
Pegasos MV SL 44.94 0.5 16 16 n/a 63.16
OCA-1-1 39.78 0.5 16 16 0.4 61.47
OCA-1-5 39.85 0.5 16 16 0.4 61.29

experiment are presented in Table 9. It can be observed that OCA notably outperforms
both supervised methods and the improvement in performance is statistically significant
according to a Wilcoxon signed rank test. Those results indicate that our algorithm is
applicable to the tasks in natural language processing and other domains where sparse,
high dimensional data are commonplace.

5 Conclusions

This work presents an online co-regularized algorithm for regression and classification
tasks. The research goal is met by demonstrating that large scale problems benefit from
the inclusion of unlabeled data and that co-regression can function in an online section
by demonstrating so in a practical setting. The algorithm is computationally efficient
and is naturally suited for learning tasks in which large amounts of unlabeled and la-
beled data are available for training The method is related to online methods such as
Pegasos [3], LaSVM [1] and GURLS [11] and unlike many co-regularized algorithms
has computational complexity independent of the number of training data points when
using subsamples of data. In the empirical evaluation we demonstrate that our method
consistently performs well on publicly available datasets as well as notably outperforms
supervised learning algorithms on the BioInfer corpus from the natural language process-
ing domain. Last but not least, we make available an efficient implementation of our
algorithm coded in Python.

The algorithm can be extended to be applicable to various learning tasks. For instance,
it can be adapted for the task of large scale preference learning and ranking. Large
scale learning to rank has recently received notable attention and while several supervised
learning algorithms have been proposed [4], taking into account large amount of unlabeled
data (naturally abundant in IR domain) can help to even further improve predictive
performance of the method. Thus, an interesting future research direction is to adapt and
apply the online co-regularized algorithm to large scale learning to rank tasks.

The body of knowledge introduced in this work will be published later this year in Dis-
covery Science 2012 [21].
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